Noname manuscript No.
(will be inserted by the editor)

3-Rainbow index and forbidden subgraphs

Wenjing Li' - Xueliang Li'? .
Jingshu Zhang'

Received: date / Accepted: date
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maximum Steiner distance of S among all sets S with k vertices of G. In this
paper, we focus on the 3-rainbow index of graphs and find all finite families
F of connected graphs, for which there is a constant C'r such that, for every
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1 Introduction

All graphs considered in this paper are simple, finite, undirected and connect-
ed. We follow the terminology and notation of Bondy and Murty [1] for those
not defined here.

Let G be a nontrivial connected graph with an edge-coloring ¢ : E(G) —
{1,2,...,t}, t € N, where adjacent edges may be colored with the same color.
A path in G is called a rainbow path if no two edges of the path are colored with
the same color. The graph G is called rainbow connected if for any two distinct
vertices of GG, there is a rainbow path connecting them. For a connected graph
G, the rainbow connection number of G, denoted by rc(G), is defined as the
minimum number of colors that are needed to make G rainbow connected.
These concepts were first introduced by Chartrand et al. in [4] and have been
well-studied since then. For further details, we refer the reader to a survey
paper [9] and a book [10].

In [5], Chartrand et al. generalized the concept of a rainbow path to a
rainbow tree. A tree in an edge-colored graph G is called a rainbow tree if no
two edges of it are assigned the same color. For a vertex subset S C V(G), a
tree is called an S-tree if it connects S in G. Let G be a connected graph of
order n. For a fixed integer k with 2 < k < n, a k-rainbow coloring of G is an
edge-coloring of G having the property that for every k-subset S of G, there
exists a rainbow S-tree in GG, and in this case, the graph G is called k-rainbow
connected. The minimum number of colors that are needed in a k-rainbow
coloring of G is the k-rainbow index of G, denoted by rx;(G). Clearly, rx2(G)
is just the rainbow connection number rc¢(G) of G. In the sequel, we assume
that k > 3. It is easy to see that rx2(G) < rx3(G) < -+ < 1%, (G). Recently,
some results on the k-rainbow index have been published, especially on the
3-rainbow index. We refer to [3,6] for more details.

The Steiner distance d(S) of a set S of vertices in G is the minimum
size of a tree in G containing S. Such a tree is called a Steiner S-tree or
simply a Steiner tree. The k-Steiner diameter sdiamy(G) of G is defined as
the maximum Steiner distance of S among all k-subsets S of G. Then the
following observation is immediate.

Observation 1 [5] For every connected graph G of order n > 3 and each
integer k with 3 < k <n,

k—1 < sdiamg(G) < rx(G) <n—1.

The authors of [5] showed that the k-rainbow index of trees can achieve
the upper bound.

Proposition 1 [5] Let T be a tree of order n > 3. For each integer k with
3<k<n,

rxi(T) =n—1.
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From above, we notice that for a fixed integer k with k > 3, the difference
rxx(G) — sdiamg (G) can be arbitrarily large. In fact, if G is a star K7 5, then
we have rx;(G) — sdiamy (G) =n — k.

They also determined the precise values for the k-rainbow index of the
cycle C,, and the 3-rainbow index of the complete graph K.

Theorem 1 [5] For integers k and n with 3 <k <n,

_n—-2ifk=3andn>4
rxk(c")_{n—lifk—n_3 or4<k<n.

Theorem 2 [5/

2if3<n<5b
rx3(Ky) = {31’}071;6._

Let F be a family of connected graphs. We say that a graph G is F-free
if G does not contain any induced subgraph isomorphic to a graph from F.
Specifically, for F = {X} we say that G is X-free, for F = {X,Y} we say
that G is (X,Y)-free, and for F = {X,Y, Z} we say that G is (X,Y,Z)-free.
The members of F will be referred to as forbidden induced subgraphs in this
context. If F = {X1, Xo,..., Xy}, we also refer to the graphs X7, Xo,..., X}
as a forbidden k-tuple, and for |F| = 2 and 3 we say a forbidden pair and a
forbidden triple, respectively.

In [7], Holub et al. considered the question: For which families F of con-
nected graphs, a connected F-free graph G satisfies rc(G) < diam(G) + Cr,
where Cr is a constant (depending on F). They gave a complete answer for
|F| € {1,2} in the following two results (where N denotes the net, a graph
obtained by attaching a pendant edge to each vertex of a triangle).

Theorem 3 [7] Let X be a connected graph. Then there is a constant Cx
such that every connected X -free graph G satisfies r¢(G) < diam(G) + Cx, if
and only if X = Ps.

Theorem 4 [7] Let X,Y be connected graphs such that X,Y # Ps. Then
there is a constant Cxy such that every connected (X,Y)-free graph G satisfies
re(G) < diam(G)+Cxy, if and only if (up to symmetry) either X = K1, (r >
4) andY = Py, or X = K13 and Y is an induced subgraph of N.

Surprisingly, Brousek et al. [2] then gave a complete answer for all finite
families F. For the rainbow vertex-connection number, Li et al. [8] recent-
ly gave a complete answer for |F| € {1,2}. Now we consider an analogous
question concerning the k-rainbow index of graphs, where k > 3 is a positive
integer. From Observation 1, we know that the k-Steiner diameter is a lower
bound for the k-rainbow index. In this paper, we will consider the following
question.

For which families F of connected graphs, there is a constant C'r such that
rxx(G) < sdiamy(G) + Cr if a connected graph G is F-free?
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In general, it is very difficult to give answers to the above question, even
if one considers the case kK = 4. So, in this paper, we pay our attention only
to the case k = 3. In Sections 3, 4 and 5, we give complete answers for the 3-
rainbow index when |F| = 1,2 and 3, respectively. Finally, we give a complete
characterization for an arbitrary finite family F.

2 Preliminaries

In this section, we introduce some further terminology and notation that will
be used in the sequel. Throughout the paper, N denotes the set of all positive
integers.

Let G be a graph. We use V(G), E(G), and |G| to denote the vertex set,
edge set, and the order of G, respectively. For A C V(G), |A| denotes the
number of vertices in A, and G[A] denotes the subgraph of G induced by the
vertex set A. For two disjoint subsets X and Y of V(G), we use E[X,Y] to
denote the set of edges of G between X and Y. For graphs X and G, we write

X C G if X is a subgraph of G, X HéD G if X is an induced subgraph of G,
and X = G if X is isomorphic to G. In an edge-colored graph G, we use ¢(uv)
to denote the color assigned to an edge uv € E(G).

Let G be a connected graph. For u,v € V(G), a path in G from u to v will
be referred to as a (u,v)-path, and, whenever necessary, it will be considered
with orientation from u to v. The distance between u and v in G, denoted
by dg(u,v), is the length of a shortest (u,v)-path in G. The eccentricity of
a vertex v is ecc(v) := maxzey(g)dg (v, z). The diameter of G is diam(G) :=
max,cy(gyecc(x), and the radius of G is rad(G) := min,ecy (g)yecc(z). One
can easily check that rad(G) < diam(G) < 2rad(G). A vertex x is central in
G if ecc(z) = rad(G). Let D C V(G) and = € V(G) \ D. Then we call a
path P = vgvy ...v; a v-D path if vg = v and V(P) N D = v, and we set
dg (v, D) := minge pdg (v, w).

For a set S C V(G) and k € N, we use NL(S) to denote the neighborhood
at distance k of S, i.e., the set of all vertices of G at distance k from S. In the
special case when k = 1, we simply write N¢(S) for N} (S) and if |S| = 1 with
x € S, we write Ng(z) for Ng({z}). For a set M C V(G), we set Nps(S) =
Ng(S) N M and Ny (z) = Ng(xz) N M. Finally, we will also use the closed
neighborhood of a vertex z € V(@) defined by NE[z] = (UF_| N (2)) U {z}.

A set D C V(@) is called dominating if every vertex in V(G) \ D has a
neighbor in D. In addition, if G[D] is connected, then we call D a connected
dominating set. A clique of a graph G is a subset @ C V(G) such that G[Q)]
is complete. A clique is mazimum if G has no clique Q' with |Q’| > |Q|. For
a graph G, a subset I C V(G) is called an independent set of G if no two
vertices of I are adjacent in G. An independent set is mazimum if G has no
independent set I' with |I'| > |I].

For two positive integers a and b, the Ramsey number R(a,b) is the smallest
integer n such that in any two-coloring of the edges of a complete graph on
n vertices K, by red and blue, either there is a red K, (i.e., a complete
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Fig. 1 The graphs GY and G&.

subgraph on a vertices all of whose edges are colored red) or there is a blue
K. Ramsey [11] showed that R(a,b) is finite for any a and b.

Finally, we will use P, to denote the path on n vertices. An edge is called
a pendant edge if one of its end vertices has degree one.

3 Families with one forbidden subgraph

In this section, we characterize all possible connected graphs X such that every
connected X-free graph G satisfies rx3(G) < sdiamz(G) + Cx, where Cx is a
constant.

Theorem 5 Let X be a connected graph. Then there is a constant Cx such
that every connected X -free graph G satisfies rx3(G) < sdiams(G) + Cx, if
and only if X = Ps.

Proof 1If G is a connected Ps-free graph, then G is complete, and by Theorem 2,
we have rx3(G) < 3 = sdiams(G) + 1.

Conversely, let ¢ be an arbitrarily large integer, set G} = K1 4, and let G}
denote the graph obtained by attaching a pendant edge to each vertex of the
complete graph K; (see Fig 1). We also use K] to denote G%. Since rx3(G%) =t
but sdiams(GY) = 3, X is an induced subgraph of G%. Clearly, rx3(G%) >t +2
but sdiams(G%) = 5, and G4 is K s-free. Hence, X = Ky 2 = P5. The proof
is thus complete.

4 Forbidden pairs

The following statement, which is the main result of this section, characterizes
all possible forbidden pairs X, Y for which there is a constant C'xy such that
rx3(G) < sdiamg(G) + Cxy if G is (X,Y)-free. Since any Ps-free graph is a
complete graph, we exclude the case that one of X,Y is Ps.

Theorem 6 Let X,Y # P3 be a pair of connected graphs. Then there is a
constant Cxy such that every connected (X,Y)-free graph G satisfies rxs3(G) <
sdiams(G) + Cxy, if and only if (up to symmetry) X = Kyi,,v > 3 and
Y =P,.
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The proof of Theorem 6 will be divided into two parts. We prove the
necessity in Proposition 2, and then we establish the sufficiency in Theorem 7.

Proposition 2 Let X,Y # P5 be a pair of connected graphs for which there
is a constant Cxy such that every connected (X,Y)-free graph G satisfies
rx3(G) < sdiamz(G) + Cxy. Then, (up to symmetry) X = Ky ,,7v > 3 and
Y =PF.

Proof Let t be an arbitrarily large integer, and set G = C;. We will also use
the graphs G and G% shown in Figure 1.

Consider the graph GY. Since sdiams3(GY) = 3 but rx3(G}) = ¢, we have, up
to symmetry, X = Kj,,7 > 3. Then we consider the graphs G and G%. It is
casy to verify that sdiams(G%) = 5 but rxs(G%) > t42, and sdiams(Gf) = [2t]
while rx3(G%) >t — 2 > 3(sdiams(G%) — 1) — 2, respectively. Clearly, G and
GY are both K 3-free, so neither of them contains X, implying that both G%
and GY contain Y. Since the maximum common induced subgraph of them is
Py, we get that Y = P,. This completes the proof.

Next, we can prove that the converse of Proposition 2 is true.

Theorem 7 Let G be a connected (Py, K1 ,)-free graph for some r > 3. Then
rx3(G) < sdiams(G) +r + 3.

Proof. Let G be a connected (Py, K1 ,)-free graph (r > 3). Then, sdiams(G) >
2. For simplicity, we set V = V(G). Let S C V be a maximum clique of G.
Claim 1: S is a dominating set.

Proof Assume that there is a vertex y at distance 2 from S. Let yzu be a
shortest path from y to S, where u € S. Because S is a maximum clique, there
is some v € S such that vz ¢ E(G). Thus the path vuzy = P4, a contradiction.
So S is a dominating set.

Let X be a maximum independent set of G[V \ S]and Y =V \ (S U X).
Then for any vertex y € Y, y is adjacent to some z € X. Furthermore, for any
independent set W of graph G[Y], |[Nx(W)| > |W]| since X is maximum.

Claim 2: There is a vertex v € S such that v is adjacent to all the vertices
in X.

Proof Suppose that the claim fails. Let u be a vertex of S with the largest
number of neighbors in X. Set X7 = Nx(u), Xo = X \ X;. Then, X5 #
according to our assumption. Pick a vertex w in X3. Then, uw ¢ E(G). Let
v be a neighbor of w in S. For any vertex z in X;, Glw,v,u, 2] cannot be
an induced Py, so vz must be an edge of G. Thus, Nx(v) 2 Nx(u) U {w},
contradicting the maximality of w.

Let z be a vertex in S which is adjacent to all the vertices of X. Set
X = {z1,%2,...,2¢}. Then, 0 < £ < r — 1 since G is K; ,-free. Now we
demonstrate a 3-rainbow coloring of G using at most £+ 6 colors. Assign color
1 to the edge zx;, and i + 1 to the edge x;y where 1 <i < /¢ and y € Y. Color
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E[S,Y] with color /42 and E(G[Y]) with color £+3. Give a 3-rainbow coloring
of G[S] using colors from {¢+4,¢+5,¢+ 6}. Then color the remaining edges
arbitrarily (e.g., all of them with color 1). Next, we prove that this coloring is
a 3-rainbow coloring of G.

Let W = {u,v,w} be a 3-subset of V.

(i) {u,v,w} € SUX. Clearly, there is a rainbow tree containing W.

(1) {u,v} C SUX,w €Y. We can easily find a rainbow tree containing
an edge in E[S,Y] that connects W.

(i) u e SUX, {v,w} CY.

a) If vw € E(G), then there obviously is a rainbow tree containing the
edge vw that connects W.

b) If vw ¢ FE(G), then we have |Nx({v,w})| > |{v,w}| = 2. So there
are two vertices z; and z;(¢ # j) in X adjacent to v and w, respectively.
Asi+1+# j+1,soeither i + 1 # ¢(zu) or j + 1 # ¢(zu). Without loss of
generality, we assume that i + 1 # ¢(zu) and s is a neighbor of w in S. Then
there is a rainbow tree containing the edges zu,uv, sw,sz if u = z; or the
edges zu, zx;, x;v, sw, sz if u # x;.

(iv) {u,v,w} CY.

a) If {wv,vw,uvw} N E(G) # 0, for example, uv € E(G), then we have a
rainbow tree containing the edges zx;, z;u, uv, sw, sz where z; is a neighbor of
w in X and s is a neighbor of w in S.

b) If {uwv, vw, uw} N E(G) = 0, then we have |[Nx{u,v,w}| > [{u,v,w}| =
3, so we can find three distinct vertices x;, z;, x in X such that {z;u, z;v, ryw}
C E(G). We may assume that i < j < k,sok+1 ¢ {i,5,k,i+1,j+1} and k #
i+1. Then there is a rainbow tree containing the edges zx;, x;u, zxy, xrw, sv, sz
where s is a neighbor of v in S.

Thus the coloring is a 3-rainbow coloring of G using at most {+6 < r+5 <
sdiamg(G)+r+3 colors. The proof is complete.

Combining Proposition 2 and Theorem 7, we can easily get Theorem 6.
Remark When the maximum independent set of G[V \ S], X, satisfies | X| =
£ > 4, we just need £ + 5 colors in the proof of Theorem 7: for the edges
0y, we can color them with color 1 instead of color £ + 1. It only matters
when the case {u,v,w} CY and {uv,vw,uw} N E(G) = ) happens. Suppose
{zu,z;v,zpw} C E(G) and i < j < k. If i # 1 or k # £, it is the case in
the proof above. So we turn to the case when i = 1 and k = [. If j = 2,
then j +1 < 4 < £ (that is why we need the condition ¢ > 4). Thus, there
is a rainbow tree containing the edges zx;, x;v, 2k, 2w, su, sz where s is a
neighbor of u in S. If j # 2, then there is a rainbow tree containing the edges
2Ti, TiW, ZTj, TV, SW, SZ.

5 Forbidden triples

Now, we continue to consider more forbidden subgraphs and obtain an anal-
ogous result which characterizes all forbidden triples F for which there is a
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constant C'r such that G being F-free implies rx3(G) < sdiamz(G) + Cr. We
exclude the cases which are covered by Theorems 5 and 6. We set:

31 ={{Ps}},

S2 = {{K1r, Pa}| r >3},

IND
53:{{K1,’NY5PE}| T237Y g K?,523,€>4}

Theorem 8 Let F be a family of connected graphs with |F| = 3 such that
F 2 F' for any F' € F1 UF2. Then there is a constant Cx such that every
connected F-free graph G satisfies rx3(G) < sdiams(G) + Cx, if and only if
F € 35s.

First of all, we prove the necessity of the triples given by Theorem 8.

Proposition 3 Let X,Y, Z # Ps be connected graphs, {X,Y,Z} 2 F' for any
F' € Fa, for which there is a constant Cxy z such that every connected (X,Y)-
free graph G satisfies rx3(G) < sdiams(G) + Cxyz. Then, (up to symmetry)

X =K, (r>3),Y C K's>3), and Z = P,(¢ > 4).

Proof Let t be an arbitrarily large integer, and let G, G4, G4 be the graphs
defined in the proof of Proposition 2.

Firstly, we consider the graph G%. Up to symmetry, we have X = K; ,.,r >
3 (for the case r = 2 is excluded by the assumptions). Secondly, we consider
the graph G%. The graph G% does not contain X, since it is K; 3-free. Thus,

up to symmetry, we have G contains Y, implying YV’ INQD K" for some s > 3
(for the case s < 2 is excluded by the assumptions). Finally, we consider the
graphs G4 and G5, Clearly, they are (K7 3, K})-free, so both of them contain
neither X nor Y. Hence, we get that Z = Py for some ¢ > 4 (for the case ¢ < 4
is excluded by the assumptions).

This completes the proof.

It is easy to observe that if X HéD X', then every (X,Y, Z)-free graph is
also (X',Y, Z)-free. Thus, when proving the sufficiency of Theorem 8, we will
be always interested in mazimal triples of forbidden subgraphs, i.e., triples
X,Y, Z such that, if replacing one of X,Y, Z, say X, with a graph X’ # X
such that X INQD X', then the statement under consideration is not true for
(X",Y, Z)-free graphs.

For every vertex ¢ € V(G) and i € N, we set a;(G,c) =max{|M||M C
N¢[c], M is independent} and of(G,c) =max{|M°||M° C Ni(c), M is in-
dependent}.

Lemma 1 [2] Let r,s,i € N. Then there is a constant «(r, s,1) such that, for
every connected (K1 ., KM)-free graph G and for every ¢ € V(G), a;(G,c) <
a(r, s,i).

We use the proof of Lemma 1 to get the following corollary concerning
ad(G, c) for each integer i > 1.
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Corollary 1 Let r,s,i € N. Then there is a constant a®(r, s, i) such that, for

every connected (K1 ., K')-free graph G and for every c € V(G), a9(G,¢) <
O .

a’(r, s, 1).

Proof For the sake of completeness, here we give a brief proof concentrating
on the upper bound of (G, ¢). We prove the corollary by induction on i.

For i = 1, we have a"(r,s,1) = r, for otherwise G contains a K, as an
induced subgraph.

Let, to the contrary, i be the smallest integer for which a(r, s,4) does not
exist(i.e., a?(G,c) can be arbitrarily large), choose a graph G and a vertex
c € V(G) such that o?(G,c) > (r — 2)R(s(2r — 3),a%(r,s,i — 1)), and let
MO = {29,...,20} C N}(c) be an independent set in G of size a?(G,c).
Obviously, k > (r —2)R(s(2r —3),a’(r,s,i — 1)). Let Q; be a shortest (9, ¢)-
path in G, j = 1,..., k. We denote M* C Néﬁl(c) the set of all successors of
the vertices from M° on Q;, j = 1,...,k, and :C} the successor of :v? on Q;
(note that some distinct vertices in M? can have a common successor in M?1).
Every vertex in M' has at most r — 2 neighbors in M 0 since G is K 1,r-free.
Thus, M| > £ > R(s(2r — 3),a°(r, s,i — 1)). By the induction assumption
and the definition of Ramsey number, G[M?] contains a complete subgraph
K (2r—3)- Choose the notation such that V (K,—3)) = {z],... ,x;(%_?))}, and

set MO = Nppo(K(2r—3)). Using a matching between K y(2,_3y and M9, we can

find in G an induced K’ with vertices of degree 1 in M0, a contradiction. For
more details about finding the K", we refer the reader to [2].

Armed with Corollary 1, we can get the following important theorem.

Theorem 9 Letr > 3,s > 3, and £ > 4 be fixed integers. Then there is a con-
stant C(r,s,€) such that every connected (K1, K", P,)-free graph G satisfies
rx3(G) < sdiams(G) + C(r, s, ).

Proof. We have diam(G) < ¢ — 2 since G is Py-free. Let ¢ be a central vertex
of G, ie., ecc(c) = rad(G) < diam(G) < £ — 2. We set S; = Ui_) N}[c] for an
integer ¢ > 1.

Claim: rx3(G[S; U N5 (¢)]) < rx3(G[S;]) + o, (G, c) +3

Proof Let X = {xlaIQa"'v'ra?+1(G,c)} be a maximum independent set of

N5 (e) and Y = N5 () \ X. Then for any vertex y € Y, y is adjacent
to some z € X and s € S. Furthermore, for any independent set W of the
graph G[Y], we have |[Nx(W)| > |W| since X is maximum.

Now we demonstrate a 3-rainbow coloring of G[S; UNS(¢)] using at most
k+a? (G, c)+ 3 colors, where k = rx3(G[S;]). We color the edges of G[S]
using colors 1,2, ..., k. Color E[S;, Y] with color k41 and E(G[Y]) with color
k+2. Then assign color j+ k + 2 to the edges E[{x;}, Si], and j+ k + 3 to the
edges E[{z;},Y] where 1 < j < a? (G, c). With the same argument as the
proof of Theorem 7, we can prove that this coloring is a 3-rainbow coloring of
G[S; UNEM(e)].
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From the proof of Corollary 1, it follows that af (G, ¢) < r—1 and (G, ¢) <
(r —2)R(s(2r — 3),a%(r,s,i — 1)) — 1 for each integer i > 2. Let R(r,s) =
29 R(s(2r — 3),a°(r, 5,1 — 1)). Recall that ecc(c) < £ — 2. Repeated appli-
cation of Claim gives the following:
rxs(G) < rxa(GING O™ [d]) + 0l (G o) + 3
<...

<rxz(e) +af(G,e) + -+ agcc(c)(G, ¢) + 3ecc(c)
<O0+7r+(r—2)R(r,s)+2(¢—2)
< sdiams(G) + (r —2)(R(r,s) + 1) +2(¢£ — 1).
Thus, we complete our proof. |
Remark The same as the remark in Section 4: for i > 1, every time O‘?+1 (G,c) >

4 happens, we can save one color in the Claim of Theorem 9.

6 Forbidden k-tuples for any k£ € N

Let F = {X;1,X5,X3,...,X;} be a finite family of connected graphs with
k > 4 for which there is a constant kr such that every connected F-free graph
satisfies rx3(G) < sdiams(G)+Cr. Let ¢ be an arbitrarily large integer, and let
GY, G and G4 be defined in Proposition 2. For the graph G, up to symmetry,
we suppose that X7 = K,,r > 3 (for the case r = 2 has been discussed in
Section 3). Then, we consider the graphs G% and G%. Notice that G% and G}
are both K7 s-free, so neither of them contains X;, implying that G or G}
contains X;, where i # 1. We may assume that X2 is an induced subgraph
of G. If GY contains X, then Xy = Py, which is just the case in Section 4.
So we turn to the case that G% contains X; for some i > 2. Now consider
the graphs Gg,Gg‘H, G?‘Q, .. .,Gg‘”ﬂ, each of which contains at least one of
X3,X4,..., X, as an induced subgraph due to the analysis above. So it is
forced that at least one of these X;(i > 3) is isomorphic to P, for some [ > 5,
which goes back to the case in Section 5. Thus, the conclusion comes out.

Theorem 10 Let F be a finite family of connected graphs. Then there is
a constant Cx such that every connected F-free graph satisfies rx3(G) <
sdiams(G) + Cx, if and only if F contains a subfamily F' € §1 U F2U Fs.
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