3-Rainbow index and forbidden subgraphs

Wenjing Li ${ }^{1}$ • Xueliang Li ${ }^{1,2}$ •
Jingshu Zhang ${ }^{1}$

Received: date / Accepted: date

Abstract

A tree in an edge-colored connected graph G is called a rainbow tree if no two edges of it are assigned the same color. For a vertex subset $S \subseteq V(G)$, a tree is called an S-tree if it connects S in G. A k-rainbow coloring of G is an edge-coloring of G having the property that for every set S of k vertices of G, there exists a rainbow S-tree in G. The minimum number of colors that are needed in a k-rainbow coloring of G is the k-rainbow index of G, denoted by $\mathrm{rx}_{k}(G)$. The Steiner distance $d(S)$ of a set S of vertices of G is the minimum size of an S-tree T. The k-Steiner diameter $\operatorname{sdiam}_{k}(G)$ of G is defined as the maximum Steiner distance of S among all sets S with k vertices of G. In this paper, we focus on the 3-rainbow index of graphs and find all finite families \mathcal{F} of connected graphs, for which there is a constant $C_{\mathcal{F}}$ such that, for every connected \mathcal{F}-free graph $G, \operatorname{rx}_{3}(G) \leq \operatorname{sdiam}_{3}(G)+C_{\mathcal{F}}$.

Keywords rainbow tree, k-rainbow index, 3-rainbow index, forbidden subgraphs.

Mathematics Subject Classification (2000) 05C15 - 05C35 - 05C38 • 05C40

Supported by NSFC No. 11371205 and 11531011, and the " 973 " program No. $2013 C B 834204$.
Wenjing Li
E-mail: liwenjing610@mail.nankai.edu.cn
Xueliang Li
E-mail: lxl@nankai.edu.cn
Jingshu Zhang
E-mail: jszhang@mail.nankai.edu.cn
${ }^{1}$ Center for Combinatorics and LPMC, Nankai University, Tianjin 300071, China
${ }^{2}$ School of Mathematics and Statistics, Qinghai Normal University, Xining, Qinghai 810008, China

1 Introduction

All graphs considered in this paper are simple, finite, undirected and connected. We follow the terminology and notation of Bondy and Murty [1] for those not defined here.

Let G be a nontrivial connected graph with an edge-coloring $c: E(G) \rightarrow$ $\{1,2, \ldots, t\}, t \in \mathbb{N}$, where adjacent edges may be colored with the same color. A path in G is called a rainbow path if no two edges of the path are colored with the same color. The graph G is called rainbow connected if for any two distinct vertices of G, there is a rainbow path connecting them. For a connected graph G, the rainbow connection number of G, denoted by $\operatorname{rc}(G)$, is defined as the minimum number of colors that are needed to make G rainbow connected. These concepts were first introduced by Chartrand et al. in [4] and have been well-studied since then. For further details, we refer the reader to a survey paper [9] and a book [10].

In [5], Chartrand et al. generalized the concept of a rainbow path to a rainbow tree. A tree in an edge-colored graph G is called a rainbow tree if no two edges of it are assigned the same color. For a vertex subset $S \subseteq V(G)$, a tree is called an S-tree if it connects S in G. Let G be a connected graph of order n. For a fixed integer k with $2 \leq k \leq n$, a k-rainbow coloring of G is an edge-coloring of G having the property that for every k-subset S of G, there exists a rainbow S-tree in G, and in this case, the graph G is called k-rainbow connected. The minimum number of colors that are needed in a k-rainbow coloring of G is the k-rainbow index of G, denoted by $\mathrm{rx}_{k}(G)$. Clearly, $\mathrm{rx}_{2}(G)$ is just the rainbow connection number $\operatorname{rc}(G)$ of G. In the sequel, we assume that $k \geq 3$. It is easy to see that $\mathrm{rx}_{2}(G) \leq \mathrm{rx}_{3}(G) \leq \cdots \leq \mathrm{rx}_{n}(G)$. Recently, some results on the k-rainbow index have been published, especially on the 3 -rainbow index. We refer to $[3,6]$ for more details.

The Steiner distance $d(S)$ of a set S of vertices in G is the minimum size of a tree in G containing S. Such a tree is called a Steiner S-tree or simply a Steiner tree. The k-Steiner diameter $\operatorname{sdiam}_{k}(G)$ of G is defined as the maximum Steiner distance of S among all k-subsets S of G. Then the following observation is immediate.

Observation 1 [5] For every connected graph G of order $n \geq 3$ and each integer k with $3 \leq k \leq n$,

$$
k-1 \leq \operatorname{sdiam}_{k}(G) \leq \operatorname{rx}_{k}(G) \leq n-1
$$

The authors of [5] showed that the k-rainbow index of trees can achieve the upper bound.

Proposition 1 [5] Let T be a tree of order $n \geq 3$. For each integer k with $3 \leq k \leq n$,

$$
\operatorname{rx}_{k}(T)=n-1
$$

From above, we notice that for a fixed integer k with $k \geq 3$, the difference $\mathrm{rx}_{k}(G)-\operatorname{sdiam}_{k}(G)$ can be arbitrarily large. In fact, if G is a star $K_{1, n}$, then we have $\operatorname{rx}_{k}(G)-\operatorname{sdiam}_{k}(G)=n-k$.

They also determined the precise values for the k-rainbow index of the cycle C_{n} and the 3 -rainbow index of the complete graph K_{n}.

Theorem 1 [5] For integers k and n with $3 \leq k \leq n$,

$$
\operatorname{rx}_{k}\left(C_{n}\right)=\left\{\begin{array}{l}
n-2 \text { if } k=3 \text { and } n \geq 4 \\
n-1 \text { if } k=n=3 \text { or } 4 \leq k \leq n .
\end{array}\right.
$$

Theorem 2 [5]

$$
\mathrm{rx}_{3}\left(K_{n}\right)=\left\{\begin{array}{l}
2 \text { if } 3 \leq n \leq 5 \\
3 \text { if } n \geq 6
\end{array}\right.
$$

Let \mathcal{F} be a family of connected graphs. We say that a graph G is \mathcal{F}-free if G does not contain any induced subgraph isomorphic to a graph from \mathcal{F}. Specifically, for $\mathcal{F}=\{X\}$ we say that G is X-free, for $\mathcal{F}=\{X, Y\}$ we say that G is (X, Y)-free, and for $\mathcal{F}=\{X, Y, Z\}$ we say that G is (X, Y, Z)-free. The members of \mathcal{F} will be referred to as forbidden induced subgraphs in this context. If $\mathcal{F}=\left\{X_{1}, X_{2}, \ldots, X_{k}\right\}$, we also refer to the graphs $X_{1}, X_{2}, \ldots, X_{k}$ as a forbidden k-tuple, and for $|\mathcal{F}|=2$ and 3 we say a forbidden pair and a forbidden triple, respectively.

In [7], Holub et al. considered the question: For which families \mathcal{F} of connected graphs, a connected \mathcal{F}-free graph G satisfies $\operatorname{rc}(G) \leq \operatorname{diam}(G)+C_{\mathcal{F}}$, where $C_{\mathcal{F}}$ is a constant (depending on \mathcal{F}). They gave a complete answer for $|\mathcal{F}| \in\{1,2\}$ in the following two results (where N denotes the net, a graph obtained by attaching a pendant edge to each vertex of a triangle).

Theorem 3 [7] Let X be a connected graph. Then there is a constant C_{X} such that every connected X-free graph G satisfies $\mathrm{rc}(G) \leq \operatorname{diam}(G)+C_{X}$, if and only if $X=P_{3}$.

Theorem 4 [7] Let X, Y be connected graphs such that $X, Y \neq P_{3}$. Then there is a constant $C_{X Y}$ such that every connected (X, Y)-free graph G satisfies $\operatorname{rc}(G) \leq \operatorname{diam}(G)+C_{X Y}$, if and only if (up to symmetry) either $X=K_{1, r}(r \geq$ 4) and $Y=P_{4}$, or $X=K_{1,3}$ and Y is an induced subgraph of N.

Surprisingly, Brousek et al. [2] then gave a complete answer for all finite families \mathcal{F}. For the rainbow vertex-connection number, Li et al. [8] recently gave a complete answer for $|\mathcal{F}| \in\{1,2\}$. Now we consider an analogous question concerning the k-rainbow index of graphs, where $k \geq 3$ is a positive integer. From Observation 1, we know that the k-Steiner diameter is a lower bound for the k-rainbow index. In this paper, we will consider the following question.

For which families \mathcal{F} of connected graphs, there is a constant $C_{\mathcal{F}}$ such that $\operatorname{rx}_{k}(G) \leq \operatorname{sdiam}_{k}(G)+C_{\mathcal{F}}$ if a connected graph G is \mathcal{F}-free?

In general, it is very difficult to give answers to the above question, even if one considers the case $k=4$. So, in this paper, we pay our attention only to the case $k=3$. In Sections 3,4 and 5 , we give complete answers for the 3 rainbow index when $|\mathcal{F}|=1,2$ and 3 , respectively. Finally, we give a complete characterization for an arbitrary finite family \mathcal{F}.

2 Preliminaries

In this section, we introduce some further terminology and notation that will be used in the sequel. Throughout the paper, \mathbb{N} denotes the set of all positive integers.

Let G be a graph. We use $V(G), E(G)$, and $|G|$ to denote the vertex set, edge set, and the order of G, respectively. For $A \subseteq V(G),|A|$ denotes the number of vertices in A, and $G[A]$ denotes the subgraph of G induced by the vertex set A. For two disjoint subsets X and Y of $V(G)$, we use $E[X, Y]$ to denote the set of edges of G between X and Y. For graphs X and G, we write $X \subseteq G$ if X is a subgraph of $G, X \stackrel{\text { IND }}{\subseteq} G$ if X is an induced subgraph of G, and $X \cong G$ if X is isomorphic to G. In an edge-colored graph G, we use $c(u v)$ to denote the color assigned to an edge $u v \in E(G)$.

Let G be a connected graph. For $u, v \in V(G)$, a path in G from u to v will be referred to as a (u, v)-path, and, whenever necessary, it will be considered with orientation from u to v. The distance between u and v in G, denoted by $d_{G}(u, v)$, is the length of a shortest (u, v)-path in G. The eccentricity of a vertex v is $\operatorname{ecc}(v):=\max _{x \in V(G)} d_{G}(v, x)$. The diameter of G is $\operatorname{diam}(G):=$ $\max _{x \in V(G)} \operatorname{ecc}(x)$, and the radius of G is $\operatorname{rad}(G):=\min _{x \in V(G)} \operatorname{ecc}(x)$. One can easily check that $\operatorname{rad}(G) \leq \operatorname{diam}(G) \leq 2 \operatorname{rad}(G)$. A vertex x is central in G if $\operatorname{ecc}(x)=\operatorname{rad}(G)$. Let $D \subseteq V(G)$ and $x \in V(G) \backslash D$. Then we call a path $P=v_{0} v_{1} \ldots v_{k}$ a $v-D$ path if $v_{0}=v$ and $V(P) \cap D=v_{k}$, and we set $d_{G}(v, D):=\min _{w \in D} d_{G}(v, w)$.

For a set $S \subseteq V(G)$ and $k \in \mathbb{N}$, we use $N_{G}^{k}(S)$ to denote the neighborhood at distance k of S, i.e., the set of all vertices of G at distance k from S. In the special case when $k=1$, we simply write $N_{G}(S)$ for $N_{G}^{1}(S)$ and if $|S|=1$ with $x \in S$, we write $N_{G}(x)$ for $N_{G}(\{x\})$. For a set $M \subseteq V(G)$, we set $N_{M}(S)=$ $N_{G}(S) \cap M$ and $N_{M}(x)=N_{G}(x) \cap M$. Finally, we will also use the closed neighborhood of a vertex $x \in V(G)$ defined by $N_{G}^{k}[x]=\left(\cup_{i=1}^{k} N_{G}^{i}(x)\right) \cup\{x\}$.

A set $D \subseteq V(G)$ is called dominating if every vertex in $V(G) \backslash D$ has a neighbor in D. In addition, if $G[D]$ is connected, then we call D a connected dominating set. A clique of a graph G is a subset $Q \subseteq V(G)$ such that $G[Q]$ is complete. A clique is maximum if G has no clique Q^{\prime} with $\left|Q^{\prime}\right|>|Q|$. For a graph G, a subset $I \subseteq V(G)$ is called an independent set of G if no two vertices of I are adjacent in G. An independent set is maximum if G has no independent set I^{\prime} with $\left|I^{\prime}\right|>|I|$.

For two positive integers a and b, the Ramsey number $R(a, b)$ is the smallest integer n such that in any two-coloring of the edges of a complete graph on n vertices K_{n} by red and blue, either there is a red K_{a} (i.e., a complete

Fig. 1 The graphs G_{1}^{t} and G_{2}^{t}.
subgraph on a vertices all of whose edges are colored red) or there is a blue K_{b}. Ramsey [11] showed that $R(a, b)$ is finite for any a and b.

Finally, we will use P_{n} to denote the path on n vertices. An edge is called a pendant edge if one of its end vertices has degree one.

3 Families with one forbidden subgraph

In this section, we characterize all possible connected graphs X such that every connected X-free graph G satisfies $\operatorname{rx}_{3}(G) \leq \operatorname{sdiam}_{3}(G)+C_{X}$, where C_{X} is a constant.

Theorem 5 Let X be a connected graph. Then there is a constant C_{X} such that every connected X-free graph G satisfies $\mathrm{rx}_{3}(G) \leq \operatorname{sdiam}_{3}(G)+C_{X}$, if and only if $X=P_{3}$.

Proof If G is a connected P_{3}-free graph, then G is complete, and by Theorem 2, we have $\mathrm{rx}_{3}(G) \leq 3=\operatorname{sdiam}_{3}(G)+1$.

Conversely, let t be an arbitrarily large integer, set $G_{1}^{t}=K_{1, t}$, and let G_{2}^{t} denote the graph obtained by attaching a pendant edge to each vertex of the complete graph K_{t} (see Fig 1). We also use K_{t}^{h} to denote G_{2}^{t}. Since $\mathrm{rx}_{3}\left(G_{1}^{t}\right)=t$ but $\operatorname{sdiam}_{3}\left(G_{1}^{t}\right)=3, X$ is an induced subgraph of G_{1}^{t}. Clearly, $\mathrm{rx}_{3}\left(G_{2}^{t}\right) \geq t+2$ but $\operatorname{sdiam}_{3}\left(G_{2}^{t}\right)=5$, and G_{2}^{t} is $K_{1,3}$-free. Hence, $X=K_{1,2}=P_{3}$. The proof is thus complete.

4 Forbidden pairs

The following statement, which is the main result of this section, characterizes all possible forbidden pairs X, Y for which there is a constant $C_{X Y}$ such that $\operatorname{rx}_{3}(G) \leq \operatorname{sdiam}_{3}(G)+C_{X Y}$ if G is (X, Y)-free. Since any P_{3}-free graph is a complete graph, we exclude the case that one of X, Y is P_{3}.

Theorem 6 Let $X, Y \neq P_{3}$ be a pair of connected graphs. Then there is a constant $C_{X Y}$ such that every connected (X, Y)-free graph G satisfies $\mathrm{rx}_{3}(G) \leq$ $\operatorname{sdiam}_{3}(G)+C_{X Y}$, if and only if (up to symmetry) $X=K_{1, r}, r \geq 3$ and $Y=P_{4}$.

The proof of Theorem 6 will be divided into two parts. We prove the necessity in Proposition 2, and then we establish the sufficiency in Theorem 7.

Proposition 2 Let $X, Y \neq P_{3}$ be a pair of connected graphs for which there is a constant $C_{X Y}$ such that every connected (X, Y)-free graph G satisfies $\operatorname{rx}_{3}(G) \leq \operatorname{sdiam}_{3}(G)+C_{X Y}$. Then, (up to symmetry) $X=K_{1, r}, r \geq 3$ and $Y=P_{4}$.

Proof Let t be an arbitrarily large integer, and set $G_{3}^{t}=C_{t}$. We will also use the graphs G_{1}^{t} and G_{2}^{t} shown in Figure 1.

Consider the graph G_{1}^{t}. Since $\operatorname{sdiam}_{3}\left(G_{1}^{t}\right)=3$ but $\mathrm{rx}_{3}\left(G_{1}^{t}\right)=t$, we have, up to symmetry, $X=K_{1, r}, r \geq 3$. Then we consider the graphs G_{2}^{t} and G_{3}^{t}. It is easy to verify that $\operatorname{sdiam}_{3}\left(G_{2}^{t}\right)=5$ but $\mathrm{rx}_{3}\left(G_{2}^{t}\right) \geq t+2$, and $\operatorname{sdiam}_{3}\left(G_{3}^{t}\right)=\left\lceil\frac{2}{3} t\right\rceil$ while $\operatorname{rx}_{3}\left(G_{3}^{t}\right) \geq t-2 \geq \frac{3}{2}\left(\operatorname{sdiam}_{3}\left(G_{3}^{t}\right)-1\right)-2$, respectively. Clearly, G_{2}^{t} and G_{3}^{t} are both $K_{1,3}-$ free, so neither of them contains X, implying that both G_{2}^{t} and G_{3}^{t} contain Y. Since the maximum common induced subgraph of them is P_{4}, we get that $Y=P_{4}$. This completes the proof.

Next, we can prove that the converse of Proposition 2 is true.
Theorem 7 Let G be a connected $\left(P_{4}, K_{1, r}\right)$-free graph for some $r \geq 3$. Then $\mathrm{rx}_{3}(G) \leq \operatorname{sdiam}_{3}(G)+r+3$.

Proof. Let G be a connected $\left(P_{4}, K_{1, r}\right)$-free graph $(r \geq 3)$. Then, $\operatorname{sdiam}_{3}(G) \geq$ 2. For simplicity, we set $V=V(G)$. Let $S \subseteq V$ be a maximum clique of G.

Claim 1: S is a dominating set.
Proof Assume that there is a vertex y at distance 2 from S. Let $y x u$ be a shortest path from y to S, where $u \in S$. Because S is a maximum clique, there is some $v \in S$ such that $v x \notin E(G)$. Thus the path $v u x y \cong P_{4}$, a contradiction. So S is a dominating set.

Let X be a maximum independent set of $G[V \backslash S]$ and $Y=V \backslash(S \cup X)$. Then for any vertex $y \in Y, y$ is adjacent to some $x \in X$. Furthermore, for any independent set W of graph $G[Y],\left|N_{X}(W)\right| \geq|W|$ since X is maximum.

Claim 2: There is a vertex $v \in S$ such that v is adjacent to all the vertices in X.

Proof Suppose that the claim fails. Let u be a vertex of S with the largest number of neighbors in X. Set $X_{1}=N_{X}(u), X_{2}=X \backslash X_{1}$. Then, $X_{2} \neq \emptyset$ according to our assumption. Pick a vertex w in X_{2}. Then, $u w \notin E(G)$. Let v be a neighbor of w in S. For any vertex z in $X_{1}, G[w, v, u, z]$ cannot be an induced P_{4}, so $v z$ must be an edge of G. Thus, $N_{X}(v) \supseteq N_{X}(u) \cup\{w\}$, contradicting the maximality of u.

Let z be a vertex in S which is adjacent to all the vertices of X. Set $X=\left\{x_{1}, x_{2}, \ldots, x_{\ell}\right\}$. Then, $0 \leq \ell \leq r-1$ since G is $K_{1, r}$-free. Now we demonstrate a 3 -rainbow coloring of G using at most $\ell+6$ colors. Assign color i to the edge $z x_{i}$, and $i+1$ to the edge $x_{i} y$ where $1 \leq i \leq \ell$ and $y \in Y$. Color
$E[S, Y]$ with color $\ell+2$ and $E(G[Y])$ with color $\ell+3$. Give a 3-rainbow coloring of $G[S]$ using colors from $\{\ell+4, \ell+5, \ell+6\}$. Then color the remaining edges arbitrarily (e.g., all of them with color 1). Next, we prove that this coloring is a 3-rainbow coloring of G.

Let $W=\{u, v, w\}$ be a 3 -subset of V.
(i) $\{u, v, w\} \subseteq S \cup X$. Clearly, there is a rainbow tree containing W.
(ii) $\{u, v\} \subseteq S \cup X, w \in Y$. We can easily find a rainbow tree containing an edge in $E[S, Y]$ that connects W.
(iii) $u \in S \cup X,\{v, w\} \subseteq Y$.
a) If $v w \in E(G)$, then there obviously is a rainbow tree containing the edge $v w$ that connects W.
b) If $v w \notin E(G)$, then we have $\left|N_{X}(\{v, w\})\right| \geq|\{v, w\}|=2$. So there are two vertices x_{i} and $x_{j}(i \neq j)$ in X adjacent to v and w, respectively. As $i+1 \neq j+1$, so either $i+1 \neq c(z u)$ or $j+1 \neq c(z u)$. Without loss of generality, we assume that $i+1 \neq c(z u)$ and s is a neighbor of w in S. Then there is a rainbow tree containing the edges $z u, u v, s w, s z$ if $u=x_{i}$ or the edges $z u, z x_{i}, x_{i} v, s w, s z$ if $u \neq x_{i}$.
(iv) $\{u, v, w\} \subseteq Y$.
a) If $\{u v, v w, u w\} \cap E(G) \neq \emptyset$, for example, $u v \in E(G)$, then we have a rainbow tree containing the edges $z x_{i}, x_{i} u, u v, s w, s z$ where x_{i} is a neighbor of u in X and s is a neighbor of w in S.
b) If $\{u v, v w, u w\} \cap E(G)=\emptyset$, then we have $\left|N_{X}\{u, v, w\}\right| \geq|\{u, v, w\}|=$ 3 , so we can find three distinct vertices x_{i}, x_{j}, x_{k} in X such that $\left\{x_{i} u, x_{j} v, x_{k} w\right\}$ $\subseteq E(G)$. We may assume that $i<j<k$, so $k+1 \notin\{i, j, k, i+1, j+1\}$ and $k \neq$ $i+1$. Then there is a rainbow tree containing the edges $z x_{i}, x_{i} u, z x_{k}, x_{k} w, s v, s z$ where s is a neighbor of v in S.

Thus the coloring is a 3-rainbow coloring of G using at most $\ell+6 \leq r+5 \leq$ $\operatorname{sdiam}_{3}(G)+r+3$ colors. The proof is complete.

Combining Proposition 2 and Theorem 7, we can easily get Theorem 6.
Remark When the maximum independent set of $G[V \backslash S], X$, satisfies $|X|=$ $\ell \geq 4$, we just need $\ell+5$ colors in the proof of Theorem 7 : for the edges $x_{\ell} y$, we can color them with color 1 instead of color $\ell+1$. It only matters when the case $\{u, v, w\} \subseteq Y$ and $\{u v, v w, u w\} \cap E(G)=\emptyset$ happens. Suppose $\left\{x_{i} u, x_{j} v, x_{k} w\right\} \subseteq E(G)$ and $i<j<k$. If $i \neq 1$ or $k \neq \ell$, it is the case in the proof above. So we turn to the case when $i=1$ and $k=l$. If $j=2$, then $j+1<4 \leq \ell$ (that is why we need the condition $\ell \geq 4$). Thus, there is a rainbow tree containing the edges $z x_{j}, x_{j} v, z x_{k}, x_{k} w, s u, s z$ where s is a neighbor of u in S. If $j \neq 2$, then there is a rainbow tree containing the edges $z x_{i}, x_{i} u, z x_{j}, x_{j} v, s w, s z$.

5 Forbidden triples

Now, we continue to consider more forbidden subgraphs and obtain an analogous result which characterizes all forbidden triples \mathcal{F} for which there is a
constant $C_{\mathcal{F}}$ such that G being \mathcal{F}-free implies $\mathrm{rx}_{3}(G) \leq \operatorname{sdiam}_{3}(G)+C_{\mathcal{F}}$. We exclude the cases which are covered by Theorems 5 and 6 . We set:

$$
\begin{aligned}
& \mathfrak{F}_{1}=\left\{\left\{P_{3}\right\}\right\}, \\
& \mathfrak{F}_{2}=\left\{\left\{K_{1, r}, P_{4}\right\} \mid r \geq 3\right\}, \\
& \mathfrak{F}_{3}=\left\{\left\{K_{1, r}, Y, P_{\ell}\right\} \mid r \geq 3, Y \subseteq K_{s}^{h}, s \geq 3, \ell>4\right\} .
\end{aligned}
$$

Theorem 8 Let \mathcal{F} be a family of connected graphs with $|\mathcal{F}|=3$ such that $\mathcal{F} \nsupseteq \mathcal{F}^{\prime}$ for any $\mathcal{F}^{\prime} \in \mathfrak{F}_{1} \cup \mathfrak{F}_{2}$. Then there is a constant $C_{\mathcal{F}}$ such that every connected \mathcal{F}-free graph G satisfies $\operatorname{rx}_{3}(G) \leq \operatorname{sdiam}_{3}(G)+C_{\mathcal{F}}$, if and only if $\mathcal{F} \in \mathfrak{F}_{3}$.

First of all, we prove the necessity of the triples given by Theorem 8.
Proposition 3 Let $X, Y, Z \neq P_{3}$ be connected graphs, $\{X, Y, Z\} \nsupseteq \mathcal{F}^{\prime}$ for any $\mathcal{F}^{\prime} \in \mathfrak{F}_{2}$, for which there is a constant $C_{X Y Z}$ such that every connected (X, Y) free graph G satisfies $\mathrm{rx}_{3}(G) \leq \operatorname{sdiam}_{3}(G)+C_{X Y Z}$. Then, (up to symmetry) $X=K_{1, r}(r \geq 3), Y \stackrel{I N D}{\subseteq} K_{s}^{h}(s \geq 3)$, and $Z=P_{\ell}(\ell>4)$.

Proof Let t be an arbitrarily large integer, and let $G_{1}^{t}, G_{2}^{t}, G_{3}^{t}$ be the graphs defined in the proof of Proposition 2.

Firstly, we consider the graph G_{1}^{t}. Up to symmetry, we have $X=K_{1, r}, r \geq$ 3 (for the case $r=2$ is excluded by the assumptions). Secondly, we consider the graph G_{2}^{t}. The graph G_{2}^{t} does not contain X, since it is $K_{1,3}$-free. Thus, up to symmetry, we have G_{2}^{t} contains Y, implying $Y \stackrel{\text { IND }}{\subseteq} K_{s}^{h}$ for some $s \geq 3$ (for the case $s \leq 2$ is excluded by the assumptions). Finally, we consider the graphs G_{3}^{t} and G_{3}^{t+1}. Clearly, they are $\left(K_{1,3}, K_{3}^{h}\right)$-free, so both of them contain neither X nor Y. Hence, we get that $Z=P_{\ell}$ for some $\ell>4$ (for the case $\ell \leq 4$ is excluded by the assumptions).

This completes the proof.
It is easy to observe that if $X \stackrel{\text { IND }}{\subseteq} X^{\prime}$, then every (X, Y, Z)-free graph is also (X^{\prime}, Y, Z)-free. Thus, when proving the sufficiency of Theorem 8, we will be always interested in maximal triples of forbidden subgraphs, i.e., triples X, Y, Z such that, if replacing one of X, Y, Z, say X, with a graph $X^{\prime} \neq X$ such that $X \stackrel{\text { IND }}{\subseteq} X^{\prime}$, then the statement under consideration is not true for (X^{\prime}, Y, Z)-free graphs.

For every vertex $c \in V(G)$ and $i \in \mathbb{N}$, we set $\alpha_{i}(G, c)=\max \{|M| \mid M \subseteq$ $N_{G}^{i}[c], M$ is independent $\}$ and $\alpha_{i}^{0}(G, c)=\max \left\{\left|M^{0}\right| \mid M^{0} \subseteq N_{G}^{i}(c), M^{0}\right.$ is independent $\}$.

Lemma 1 [2] Let $r, s, i \in \mathbb{N}$. Then there is a constant $\alpha(r, s, i)$ such that, for every connected $\left(K_{1, r}, K_{s}^{h}\right)$-free graph G and for every $c \in V(G), \alpha_{i}(G, c)<$ $\alpha(r, s, i)$.

We use the proof of Lemma 1 to get the following corollary concerning $\alpha_{i}^{0}(G, c)$ for each integer $i \geq 1$.

Corollary 1 Let $r, s, i \in \mathbb{N}$. Then there is a constant $\alpha^{0}(r, s, i)$ such that, for every connected $\left(K_{1, r}, K_{s}^{h}\right)$-free graph G and for every $c \in V(G), \alpha_{i}^{0}(G, c)<$ $\alpha^{0}(r, s, i)$.

Proof For the sake of completeness, here we give a brief proof concentrating on the upper bound of $\alpha_{i}^{0}(G, c)$. We prove the corollary by induction on i.

For $i=1$, we have $\alpha^{0}(r, s, 1)=r$, for otherwise G contains a $K_{1, r}$ as an induced subgraph.

Let, to the contrary, i be the smallest integer for which $\alpha^{0}(r, s, i)$ does not exist(i.e., $\alpha_{i}^{0}(G, c)$ can be arbitrarily large), choose a graph G and a vertex $c \in V(G)$ such that $\alpha_{i}^{0}(G, c) \geq(r-2) R\left(s(2 r-3), \alpha^{0}(r, s, i-1)\right)$, and let $M^{0}=\left\{x_{1}^{0}, \ldots, x_{k}^{0}\right\} \subseteq N_{G}^{i}(c)$ be an independent set in G of size $\alpha_{i}^{0}(G, c)$. Obviously, $k \geq(r-2) R\left(s(2 r-3), \alpha^{0}(r, s, i-1)\right)$. Let Q_{j} be a shortest $\left(x_{j}^{0}, c\right)$ path in $G, j=1, \ldots, k$. We denote $M^{1} \subseteq N_{G}^{i-1}(c)$ the set of all successors of the vertices from M^{0} on $Q_{j}, j=1, \ldots, k$, and x_{j}^{1} the successor of x_{j}^{0} on Q_{j} (note that some distinct vertices in M^{0} can have a common successor in M^{1}). Every vertex in M^{1} has at most $r-2$ neighbors in M^{0} since G is $K_{1, r}$-free. Thus, $\left|M^{1}\right| \geq \frac{k}{r-2} \geq R\left(s(2 r-3), \alpha^{0}(r, s, i-1)\right)$. By the induction assumption and the definition of Ramsey number, $G\left[M^{1}\right]$ contains a complete subgraph $K_{s(2 r-3)}$. Choose the notation such that $V\left(K_{s(2 r-3)}\right)=\left\{x_{1}^{1}, \ldots, x_{s(2 r-3)}^{1}\right\}$, and set $\widetilde{M^{0}}=N_{M^{0}}\left(K_{s(2 r-3)}\right)$. Using a matching between $K_{s(2 r-3)}$ and $\widetilde{M^{0}}$, we can find in G an induced K_{s}^{h} with vertices of degree 1 in $\widetilde{M^{0}}$, a contradiction. For more details about finding the K_{s}^{h}, we refer the reader to [2].

Armed with Corollary 1, we can get the following important theorem.
Theorem 9 Let $r \geq 3, s \geq 3$, and $\ell>4$ be fixed integers. Then there is a constant $C(r, s, \ell)$ such that every connected $\left(K_{1, r}, K_{s}^{h}, P_{\ell}\right)$-free graph G satisfies $\operatorname{rx}_{3}(G) \leq \operatorname{sdiam}_{3}(G)+C(r, s, \ell)$.

Proof. We have $\operatorname{diam}(G) \leq \ell-2$ since G is P_{ℓ}-free. Let c be a central vertex of G, i.e., $\operatorname{ecc}(c)=\operatorname{rad}(G) \leq \operatorname{diam}(G) \leq \ell-2$. We set $S_{i}=\cup_{j=1}^{i} N_{G}^{j}[c]$ for an integer $i \geq 1$.

Claim: $\operatorname{rx}_{3}\left(G\left[S_{i} \cup N_{G}^{i+1}(c)\right]\right) \leq \operatorname{rx}_{3}\left(G\left[S_{i}\right]\right)+\alpha_{i+1}^{0}(G, c)+3$
Proof Let $X=\left\{x_{1}, x_{2}, \ldots, x_{\alpha_{i+1}^{0}(G, c)}\right\}$ be a maximum independent set of $N_{G}^{i+1}(c)$ and $Y=N_{G}^{i+1}(c) \backslash X$. Then for any vertex $y \in Y, y$ is adjacent to some $x \in X$ and $s \in S$. Furthermore, for any independent set W of the graph $G[Y]$, we have $\left|N_{X}(W)\right| \geq|W|$ since X is maximum.

Now we demonstrate a 3-rainbow coloring of $G\left[S_{i} \cup N_{G}^{i+1}(c)\right]$ using at most $k+\alpha_{i+1}^{0}(G, c)+3$ colors, where $k=\operatorname{rx}_{3}\left(G\left[S_{i}\right]\right)$. We color the edges of $G\left[S_{i}\right]$ using colors $1,2, \ldots, k$. Color $E\left[S_{i}, Y\right]$ with color $k+1$ and $E(G[Y])$ with color $k+2$. Then assign color $j+k+2$ to the edges $E\left[\left\{x_{j}\right\}, S_{i}\right]$, and $j+k+3$ to the edges $E\left[\left\{x_{j}\right\}, Y\right]$ where $1 \leq j \leq \alpha_{i+1}^{0}(G, c)$. With the same argument as the proof of Theorem 7, we can prove that this coloring is a 3 -rainbow coloring of $G\left[S_{i} \cup N_{G}^{i+1}(c)\right]$.

From the proof of Corollary 1, it follows that $\alpha_{1}^{0}(G, c) \leq r-1$ and $\alpha_{i}^{0}(G, c) \leq$ $(r-2) R\left(s(2 r-3), \alpha^{0}(r, s, i-1)\right)-1$ for each integer $i \geq 2$. Let $\mathcal{R}(r, s)=$ $\sum_{i=2}^{\operatorname{ecc}(c)} R\left(s(2 r-3), \alpha^{0}(r, s, i-1)\right)$. Recall that ecc $(c) \leq \ell-2$. Repeated application of Claim gives the following:

$$
\begin{aligned}
\operatorname{rx}_{3}(G) & \leq \operatorname{rx}_{3}\left(G\left[N_{G}^{\operatorname{ecc}(c)-1}[c]\right]\right)+\alpha_{\operatorname{ecc}(c)}^{0}(G, c)+3 \\
& \leq \cdots \\
& \leq \operatorname{rx}_{3}(c)+\alpha_{1}^{0}(G, c)+\cdots+\alpha_{\operatorname{ecc}(c)}^{0}(G, c)+3 \operatorname{ecc}(c) \\
& \leq 0+r+(r-2) \mathcal{R}(r, s)+2(\ell-2) \\
& \leq \operatorname{sdiam}_{3}(G)+(r-2)(\mathcal{R}(r, s)+1)+2(\ell-1) .
\end{aligned}
$$

Thus, we complete our proof.
Remark The same as the remark in Section 4: for $i \geq 1$, every time $\alpha_{i+1}^{0}(G, c) \geq$ 4 happens, we can save one color in the Claim of Theorem 9.

6 Forbidden k-tuples for any $k \in \mathbb{N}$

Let $\mathcal{F}=\left\{X_{1}, X_{2}, X_{3}, \ldots, X_{k}\right\}$ be a finite family of connected graphs with $k \geq 4$ for which there is a constant $k_{\mathcal{F}}$ such that every connected \mathcal{F}-free graph satisfies $\mathrm{rx}_{3}(G) \leq \operatorname{sdiam}_{3}(G)+C_{\mathcal{F}}$. Let t be an arbitrarily large integer, and let G_{1}^{t}, G_{2}^{t} and G_{3}^{t} be defined in Proposition 2. For the graph G_{1}^{t}, up to symmetry, we suppose that $X_{1}=K_{r}, r \geq 3$ (for the case $r=2$ has been discussed in Section 3). Then, we consider the graphs G_{2}^{t} and G_{3}^{t}. Notice that G_{2}^{t} and G_{3}^{t} are both $K_{1,3}$-free, so neither of them contains X_{1}, implying that G_{2}^{t} or G_{3}^{t} contains X_{i}, where $i \neq 1$. We may assume that X_{2} is an induced subgraph of G_{2}^{t}. If G_{3}^{t} contains X_{2}, then $X_{2}=P_{4}$, which is just the case in Section 4. So we turn to the case that G_{3}^{t} contains X_{i} for some $i>2$. Now consider the graphs $G_{3}^{t}, G_{3}^{t+1}, G_{3}^{t+2}, \ldots, G_{3}^{t+k}$, each of which contains at least one of $X_{3}, X_{4}, \ldots, X_{k}$ as an induced subgraph due to the analysis above. So it is forced that at least one of these $X_{i}(i \geq 3)$ is isomorphic to P_{l} for some $l \geq 5$, which goes back to the case in Section 5 . Thus, the conclusion comes out.

Theorem 10 Let \mathcal{F} be a finite family of connected graphs. Then there is a constant $C_{\mathcal{F}}$ such that every connected \mathcal{F}-free graph satisfies $\mathrm{rx}_{3}(G) \leq$ $\operatorname{sdiam}_{3}(G)+C_{\mathcal{F}}$, if and only if \mathcal{F} contains a subfamily $\mathcal{F}^{\prime} \in \mathfrak{F}_{1} \cup \mathfrak{F}_{2} \cup \mathfrak{F}_{3}$.

Acknowledgements The authors are very grateful to the referees for their helpful comments and suggestions.

References

[^0]4. G. Chartrand, G.L. Johns, K.A. McKeon, P. Zhang: Rainbow connection in graphs. Math. Bohem. 133(1), 85-98 (2008)
5. G. Chartrand, F. Okamoto, P. Zhang: Rainbow trees in graphs and generalized conncectivity. Networks 55, 360-367 (2010)
6. L. Chen, X. Li, K. Yang, Y. Zhao: The 3-rainbow index of a graph. Discuss. Math. Graph Theory 35(1), 81-94 (2015)
7. P. Holub, Z. Ryjáček, I. Schiermeyer, P. Vrána: Rainbow connection and foridden subgraphs. Discrete Math. 338(10), 1706-1713 (2015)
8. W. Li, X. Li, J. Zhang: Rainbow vertex-connection and forbidden subgraphs. Accepted by Discuss. Math. Graph Theory
9. X. Li, Y. Shi, Y. Sun: Rainbow connections of graphs: A survey. Graphs \& Combin. 29, 1-38 (2013)
10. X. Li, Y. Sun: Rainbow Connections of Graphs. Springer Briefs in Math. Springer, New York (2012)
11. F.P. Ramsey: On a problem of formal logic. Proc. London Math. Society 30, 264-286 (1920)

[^0]: 1. J.A. Bondy, U.S.R. Murty: Graph Theory with Applications. The Macmillan Press, London and Basingstoker (1976)
 2. J. Brousek, P. Holub, Z. Ryjáček, P. Vrána: Finite families of forbidden subgraphs for rainbow connection in graphs. Discrete Math. 339(9), 2304-2312 (2016)
 3. Q. Cai, X. Li, Y. Zhao: The 3-rainbow index and connected dominating sets. J. Combin. Optim. 31, 1142-1159 (2016)
