ON VERTEX-TRANSITIVE SELF-COMPLEMENTARY DIGRAPHS

HU YE CHEN AND ZAI PING LU

ABSTRACT. In this paper, we consider vertex-transitive selfcomplementary digraphs which satisfy certain conditions, and present several analogous results of that on vertex-transitive selfcomplementary graphs. We first give an elementary proof of the fact that there exists a vertex-transitive self-complementary digraph of order n if and only if n is odd. In Section 3, we show that an arctransitive self-complementary digraph is either a graph or isomorphic a normal Cayley digraph of \mathbb{Z}_p^f , where p is an odd prime. At last, we characterize all vertex-transitive self-complementary digraphs of order a product of two primes.

KEYWORDS: Digraph, self-complementary, complementary map, vertex-transitive, arc-transitive.

1. INTRODUCTION

Let V be a finite nonempty set, and $V^{(2)} = \{(u, v) \mid u, v \in V, u \neq v\}$. A (simple) digraph on V is a pair (V, A) with $A \subseteq V^{(2)}$, while |V| is the order of Γ , and the elements in V and A are called vertices and arcs, respectively. A subset $A \subseteq V^{(2)}$ is self-paired if $A = A^* := \{(v, u) \mid (u, v) \in A\}$. In this paper, we always consider (simple) graphs as digraphs which have self-paired arc set. For a digraph $\Gamma = (V, A)$, we set $\overline{\Gamma} = (V, V^{(2)} \setminus A)$ and call it the complement of Γ . Then a digraph $\Gamma = (V, A)$ is self-complementary if there is an isomorphism of digraphs between Γ and $\overline{\Gamma}$.

Let $\Gamma = (V, A)$ be a digraph. Denote by $\operatorname{Aut}\Gamma$ the automorphism group of Γ , which is the subgroup of the symmetric group $\operatorname{Sym}(V)$ preserving the adjacency of Γ . The digraph Γ is called *vertex-transitive* if $\operatorname{Aut}\Gamma$ is a transitive permutation group on V, i.e., a transitive subgroup of $\operatorname{Sym}(V)$. (We follows [4] for notation and concepts relative to permutation groups.) Note that each $q \in \operatorname{Sym}(V)$ has a natural action on $V^{(2)}$ by $(u, v)^g =$

²⁰¹⁰ Mathematics Subject Classification. 05C25.

This work was supported by the National Natural Science Foundation of China (No. 11371204).

E-mail address: 1120140003@mail.nankai.edu.cn(H.Y. Chen), lu@nankai.edu.cn(Z.P. Lu).

 (u^g, v^g) . Then the digraph Γ is called *arc-transitive* if Aut Γ is transitive on both V and A. In the literature, an arc-transitive graph (i.e., digraph with self-paired arc set) is also called a *symmetric* graph.

In 1962, Sachs [21] started the study of vertex-transitive selfcomplementary graphs and constructed some self-complementary circulant graphs. Since then, much work has been done on this topic (see [6, 10, 11, 12, 14, 15, 16, 18, 19, 20, 22], for example), and many intriguing results have been presented. For example, Rao [20] gave a characterization of the orders of vertex-transitive self-complementary graphs, and then Muzychuk [18] presented a Sylow property for such graphs.

Note that a graph can be identified with a digraph with self-paired arc set. It is reasonable to consider various analogous problems about vertex-transitive self-complementary digraphs. To our knowledge, Chia and Lim [2] first studied the class of vertex-transitive self-complementary digraphs, and they give a complete classification for vertex-transitive selfcomplementary digraphs of prime order. However, there are few progresses on this topic. One can deduce an analogue of Rao's result from [13], which says that there exists a vertex-transitive self-complementary digraph of order n if and only if n is odd. A remarkable result on this topic is the characterization of primitive self-complementary digraphs, which is given by Guralnick, Li, Praeger and Saxl [5]. Therefore we shall make an attempt in this paper to generalize some results on vertex-transitive selfcomplementary graphs to digraphs.

This paper is organized as follows. In Section 2, we collect some basic properties about vertex-transitive self-complementary digraphs. In Sections 3 and 4, we give a classification of arc-transitive self-complementary digraphs, and a classification of vertex-transitive self-complementary digraphs of order a product of two primes.

2. The orders of vertex-transitive self-complementary digraphs

Let $\Gamma = (V, A)$ be a self-complementary digraph. Let ι be an isomorphism from Γ to $\overline{\Gamma}$, which is called a complementary map. Then $\iota^2 \in \operatorname{Aut}\Gamma$ and $\operatorname{Aut}\overline{\Gamma} = \operatorname{Aut}\Gamma^{\iota}$, and $\overline{\Gamma}$ has arc set $A^{\iota} := \{(u^{\iota}, v^{\iota}) \mid (u, v) \in A\}$. Moreover, for each odd integer k, ι^k is also a complementary map. Clearly, as a permutation on V, ι has even order and fixes at most one point in V. Consider a factorization of ι into disjoint cycles on V. Suppose that there is a cycle of odd length k in this factorization. Then ι^k fixes at least k points in V. Since ι^k is a complementary map, we have k = 1. Then the following lemma holds.

Lemma 2.1. Let $\Gamma = (V, A)$ be a self-complementary digraph with a complementary map ι . Then, in each factorization of ι into disjoint cycles on V, there is at most one 1-cycle, and the remaining cycles have even length. If further Γ is vertex-transitive, then ι has exactly one fixed point; in particular, |V| is odd.

Proof. The first part of this lemma follows from the argument in the beginning paragraph of this section. Thus we assume that Γ is a vertex-transitive self-complementary digraph of order n. For $u \in V$, set $\Gamma^+(u) = \{v \in V \mid (u,v) \in A\}$. Then $\overline{\Gamma}^+(u) = V \setminus (\{u\} \cup \Gamma^+(u))$; in particular, $|\Gamma^+(u)| + |\overline{\Gamma}^+(u)| = |V| - 1$. Since Γ is vertex-transitive, both $|\Gamma^+(u)|$ and $|\overline{\Gamma}^+(u)|$ are independent of the choice of u. Thus if further $\Gamma \cong \overline{\Gamma}$ then $|V| - 1 = |\Gamma^+(u)| + |\overline{\Gamma}^+(u)| = 2|\Gamma^+(u)|$, and so |V| is odd. Then the second part of this lemma follows from the first part.

Let $\Gamma = (V, A)$ be a vertex-transitive self-complementary digraph with a complementary map ι . Then ι lies in the normalizes $\mathbf{N}_{\mathrm{Sym}(V)}(\operatorname{Aut}\Gamma)$ of $\operatorname{Aut}\Gamma$ in the symmetric group $\operatorname{Sym}(V)$, and ι has even order (in $\operatorname{Sym}(V)$) and a unique fixed-point (in V). (Note such an ι may be chosen having order a power of 2). This observation leads to a criterion for a transitive permutation group acting on some vertex-transitive self-complementary digraphs.

Lemma 2.2. Let G be a transitive permutation group on a finite set V with |V| > 1. Suppose that $\iota \in \mathbf{N}_{\mathrm{Sym}(V)}(G)$ fixes a unique point, say u. Suppose that for each odd integer k, ι^k has no fixed-point other than u. Then ι fixes the fixed-point set of G_u , and there is a vertex-transitive self-complementary digraph Γ such that $G \leq \mathrm{Aut}\Gamma$.

Proof. Since $u^{\iota} = u$ and $G^{\iota} = G$, we have $G_u^{\iota} = G_u$. Thus G_u fixes some $v \in V$ if and only if G_u fixes v^{ι} . Then the first part of this lemma follows.

Now write ι as a product of disjoint cycles of length no less than 2, say $\iota = \iota_1 \iota_2 \cdots \iota_t$ For each *i*, fix a point u_i involved in the cycle ι_i , and let U_i be the $\langle \iota_i^2 \rangle$ -orbit containing u_i . Set $A = \bigcup_{g \in G, 1 \leq i \leq t} (\{u\} \times U_i)^g$. Then it is easily shown that $\Gamma := (V, A)$ is a self-complementary digraph. Clearly, $G \leq \operatorname{Aut}\Gamma$. Thus the lemma holds.

In the following, we shall see that there exists a vertex-transitive selfcomplementary digraph of order n if and only if n is odd. Note that this is trivial if n = 1.

Let R be a finite group and S be a subset of R with $1 \notin S$, where 1 is the identity of R. Then the Cayley digraph $\operatorname{Cay}(R, S)$ is defined on R such that (x, y) is an arc if and only if $yx^{-1} \in S$. It is well-know that the group R induces by right multiplication a subgroup of $\operatorname{Aut}(\operatorname{Cay}(R, S))$,

CHEN AND LU

denoted by \hat{R} , which acts regularly on (the vertex set) R. Thus every Cayley digraph is vertex-transitive. Denote by $\operatorname{Aut}(R)$ the automorphism group of R. Then each $\sigma \in \operatorname{Aut}(R)$, in its natural action, gives an isomorphism from $\operatorname{Cay}(R, S)$ to $\operatorname{Cay}(R, S^{\sigma})$. Then we have the following simple observation.

Lemma 2.3. Let R be a finite group. If there exist $\iota \in Aut(R)$ and $S \subseteq R$ such that $S \cap S^{\iota} = \emptyset$ and $S \cap S^{\iota} = R \setminus \{1\}$, then the Cayley digraph Cay(R, S) is self-complementary.

Example 2.4. Let R be an additive abelian group of odd order n > 1. Take $S \subset R$ with $R \setminus \{0\} = S \cup (-S)$ and $S \cap (-S) = \emptyset$. Consider the map $\iota : R \to R$; $x \mapsto -x$. Then ι is an automorphism of R, and $S^{\iota} = -S$. Thus, by Lemma 2.3, the Cayley digraph Cay(R, S) is self-complementary.

The foregoing argument yields the follows result, see also [13].

Theorem 2.5. There exists a vertex-transitive self-complementary digraph on n vertices if and only if n is odd.

Let $n = p_1^{e_1} p_2^{e_2} \cdots p_s^{e_s}$ be an integer, where p_1, \ldots, p_s are distinct odd primes, and $e_i \ge 1$ for all *i*. Muzychuk [18] showed that if Γ is a vertextransitive self-complementary graph of order *n*, then $p_i^{e_i} \equiv 1 \pmod{4}$ and Γ has an induced subgraph which is vertex-transitive and self-complementary. Assume that $\Gamma = (V, A)$ is a vertex-transitive self-complementary digraph of order *n*. Then, by a similar argument as in [18], there exists a Sylow p_i subgroup *P* of Aut Γ and a complementary may $\iota : \Gamma \to \overline{\Gamma}$ such that $P^{\iota} = P$ and *P* has an orbit *U* with $|U| = p_i^e$. Thus we can get a self-complementary digraph $[U] := (U, A \cap U^{(2)})$.

Proposition 2.6. Let $\Gamma = (V, A)$ be a vertex-transitive self-complementary digraph of order $p_1^{e_1} p_2^{e_2} \cdots p_s^{e_s}$, where p_i 's are distinct odd primes, and $e_i \ge 1$ for all *i*. Then for each *i*, the digraph Γ has an induced subdigraph of order $p_i^{e_i}$ that is both vertex-transitive and self-complementary.

3. Arc-transitive self-complementary digraphs

Recall that a digraph graph $\Gamma = (V, A)$ is *arc-transitive*, if Aut Γ acts transitively on both V and A. We first give an example of arc-transitive self-complementary digraphs.

Example 3.1. Let R be the additive group of the finite field \mathbb{F}_{p^f} of order p^f , and let a be a generator of the multiplicative group of \mathbb{F}_{p^f} , where p is an odd prime with $p^f \equiv 3 \pmod{4}$. Set $S = \{a^{2i+1} \mid 1 \leq i \leq \frac{p^f-1}{2}\}$ and $\Gamma = \operatorname{Cay}(R, S)$. Let σ be the Frobenius automorphism of \mathbb{F}_{p^f} , that is, $x^{\sigma} = x^p$ for $x \in \mathbb{F}_{p^f}$. Then σ has order f. For $b, c \in \mathbb{F}_{p^f}$ with $b \neq 0$, define

4

 $\tau_{b,c}: \mathbb{F}_{pf} \to \mathbb{F}_{pf}, x \mapsto bx + c.$ We have $A\Gamma L(1, p^f) = \langle \sigma, \tau_{a,0}, \tau_{1,c} \mid c \in \mathbb{F}_{pf} \rangle$, and $\Gamma L(1, p^f) = \langle \sigma, \tau_{a,0} \rangle \leq \operatorname{Aut}(R)$. It is easily shown that $\sigma, \tau_{a^2,0}, \tau_{1,c} \in \operatorname{Aut}\Gamma$. Set $G = \langle \sigma, \tau_{a^2,0}, \tau_{1,c} \mid c \in \mathbb{F}_{pf} \rangle$. Then G has index 2 in $A\Gamma L(1, p^f)$ and acts transitively on the arcs of Γ . Noting that $R \setminus \{0\} = S \cup S^{\tau_{a,0}}$ and $S \cap S^{\tau_{a,0}} = \emptyset$, by Lemma 2.3, Γ is also self-complementary.

We need some basic properties of Cayley digraphs for further argument. Let R be a finite group. Consider the action of R on R induced by the right multiplication. Denote by \hat{R} the resulting permutation group from this action. Then it is well-known that

(3.1)
$$\mathbf{N}_{\mathrm{Sym}(R)}(\widehat{R}) = \widehat{R}\mathrm{Aut}(R)$$

where Sym(R) is the symmetric group on R, and Aut(R) acts naturally on R. For a subset S of $R \setminus \{1\}$ and $\Gamma = \text{Cay}(R, S)$, we have

$$\mathbf{N}_{\mathsf{Aut}\Gamma}(\widehat{R}) = \mathbf{N}_{\mathsf{Aut}\Gamma}(\widehat{R}) \cap \mathbf{N}_{\mathrm{Sym}(R)}(\widehat{R}) = \mathbf{N}_{\mathsf{Aut}\Gamma}(\widehat{R}) \cap \widehat{R}\mathsf{Aut}(R).$$

It implies that

(3.2)
$$\mathbf{N}_{\mathsf{Aut}\Gamma}(\widehat{R}) = \widehat{R}\mathsf{Aut}(R,S)$$

where $\operatorname{Aut}(R,S) = \{ \sigma \in \operatorname{Aut}(R) \mid S^{\sigma} = S \}$. The Cayley digraph $\Gamma = \operatorname{Cay}(G,S)$ is called *normal* if $\operatorname{Aut}\Gamma = \widehat{R}\operatorname{Aut}(R,S)$, i.e., \widehat{R} is a normal subgroup of $\operatorname{Aut}\Gamma$.

In the following we shall show that an arc-transitive self-complementary digraph either is a graph or it automorphism group has a normal regular subgroup, and so it is a normal Cayley digraph. It is well-known that a vertex-transitive digraph is isomorphic to a Cayley digraph if and only if its automorphism group has a regular subgroup. In fact, for a digraph $\Gamma = (V, A)$ such that $\operatorname{Aut}\Gamma$ has a regular subgroup R, it is easily shown that $R \to V, x \mapsto u^x$ is an isomorphism from $\operatorname{Cay}(R, S)$ to Γ , where u is a given vertex and $S = \{x \in R \mid (u, u^x) \in A\}$.

Assume that $\Gamma = (V, A)$ is an arc-transitive self-complementary digraph. Recall that $A^* = \{(u, v) \mid (v, u) \in A\}$. If $A^* = A$ then Γ can be viewed as a symmetric graph by identifying each pair (u, v) and (v, u) of arcs as an edge $\{u, v\}$, and then one can get Γ from [19]. Thus we deal with the case where $A^* \neq A$ in the following theorem.

Theorem 3.2. Assume that $\Gamma = (V, A)$ is an arc-transitive digraph selfcomplementary. If $A^* \neq A$ then $|V| = p^f \equiv 3 \pmod{4}$ for an odd prime p, Aut Γ is isomorphic to a subgroup of A Γ L $(1, p^f)$ with index 2, and Γ is isomorphic to the normal Cayley digraph constructed in Example 3.1.

Proof. Since Γ is arc-transitive, either $A^* = A$ or $A^* \cap A = \emptyset$ and $V^{(2)} = A \cup A^*$. Assume that $A^* \neq A$. Then $\operatorname{Aut}\Gamma$ is 2-homogenous but not 2-transitive on V. By [7], we may let $\operatorname{ASL}(1, p^f) \leq \operatorname{Aut}\Gamma \leq \operatorname{A\GammaL}(1, p^f)$ and

V be the underlying set of the field \mathbb{F}_{p^f} , where p is a prime and f is positive integer with $p^f \equiv 3 \pmod{4}$. In particular, Γ is isomorphic to a normal Cayley digraph of the additive group R of \mathbb{F}_{p^f} .

Let *a* be a generator of the multiplicative group of \mathbb{F}_{p^f} . Then *a* lies in $\Gamma^+(0)$ or $\overline{\Gamma}^+(0)$. Since Γ is self-complementary, up to isomorphism of digraphs, we may chose $a \in \Gamma^+(0)$. Since $\operatorname{Aut}\Gamma$ is transitive on *A*, we conclude that the stabilizer $(\operatorname{Aut}\Gamma)_0$ of 0 in $\operatorname{Aut}\Gamma$ acts transitively on $\Gamma^+(0)$, which has odd size $\frac{p^f-1}{2}$. Thus $\Gamma^+(0) = \{a^g \mid g \in (\operatorname{Aut}\Gamma)_0\}$. Clearly, $(\operatorname{Aut}\Gamma)_0 \leq \Gamma L(1, p^f)$. Recall that $\Gamma L(1, p^f) = \langle \sigma, \tau_{a,0} \rangle$, where

Clearly, $(\operatorname{Aut}\Gamma)_0 \leq \Gamma L(1, p^f)$. Recall that $\Gamma L(1, p^f) = \langle \sigma, \tau_{a,0} \rangle$, where σ is the Frobenius automorphism of \mathbb{F}_{p^f} , and $\tau_{a,0}$ is defined as Example 3.1. Then $\Gamma L(1, p^f)$ is the semidirect product of $\langle \tau_{a,0} \rangle$ by $\langle \sigma \rangle$, which have order $p^f - 1$ and f respectively. Since $p^f \equiv 3 \pmod{4}$, and so f is odd, $|\Gamma L(1, p^f)|$ is not divisible by 4. Moreover, $\Gamma L(1, p^f) = \langle \tau_{-1,0} \rangle \times \langle \tau_{a^2,0}, \sigma \rangle$, which contains a unique element of order 2. (We remark that $a^{\frac{p^f-1}{2}} = -1$.)

Note that $\operatorname{Aut}\Gamma$ has a normal regular subgroup $\operatorname{ASL}(1,q) = \{\tau_{1,c} \mid c \in \mathbb{F}_{p^f}\}$. Then $(x,y) \in A$ if and only if $(0^{\tau_{1,x}}, y) \in A$, which is equivalent to $(0, y - x) \in A$. It implies that $(x, y) \in A$ if and only if $y - x \in \Gamma^+(0)$. Thus, if $\tau_{-1,0} \in (\operatorname{Aut}\Gamma)_0$ then $(x,y) \in A$ shall yield $(y,x) \in A$, and so $A = A^*$, a contradiction. Then we have, $\tau_{-1,0} \notin (\operatorname{Aut}\Gamma)_0$; in particular, $(\operatorname{Aut}\Gamma)_0$ has odd order. It implies that $(\operatorname{Aut}\Gamma)_0 \leq \langle \tau_{a^2,0}, \sigma \rangle$, and hence $\Gamma^+(0) = \{a^g \mid g \in (\operatorname{Aut}\Gamma)_0\} \subseteq \{a^g \mid g \in \langle \tau_{a^2,0}, \sigma \rangle\} = \{a^{2i+1} \mid 1 \leq i \leq \frac{p^f - 1}{2}\}$. Recalling that $|\Gamma^+(0)| = \frac{p^f - 1}{2}$, we get $\Gamma^+(0) = \{a^{2i+1} \mid 1 \leq i \leq \frac{p^f - 1}{2}\}$, and then $\Gamma^+(x) = \{x + a^{2i+1} \mid 1 \leq i \leq \frac{p^f - 1}{2}\}$ for each $x \in V$. Therefore, Γ is isomorphic to the digraph given in Example 3.1.

4. DIGRAPHS OF ORDER A PRODUCT OF TWO PRIMES

We begin this section with a fact that every (vertex-transitive) selfcomplementary digraph is properly contained in some (vertex-transitive) self-complementary digraph.

For a digraph Σ with vertex set U and a digraph Δ with vertex set W, the *lexicographic product* $\Sigma[\Delta]$ is the digraph with vertex set $U \times W$ such that the vertex (u, w) is adjacent to (u', w') if and only if either u is adjacent to u' in Σ or u = u' and w is adjacent to w' in Δ . It is easily shown that $\overline{\Sigma[\Delta]} = \overline{\Sigma[\Delta]}$. Thus, if both Σ and Δ are self-complementary then $\Sigma[\Delta]$ is also self-complementary. Note that $\operatorname{Aut}\Sigma[\Delta]$ has a subgroup $\operatorname{Aut}\Sigma \times \operatorname{Aut}\Delta$, which acts on $U \times W$ by

$$(u,w)^{(x,y)} = (u^x, w^y), u \in U, w \in W, x \in \operatorname{Aut}\Sigma, y \in \operatorname{Aut}\Delta.$$

Then the next simple fact follows.

Lemma 4.1. If Σ and Δ are (vertex-transitive) self-complementary digraphs, then $\Sigma[\Delta]$ is also a (vertex-transitive) self-complementary digraph.

Let G be a finite transitive permutation group on V. A nonempty subset B of V is a block of G if $B^g = B$ or $B \cap B^g = \emptyset$ for all $g \in G$. We refer the reader to [4, Sections 1.5 and 1.6] for notation and basic properties about blocks. Let B be a block of G on V. Then the setwise stabilizer $G_B := \{g \in G \mid B^g = B\}$ acts transitively on B with kernel $G_{(B)} = \bigcap_{u \in B} G_u$. Set $\mathcal{B} = \{B^g \mid g \in G\}$. Then G induces naturally a transitive permutation group on \mathcal{B} , denoted by $G^{\mathcal{B}}$, and $G^{\mathcal{B}} \cong G/G_{(\mathcal{B})}$, where $G_{(\mathcal{B})} := \bigcap_{g \in G} G_B^g$ is the kernel of G acting on \mathcal{B} . A block B of G is nontrivial if it has size a proper divisor of |V|. Recall that G is imprimitive if G has nontrivial blocks, and primitive otherwise.

Lemma 4.2. Let G and \mathcal{B} be as above, and let $K = G_{(\mathcal{B})}$. Take $B \in \mathcal{B}$ and set $\mathcal{B}_1 = \{C \in \mathcal{B} \mid K_{(C)} = K_{(B)}\}$. Then \mathcal{B}_1 is a block of $G^{\mathcal{B}}$ acting on \mathcal{B} ; in particular, if $G^{\mathcal{B}}$ is primitive then either K is faithful on each $C \in \mathcal{B}$, or $K_{(B)}$ acts nontrivially on every $C \in \mathcal{B} \setminus \{B\}$.

Proof. For $g \in G$, we have $K_{(B^g)} = G_{(B^g)} \cap K = G_{(B)}^g \cap K = (G_{(B)} \cap K)^g = K_{(B)}^g$. Then $K_{(B^g)} = K_{(B)}$ if and only if $g \in \mathbf{N}_G(K_{(B)})$, and thus $\mathcal{B}_1 = \{B^g \mid g \in \mathbf{N}_G(K_{(B)})\}$; in particular, \mathcal{B}_1 contains B and is an orbit of $\mathbf{N}_G(K_{(B)})$ acting on \mathcal{B} . Note that, for $g \in G_B$, we have $K_{(B)} = K_{(B^g)} = K_{(B)}^g$. This yields that $G_B \leq \mathbf{N}_G(K_{(B)})$. It follows that \mathcal{B}_1 is a block of $G^{\mathcal{B}}$, refer to [4, Theorem 1.5A].

Suppose that $G^{\mathcal{B}}$ is primitive. Then $\mathcal{B}_1 = \{B\}$ or \mathcal{B} . If $\mathcal{B}_1 = \{B\}$ then $K_{(C)} \neq K_{(B)}$ for $C \in \mathcal{B}$, and so $K_{(B)}$ acts nontrivially on C. Let $\mathcal{B}_1 = \mathcal{B}$. Then $K_{(B)}$ fixes V point-wise, yielding $K_{(B)} = 1$. Thus $K_{(B^g)} = K_{(B)}^g = 1$ for all $g \in G$. It follows that K is faithful on each $C \in \mathcal{B}$.

Let $\Gamma = (V, A)$ is a digraph and $G \leq \operatorname{Aut}\Gamma$. Assume that G is transitive on V with a block B. Let $\mathcal{B} = \{B^g \mid g \in G\}$. Define a digraph $\Gamma_{\mathcal{B}}$ on \mathcal{B} such that, for $B_1, B_2 \in \mathcal{B}$, the ordered pair (B_1, B_2) is an arc whenever there are $u_1 \in B_1$ and $u_2 \in B_2$ with $(u_1, u_2) \in A$. Then the digraph $\Gamma_{\mathcal{B}}$ is well-defined, which is called the *quotient digraph* of Γ over (or modulo) \mathcal{B} . It is easy to show that $G^{\mathcal{B}} \leq \operatorname{Aut}\Gamma_{\mathcal{B}}$, and thus $\Gamma_{\mathcal{B}}$ is vertex-transitive. For the case where Γ is self-complementary, by Lemma 2.2, we have the following lemma, see also [13, Theorem 1.2].

Lemma 4.3. Let $\Gamma = (V, A)$ be a vertex-transitive self-complementary digraph. Let G be a transitive subgroup of Aut Γ such that $\mathbf{N}_{\text{Sym}(V)}(G)$ contains a complementary map $\iota : \Gamma \to \overline{\Gamma}$, and set $X = G\langle \iota \rangle$. Let B be an X-block on V, and $\mathcal{B} = \{B^g \mid g \in \text{Aut}\Gamma\}$. Then the subdigraph [B] induced by B is a vertex-transitive self-complementary digraph, and $G^{\mathcal{B}}$ is a transitive subgroup of the automorphism of some self-complementary digraph on \mathcal{B} with a complementary map induced by ι . If further $\Gamma \cong$ $\Gamma_{\mathcal{B}}[[B]]$ then $\Gamma_{\mathcal{B}}$ is self-complementary.

Proof. It suffices to show the last part of this lemma. Assume that $\Gamma \cong$ $\Gamma_{\mathcal{B}}[[B]]$. Then $\overline{\Gamma} \cong \overline{\Gamma_{\mathcal{B}}}[\overline{[B]}]$. Thus yields that $\Gamma_{\mathcal{B}} \cong \overline{\Gamma_{\mathcal{B}}} \cong \overline{\Gamma_{\mathcal{B}}}$, and the lemma follows.

The next lemma follows from [1, 2].

Lemma 4.4. Let $\Gamma = (V, A)$ be a vertex-transitive self-complementary digraph of prime order p. Then there is an even order subgroup $\langle r \rangle$ of \mathbb{Z}_n^* , the multiplicative group of \mathbb{Z}_p , such that

- (1) $\Gamma \cong \operatorname{Cay}(\mathbb{Z}_p, S)$, where S consists $\frac{p-1}{|\langle r \rangle|}$ cosets of $\langle r^2 \rangle$ in \mathbb{Z}_p^* ; and (2) $\operatorname{Aut}(\operatorname{Cay}(\mathbb{Z}_p, S)) = \{\tau_{a,b} : \mathbb{Z}_p \to \mathbb{Z}_p, x \mapsto ax + b \mid a \in \langle r^2 \rangle, b \in \mathbb{Z}_p\} \leq \operatorname{AGL}(1, p).$

Now we begin to give a characterization for self-complementary digraphs of order a product pq of two primes. We first deal with the case that p = q.

Theorem 4.5. Let $\Gamma = (V, A)$ be a vertex-transitive self-complementary digraph. Assume that $|V| = p^2$ for some odd prime p. Then one of the following holds.

- (1) $\Gamma \cong \Sigma[\Delta]$, where Σ and Δ are vertex-transitive self-complementary digraphs of order p:
- (2) $\Gamma \cong \operatorname{Cay}(\mathbb{Z}_{p^2}, S)$, a Cayley digraph of the cyclic group \mathbb{Z}_{p^2} , and $\operatorname{Aut}(\operatorname{Cay}(\mathbb{Z}_{p^2}, S)) = \widehat{\mathbb{Z}_{p^2}}\operatorname{Aut}(\mathbb{Z}_{p^2}, S)$ with $\operatorname{Aut}(\mathbb{Z}_{p^2}, S) \cong \mathbb{Z}_d$, where d is such that 2d is a divisor of p-1;
- (3) Aut Γ has a normal Sylow p-subgroup isomorphic to \mathbb{Z}_p^2 , and either Aut Γ is primitive on V, or $\langle Aut \Gamma, \iota \rangle$ is isomorphic to a subgroup of $AGL(1,p) \times AGL(1,p)$, where ι is an arbitrary isomorphism from Γ to $\overline{\Gamma}$.

Proof. By [17], we may let Γ be a Cayley digraph Cay(R, S), where R is the additive abelian group \mathbb{Z}_{p^2} or \mathbb{Z}_p^2 . Take a complementary map $\iota: \Gamma \to \overline{\Gamma}$, set $X = \operatorname{Aut} \Gamma \langle \iota \rangle$.

Let P be a Sylow p-subgroup of Aut Γ with $\widehat{R} \leq P$. Then P is also a Sylow p-subgroup of X. Since ι normalizes Aut Γ , we know that P^{ι} is a Sylow p-subgroup of $\operatorname{Aut}\Gamma$, and so P and P^{ι} are conjugate in $\operatorname{Aut}\Gamma$. Set $P = P^{\iota g}$ for some $g \in \operatorname{Aut}\Gamma$. Clearly, $\iota' := \iota g$ is also an isomorphism from Γ to $\overline{\Gamma}$. Since p is odd, replacing ι' by its an odd power if necessary, we may let ι' has order coprime to p. Note that for $a \in R$, $a^{\iota'} = a$ if and only if $0^{\widehat{a}\iota'\widehat{a}^{-1}} = 0$. Then, replacing ι' by its a conjugation under \widehat{R} if necessary, we may let $0^{\iota'} = 0$.

Let $Q = \mathbf{Z}(P)$ be the center of P. Then $Q \neq 1$. Since P is transitive on V, Q is semiregular on V, refer to [4, Theorem 4.2A]. Thus |Q| = p or p^2 .

Assume that |Q| = p. Then |P| is divisible by p^3 ; otherwise, P shall be abelian, and so P = Q, a contradiction. Recall that Q is the center of Pand ι' normalizes P. This implies that Q is normal in $Y := P\langle \iota' \rangle$, and so each Q-orbit on V is a block of Y and has size p. Let \mathcal{B} be the set of the Q-orbits on V, and let K be the kernel of P acting on \mathcal{B} . Then $|\mathcal{B}| = p$, and so $P/K \cong P^{\mathcal{B}} \cong \mathbb{Z}_p$ as $P^{\mathcal{B}}$ is a p-subgroup of $\operatorname{Sym}(\mathcal{B})$. Thus K has order divisible by p^2 . Since |B| = p and $K^B \leq \operatorname{Sym}(B)$, we know that $K_{(B)}$ has order divisible by p. It follows from Lemma 4.2 that $K_{(B)}$ acts transitively on each $C \in \mathcal{B}$. This yields that if (B, C) is an arc of $\Gamma_{\mathcal{B}}$ then $\{(u_1, u_2) \mid u_1 \in B, u_2 \in C\} \subseteq A$. Then $\Gamma \cong \Gamma_{\mathcal{B}}[[B]]$ for $B \in \mathcal{B}$, and so part (1) of this theorem follows from Lemma 4.3.

Assume next that Q has order p^2 . Then Q is a regular subgroup of P, and so $P = QP_u = Q \times P_u$ for $u \in V$. In particular, P_u is normal in P. Since P is transitive on V, we have $P_u = 1$, and thus $P = Q = \hat{R}$.

Suppose first that $R = \mathbb{Z}_{p^2}$. Since Γ is self-complementary, by [9, Theorem 8.2], we have $\operatorname{Aut}\Gamma = \widehat{R}\operatorname{Aut}(R,S)$ with $\operatorname{Aut}(R,S) \cong \mathbb{Z}_d$, where dis a divisor of p-1. In particular, $(\operatorname{Aut}\Gamma)_0 = \operatorname{Aut}(R,S)$. Recall that $\iota': \Gamma \to \overline{\Gamma}$ is a complementary map, and $0^{\iota'} = 0$. It yields that ι' normalizes $(\operatorname{Aut}\Gamma)_0 = \operatorname{Aut}(R,S)$. On the other hand, since ι' normalizes $P = \widehat{R}$, we have $\iota' \in \operatorname{Aut}(R)$ by (3.1). Since ι' has order coprime to p, we know that $\langle \iota', \operatorname{Aut}(R,S) \rangle$ is a subgroup of $\operatorname{Aut}(R)$ and has order not divisible by p. Since $\iota'^2 \in \operatorname{Aut}\Gamma$, we get $\iota'^2 \in \operatorname{Aut}(R,S)$. Clearly, $\iota' \notin \operatorname{Aut}(R,S)$. Then $\operatorname{Aut}(R,S)$ has index 2 in $\langle \iota', \operatorname{Aut}(R,S) \rangle$. Noting that $\operatorname{Aut}(R) \cong \mathbb{Z}_{p(p-1)}$, it implies that $\langle \iota', \operatorname{Aut}(R,S) \rangle$ is isomorphic a subgroup of \mathbb{Z}_{p-1} . Then we have $\langle \iota', \operatorname{Aut}(R,S) \rangle \cong \mathbb{Z}_{2d}$, and thus part (2) of this theorem follows.

Suppose now that $R = \mathbb{Z}_p^2$. In this case, we shall prove that part (3) of this theorem occurs. Note that $P = \hat{R}$ is a Sylow *p*-subgroup of Aut Γ . It suffices to show that P is normal in Aut Γ . If X is primitive on V then, by [5, Theorem 1.3] and [8], P is normal in X and hence in Aut Γ , and Aut Γ is primitive on V. Thus we assume that X is imprimitive on V. By [8, Proposition B], $\operatorname{soc}(X) = M_1 \times M_2$ is transitive on V, where $\operatorname{soc}(X)$ is generated by all minimal normal subgroups of X, each M_i is a simple normal subgroup of X with p orbits of length p. Since $|X : \operatorname{Aut}\Gamma| = 2$, it implies that Aut $\Gamma \leq X$, and either $M_i \leq \operatorname{Aut}\Gamma$ or $X = M_i\operatorname{Aut}\Gamma$. If $X = M_i\operatorname{Aut}\Gamma$, then $|X| = |M_i||\operatorname{Aut}\Gamma|/|M_i \cap \operatorname{Aut}\Gamma|$, yielding $|M_i : (M_i \cap$ Aut $\Gamma)| = 2$, which is impossible as M_i is simple and has order divisible by the odd prime p. Therefore, $M_i \leq \operatorname{Aut}\Gamma$, i = 1, 2. Let C_i be an M_i -orbit on V. Consider the induced subdigraph $[C_i]$. By Lemma 4.3, $[C_i]$ is a vertextransitive complementary digraph of order p. Then Aut $[C_i]$ is soluble by Lemma 4.4. Since M_i is simple and induces a subgroup of Aut $[C_i]$, we have

CHEN AND LU

 $M_i \cong \mathbb{Z}_p$. Thus $P = \widehat{R} = M_1 \times M_2$. By [3, Lemma 1] and [8, Proposition B], we conclude that X is isomorphic a subgroup of $\widehat{\mathbb{Z}_p}\mathsf{Aut}(\mathbb{Z}_p) \times \widehat{\mathbb{Z}_p}\mathsf{Aut}(\mathbb{Z}_p)$, and then we get part (3) of this theorem.

Finally, we consider the digraphs which have order a product of two distinct odd primes.

Theorem 4.6. Let $\Gamma = (V, A)$ be a vertex-transitive self-complementary digraph. Assume that |V| is a product of two distinct odd primes. Then either

- (1) $\Gamma \cong \Sigma[\Delta]$, where Σ and Δ are vertex-transitive self-complementary digraphs of prime order; or
- (2) Γ is isomorphic to a normal Cayley digraph of \mathbb{Z}_{pq} , where p and q are distinct odd primes.

Proof. Take a complementary map $\iota : \Gamma \to \overline{\Gamma}$, and set $G = \operatorname{Aut}\Gamma$ and $X = \operatorname{Aut}\Gamma\langle\iota\rangle$. Then |X:G| = 2. By [5, Theorem 1.3], we conclude that X is imprimitive on V.

Let *B* be a nontrivial block of *X* on *V*, and set $\mathcal{B} = \{B^x \mid x \in \operatorname{Aut}\Gamma\}$. Then |B| and $|\mathcal{B}|$ are primes with $|V| = |B||\mathcal{B}|$. Set |B| = p and $|\mathcal{B}| = q$. Note that for each $g \in G$, we have a complementary map $g\iota : \Gamma \to \overline{\Gamma}$, and thus $g\iota$ fixes a unique point in *V* by Lemma 2.1. It implies that $g\iota$ fixes (setwise) a unique block (in \mathcal{B}). Recalling that $\iota^2 \in \operatorname{Aut}\Gamma = G$, we conclude that $K := X_{(\mathcal{B})} \leq G$.

By Lemma 4.3, $G^{\mathcal{B}}$ is a transitive subgroup of the automorphism group of some vertex-transitive self-complementary digraph of order q. Then, by Lemma 4.4, we have $G^{\mathcal{B}} \cong \mathbb{Z}_q:\mathbb{Z}_f$ with 2f a divisor of q-1. Since $|X^{\mathcal{B}}:$ $G^{\mathcal{B}}| = |X:G| = 2$, we know that $X^{\mathcal{B}}$ is a soluble transitive permutation group of prime degree q, it follows that $X^{\mathcal{B}} \cong \mathbb{Z}_q:\mathbb{Z}_{2f} \leq \operatorname{AGL}(1,q)$. Suppose that K = 1. Then $G \cong G^{\mathcal{B}}$ and $X \cong X^{\mathcal{B}} \cong \mathbb{Z}_q:\mathbb{Z}_{2f}$. Since G is

Suppose that K = 1. Then $G \cong G^{\mathcal{B}}$ and $X \cong X^{\mathcal{B}} \cong \mathbb{Z}_q:\mathbb{Z}_{2f}$. Since G is transitive on V, we know that pq is a divisor of |G|, and so p is a divisor of f. Then X has a normal subgroup $R \cong \mathbb{Z}_q:\mathbb{Z}_p$, which is regular on V. Clearly, ι centralizes a Sylow p-subgroup P of X. Since $|RP| = |R||P|/|R \cap P|$ and $RP \leq X$, we know that $qp|P|/|R \cap P|$ is a divisor of 2qf. It implies that $|R \cap P|$ is divisible p. By Lemma 2.1, let $u^{\iota} = u$ for some $u \in V$. Then $(u^x)^{\iota} = u^x$ for $x \in R \cap P$; in particular, ι has at leat p fixed-points in V, which is impossible. Therefore, $K \neq 1$.

Assume first that $K_{(B)} \neq 1$. Noting that $G^{\mathcal{B}}$ is primitive on \mathcal{B} as $|\mathcal{B}|$ is a prime, by Lemma 4.2, $K_{(B)}$ acts transitively on each $C \in \mathcal{B}$. This yields that, for an arc (B, C) of $\Gamma_{\mathcal{B}}$, we have $\{(u_1, u_2) \mid u_1 \in B, u_2 \in C\} \subseteq A$. Thus $\Gamma \cong \Gamma_{\mathcal{B}}[[B]]$ for $B \in \mathcal{B}$, and so we get part (1) of this theorem from Lemma 4.3.

10

Now let $K_{(B)} = 1$. Then K is a subgroup of $\operatorname{Aut}[B]$. By Lemmas 4.3 and 4.4, we have $K \leq \operatorname{Aut}[B] \cong \mathbb{Z}_p : \mathbb{Z}_d \leq \operatorname{AGL}(1, p)$, where d is such that p-1is divisible by 2d. Let P be the unique Sylow p-subgroup of K. Then P is a characteristic subgroup of K, and so $P \leq X$ as $K \leq X$. Thus $X/\mathbb{C}_X(P) = \mathbb{N}_X(P)/\mathbb{C}_X(P) \leq \operatorname{Aut}(P) \cong \mathbb{Z}_{p-1}$. Then $\mathbb{C}_X(P)K/\mathbb{C}_X(P) \leq \mathbb{Z}_{p-1}$, and so

$$(X/K)/(\mathbf{C}_X(P)K/K) \cong X/\mathbf{C}_X(P)K \cong (X/\mathbf{C}_X(P))/(\mathbf{C}_X(P)K/\mathbf{C}_X(P)) \lesssim \mathbb{Z}_{p-1}.$$

Recall that $X/K \cong X^{\mathcal{B}} \cong \mathbb{Z}_q:\mathbb{Z}_{2f} \lesssim \operatorname{AGL}(1,q)$. It follows that $\mathbf{C}_X(P)K/K \cong \mathbb{Z}_q:\mathbb{Z}_e$ for a divisor e of 2f; in particular, the Sylow q-subgroup of X/K is contained in $\mathbf{C}_X(P)K/K$, which yields that $\mathbf{C}_X(P)K$ and hence $\mathbf{C}_X(P)$ acts transitively on \mathcal{B} . Noting that $\mathbf{C}_K(P) = P$, we have

$$\mathbf{C}_X(P)/P = \mathbf{C}_X(P)/(\mathbf{C}_X(P) \cap K) \cong \mathbf{C}_X(P)K/K \cong \mathbb{Z}_q:\mathbb{Z}_e.$$

It implies that $\mathbf{C}_X(P)/P$ has a normal Sylow q-subgroup $(P \times Q)/P \cong \mathbb{Z}_q$, where Q is a Sylow q-subgroup of $\mathbf{C}_X(P)$. Since $\mathbf{C}_X(P)/P \trianglelefteq X/P$, we have $(P \times Q)/P \trianglelefteq X/P$, yielding $P \times Q \trianglelefteq X$. Moreover, it is easily shown that $P \times Q$ is transitive and hence regular on V, and then (2) of this theorem follows.

References

- B. Alspach, Point-symmetric graphs and digraphs of prime order and transitive permutation groups of prime degree, J. Combin. Theorey B 15 (1973), 12-17.
- [2] G. L. Chia and C. K. Lim, A class of self-complementary vertextransitive digraphs, J. Graph Theory 10 (1986), 241-249.
- [3] E. Dobson and D. Witte, Transitive permutation groups of prime-squared degree, J. Algebraic Combin. 16 (2002), 43-69.
- [4] J. D. Dixon and B. Mortimer, *Permutation Groups*, Springer-Verlag New York Berlin Heidelberg, 1996.
- [5] R. M. Guralnick, C. H. Li, C. E. Praeger and J. Saxl, On orbital partitions and exceptionality of primitive permutation groups, *Trans. Amer. Math. Soc.* **356** (2004), 4857-4872.
- [6] Z. H. Huang, J. M. Pan, S. Y. Ding and Z. Liu, Automorphism groups of selfcomplementary vertex-transitive graphs, Bull. Aust. Math. Soc. 93 (2016), 238-247.
- [7] W. M. Kantor, k-Homogeneous Groups, Math. Z. 124 (1972), 261-265.
- [8] G. A. Jones, Abelian subgroups of simply primitive groups of degree p³, where p is prime, Quart. J. Math. Oxford 30(2) (1979), 53-76.
- [9] István Kovács, On automorphisms of circulant digraphs on p^m vertices, p an odd prime, Linear Algebra Appl. 356 (2002), 231-252.
- [10] C. H. Li, On self-complementary vertex-transitive graphs, Comm. Algebra 25 (1997), 3903-3908.
- [11] C. H. Li, On finite graphs that are self-complementary and vertex-transitive, Australas. J. Combin. 18 (1998), 147-155.

CHEN AND LU

- [12] C. H. Li and C. E. Praeger, Self-complementary vertex-transitive graphs need not be Cayley graphs, Bull. London Math. Soc. 33(6) (2001), 653-661.
- [13] C. H. Li and C. E. Praeger, On partitioning the orbitals of a transitive permutation group, Trans. Amer. Math. Soc. 355 (2003), 637-653.
- [14] C. H. Li and G. Rao, Self-complementary vertex-transitive graphs of order a product of two primes, *Bull. Aust. Math. Soc.* 89 (2014), 322-330.
- [15] C. H. Li, G. Rao and S. J. Song, On finite self-complementary metacirculants, J. Algebraic Combin. 40 (2014), 1135-1144.
- [16] V. Liskovets and R. Pöschel, Non-Cayley-isomorphic self-complementary circulant graphs, J. Graph Theory 34 (2000), 128-141.
- [17] D. Marušič, Vertex transitive graphs and digraphs of order p^k , Annals Discrete Math. **27** (1985), 115-128.
- [18] M. Muzychuk, On Sylow subgraphs of vertex-transitive self-complementary graphs, Bull. London Math. Soc. 31 (1999), 531-533.
- [19] W. Peisert, All self-complementary symmetric graphs, J. Algebra 240 (2001), 209-229.
- [20] S. B. Rao, On regular and strongly regular selfcomplementary graphs, Discrete Math. 54 (1985), 73-82.
- [21] H. Sachs, Über selbstkomplementäre Graphen, Publ. Math. Debrecen 9 (1962), 270-288.
- [22] S. H. Sun, J. Xu, On Self-complementary circulants of square free order, Algebra Colloquium 17 (2010) 241-246.

H. Y. Chen, Center for Combinatorics, LPMC-TJKLC, Nankai University, Tianjin 300071, China

E-mail address: 1120140003@mail.nankai.edu.cn

Z. P. LU, CENTER FOR COMBINATORICS, LPMC-TJKLC, NANKAI UNIVERSITY, TIANJIN 300071, CHINA

E-mail address: lu@nankai.edu.cn