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Abstract A tree in an edge-colored connected graphG is called a rainbow tree
if no two edges of it are assigned the same color. For a vertex subset S ⊆ V (G),
a tree is called an S-tree if it connects S in G. A k-rainbow coloring of G is an
edge-coloring of G having the property that for every set S of k vertices of G,
there exists a rainbow S-tree in G. The minimum number of colors that are
needed in a k-rainbow coloring of G is the k-rainbow index of G, denoted by
rxk(G). The Steiner distance d(S) of a set S of vertices of G is the minimum
size of an S-tree T . The k-Steiner diameter sdiamk(G) of G is defined as the
maximum Steiner distance of S among all sets S with k vertices of G. In this
paper, we focus on the 3-rainbow index of graphs and find all finite families
F of connected graphs, for which there is a constant CF such that, for every
connected F -free graph G, rx3(G) ≤ sdiam3(G) + CF .
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1 Introduction

All graphs considered in this paper are simple, finite, undirected and connect-
ed. We follow the terminology and notation of Bondy and Murty [1] for those
not defined here.

Let G be a nontrivial connected graph with an edge-coloring c : E(G) →
{1, 2, . . . , t}, t ∈ N, where adjacent edges may be colored with the same color.
A path in G is called a rainbow path if no two edges of the path are colored with
the same color. The graph G is called rainbow connected if for any two distinct
vertices of G, there is a rainbow path connecting them. For a connected graph
G, the rainbow connection number of G, denoted by rc(G), is defined as the
minimum number of colors that are needed to make G rainbow connected.
These concepts were first introduced by Chartrand et al. in [4] and have been
well-studied since then. For further details, we refer the reader to a survey
paper [9] and a book [10].

In [5], Chartrand et al. generalized the concept of a rainbow path to a
rainbow tree. A tree in an edge-colored graph G is called a rainbow tree if no
two edges of it are assigned the same color. For a vertex subset S ⊆ V (G), a
tree is called an S-tree if it connects S in G. Let G be a connected graph of
order n. For a fixed integer k with 2 ≤ k ≤ n, a k-rainbow coloring of G is an
edge-coloring of G having the property that for every k-subset S of G, there
exists a rainbow S-tree in G, and in this case, the graph G is called k-rainbow
connected. The minimum number of colors that are needed in a k-rainbow
coloring of G is the k-rainbow index of G, denoted by rxk(G). Clearly, rx2(G)
is just the rainbow connection number rc(G) of G. In the sequel, we assume
that k ≥ 3. It is easy to see that rx2(G) ≤ rx3(G) ≤ · · · ≤ rxn(G). Recently,
some results on the k-rainbow index have been published, especially on the
3-rainbow index. We refer to [3,6] for more details.

The Steiner distance d(S) of a set S of vertices in G is the minimum
size of a tree in G containing S. Such a tree is called a Steiner S-tree or
simply a Steiner tree. The k-Steiner diameter sdiamk(G) of G is defined as
the maximum Steiner distance of S among all k-subsets S of G. Then the
following observation is immediate.

Observation 1 [5] For every connected graph G of order n ≥ 3 and each
integer k with 3 ≤ k ≤ n,

k − 1 ≤ sdiamk(G) ≤ rxk(G) ≤ n− 1.

The authors of [5] showed that the k-rainbow index of trees can achieve
the upper bound.

Proposition 1 [5] Let T be a tree of order n ≥ 3. For each integer k with
3 ≤ k ≤ n,

rxk(T ) = n− 1.
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From above, we notice that for a fixed integer k with k ≥ 3, the difference
rxk(G)− sdiamk(G) can be arbitrarily large. In fact, if G is a star K1,n, then
we have rxk(G)− sdiamk(G) = n− k.

They also determined the precise values for the k-rainbow index of the
cycle Cn and the 3-rainbow index of the complete graph Kn.

Theorem 1 [5] For integers k and n with 3 ≤ k ≤ n,

rxk(Cn) =

{
n− 2 if k = 3 and n ≥ 4
n− 1 if k = n = 3 or 4 ≤ k ≤ n.

Theorem 2 [5]

rx3(Kn) =

{
2 if 3 ≤ n ≤ 5
3 if n ≥ 6.

Let F be a family of connected graphs. We say that a graph G is F-free
if G does not contain any induced subgraph isomorphic to a graph from F .
Specifically, for F = {X} we say that G is X-free, for F = {X,Y } we say
that G is (X,Y)-free, and for F = {X,Y, Z} we say that G is (X,Y,Z)-free.
The members of F will be referred to as forbidden induced subgraphs in this
context. If F = {X1, X2, . . . , Xk}, we also refer to the graphs X1, X2, . . . , Xk

as a forbidden k-tuple, and for |F| = 2 and 3 we say a forbidden pair and a
forbidden triple, respectively.

In [7], Holub et al. considered the question: For which families F of con-
nected graphs, a connected F -free graph G satisfies rc(G) ≤ diam(G) + CF ,
where CF is a constant (depending on F). They gave a complete answer for
|F| ∈ {1, 2} in the following two results (where N denotes the net, a graph
obtained by attaching a pendant edge to each vertex of a triangle).

Theorem 3 [7] Let X be a connected graph. Then there is a constant CX

such that every connected X-free graph G satisfies rc(G) ≤ diam(G) + CX , if
and only if X = P3.

Theorem 4 [7] Let X,Y be connected graphs such that X,Y 6= P3. Then
there is a constant CXY such that every connected (X,Y )-free graph G satisfies
rc(G) ≤ diam(G)+CXY , if and only if (up to symmetry) either X = K1,r (r ≥
4) and Y = P4, or X = K1,3 and Y is an induced subgraph of N .

Surprisingly, Brousek et al. [2] then gave a complete answer for all finite
families F . For the rainbow vertex-connection number, Li et al. [8] recent-
ly gave a complete answer for |F| ∈ {1, 2}. Now we consider an analogous
question concerning the k-rainbow index of graphs, where k ≥ 3 is a positive
integer. From Observation 1, we know that the k-Steiner diameter is a lower
bound for the k-rainbow index. In this paper, we will consider the following
question.

For which families F of connected graphs, there is a constant CF such that
rxk(G) ≤ sdiamk(G) + CF if a connected graph G is F-free?
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In general, it is very difficult to give answers to the above question, even
if one considers the case k = 4. So, in this paper, we pay our attention only
to the case k = 3. In Sections 3, 4 and 5, we give complete answers for the 3-
rainbow index when |F| = 1, 2 and 3, respectively. Finally, we give a complete
characterization for an arbitrary finite family F .

2 Preliminaries

In this section, we introduce some further terminology and notation that will
be used in the sequel. Throughout the paper, N denotes the set of all positive
integers.

Let G be a graph. We use V (G), E(G), and |G| to denote the vertex set,
edge set, and the order of G, respectively. For A ⊆ V (G), |A| denotes the
number of vertices in A, and G[A] denotes the subgraph of G induced by the
vertex set A. For two disjoint subsets X and Y of V (G), we use E[X,Y ] to
denote the set of edges of G between X and Y . For graphs X and G, we write

X ⊆ G if X is a subgraph of G, X
IND

⊆ G if X is an induced subgraph of G,
and X ∼= G if X is isomorphic to G. In an edge-colored graph G, we use c(uv)
to denote the color assigned to an edge uv ∈ E(G).

Let G be a connected graph. For u, v ∈ V (G), a path in G from u to v will
be referred to as a (u, v)-path, and, whenever necessary, it will be considered
with orientation from u to v. The distance between u and v in G, denoted
by dG(u, v), is the length of a shortest (u, v)-path in G. The eccentricity of
a vertex v is ecc(v) := maxx∈V (G)dG(v, x). The diameter of G is diam(G) :=
maxx∈V (G)ecc(x), and the radius of G is rad(G) := minx∈V (G)ecc(x). One
can easily check that rad(G) ≤ diam(G) ≤ 2rad(G). A vertex x is central in
G if ecc(x) = rad(G). Let D ⊆ V (G) and x ∈ V (G) \ D. Then we call a
path P = v0v1 . . . vk a v-D path if v0 = v and V (P ) ∩ D = vk, and we set
dG(v,D) := minw∈DdG(v, w).

For a set S ⊆ V (G) and k ∈ N, we use Nk
G(S) to denote the neighborhood

at distance k of S, i.e., the set of all vertices of G at distance k from S. In the
special case when k = 1, we simply write NG(S) for N

1
G(S) and if |S| = 1 with

x ∈ S, we write NG(x) for NG({x}). For a set M ⊆ V (G), we set NM (S) =
NG(S) ∩ M and NM (x) = NG(x) ∩ M . Finally, we will also use the closed
neighborhood of a vertex x ∈ V (G) defined by Nk

G[x] = (∪k
i=1N

i
G(x)) ∪ {x}.

A set D ⊆ V (G) is called dominating if every vertex in V (G) \ D has a
neighbor in D. In addition, if G[D] is connected, then we call D a connected
dominating set. A clique of a graph G is a subset Q ⊆ V (G) such that G[Q]
is complete. A clique is maximum if G has no clique Q′ with |Q′| > |Q|. For
a graph G, a subset I ⊆ V (G) is called an independent set of G if no two
vertices of I are adjacent in G. An independent set is maximum if G has no
independent set I ′ with |I ′| > |I|.

For two positive integers a and b, the Ramsey number R(a, b) is the smallest
integer n such that in any two-coloring of the edges of a complete graph on
n vertices Kn by red and blue, either there is a red Ka (i.e., a complete
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subgraph on a vertices all of whose edges are colored red) or there is a blue
Kb. Ramsey [11] showed that R(a, b) is finite for any a and b.

Finally, we will use Pn to denote the path on n vertices. An edge is called
a pendant edge if one of its end vertices has degree one.

3 Families with one forbidden subgraph

In this section, we characterize all possible connected graphsX such that every
connected X-free graph G satisfies rx3(G) ≤ sdiam3(G) + CX , where CX is a
constant.

Theorem 5 Let X be a connected graph. Then there is a constant CX such
that every connected X-free graph G satisfies rx3(G) ≤ sdiam3(G) + CX , if
and only if X = P3.

Proof If G is a connected P3-free graph, then G is complete, and by Theorem 2,
we have rx3(G) ≤ 3 = sdiam3(G) + 1.

Conversely, let t be an arbitrarily large integer, set Gt
1 = K1,t, and let Gt

2

denote the graph obtained by attaching a pendant edge to each vertex of the
complete graphKt (see Fig 1). We also useKh

t to denote Gt
2. Since rx3(G

t
1) = t

but sdiam3(G
t
1) = 3, X is an induced subgraph of Gt

1. Clearly, rx3(G
t
2) ≥ t+2

but sdiam3(G
t
2) = 5, and Gt

2 is K1,3-free. Hence, X = K1,2 = P3. The proof
is thus complete.

4 Forbidden pairs

The following statement, which is the main result of this section, characterizes
all possible forbidden pairs X,Y for which there is a constant CXY such that
rx3(G) ≤ sdiam3(G) + CXY if G is (X,Y )-free. Since any P3-free graph is a
complete graph, we exclude the case that one of X,Y is P3.

Theorem 6 Let X,Y 6= P3 be a pair of connected graphs. Then there is a
constant CXY such that every connected (X,Y )-free graph G satisfies rx3(G) ≤
sdiam3(G) + CXY , if and only if (up to symmetry) X = K1,r, r ≥ 3 and
Y = P4.
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The proof of Theorem 6 will be divided into two parts. We prove the
necessity in Proposition 2, and then we establish the sufficiency in Theorem 7.

Proposition 2 Let X,Y 6= P3 be a pair of connected graphs for which there
is a constant CXY such that every connected (X,Y )-free graph G satisfies
rx3(G) ≤ sdiam3(G) + CXY . Then, (up to symmetry) X = K1,r, r ≥ 3 and
Y = P4.

Proof Let t be an arbitrarily large integer, and set Gt
3 = Ct. We will also use

the graphs Gt
1 and Gt

2 shown in Figure 1.
Consider the graph Gt

1. Since sdiam3(G
t
1) = 3 but rx3(G

t
1) = t, we have, up

to symmetry, X = K1,r, r ≥ 3. Then we consider the graphs Gt
2 and Gt

3. It is
easy to verify that sdiam3(G

t
2) = 5 but rx3(G

t
2) ≥ t+2, and sdiam3(G

t
3) = ⌈ 2

3 t⌉
while rx3(G

t
3) ≥ t− 2 ≥ 3

2 (sdiam3(G
t
3)− 1)− 2, respectively. Clearly, Gt

2 and
Gt

3 are both K1,3-free, so neither of them contains X , implying that both Gt
2

and Gt
3 contain Y . Since the maximum common induced subgraph of them is

P4, we get that Y = P4. This completes the proof.

Next, we can prove that the converse of Proposition 2 is true.

Theorem 7 Let G be a connected (P4,K1,r)-free graph for some r ≥ 3. Then
rx3(G) ≤ sdiam3(G) + r + 3.

Proof. Let G be a connected (P4,K1,r)-free graph (r ≥ 3). Then, sdiam3(G) ≥
2. For simplicity, we set V = V (G). Let S ⊆ V be a maximum clique of G.

Claim 1: S is a dominating set.

Proof Assume that there is a vertex y at distance 2 from S. Let yxu be a
shortest path from y to S, where u ∈ S. Because S is a maximum clique, there
is some v ∈ S such that vx /∈ E(G). Thus the path vuxy ∼= P4, a contradiction.
So S is a dominating set.

Let X be a maximum independent set of G[V \ S] and Y = V \ (S ∪X).
Then for any vertex y ∈ Y , y is adjacent to some x ∈ X . Furthermore, for any
independent set W of graph G[Y ], |NX(W )| ≥ |W | since X is maximum.

Claim 2: There is a vertex v ∈ S such that v is adjacent to all the vertices
in X .

Proof Suppose that the claim fails. Let u be a vertex of S with the largest
number of neighbors in X . Set X1 = NX(u), X2 = X \ X1. Then, X2 6= ∅
according to our assumption. Pick a vertex w in X2. Then, uw /∈ E(G). Let
v be a neighbor of w in S. For any vertex z in X1, G[w, v, u, z] cannot be
an induced P4, so vz must be an edge of G. Thus, NX(v) ⊇ NX(u) ∪ {w},
contradicting the maximality of u.

Let z be a vertex in S which is adjacent to all the vertices of X . Set
X = {x1, x2, . . . , xℓ}. Then, 0 ≤ ℓ ≤ r − 1 since G is K1,r-free. Now we
demonstrate a 3-rainbow coloring of G using at most ℓ+6 colors. Assign color
i to the edge zxi, and i+ 1 to the edge xiy where 1 ≤ i ≤ ℓ and y ∈ Y . Color
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E[S, Y ] with color ℓ+2 and E(G[Y ]) with color ℓ+3. Give a 3-rainbow coloring
of G[S] using colors from {ℓ+ 4, ℓ+ 5, ℓ+ 6}. Then color the remaining edges
arbitrarily (e.g., all of them with color 1). Next, we prove that this coloring is
a 3-rainbow coloring of G.

Let W = {u, v, w} be a 3-subset of V .

(i) {u, v, w} ⊆ S ∪X . Clearly, there is a rainbow tree containing W .

(ii) {u, v} ⊆ S ∪ X,w ∈ Y . We can easily find a rainbow tree containing
an edge in E[S, Y ] that connects W .

(iii) u ∈ S ∪X, {v, w} ⊆ Y .

a) If vw ∈ E(G), then there obviously is a rainbow tree containing the
edge vw that connects W .

b) If vw /∈ E(G), then we have |NX({v, w})| ≥ |{v, w}| = 2. So there
are two vertices xi and xj(i 6= j) in X adjacent to v and w, respectively.
As i + 1 6= j + 1, so either i + 1 6= c(zu) or j + 1 6= c(zu). Without loss of
generality, we assume that i + 1 6= c(zu) and s is a neighbor of w in S. Then
there is a rainbow tree containing the edges zu, uv, sw, sz if u = xi or the
edges zu, zxi, xiv, sw, sz if u 6= xi.

(iv) {u, v, w} ⊆ Y .

a) If {uv, vw, uw} ∩ E(G) 6= ∅, for example, uv ∈ E(G), then we have a
rainbow tree containing the edges zxi, xiu, uv, sw, sz where xi is a neighbor of
u in X and s is a neighbor of w in S.

b) If {uv, vw, uw}∩E(G) = ∅, then we have |NX{u, v, w}| ≥ |{u, v, w}| =
3, so we can find three distinct vertices xi, xj , xk inX such that {xiu, xjv, xkw}
⊆ E(G). We may assume that i < j < k, so k+1 /∈ {i, j, k, i+1, j+1} and k 6=
i+1. Then there is a rainbow tree containing the edges zxi, xiu, zxk, xkw, sv, sz
where s is a neighbor of v in S.

Thus the coloring is a 3-rainbow coloring of G using at most ℓ+6 ≤ r+5 ≤
sdiam3(G)+r+3 colors. The proof is complete.

Combining Proposition 2 and Theorem 7, we can easily get Theorem 6.

Remark When the maximum independent set of G[V \ S], X , satisfies |X | =
ℓ ≥ 4, we just need ℓ + 5 colors in the proof of Theorem 7: for the edges
xℓy, we can color them with color 1 instead of color ℓ + 1. It only matters
when the case {u, v, w} ⊆ Y and {uv, vw, uw} ∩ E(G) = ∅ happens. Suppose
{xiu, xjv, xkw} ⊆ E(G) and i < j < k. If i 6= 1 or k 6= ℓ, it is the case in
the proof above. So we turn to the case when i = 1 and k = l. If j = 2,
then j + 1 < 4 ≤ ℓ (that is why we need the condition ℓ ≥ 4). Thus, there
is a rainbow tree containing the edges zxj , xjv, zxk, xkw, su, sz where s is a
neighbor of u in S. If j 6= 2, then there is a rainbow tree containing the edges
zxi, xiu, zxj, xjv, sw, sz.

5 Forbidden triples

Now, we continue to consider more forbidden subgraphs and obtain an anal-
ogous result which characterizes all forbidden triples F for which there is a
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constant CF such that G being F -free implies rx3(G) ≤ sdiam3(G) +CF . We
exclude the cases which are covered by Theorems 5 and 6. We set:

F1 = {{P3}},
F2 = {{K1,r, P4}| r ≥ 3},

F3 = {{K1,r, Y, Pℓ}| r ≥ 3, Y
IND

⊆ Kh
s , s ≥ 3, ℓ > 4}.

Theorem 8 Let F be a family of connected graphs with |F| = 3 such that
F + F ′ for any F ′ ∈ F1 ∪ F2. Then there is a constant CF such that every
connected F-free graph G satisfies rx3(G) ≤ sdiam3(G) + CF , if and only if
F ∈ F3.

First of all, we prove the necessity of the triples given by Theorem 8.

Proposition 3 Let X,Y, Z 6= P3 be connected graphs, {X,Y, Z} + F ′ for any
F ′ ∈ F2, for which there is a constant CXY Z such that every connected (X,Y )-
free graph G satisfies rx3(G) ≤ sdiam3(G) + CXY Z . Then, (up to symmetry)

X = K1,r(r ≥ 3), Y
IND

⊆ Kh
s (s ≥ 3), and Z = Pℓ(ℓ > 4).

Proof Let t be an arbitrarily large integer, and let Gt
1, G

t
2, G

t
3 be the graphs

defined in the proof of Proposition 2.
Firstly, we consider the graph Gt

1. Up to symmetry, we have X = K1,r, r ≥
3 (for the case r = 2 is excluded by the assumptions). Secondly, we consider
the graph Gt

2. The graph Gt
2 does not contain X , since it is K1,3-free. Thus,

up to symmetry, we have Gt
2 contains Y , implying Y

IND

⊆ Kh
s for some s ≥ 3

(for the case s ≤ 2 is excluded by the assumptions). Finally, we consider the
graphs Gt

3 and Gt+1
3 . Clearly, they are (K1,3,K

h
3 )-free, so both of them contain

neither X nor Y . Hence, we get that Z = Pℓ for some ℓ > 4 (for the case ℓ ≤ 4
is excluded by the assumptions).

This completes the proof.

It is easy to observe that if X
IND

⊆ X ′, then every (X,Y, Z)-free graph is
also (X ′, Y, Z)-free. Thus, when proving the sufficiency of Theorem 8, we will
be always interested in maximal triples of forbidden subgraphs, i.e., triples
X,Y, Z such that, if replacing one of X,Y, Z, say X , with a graph X ′ 6= X

such that X
IND

⊆ X ′, then the statement under consideration is not true for
(X ′, Y, Z)-free graphs.

For every vertex c ∈ V (G) and i ∈ N, we set αi(G, c) =max{|M |
∣∣M ⊆

N i
G[c],M is independent} and α0

i (G, c) =max{|M0|
∣∣M0 ⊆ N i

G(c),M
0 is in-

dependent}.

Lemma 1 [2] Let r, s, i ∈ N. Then there is a constant α(r, s, i) such that, for
every connected (K1,r,K

h
s )-free graph G and for every c ∈ V (G), αi(G, c) <

α(r, s, i).

We use the proof of Lemma 1 to get the following corollary concerning
α0
i (G, c) for each integer i ≥ 1.
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Corollary 1 Let r, s, i ∈ N. Then there is a constant α0(r, s, i) such that, for
every connected (K1,r,K

h
s )-free graph G and for every c ∈ V (G), α0

i (G, c) <
α0(r, s, i).

Proof For the sake of completeness, here we give a brief proof concentrating
on the upper bound of α0

i (G, c). We prove the corollary by induction on i.
For i = 1, we have α0(r, s, 1) = r, for otherwise G contains a K1,r as an

induced subgraph.
Let, to the contrary, i be the smallest integer for which α0(r, s, i) does not

exist(i.e., α0
i (G, c) can be arbitrarily large), choose a graph G and a vertex

c ∈ V (G) such that α0
i (G, c) ≥ (r − 2)R(s(2r − 3), α0(r, s, i − 1)), and let

M0 = {x0
1, . . . , x

0
k} ⊆ N i

G(c) be an independent set in G of size α0
i (G, c).

Obviously, k ≥ (r− 2)R(s(2r− 3), α0(r, s, i− 1)). Let Qj be a shortest (x0
j , c)-

path in G, j = 1, . . . , k. We denote M1 ⊆ N i−1
G (c) the set of all successors of

the vertices from M0 on Qj, j = 1, . . . , k, and x1
j the successor of x0

j on Qj

(note that some distinct vertices in M0 can have a common successor in M1).
Every vertex in M1 has at most r − 2 neighbors in M0 since G is K1,r-free.
Thus, |M1| ≥ k

r−2 ≥ R(s(2r− 3), α0(r, s, i− 1)). By the induction assumption

and the definition of Ramsey number, G[M1] contains a complete subgraph
Ks(2r−3). Choose the notation such that V (Ks(2r−3)) = {x1

1, . . . , x
1
s(2r−3)}, and

set M̃0 = NM0(Ks(2r−3)). Using a matching between Ks(2r−3) and M̃0, we can

find in G an induced Kh
s with vertices of degree 1 in M̃0, a contradiction. For

more details about finding the Kh
s , we refer the reader to [2].

Armed with Corollary 1, we can get the following important theorem.

Theorem 9 Let r ≥ 3, s ≥ 3, and ℓ > 4 be fixed integers. Then there is a con-
stant C(r, s, ℓ) such that every connected (K1,r,K

h
s , Pℓ)-free graph G satisfies

rx3(G) ≤ sdiam3(G) + C(r, s, ℓ).

Proof. We have diam(G) ≤ ℓ− 2 since G is Pℓ-free. Let c be a central vertex
of G, i.e., ecc(c) = rad(G) ≤ diam(G) ≤ ℓ − 2. We set Si = ∪i

j=1N
j
G[c] for an

integer i ≥ 1.
Claim: rx3(G[Si ∪N i+1

G (c)]) ≤ rx3(G[Si]) + α0
i+1(G, c) + 3

Proof Let X = {x1, x2, . . . , xα0
i+1

(G,c)} be a maximum independent set of

N i+1
G (c) and Y = N i+1

G (c) \ X . Then for any vertex y ∈ Y , y is adjacent
to some x ∈ X and s ∈ S. Furthermore, for any independent set W of the
graph G[Y ], we have |NX(W )| ≥ |W | since X is maximum.

Now we demonstrate a 3-rainbow coloring of G[Si∪N i+1
G (c)] using at most

k + α0
i+1(G, c) + 3 colors, where k = rx3(G[Si]). We color the edges of G[Si]

using colors 1, 2, . . . , k. Color E[Si, Y ] with color k+1 and E(G[Y ]) with color
k+2. Then assign color j+k+2 to the edges E[{xj}, Si], and j+k+3 to the
edges E[{xj}, Y ] where 1 ≤ j ≤ α0

i+1(G, c). With the same argument as the
proof of Theorem 7, we can prove that this coloring is a 3-rainbow coloring of
G[Si ∪N i+1

G (c)].
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From the proof of Corollary 1, it follows that α0
1(G, c) ≤ r−1 and α0

i (G, c) ≤
(r − 2)R(s(2r − 3), α0(r, s, i − 1)) − 1 for each integer i ≥ 2. Let R(r, s) =

Σ
ecc(c)
i=2 R(s(2r− 3), α0(r, s, i− 1)). Recall that ecc(c) ≤ ℓ− 2. Repeated appli-

cation of Claim gives the following:

rx3(G) ≤ rx3(G[N
ecc(c)−1
G [c]]) + α0

ecc(c)(G, c) + 3
≤ . . .
≤ rx3(c) + α0

1(G, c) + · · ·+ α0
ecc(c)(G, c) + 3ecc(c)

≤ 0 + r + (r − 2)R(r, s) + 2(ℓ− 2)
≤ sdiam3(G) + (r − 2)(R(r, s) + 1) + 2(ℓ− 1).

Thus, we complete our proof. �

RemarkThe same as the remark in Section 4: for i ≥ 1, every time α0
i+1(G, c) ≥

4 happens, we can save one color in the Claim of Theorem 9.

6 Forbidden k-tuples for any k ∈ N

Let F = {X1, X2, X3, . . . , Xk} be a finite family of connected graphs with
k ≥ 4 for which there is a constant kF such that every connected F -free graph
satisfies rx3(G) ≤ sdiam3(G)+CF . Let t be an arbitrarily large integer, and let
Gt

1, G
t
2 and Gt

3 be defined in Proposition 2. For the graph Gt
1, up to symmetry,

we suppose that X1 = Kr, r ≥ 3 (for the case r = 2 has been discussed in
Section 3). Then, we consider the graphs Gt

2 and Gt
3. Notice that Gt

2 and Gt
3

are both K1,3-free, so neither of them contains X1, implying that Gt
2 or Gt

3

contains Xi, where i 6= 1. We may assume that X2 is an induced subgraph
of Gt

2. If G
t
3 contains X2, then X2 = P4, which is just the case in Section 4.

So we turn to the case that Gt
3 contains Xi for some i > 2. Now consider

the graphs Gt
3, G

t+1
3 , Gt+2

3 , . . . , Gt+k
3 , each of which contains at least one of

X3, X4, . . . , Xk as an induced subgraph due to the analysis above. So it is
forced that at least one of these Xi(i ≥ 3) is isomorphic to Pl for some l ≥ 5,
which goes back to the case in Section 5. Thus, the conclusion comes out.

Theorem 10 Let F be a finite family of connected graphs. Then there is
a constant CF such that every connected F-free graph satisfies rx3(G) ≤
sdiam3(G) + CF , if and only if F contains a subfamily F ′ ∈ F1 ∪ F2 ∪ F3.
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