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Abstract

The Turán number of a graph H, denoted by ex(n,H), is the maximum number
of edges in any graph on n vertices which does not contain H as a subgraph. Let Pk

denote the path on k vertices and let mPk denote m disjoint copies of Pk. Bushaw and
Kettle [Turán numbers of multiple paths and equibipartite forests, Combin. Probab.
Comput. 20(2011) 837–853] determined the exact value of ex(n, kP`) for large values
of n. Yuan and Zhang [The Turán number of disjoint copies of paths, Discrete Math.
340(2)(2017) 132–139] completely determined the value of ex(n, kP3) for all n, and also
determined ex(n, Fm), where Fm is the disjoint union of m paths containing at most
one odd path. They also determined the exact value of ex(n, P3∪P2`+1) for n ≥ 2`+4.
Recently, Bielak and Kieliszek [The Turán number of the graph 2P5, Discuss. Math.
Graph Theory 36(2016) 683–694], Yuan and Zhang [Turán numbers for disjoint path-
s, arXiv: 1611.00981v1] independently determined the exact value of ex(n, 2P5). In
this paper, we show that ex(n, 2P7) = max{[n, 14, 7], 5n − 14} for all n ≥ 14, where
[n, 14, 7] = (5n + 91 + r(r − 6))/2, n− 13 ≡ r (mod 6) and 0 ≤ r < 6.
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AMS subject classification 2010: 05C35.

1 Introduction

Throughout this paper, we only consider simple graphs. For a graph G we use V (G),
|G|, E(G), e(G) to denote the vertex set, number of vertices, edge set, number of edges,
respectively. For S1, S2 ⊆ V (G) and S1 ∩ S2 = ∅, denote by e(S1, S2) the number of edges
between S1 and S2. Let G and H be two disjoint graphs. By G ∪ H denote the disjoint

∗The corresponding author.
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union of graphs G and H and by kG denote the k disjoint copies of G. Denote by G + H
the graph obtained from G∪H by joining all vertices of G to all vertices of H. Let G be the
complement of the graph G. Denote by Pn, Cn and Kn the path, cycle and complete graph
on n vertices, respectively. For S ⊆ V (G), let G[S] denote the subgraph of G induced by S
and let |S| denote the cardinality of S. For a graph G and its subgraph H, by G − H we
mean a graph obtained from G by deleting all vertices of H with all incident edges. If H
consists of a single vertex x, then we simple write G − x. For v ∈ V (G), let NG(v) denote
the set of vertices in G which are adjacent to v. We define dG(v) = |NG(v)|.

A graph is H-free if it does not contain H as a subgraph. The Turán number of a graph
H, denoted by ex(n,H), is the maximum number of edges in any H-free graph on n vertices,
i.e.,

ex(n,H) = max{e(G) : H " G and |G| = n}.

Let EX(n,H) denote the family of all H-free graphs on n vertices with ex(n,H) edges. A
graph in EX(n,H) is called an extremal graph for H. Moreover, we denote by excon(n,H)
the maximum number of edges in any connected H-free graph on n vertices. The problem of
determining Turán number for assorted graphs traces its history back to 1907, when Mantel
(see, e.g., [3]) proved ex(n,C3) = bn2/4c. In 1941, Turán [13, 14] proved that the extremal
graph for Kr is the complete (r − 1)-partite graph, which is as balanced as possible (any
two part sizes differ at most 1). The balanced complete (r − 1)-partite graph on n vertices
is called as the Turán graph denoted by Tr−1(n). For sparse graphs, Erdős and Gallai [5] in
1959 proved the following well known result.

Theorem 1.1 ([5]) Let G be a Pk-free graph on n vertices and n ≥ k ≥ 2. Then e(G) ≤
(k − 2)n/2 with equality if and only if n = (k − 1)t and G = tKk−1.

For convenience, we first introduce the following symbols.

Definition 1.2 Let n ≥ m ≥ ` ≥ 3 be given three positive integers. If n can be written as
n = (m− 1) + t(`− 1) + r, where t ≥ 0 and 0 ≤ r < `− 1, then we denote

[n,m, `] =

(
m− 1

2

)
+ t

(
`− 1

2

)
+

(
r

2

)
.

Moreover, if n ≤ m− 1, then we denote

[n,m, `] =

(
n

2

)
.

Definition 1.3 Let s =
∑m

i=1bki/2c and ki be positive integers. If n ≥ s, then we denote

[n, s] =

(
s− 1

2

)
+ (s− 1)(n− s + 1).

Later, for all integers n and k, Faudree and Schelp [7] characterized all extremal graphs
for Pk.
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Theorem 1.4 ([7]) Let G be a graph on n = t(k−1)+r (0 ≤ t and 0 ≤ r < k−1) vertices.
If G is Pk-free, then e(G) ≤ [n, k, k]. Moreover, the equality holds if and only if
• G = (tKk−1) ∪Kr or

• G = ((t− s− 1)Kk−1) ∪ (K(k−2)/2 + Kk/2+s(k−1)+r), where k is even, t > 0, r = k/2 or
(k − 2)/2 and 0 ≤ s < t.

Corollary 1.5 For a positive integer n ≡ r (mod k), ex(n, Pk+1) = (n(k− 1) + r(r− k))/2.

We see that ex(n, Pk) has been determined for all integers n ≥ k and all extremal graphs
has also been characterized. For connected graphs, Kopylov [8] and Balister, Győri, Lehel,
and Schelp [1] determined excon(n, Pk) and characterized all extremal graphs for all integers
n ≥ k. Recently, Lan, Shi and Song [9] studied the Turán number of paths in planar graphs.

Theorem 1.6 ([1, 8]) Let G be a connected Pk-free graph on n vertices and n ≥ k ≥ 4.
Then

e(G) ≤ max

{(
k − 2

2

)
+ (n− k + 2), [n, bk/2c] + c

}
,

where k ≡ c (mod 2). Further, the equality holds if and only if G = (Kk−3 ∪Kn−k+2) + K1

or G = (K1+c ∪Kn−b(k+1)/2c) + Kbk/2c−1.

In 1962, Erdős [6] first studied the Turán number of kK3. And later, Moon [11] and Si-
monovits [12] studied the case of kKr. In 2011, Bushaw and Kettle [4] determined ex(n, kP`)
for n sufficiently large.

Theorem 1.7 ([4]) For integers k ≥ 2, ` ≥ 4 and n ≥ 2` + 2k`(d`/2e+ 1)
(

`
b`/2c

)
,

ex(n, kP`) =

[
n, k

⌊
`

2

⌋]
+ c,

where ` ≡ c (mod 2).

Furthermore, their proof shows that their construction is optimal for n = Ω(k`3/22`).
Moreover, Bushaw and Kettle conjectured that their construction is optimal for n = Ω(k`).
Recently, Lidický et al. [10] extended Bushaw and Kettle’s result and determined ex(n, Fm)
for n sufficiently large, where Fm =

⋃m
i=1 Pki and k1 ≥ k2 ≥ . . . ≥ km.

Theorem 1.8 ([10]) Let Fm =
⋃m

i=1 Pki and k1 ≥ k2 ≥ . . . ≥ km. If at least one ki is not
3, then for n sufficiently large,

ex(n, Fm) =

[
n,

m∑
i=1

⌊
ki
2

⌋]
+ c,

where c = 1 if all ki are odd, and c = 0 otherwise. Moreover, the extremal graph is unique.
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However, they did not consider ex(n, Fm) for smaller n. Recently, Yuan and Zhang
[15, 16] completely determined the value of ex(n, kP3) and characterized all the extremal
graphs for all n. Furthermore, they proved the following result in which Fm contains at most
one odd path and proposed Conjecture 1.10.

Theorem 1.9 ([15]) Let k1 ≥ k2 ≥ . . . ≥ km ≥ 3, n ≥
∑m

i=1 ki and Fm =
⋃m

i=1 Pki. If there
is at most one odd in {k1, k2, . . . , km}, then

ex(n, Fm) = max

{
[n, k1, k1], [n, k1 + k2, k2], . . . ,

[
n,

m∑
i=1

ki, km

]
,

[
n,

m∑
i=1

⌊
ki
2

⌋]}
.

Moreover, if k1, k2, . . . , km are even, then the extremal graphs are characterized.

Conjecture 1.10 ([15]) Let k1 ≥ k2 ≥ . . . ≥ km ≥ 3, k1 > 3 and Fm =
⋃m

i=1 Pki. Then

ex(n, Fm) = max

{
[n, k1, k1], [n, k1 + k2, k2], . . . ,

[
n,

m∑
i=1

ki, km

]
,

[
n,

m∑
i=1

⌊
ki
2

⌋]
+ c

}
,

where c = 1 if all of k1, k2, . . . , km are odd, and c = 0 otherwise. Moreover, the extremal
graphs are

EX(n, Pk1), . . . , K
∑m

i=1 ki−1 ∪H for H ∈ EX(n−
∑m

i=1 ki + 1, Pkm), and

K∑m
i=1bki/2c−1 + (K1+c ∪Kn−

∑m
i=1bki/2c−c).

When there are at least two odd integers in {k1, k2, . . . , km}, Yuan and Zhang also de-
termined ex(n, P3 ∪ P2`+1) for n ≥ 2` + 4 and characterized all extremal graphs. Bielak
and Kieliszek [2] and Yuan and Zhang [15] independently determined ex(n, 2P5) and char-
acterized all extremal graphs. In this paper, we prove the following result, which partially
confirms Conjecture 1.10.

Theorem 1.11 For n ≥ 14,

ex(n, 2P7) = max{[n, 14, 7], 5n− 14}.

Moreover, the extremal graphs are K13 ∪ H for H ∈ EX(n − 13, P7) when n ≤ 21 and
K5 + (K2 ∪Kn−7) when n ≥ 22.

2 Proof of Theorem 1.11

We first present some useful lemmas. In the following, we say that u hits v or v hits u if two
vertices u and v are adjacent. Otherwise, we say that u misses v or v misses u if u and v are
not adjacent. We say a vertex set A hits (misses) a vertex set B, it means that each vertex
of A is adjacent (non-adjacent) to each vertex of B.
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Lemma 2.1 (Observation 2 of [15]) Let k1 ≥ k2 ≥ 3 be two positive integers. If n1 ≥ k1,
then [n1, k1 + k2, k2] + [n2, k2, k2] ≤ [n1 + n2, k1 + k2, k2].

Lemma 2.2 (Observation 5 of [15]) Let k1 ≥ k2 ≥ 3 be two positive integers. If n1 ≥
k1 + k2, then [n1, bk1/2c+ bk2/2c] + [n2, k2, k2] < [n1 + n2, bk1/2c+ bk2/2c].

Lemma 2.3 Let G be a connected 2P7-free graph on n ≥ 14 vertices. Then

e(G) ≤ max{[n, 14, 7], 5n− 14}.

with equality only when n ≥ 22 and G = K5 + (Kn−7 ∪K2).

Proof. Let G 6= K5 + (Kn−7 ∪ K2) be any connected 2P7-free graph on n vertices with
e(G) ≥ max{[n, 14, 7], 5n − 14} edges. Note that max{[n, 14, 7], 5n − 14} = [n, 14, 7] when
n ≤ 21 and max{[n, 14, 7], 5n−14} = 5n−14 when n ≥ 22. Since max{[n, 14, 7], 5n−14} ≥
excon(n, P13), by Theorem 1.6, G contains P13 as a subgraph. Let P13 = x1x2 . . . x13 be a
subgraph of G. Then

(∗) each vertex of G− P13 cannot hit two adjacent vertices in P13.

Notice that each vertex in G−P13 misses {x1, x6, x8, x13} and can not hit both xp and xp+8

for p ∈ {2, 3, 4}. Moreover, if y is an isolated vertex in G−P13, then by (∗), |NG(y)∩V (P13)| ≤
5; if y is not an isolated vertex in G− P13, then NG(y) ∩ V (P13) ⊆ {x3, x4, x7, x10, x11} and
so |NG(y) ∩ V (P13)| ≤ 3 by (∗); if Pk = y1y2 . . . yk ⊆ G − P13 and k ≥ 3 such that y1 hits
P13, then y1 can only hit x7. Now we will prove the following useful Facts.

Fact 1. e(G[V (P13)]) ≤ 74.

Since G is connected and n ≥ 14, at least one vertex of V (G)\V (P13) hits P13, say xi.
Then either i ≥ 6 or i ≤ 8. Without loss of generality, we may assume that i ≥ 6. For
1 ≤ j ≤ i−2, if both x13xj ∈ E(G) and xi+1xj+1 ∈ E(G), then G contains 2P7 as a subgraph,
a contradiction. Thus e(G[V (P13)]) ≤ 74.

Fact 2. If there exists a P3 = y1y2y3 ⊆ G − P13 such that y1 hits P13, then we have
e(G[V (P13)]) ≤ 57.

Clearly, y1 must hit x7 and so G contains a copy of P7 with vertices x4, x5, x6, x7, y1, y2, y3.
Therefore, {x1, x2, x3, x5, x6}misses {x11, x12, x13}. Symmetrically, {x8, x9, x11, x12, x13}miss-
es {x1, x2, x3}. So e(G[V (P13)]) ≤ 78− (2 · 15− 9) = 57. �

Fact 3. If there exists a non-isolated vertex in G−P13, that hits one vertex of P13, then we
have e(G[V (P13)]) ≤ 68.

Let y be a non-isolated vertex in G−P13, that hits one vertex, say xi of P13. Recall that
xi ∈ {x3, x4, x7, x10, x11}. If xi ∈ {x3, x4}, then {x1, x2, . . . , xi−1}misses {xi+1, xi+2, x9, x12, x13}
and so e(G[V (P13)]) ≤ 68. Symmetrically, if xi ∈ {x10, x11}, then e(G[V (P13)]) ≤ 68.
Now assume that xi = x7. Then {x1, x2, xi−1, xi−2} misses {x12, x13} and symmetrically
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{xi+1, xi+2, x12, x13} misses {x1, x2}. So e(G[V (P13)]) ≤ 78− (2 · 8− 4) = 66. �

Fact 4. If there exists a non-isolated vertex in G − P13, that hits two vertices of P13, then
we have e(G[V (P13)]) ≤ 59.

Let y be a non-isolated vertex in G − P13, that hits two vertices, say xi and xj (i < j),
of P13. Recall that {xi, xj} ⊆ {x3, x4, x7, x10, x11} and {xi, xj} 6= {x3, x11}. If xi = x3, then
by (∗), xj ∈ {x7, x10}. Thus {x1, x2} misses {x4, x5, x6, x8, x9, x11, x12, x13} and {xj−2, xj−1}
misses {x12, x13}. So e(G[V (P13)]) ≤ 58. Symmetrically, if xj = x11, then by (∗), xi ∈
{x4, x7} and so e(G[V (P13)]) ≤ 58. Now we can assume that xi 6= x3 and xj 6= x11. If
xi = x4, then xj ∈ {x7, x10}. Thus {x1, x2, x3} misses {x5, x6, x9, x12, x13} and {xj−2, xj−1}
misses {x12, x13}. So e(G[V (P13)]) ≤ 59. Symmetrically, if xj = x10, then xi ∈ {x4, x7} and
so e(G[V (P13)]) ≤ 59. �

Fact 5. If there exists an isolated vertex in G − P13, that hits five vertices of P13, then
e(G[V (P13)]) ≤ 50.

Let y be an isolated vertex in G−P13, that hits exactly five vertices, say xi, xj, xk, x`, xm,
i < j < k < ` < m of P13. Recall that {xi, xj, xk, x`, xm} ⊆ V (P13) \ {x1, x6, x8, x13}
and y cannot hit both xp and xp+8 for p ∈ {2, 3, 4}. Since y cannot hit two adjacent ver-
tices in P13, we have xk = x7, {xi, xj} ⊆ {x2, x3, x4, x5} and {x`, xm} ⊆ {x9, x10, x11, x12}.
Let A = {xi−1, xj−1, xk−1, x`−1, xm−1, x13} and B = {x1, xi+1, xj+1, xk+1, x`+1, xm+1}. Then,
A and B are independent sets and |A ∩ B| = 4. Since {x3, x11} " NG(y), we have ei-
ther i = 2 or m = 12. If i = 2 and m = 12, then NG(y) = {x2, x5, x7, x9, x12}, which
implies that x5 misses {x10, x11}. And symmetrically x9 misses {x3, x4}. If i = 2 and
m 6= 12, then ` = 9 and m = 11, which implies that xm misses {x3, x6} and x` misses
{xq, xq+1} ⊆ {x1, . . . , x7} \NG(y). If i 6= 2 and m = 12, then i = 3 and j = 5, which implies
that xi misses {x8, x11} and xj misses {xq, xq+1} ⊆ {x7, . . . , x13} \ NG(y). For each of the

above cases, we have e(G[V (P13)]) ≤ 78− (
(|A|

2

)
+
(|B|

2

)
−
(|A∩B|

2

)
)− 4 = 50. �

Fact 6. If there exists an isolated vertex in G − P13, that hits four vertices of P13, then
e(G[V (P13)]) ≤ 59.

Let y be an isolated vertex in G − P13, that hits exactly four vertices, say xi, xj, xk, x`,
i < j < k < ` of P13. Recall that {xi, xj, xk, x`} ⊆ V (P13) \ {x1, x6, x8, x13} and y
cannot hit both xp and xp+8 for p ∈ {2, 3, 4}. Let A = {xi−1, xj−1, xk−1, x`−1, x13} and
B = {x1, xi+1, xj+1, xk+1, x`+1}. Then A and B are independent sets and |A ∩ B| ≤ 3. If

|A ∩ B| ≤ 2, then e(G[V (P13)]) ≤ 78 − (
(|A|

2

)
+
(|B|

2

)
− 1) = 59. Now we assume that

|A ∩ B| = 3. If i = 2 and ` = 12, then 7 ∈ {j, k} which implies that x3 misses x11 and xp

misses xp+9 for p ∈ {1, 4}. If i = 2, ` 6= 12 and 7 ∈ {j, k}, then x11 misses {x3, x6}. If i = 2,
` 6= 12 and 7 /∈ {j, k}, then NG(y) = {x2, x4, x9, x11} which implies x11 misses {x5, x8}. If
` = 12 and i 6= 2, then it is similar as the case of i = 2 and ` 6= 12. If i 6= 2 and ` 6= 12,
then NG(y) = {x3, x5, x7, x9} which implies x11 misses {x1, x4}. For each of the above cases,
e(G[V (P13)]) ≤ 78− (

(|A|
2

)
+
(|B|

2

)
−
(|A∩B|

2

)
)− 2 = 59. �
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Fact 7. If there exists an isolated vertex in G − P13, that hits three vertices of P13, then
e(G[V (P13)]) ≤ 67.

Let y be an isolated vertex in G − P13, that hits exactly three vertices, says xi, xj, xk,
i < j < k of P13. Recall that {xi, xj, xk} ⊆ V (P13) \ {x1, x6, x8, x13} and y can not hit both
xp and xp+8 for p ∈ {2, 3, 4}. Let A = {xi−1, xj−1, xk−1, x13} and B = {x1, xi+1, xj+1, xk+1}.
Then both A and B are independent sets and |A ∩ B| ≤ 2. Hence, e(G[V (P13)]) ≤ 78 −
(
(|A|

2

)
+
(|B|

2

)
−
(|A∩B|

2

)
) ≤ 78− (6 + 6− 1) = 67. �

Let Pk = y1y2 . . . yk, where k ≤ 6, be the longest path in G−P13 such that y1 hits P13. Let
H1, H2, . . . , Ht be connected components of order at least 2 of G−P13 and let H be a subgraph
of G which consists of all isolated vertices of G−P13. Note that

∑t
i=1 |Hi|+|H| = n−13. Let

m(Hi) be the number of edges incident with the vertices of Hi and let H1 be a component
of G− P13 which contains Pk as a subgraph. We first show the following claim.

Claim: For 1 ≤ i ≤ t, m(Hi) ≤ 4|Hi|.

Proof. We use induction on |Hi|. Recall that each vertex of Hi can hit at most three vertices
of P13. For |Hi| = 2, m(Hi) = e(G[V (Hi)]) + e(V (Hi), V (P13)) ≤ 7 ≤ 4|Hi|. If Hi has a
pendant vertex x, then dG(x) ≤ 4. By induction hypothesis, we have m(Hi) = m(Hi − x) +
dG(x) ≤ 4(|Hi|−1)+4 ≤ 4|Hi|. Next if Hi has no pendant vertex, then each vertex of Hi must
be an endpoint of a path of length at least two. This implies that each vertex of Hi can only
hit x7 of P13. Thus, m(Hi) = e(G[V (Hi)])+e(V (Hi), V (P13)) ≤ excon(|Hi|, P7)+|Hi| ≤ 7

2
|Hi|

since Hi is P7-free. �

Let ∆(H) = max{dG(v)|v ∈ V (H)}. Recall that ∆(H) ≤ 5. Now we would divide the
proof into the following cases (in each case we assume, the previous cases do not hold).

Case 1. ∆(H) = 5. Then by Fact 5 and the Claim,

e(G) ≤ 50 + 5(n− 13) = 5n− 15 < max{[n, 14, 7], 5n− 14},

a contradiction.
Case 2. ∆(H) = 4 or k ≥ 3 or there exists a non-isolated vertex in G − P13 that hits

two vertices of P13 (k = 2). Then by Facts 6, 2 and 4 and the Claim,

e(G) ≤ 59 + 4(n− 13) = 4n + 7 < max{[n, 14, 7], 5n− 14},

a contradiction.
Case 3. ∆(H) = 3 (k = 2) or there exists a non-isolated vertex in G − P13 that hits

one vertex of P13 (k = 2). For k = 2, each component of G − P13 is a star (with at least
three vertices), or an edge, or an isolated vertex. For 1 ≤ i ≤ t, e(G[V (Hi)]) ≤ |Hi| − 1.
m0 ≤

∑t
i=1(2|Hi| − 1) + 3|H| = 3(n− 15) + 6−

∑t
i=1 |Hi| − t ≤ 3(n− 13). Then by Facts 7

and 3, we have

e(G) ≤ 68 + 3(n− 13) = 3n + 29 < max{[n, 14, 7], 5n− 14},

a contradiction.
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Case 4. ∆(H) ≤ 2 and k = 1. Then by Fact 1,

e(G) ≤ 74 + 2(n− 13) = 2n + 48 < max{[n, 14, 7], 5n− 14},

a contradiction.
The proof is thus completed. �

Proof of Theorem 1.11. Let G be any 2P7-free graph on n vertices with e(G) ≥ max{[n, 14, 7],
5n−14}. If G is connected, then by Lemma 2.3, e(G) ≤ max{[n, 14, 7], 5n−14} when n ≥ 22
and e(G) < max{[n, 14, 7], 5n − 14} when n ≤ 21. Thus when G is connected, e(G) ≤
max{[n, 14, 7], 5n− 14} with equality holds if and only if n ≥ 22 and G = K5 + (Kn−7∪K2).
Now we may assume that G is disconnected. By Lemma 1.4, G contains P7 as a subgraph. Let
C be a connected component with n1 ≥ 7 vertices which contains P7 as a subgraph. Notice
that C is 2P7-free and G−C is P7-free. If n1 ≥ 22, then by Lemma 2.3, e(C) ≤ 5n− 14 and
by Lemmas 1.4 and 2.2,

e(G) = e(C) + e(G− C) ≤ 5n1 − 14 + [n− n1, 7, 7] < 5n− 14,

a contradiction. If 14 ≤ n1 ≤ 21, then by Lemma 2.3, e(C) < [n1, 14, 7] and by Lemmas 1.4
and 2.1,

e(G) = e(C) + e(G− C) < [n1, 14, 7] + [n− n1, 7, 7] ≤ [n, 14, 7],

a contradiction. If n1 ≤ 13, then e(G) ≤
(
n1

2

)
+ [n − n1, 7, 7] ≤ [n, 14, 7] with equality

holds if and only if C = K13 and G − C ∈ EX(n − 13, P7). But then when n ≥ 22,
e(G) ≥ max{[n, 14, 7], 5n − 14} = 5n − 14 > [n, 14, 7], a contradiction. Thus when G is
disconnected, e(G) ≤ max{[n, 14, 7], 5n − 14} with equality holds if and only if n ≤ 21,
G = K13 ∪H for H ∈ EX(n− 13, P7).

The proof is thus complete. �
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