Introduction

The analysis of two special cases

A bound of f-edge cover chromatic index of graphs

some variations of f-edge cover-coloring problem

On f-Edge Cover-Coloring of Graphs

Huimin Song Guizhen Liu

Department of Applied Mathematics
Shandong University at Weihai

August 12, 2006
Introduction

♠ $G(V, E)$: a graph allows multiple edges but no loops and has a finite vertex set V and a finite and nonempty edge set E.

♠ Degree and the minimum degree

$d(v)$: the number of edges of G incident with vertex v.

$\delta = \min\{d(v) : v \in V\}$

♠ $E(u, v)$: the set of edges with end vertices u and v.

♠ the multiplicity:

$\mu(u, v) = |E(u, v)|$

$\mu(v) = \max\{\mu(v, u) : u \in V\}$

$\mu(G) = \max\{\mu(v) : v \in V(G)\}$.

♥ The reader is referred to [1] for the undefined terms.
Introduction

♠ C is a k-edge-coloring of G: if $C : E \rightarrow \{1, 2, \ldots, k\}$.

♠ $C^{-1}_v(i)$: the number of edges of G incident with vertex v that receive color i by the coloring C.

♠ Assume that a positive integer $f(v)$ with $1 \leq f(v) \leq d(v)$ is associated with each vertex $v \in V$. C is an f-edge cover-coloring of G: if for each vertex $v \in V$, $C^{-1}_v(i) \geq f(v)$ for $i = 1, 2, \ldots, k$.

♠ the f-edge cover chromatic index of G denoted by $\chi'_{fc}(G)$: the maximum positive integer k for which an f-edge cover k-edge coloring of G exists.

❤ When $f(v) = 1$ for all $v \in V$, the f-edge cover-coloring is called edge-cover coloring. Accordingly the f-edge cover chromatic index is called the edge cover chromatic index denoted by $\chi'_c(G)$.

❤ Let $\delta_f = \min\{\lceil d(v)/f(v) \rceil : v \in V\}$. It is trivial that $\chi'_{fc}(G) \leq \delta_f$.
Gupta proved that $\delta(G) - \mu(G) \leq \chi'_c(G) \leq \delta(G)$ for any graph [2].

Lianying Miao and Guizhen Liu, Edge covered coloring and fractional edge covered coloring [3].

Hilton gave some special results on edge cover coloring of multigraphs [4].

In [5] the generalization of edge coloring is discussed. We will use some results in [5] for our proofs.

Hilton and de Werra studied the equitable edge colorings of simple graphs [6].
We present two interesting special cases for which $\chi'_{fc}(G) = \delta_f$.

We show that $\min_{v \in V} \{ \lfloor d(v)/f(v) \rfloor \} \geq \chi'_{fc}(G) \geq \min_{v \in V} \{ \lfloor (d(v) - \mu(v))/f(v) \rfloor \}$, which reduces to Gupta’s theorem when $f(v) = 1$ for all vertex $v \in V$.
The analysis of two special cases—Lemma 2.1

Let $E(i) = \{ e \in E : C(e) = i \}$. Let $G(u; i, j)$ be the components of the edge induced subgraph of G on $E(i) \cup E(j)$ which contains u.

Lemma

Lemma 2.1 Let $G(V, E)$ be a connected graph. Then G has a 2-edge-coloring C such that:

(a) If G is Eulerian and $|E|$ is odd, then we can make the 2-edge-coloring C such that for an arbitrary $u \in V$, $|C_u^{-1}(1) - C_u^{-1}(2)| = 2$ and $C_v^{-1}(1) - C_v^{-1}(2) = 0$ for all $v \in V \setminus \{u\}$.

(b) If G is Eulerian and $|E|$ is even, then $C_v^{-1}(1) - C_v^{-1}(2) = 0$ for all $v \in V$.

(c) If G is not Eulerian, then $|C_v^{-1}(1) - C_v^{-1}(2)| \leq 1$ for all $v \in V$.

(d) In all cases, we have

$$| |E(1)| - |E(2)| | = \begin{cases} 0, & \text{if } |E| \text{ is even} \\ 1, & \text{if } |E| \text{ is odd} \end{cases}$$
The analysis of two special cases—Lemma 2.2

Lemma 2.2 Let k be an integer which is larger than 1. Then there exists a k-edge-coloring C of G such that

(a) $|C_v^{-1}(i) - C_v^{-1}(j)| \leq 2$ for all $v \in V$, $i, j \in \{1, 2, \ldots, k\}$, and furthermore if for some $u \in V$, $i, j \in \{1, 2, \ldots, k\}$, $|C_u^{-1}(i) - C_u^{-1}(j)| = 2$, then $G(u; i, j)$ is Eulerian with an odd number of edges, and

(b) $|E(i)| - |E(j)| \leq 1$ for all i and $j \in \{1, 2, \ldots, k\}$.

The above two lemmas are proved in [5] which are important for our proofs.
The analysis of two special cases—Theorem 2.3

Applying Lemmas 2.1 and 2.2, we can evaluate edge cover chromatic index for bipartite graphs.

Theorem

Theorem 2.3 Let $G(V, E)$ be a bipartite graph and $\delta_f = \min \{\lfloor d(v)/f(v) \rfloor : v \in V\}$. Then $\chi'_{fc}(G) = \delta_f$. Furthermore if $\delta_f = k \geq 2$, there exists an f-edge cover-coloring C of G for which $||E(i) - E(j)|| \leq 1$ and $|C^{-1}_v(i) - C^{-1}_v(j)| \leq 1$ for all $v \in V$, $i, j \in \{1, 2, \ldots, k\}$.

♥Idea. We first give one kind of coloring with the condition subscribed in Lemma 2.2, then prove the coloring is required.
Let $G(V, E)$ be a graph. By an orientation of G, we mean a digraph \overrightarrow{G} obtained from G by assigning a direction to each edge of G. By $d^+(v)$ and $d^-(v)$, we mean the indegree and outdegree of vertex v in \overrightarrow{G}, respectively. Note that $d^+(v) + d^-(v) = d(v)$ for every $v \in V$.

Lemma 2.4
There exists an orientation \overrightarrow{G} of G such that

$$\left\lfloor \frac{d(v)}{2} \right\rfloor \leq d^+(v) \leq \left\lceil \frac{d(v)}{2} \right\rceil$$

for each $v \in V$.

Huimin Song Guizhen Liu

On f-Edge Cover-Coloring of Graphs
The analysis of two special cases—-Theorem 2.5 and Corollary 2.6

Using the above lemma, we give the following theorem.

Theorem

Theorem 2.5 Let \(G(V, E) \) be a graph and \(\chi'_{fc}(G) \), \(d(v) \) and \(f(v) \) be defined as above. Suppose that \(f(v) > 1 \) for all \(v \in V \) and let

\[
\delta'_f = \min_{v \in V} \{ \min(\lfloor \frac{d(v)}{2} \rfloor / \lfloor \frac{f(v)}{2} \rfloor, \lceil \frac{d(v)}{2} \rceil / \lceil \frac{f(v)}{2} \rceil) \}.
\]

Then \(\chi'_{fc}(G) \geq \delta'_f \).

Corollary

Corollary 2.6 Let \(G(V, E) \) be a graph. If \(f(v) > 1 \) for all \(v \in V \), then

\(\chi'_{fc}(G) \geq \frac{1}{2} \delta_f \).
The analysis of two special cases—Corollary 2.7

Corollary 2.7 If \(f(v) \) is positive and even for all \(v \in V(G) \), then \(\chi_{fc}'(G) = \delta_f = \min\{\lfloor d(v)/f(v)\rfloor \mid v \in V\} \).

Suppose that we could find an orientation \(\overrightarrow{G} \) of \(G \) such that for some positive integer \(k \) and each \(v \in V \), \(k\lfloor f(v)/2 \rfloor \leq \min\{d^-(v), d^+(v)\} \leq d(v) - k\lceil f(v)/2 \rceil \). Then, following the same reasoning as in Theorem 2.5, one can show that \(\chi_{fc}'(G) \geq k \).
A bound of f-edge cover chromatic index of graphs—Theorem 3.1

Theorem 3.1 Let $G(V, E)$ be a graph. Let $f(v)$, $d(v)$, and $\mu(v)$ be defined as in Section 1. Then

$$\min_{v \in V} \left\lfloor \frac{d(v)}{f(v)} \right\rfloor \geq \chi'_{fc}(G) \geq \min_{v \in V} \left\lfloor \frac{(d(v) - \mu(v))/f(v)}{f(v)} \right\rfloor.$$

Idea. Assume that G has an edge-coloring C with k colors $1, 2, \ldots, k$. For each $v \in V$ and $1 \leq i \leq k$, let

- $k = \min_{v \in V} \left\lfloor \frac{(d(v) - \mu(v))/f(v)}{f(v)} \right\rfloor.$
- $\sigma_i(v) = \max(0, f(v) - C_{v^{-1}}(i))$
- $\epsilon(v) = \max_{1 \leq i \leq k} \sigma_i(v)$
- $\sigma(v) = \sum_{i=1}^{k} \sigma_i(v).$
A bound of f-edge cover chromatic index of graphs—exchange chain

In order to 'improve' the coloring of an edge-colored graph, we shall use the concept of an exchange chain.

An (α, β)-exchange chain K of G is a sequence $(v_0, e_1, v_1, e_2, \ldots, v_{r-1}, e_r, v_r)$ of vertices and edges of G in which
(i) for $1 \leq i \leq r$, the vertices v_{i-1} and v_i are distinct and are both incident with the edge e_i,
(ii) the edges are all distinct and are colored α and β alternately,
(iii) e_1 is colored α and $C_{v_0}^{-1}(\alpha) > C_{v_0}^{-1}(\beta)$; similarly, let γ denote the color of e_r and $\bar{\gamma}$ denote the other color of $\{\alpha, \beta\}$, then $C_{v_r}^{-1}(\gamma) > C_{v_r}^{-1}(\bar{\gamma})$.

It is clear, however, that an interchange of colors in an exchange chain never makes the coloring worse.
some variations of f-edge cover-coloring problem

Let $G(V, E)$ be a graph and $f(v)$ be defined as before. An f-edge cover equitable coloring is an edge coloring $C : E \rightarrow \{1, 2, \ldots, k\}$ such that every color appears at each vertex v at least $f(v)$ times, and $|C_v^{-1}(i) - C_v^{-1}(j)| \leq 1$ for every $i, j \in \{1, 2, \ldots, k\}$. The maximum number k for which an f-edge cover equitable coloring exists, denoted by $q'_{fc}(G)$, is called equitable f-edge cover chromatic index of G. Obviously, $q'_{fc}(G) \leq \chi'_{fc}(G)$.

From Theorem 2.3, we have the following corollary.

Corollary

Let $G(V, E)$ be a bipartite graph, we have $q'_{fc}(G) = \chi'_{fc}(G)$.
Finally we present some problems for future research as follows.

♣ For some special class of graph G, define $q'_{fc}(G)$ and $\chi'_{fc}(G)$.

♣ Characterizes graph G such that $q'_{fc}(G) = \chi'_{fc}(G)$.

♣ Characterizes graph G such that $q'_{fc}(G) = \delta_f$ or $\chi'_{fc}(G) = \delta_f$.

♣ Does $\delta_f \geq q'_{fc}(G) \geq \min_{v \in V} \left\lfloor \frac{(d(v) - \mu(v))}{f(v)} \right\rfloor$ stand true for any graph G?
References

A. J. W. Hilton, Colouring the edges of a multigraph so that each vertex has at most j, or at least j edges of each colour on it, J. London Math Soc. 12(2) (1975), 123-128.
