THE TWO-ARC-TRANSITIVE GRAPHS OF SQUARE-FREE ORDER ADMITTING ALTERNATING OR SYMMETRIC GROUPS

GAI XIA WANG ${ }^{\boxtimes}$ and ZAI PING LU

(Received 26 March 2014; accepted 4 November 2016)

Communicated by B. Alspach

Abstract

Let G be a finite group with $\operatorname{soc}(G)=\mathrm{A}_{c}$ for $c \geq 5$. A characterization of the subgroups with square-free index in G is given. Also, it is shown that a $(G, 2)$-arc-transitive graph of square-free order is isomorphic to a complete graph, a complete bipartite graph with a matching deleted or one of 11 other graphs.

2010 Mathematics subject classification: primary 20B15; secondary 20B30.
Keywords and phrases: symmetric graph, two-arc-transitive graph, automorphism group.

1. Introduction

Let Γ be a graph with vertex set $V \Gamma$ and edge set $E \Gamma$. We use Aut Γ to denote the automorphism group of Γ. For a positive integer s, an s-arc of Γ is an $(s+1)$-tuple $\left(v_{0}, v_{1}, \ldots, v_{s}\right)$ of vertices such that $\left\{v_{i-1}, v_{i}\right\} \in E \Gamma$ for $1 \leq i \leq s$ and $v_{i-1} \neq v_{i+1}$ for $1 \leq i \leq s-1$.

Let $G \leq$ Aut Γ. The graph Γ is said to be (G, s)-arc-transitive if it has at least one s-arc and G is transitive on both the vertices and the s-arcs of Γ, and Γ is (G, s) transitive if it is (G, s)-arc-transitive but not $(G, s+1)$-arc-transitive. For the case when $G=$ Aut Γ, a (G, s)-arc-transitive graph or a (G, s)-transitive graph is simply called s-arc-transitive or s-transitive, respectively.

Praeger [24] gave a reduction for finite nonbipartite two-arc-transitive graphs into four types, say, HA, AS, PA and TW. For the bipartite case, Praeger [25] gave a reduction into five types. Praeger's reductions indicate that a two-arc-transitive graph involved in the nine types either has a complete bipartite quotient graph or admits a group acting faithfully and quasiprimitively (of type HA, AS, PA or TW) on the vertex set or on each of its two orbits. Since then, characterizing or classifying finite two-arc-transitive graphs have been an active topic in algebraic graphtheory, which

[^0]is highly attractive from the group-theoretic and combinatorial viewpoint and has received considerable attention (see [1, 7, 8, 11, 13, 15, 16, 25] for more references).

Another main motivation stems from the recently increasing interest in the study of permutation groups of square-free degree and their application to graphs. The class of graphs of square-free order has been studied in some special cases. In 1967, Turner [31] gave the classification of symmetric graphs with order a prime number p. The classification of symmetric graphs with order $2 p$ was not completed until 1987 by Cheng and Oxley [3]. The classification of symmetric graphs with order $3 p$ in [32] and some other graphs with order a product of two distinct primes were classified in [22, 27, 28]. The graphs of order a product of three distinct primes are determined by a series of articles [10, 12, 23, 30]. Further, see [17, 19-21] for the case of order four or more distinct primes.

In particular, the cases of two-arc-transitive graphs admitting a Suzuki simple group and a Ree simple group are classified in [7, 8], and the case of two-arc-transitive graphs admitting a two-dimensional projective linear group is studied in [11].

The object of this paper is to describe the subgroups of square-free index in G and classify the ($G, 2$)-arc-transitive graphs of square-free order, where G is an almost simple group with the alternating socle.

Theorem 1.1. Let G be a finite group with $\operatorname{soc}(G)=\mathrm{A}_{c}$ for $c \geq 5$. If H is a square-free index subgroup of G, then H is described in Lemmas 3.6 and 3.7. If Γ is a connected $(G, 2)$-arc-transitive graph of square-free order, then Γ is isomorphic to one of the graphs given in Section 2.2: K_{c} with square-free $c ; \mathrm{K}_{c, c}-c \mathrm{~K}_{2}$ with odd square-free c; K_{6} with $c=5 ; \mathrm{K}_{10}$ with $c=6$; Tutte's 8 -cage with $c=6$; a symmetric coset graph with $c=7$; the point-hyperplane incidence graph of $\mathrm{PG}(3,2)$ and its complement graph in $\mathrm{K}_{15,15}$ with $c=7,8$; and O_{k} with $c=2 k-1$ for $k \in\{3,4,6,9,10,12,36\}$.

In the following sections, bold-face \mathbf{c} always means the set $\{1,2, \ldots, c\}$; for $\Delta \subseteq \mathbf{c}$, we denote by $\operatorname{Alt}(\Delta)$ or $\operatorname{Sym}(\Delta)$, or sometimes just $\mathrm{A}_{|\Delta|}$ or $\mathrm{S}_{|\Delta|}$, the alternating group or symmetric group on Δ, respectively.

2. Coset graphs, examples and stabilizers

2.1. Coset graphs and examples. We sometimes represent a graph as a coset graph introduced by Sabidussi [29]. Let G be a finite group and let H be a core-free subgroup of G, that is, $\bigcap_{x \in G} H^{x}=1$. Let $g \in G \backslash H$ be of order a power of two with $g^{2} \in H$. Then the symmetric coset graph $\operatorname{Cos}(G, H, H g H)$ is defined to be the graph with vertex set $[G: H]=\{H x \mid x \in G\}$ such that $H x$ and $H y$ are adjacent while $y x^{-1} \in H g H$. Then $\operatorname{Cos}(G, H, H g H)$ is a well-defined G-arc-transitive graph, where G is viewed as a subgroup of Aut Γ acting on $[G: H]$ by right multiplication. The follow lemma is formulated from several well-known facts on coset graphs (see [18] for example).

Lemma 2.1. Let Γ be a connected graph and $G \leq$ АutГ. Let $\{\alpha, \beta\} \in E \Gamma, H=G_{\alpha}$ and $K=G_{\alpha \beta}$. Assume that G acts transitively on both the vertices and the arcs of Γ. Then $\Gamma \cong \operatorname{Cos}(G, H, H x H)$ for some $x \in \mathrm{~N}_{G}(K) \backslash H$ of two-power order such that $x^{2} \in K$ and $G=\langle x, H\rangle$.
2.2. Examples. We collect several examples of two-arc-transitive graphs with square-free order and admitting the alternating group A_{c}.

Example 2.2. K_{n}, the complete graph of order n for a square-free $n \geq 5$. Assume that $G \leq$ AutK $_{n}$ acts transitively on the two-arcs of K_{n}. Then G is a three-transitive subgroup of S_{n}. Thus $\operatorname{soc}(G)=\mathrm{A}_{c}$ implies $(c, n)=(c, c),(5,6)$ or $(6,10)$.

Example 2.3. $\mathrm{K}_{c, c}-c \mathrm{~K}_{2}$, the complete bipartite graph with a matching deleted. $\operatorname{Cos}\left(\mathrm{S}_{c}, \mathrm{~A}_{c}, \mathrm{~A}_{c}(12) \mathrm{A}_{c}\right) \cong \mathrm{K}_{c, c}-c \mathrm{~K}_{2}$ with square-free order if c is odd square-free.

Example 2.4. Point-hyperplane incidence graph of the projective geometry $\operatorname{PG}(3,2)$. This graph and its complement graph in $\mathrm{K}_{15,15}$ admit $\mathrm{S}_{8} \cong \mathrm{GL}(4,2) \cdot 2$ acting transitively on both their two-arcs.

Example 2.5. Tutte's 8-cage. Let U consist of the two-subsets of $\mathbf{6}$ and let V consist of the partitions of $\mathbf{6}$ into three parts with size 2 . Then Tutte's 8 -cage may be defined as the bipartite graph with vertex set $U \cup V$ such that $\alpha \in U$ and $\beta \in V$ are joined by an edge if α is a part of β. This graph is a cubic five-transitive graph with automorphism group $\operatorname{Aut}\left(\mathrm{A}_{6}\right)=\mathrm{P} \Gamma \mathrm{L}(2,9)$.

Example 2.6. O_{k}, odd graph for $k \in\{3,4,6,9,10,12,36\}$. Let $c=2 k-1$ for $k \geq 3$ and let V consist of $(k-1)$-subsets of \mathbf{c}. Then O_{k} is defined with vertex set V such that $\alpha, \beta \in V$ are adjacent if and only if $\alpha \cap \beta=\emptyset$ (see [2, 8f], for example). Further, $\mathrm{AutO}_{k}=\mathrm{S}_{c}$ and O_{k} is two-arc-transitive, and further, by Corollary 3.2, $|V|=c!/[k!(k-1)!]$ is square-free if and only if $k \in\{3,4,6,9,10,12,36\}$.

Example 2.7. $\operatorname{Cos}\left(\mathrm{A}_{7}, \operatorname{PSL}(2,5), \operatorname{PSL}(2,5)(1452)(67) \operatorname{PSL}(2,5)\right)$, a two-arc-transitive graph of valency six and order 42 . We identify $H=\operatorname{PSL}(2,5)$ with a transitive subgroup of A_{6} containing $K=\langle\sigma, \tau\rangle$, where $\sigma=(12345)$ and $\tau=(15)(24)$. Then $\mathrm{N}_{\mathrm{A}_{7}}(K)=\langle\sigma, \pi\rangle,\langle\pi, H\rangle=\mathrm{A}_{7}$ and $\pi^{2} \in K$, where $\pi=(1452)(67)$. Thus $\operatorname{Cos}\left(\mathrm{A}_{7}, H, H \pi H\right)$ is a connected two-arc-transitive graph.
2.3. Stabilizers. Let Γ be a graph, $G \leq \operatorname{Aut} \Gamma$ and $\{\alpha, \beta\} \in E \Gamma$. Then the stabilizer G_{α} induces an action on the neighborhood $\Gamma(\alpha)$ of α in Γ. Let $G_{\alpha}^{\Gamma(\alpha)}$ denote the permutation group on $\Gamma(\alpha)$ induced by G_{α}, let $G_{\alpha}^{[1]}$ be the kernel of this action and set $G_{\alpha \beta}^{[1]}=G_{\alpha}^{[1]} \cap G_{\beta}^{[1]}$. Then

$$
\begin{equation*}
\left(G_{\alpha}^{[1]}\right)^{\Gamma(\beta)} \unlhd G_{\alpha \beta}^{\Gamma(\beta)} \cong G_{\alpha \beta}^{\Gamma(\alpha)}, \quad G_{\alpha}=G_{\alpha}^{[1]} \cdot G_{\alpha}^{\Gamma(\alpha)}=\left(G_{\alpha \beta}^{[1]} \cdot\left(G_{\alpha}^{[1]}\right)^{\Gamma(\beta)}\right) \cdot G_{\alpha}^{\Gamma(\alpha)}, \tag{2.1}
\end{equation*}
$$

where $X \cdot Y$ means a group extension of X by Y.
Lemma 2.8. If G is transitive on $V \Gamma$, then Γ is ($G, 2$)-arc-transitive if and only if $G_{\alpha}^{\Gamma(\alpha)}$ is a two-transitive permutation group.

Lemma 2.9 [9, 34]. Let Γ be $a(G, s)$-transitive graph for $s=2$ or 3 . Then, for an edge $\{\alpha, \beta\}$ of Γ, either $G_{\alpha \beta}^{[1]}=1$ or $G_{\alpha \beta}^{[1]}$ is a nontrivial p-group for some prime p, $\operatorname{PSL}(n, q) \leq G_{\alpha}^{\Gamma(\alpha)} \leq \operatorname{P\Gamma L}(n, q)$ and $|\Gamma(\alpha)|=q^{n}-1 / q-1$ for some $n \geq 2$ and a power q of p.

Table 1. Stabilizers of s-transitive graph of valency k.

k	s	G_{α}	$G_{\alpha \beta}$
$q+1$	4	$\left[q^{2}\right] \rtimes Z_{(q-1) /(3, q-1)} \cdot \operatorname{PGL}(2, q) \cdot Z_{e}$	$\left[q^{3}\right] \rtimes\left(Z_{q-1} \times Z_{(q-1) /(3, q-1)}\right) \cdot Z_{e}$
$2^{f}+1$	5	$\left[q^{3}\right] \times \mathrm{GL}(2, q) \cdot Z_{e}$	$\left[q^{4}\right] \times Z_{q-1}^{2} \cdot Z_{e}$
$3^{f}+1$	7	$\left[q^{5}\right] \rtimes \mathrm{GL}(2, q) \cdot Z_{e}$	$\left[q^{6}\right] \rtimes Z_{q-1}^{2} \cdot Z_{e}$

All finite two-transitive permutation groups are precisely known; the reader is referred to [14] for a complete list. Then, by Equation (2.1) and Lemmas 2.8 and 2.9, we have shown the following result.

Corollary 2.10. If Γ is a (G,2)-arc-transitive graph, then the stabilizer G_{α} has at most two insoluble composition factors. Further, if there are two insoluble factors, then either they are not isomorphic when $G_{\alpha}^{\Gamma(\alpha)}$ is almost simple or they are isomorphic when $G_{\alpha}^{\Gamma(\alpha)}$ is an affine group.

Proof. By Lemma 2.9, $G_{\alpha \beta}^{[1]}$ is a p-group. Then, by (2.1), all possible insolvable composition factors are involved in $\left(G_{\alpha}^{[1]}\right)^{\Gamma(\beta)}$ and $G_{\alpha}^{\Gamma(\alpha)}$. Note that $\left(G_{\alpha}^{[1]}\right)^{\Gamma(\beta)} \triangleleft G_{\alpha \beta}^{\Gamma(\beta)} \cong$ $G_{\alpha \beta}^{\Gamma(\alpha)} \cong\left(G_{\alpha}^{\Gamma(\alpha)}\right)_{\beta}$. Then the two-transitive permutation group $G_{\alpha}^{\Gamma(\alpha)}$ and its a stabilizer acting on $\Gamma(\alpha)$ give all possible insolvable composition factors of G_{α}. Thus our result follows from checking the two-transitive permutation groups one by one.

Lemma 2.11 [33, 35]. Suppose that Γ is a connected (G, s)-transitive graph of valency k with $s \geq 4$. Then $k=q+1, s=4$, 5 or 7 , and, for an edge $\{\alpha, \beta\}$, the vertex stabilizer G_{α} and arc stabilizer $G_{\alpha \beta}$ are listed in Table 1, where $q=p^{f}$ is a power of some prime p and e is a divisor of f.

The structure of stabilizers for cubic s-transitive graphs is explicitly known due to Tutte's result (see [2, 18f], for example). For the four-valent case, we have the following result, which is a consequence from Lemmas 2.9 and 2.11.

Lemma 2.12. Let Γ be a four-valent (G, s)-transitive graph with $s=2$ or 3 . Let $\alpha \in V \Gamma$. Then either $s=2$ and $\mathrm{A}_{4} \leq G_{\alpha} \leq \mathrm{S}_{4}$ or $s=3$ and $\mathrm{A}_{4} \times Z_{3} \leq G_{\alpha} \leq \mathrm{S}_{4} \times \mathrm{S}_{3}$.

3. Subgroups with square-free index in S_{c} or A_{c}

The purpose of this section is to describe the subgroups of square-free index in G, where $\operatorname{soc}(G)=\mathrm{A}_{c}$ for $c \geq 5$. Several results on elementary number theory are necessary. The first lemma is formulated from [21].

Lemma 3.1. Let $a \geq 2$ and $b \geq 2$ be two integers. Then $(a b)!/\left[(a!)^{b} b!\right]$ is not square-free except that either $a=2$ and $b \in\{3,4\}$ or $b=2$ and $a \in\{2,3,4,6,9,10,12,36\}$.

Corollary 3.2. If $a \geq 2$, then $(2 a-1)!/[a!(a-1)$!] is not square-free except for $a \in\{2,3,4,6,9,10,12,36\}$.

Lemma 3.3. Let $\mathrm{p}(d, t)=\prod_{i=1}^{t}(d+i)$ be the product of t consecutive positive integers. Then the following statements hold.
(1) If $\mathrm{p}(d, 4) / 8$ is square-free, then $d \equiv 0,1,3,4 \bmod 9$.
(2) If $\mathrm{p}(d, 5) / 20$ is square-free, then $d=6 m$ with $m \equiv 0,3,12,15 \bmod 8$.
(3) If $\mathrm{p}(d, 6) / 48$ is square-free, then $d=4 m$ with $m \equiv 0,14,25 \bmod 9$, or $d=4 n+1$ with $n \equiv 0,16,20 \bmod 9$.
(4) If $d \geq 2$ and $\mathrm{p}(d, 6) / 24$ is square-free, then $d=8 m$ with $m \equiv 7,17,27 \bmod 9$, or $d=8 n+1$ with $n \equiv 8,10,27 \bmod 9$.
(5) If $\mathrm{p}(d, 6) / 120$ is square-free, then $d=8 m$ with $m \equiv 0,7,8 \bmod 9$, or $d=8 n+1$ with $n \equiv 0,1,8 \bmod 9$.
(6) If $\mathrm{p}(d, 6) / 72$ is square-free, then $d \equiv 0,1 \bmod 8$.
(7) If $\mathrm{p}(d, 7) / 168$ is square-free, then $d=72 m$ with $m \geq 3$ and $m \equiv 0,3,6 \bmod 5$, or $d=72 n+64$ with $n \geq 1$ and $n \equiv 1,3,4 \bmod 5$.
(8) If $\mathrm{p}(d, 7) / 120$ is square-free, then $d=8 m$ with $m \equiv 0,8 \bmod 9$.
(9) If $\mathrm{p}(d, 7) / 72$ is square-free, then $d=8 m$ with $m \equiv 0,2,9 \bmod 5$.
(10) If $\mathrm{p}(d, 7) / 48$ is square-free, then $d=4 m$ with $m \equiv 0,25 \bmod 9$.
(11) If $\mathrm{p}(d, 8) /\left(2^{6} \cdot 3 \cdot 7\right)$ is square-free, then $d=45 m$ or $d=45 n+36$ for $m, n \geq 0$.
(12) If $\mathrm{p}(d, 8) /\left(2^{6} \cdot 3^{2}\right)$ is square-free, then $15 n+6$ with $n \equiv 2,3,4,5,15,17$, $22 \bmod 16$, or $d=15 m$ with $m \equiv 0,9,10,12,14,15,27,29 \bmod 16$.
(13) If $\mathrm{p}(d, 8) /\left(2^{7} \cdot 3\right)$ is square-free, then $d=15 m$ with $m=0$ or $m \geq 9$, or $15 n+6$ with $n \geq 2,5,17$.
(14) If $\mathrm{p}(d, 12) /\left[(6!)^{2} \cdot 2\right]$ is square-free, then $d=7 m$ with $m=0$ or $m \geq 21$, or $d=7 n+1$ with $n=0$ or $n \geq 23$.
(15) If $\mathrm{p}(d, 24) /\left[(12!)^{2} \cdot 2\right]$ is square-free, then $d=0$ or $d>99$.
(16) If $\mathrm{p}(d, 2 a) /\left[(a!)^{2} \cdot 2\right]$ is square-free, then $d=0,1$ or $d>99$, where $a \in\{9,10,36\}$.

Proof. As examples, we prove (7) and (12) only; the others can be proved by similar arguments and (or) checking by GAP.

Assume that $\mathrm{p}(d, 7) / 168$ is square-free. If 8 divides some $d+i$, then 2^{5} divides $\mathrm{p}(d, 7)$ by noting that at least three of seven consecutive integers are even, and so 4 divides $\mathrm{p}(d, 7) / 168$, which contradicts the hypothesis. It follows that $d=8 k$ for some k. If 9 divides some $d+i$, then 3^{3} divides $\mathrm{p}(d, 7)$, so 3^{2} divides $\mathrm{p}(d, 7) / 168$, which contradicts the hypothesis. Then $d=9 l$ or $9 l+1$ for some l. It yields $d=72 m$ or $d=72 n+64$ with $m, n \geq 0$. If $0 \neq m \leq 2$ or $n=0$ then 5^{2} divides $\mathrm{p}(d, 7)$, which contradicts the hypothesis. Thus (7) follows by noting that 5 does not divide both $d+1$ and $d+2$.

Assume that $\mathrm{p}(d, 8) /\left(2^{6} \cdot 3^{2}\right)$ is square-free. Then none of $d+1, d+2$ and $d+3$ is divisible by 5 , and hence $d=5 l$ or $5 l+1$. If 3 divides one of $d+1$ and $d+2$, then three of these eight consecutive integers are divisible by 3 . This yields that 3^{4} divides $\mathrm{p}(d, 8)$, which contradicts the hypothesis. Thus $d=3 k$. Then $d=15 m$ or $15 n+6$. If 2^{4} divides some $d+i$, then 2^{8} divides $\mathrm{p}(d, 8)$, which contradicts the hypothesis.

It yields $m \equiv 0,9,10,11,12,13,14,15 \bmod 16$ and $n \equiv 1,2,3,4,5,6,15 \bmod 16$. Noting that both 5^{2} and 7^{2} do not divide $\mathrm{p}(d, 8)$, (12) follows.

Let c be a positive integer and P a partition of c into positive parts. We define $\mathrm{f}(c ; P)=\left(\sum_{d \in P} d\right)!/ \prod_{d \in P} d!$. Then the following result holds.

Lemma 3.4. Let $k \geq 2$ and $c \geq 5$ be integers. Let $c=\sum_{i=1}^{k} c_{i}$ and $c_{i}=\sum_{j=1}^{t_{i}} d_{i j}$ for $1 \leq i \leq k$ and positive integers $d_{i j}$. Then $\mathrm{f}\left(c ; d_{11}, \ldots, d_{k t_{k}}\right)=\mathrm{f}\left(c ; c_{1}, \ldots, c_{k}\right)$ $\prod_{i=1}^{k} \mathrm{f}\left(c_{i} ; d_{i 1}, \ldots, d_{i t_{i}}\right)$. Assume, further, that $\mathrm{f}\left(c ; d_{11}, \ldots, d_{k t_{k}}\right)$ is square-free. Then the following statements hold.
(1) $\mathrm{f}\left(c ; c_{1}, \ldots, c_{k}\right)$ and $\mathrm{f}\left(c_{i} ; d_{i 1}, \ldots, d_{i_{i}}\right), 1 \leq i \leq k$, are pairwise coprime square-free numbers; so at most one of them is even.
(2) If $d_{i_{1} j_{1}}=d_{i_{2} j_{2}}$ for $\left(i_{1}, j_{1}\right) \neq\left(i_{2}, j_{2}\right)$, then $d_{i_{1} j_{1}}=d_{i_{2} j_{2}}=4,2$ or 1 .
(3) If l_{r} if the number of $d_{i j}$ with value r, then $l_{4} \leq 2, l_{3} \leq 1, l_{2} \leq 2, l_{1} \leq 3, \sum_{r=1}^{4} l_{r} \leq 4$ and $\sum_{r=1}^{4} r l_{r} \leq 8$.

Proof. Note that $\mathrm{S}_{c} \geq \mathrm{S}_{c_{1}} \times \cdots \times \mathrm{S}_{c_{k}}$ and $\mathrm{S}_{c_{j}} \geq \mathrm{S}_{d_{i 1}} \times \cdots \times \mathrm{S}_{d_{i_{i}}}$. Then the first part of this lemma holds by checking that $\left|\mathrm{S}_{c}:\left(\mathrm{S}_{d_{11}} \times \cdots \times \mathrm{S}_{d_{k_{k}}}\right)\right|$. And then (1) follows. Assume that $d_{i_{1} j_{1}}=d_{i_{2} j_{2}}:=a$ for some $\left(i_{1}, j_{1}\right) \neq\left(i_{2}, j_{2}\right)$. Then $\mathrm{f}(2 a ; a, a)$ is square-free by (1). Of course, $\mathrm{f}(2 a ; a, a) / 2$ is odd square-free. By Lemma 3.1, a is known. It yields $a=4$ or 2 if $a \neq 1$, and (2) follows. Let c^{\prime} be one of $\sum_{d_{i, j}=r} d_{i j}$ and $\sum_{d_{i, j} \leq 4} d_{i j}$. Then (3) follows from (1).

The following facts about primitive permutation groups (see [6, Theorem 3.3.A, Example 3.3.1]) are known.

Lemma 3.5. Let G be a primitive subgroup of S_{c}. If G contains one of (ij), (ijk) and $(i j)(k l)$, then either $G \geq \mathrm{A}_{c}$ or $c \leq 8$.

Lemma 3.6. Let $c \geq 5$ be an integer. Let G be almost simple with $\operatorname{soc}(G)=\mathrm{A}_{c}$ and let $H<G$ with $|G: H|$ being square-free. If either $G \not \leq \mathrm{S}_{c}$ or H is transitive on \mathbf{c}, then one of the following holds.
(1) $G=\operatorname{PGL}(2,9), \mathrm{M}_{10}$ or $\operatorname{P\Gamma L}(2,9)$ and $H=Z_{3}^{2} \rtimes Z_{8}, Z_{3}^{2} \rtimes \mathrm{Q}_{8}$ or $Z_{3}^{2} \rtimes\left[2^{4}\right]$, respectively, where $\left[2^{4}\right]$ is a 2-group of order 2^{4}.
(2) Either $\operatorname{soc}(G)=\operatorname{soc}(H)=\mathrm{A}_{6}$ or (G, H) is one of $\left(\operatorname{PGL}(2,9), \mathrm{S}_{4}\right),\left(\mathrm{M}_{10}, \mathrm{~S}_{4}\right)$, and ($\left.\mathrm{P} \Gamma \mathrm{L}(2,9), \mathrm{S}_{4} \times Z_{2}\right)$.
(3) (G, H) is one of $\left(\mathrm{S}_{c}, \mathrm{~A}_{c}\right),\left(\mathrm{A}_{5}, \mathrm{D}_{10}\right),\left(\mathrm{S}_{5}, Z_{5} \rtimes \mathrm{Z}_{4}\right),\left(\mathrm{A}_{6}, \operatorname{PSL}(2,5)\right),\left(\mathrm{S}_{6}, \operatorname{PGL}(2,5)\right)$, $\left(\mathrm{S}_{7}, \operatorname{PSL}(3,2)\right)\left(\mathrm{A}_{7}, \operatorname{PSL}(3,2)\right),\left(\mathrm{S}_{8}, Z_{2}^{3} \rtimes \operatorname{PSL}(3,2)\right)$ and $\left(\mathrm{A}_{8}, Z_{2}^{3} \rtimes \operatorname{PSL}(3,2)\right)$.
(4) H is not primitive on \mathbf{c}, and either $c \leq 8$ and H is $a\{2,3\}$-group or $c=2 a$ and $H=\left(\mathrm{S}_{a} \backslash \mathrm{~S}_{2}\right) \cap G$ for $a \in\{6,9,10,12,36\}$.

Proof. If $G \not \leq \mathrm{S}_{c}$, then $c=6$, and so (1) and (2) follow from checking the subgroups of G of square-free indices in [5]. Thus, in the following, assume that $\mathrm{A}_{c} \leq G \leq \mathrm{S}_{c}$ and H is transitive on c.

Assume that H is primitive on \mathbf{c}. Since $|G: H|$ is square-free, H contains a maximal subgroup of a Sylow two-subgroup of A_{c}. Then H contains a permutation with the
form of $(i j)(k l)$ and (3) follows from Lemma 3.5 and checking the primitive groups of degree no more than eight.

Assume that H is not primitive on \mathbf{c}. Then $\mathrm{A}_{c} \leq G \leq \mathrm{S}_{c}$. Let \mathcal{B} be a nontrivial H-invariant partition on \mathbf{c} with minimal block size, say, a. Then $H \leq\left(\mathrm{S}_{a} \imath \mathrm{~S}_{b}\right) \cap G:=$ $M \leq G$, where $b=c / a$. Since $|G: H|$ is square-free, $|G: M|$ and $|M: H|$ are also squarefree. It is easy to see that $\left|\mathrm{S}_{c}:\left(\mathrm{S}_{a} 乙 \mathrm{~S}_{b}\right)\right|=|G: M|$. Then $\left|\mathrm{S}_{c}:\left(\mathrm{S}_{a} \backslash \mathrm{~S}_{b}\right)\right|$ is square-free and (a, b) is given in Lemma 3.1. Clearly, if both a and b are no more than four, then H is a $\{2,3\}$-group. Thus assume that $b=2$ and $a \in\{6,9,10,12,36\}$. In particular, it is easy to know that $\left|\mathrm{S}_{c}:\left(\mathrm{S}_{a} \backslash \mathrm{~S}_{b}\right)\right|=|G: M|$ is even square-free.

Set $\mathcal{B}=\left\{\Delta_{1}, \Delta_{2}\right\}$. Without loss of generality, assume that $\Delta_{1}=\mathbf{a}$ and let $\mathrm{S}_{a} \backslash \mathrm{~S}_{2}=$ $\left(\operatorname{Sym}\left(\Delta_{1}\right) \times \operatorname{Sym}\left(\Delta_{2}\right)\right) \rtimes\langle\pi\rangle$, where $\pi=\Pi_{i=1}^{a}(i a+i)$. In particular, $\pi \in \mathrm{A}_{c}$ if a is even. Let $N=\operatorname{Alt}\left(\Delta_{1}\right) \times \operatorname{Alt}\left(\Delta_{2}\right)$. Then $N \unlhd M$, and so $H N$ is a subgroup of M. Thus $|N:(H \cap N)|=|H N: H|$ is a divisor of $|M: H|$. Then $|N:(H \cap N)|$ is square-free. It is easily shown that $H \cap N$ contains a maximal subgroup Q of a Sylow two-subgroup P of N. Then $Q \unlhd P$ and $|P: Q|=2$. Without loss of generality, assume that P contains (1234)(56) and $(a+1 a+2 a+3 a+4)(a+5 a+6)$. It follows that (12)(34), $(a+1 a+2)(a+3 a+4) \in Q$. Thus $(12)(34) \in H_{\Delta_{1}}^{\Delta_{1}}$ and $(a+1 a+2)(a+3 a+4) \in H_{\Delta_{2}}^{\Delta_{2}}$. By the choice of $\mathcal{B}, H_{\Delta_{i}}^{\Delta_{i}}$ is a primitive subgroup of $\operatorname{Sym}\left(\Delta_{i}\right)$. Then, similarly as in (2), either $H_{\Delta_{i}}^{\Delta_{i}} \geq \operatorname{Alt}\left(\Delta_{i}\right)$ or $\operatorname{PSL}(2,5) \leq H_{\Delta_{i}}^{\Delta_{i}} \leq \operatorname{PGL}(2,5)$. But the latter case yields four dividing $|G: H|$. Thus $H_{\Delta_{i}}^{\Delta_{i}} \geq \operatorname{Alt}\left(\Delta_{i}\right)$. Noting that $1 \neq(H \cap N)^{\Delta_{i}} \unlhd H_{\Delta_{i}}^{\Delta_{i}},(H \cap N)^{\Delta_{i}}=$ $\operatorname{Alt}\left(\Delta_{i}\right)$. It follows from [6, Lemma 4.3A] that $H \cap N=\operatorname{Alt}\left(\Delta_{1}\right) \times \operatorname{Alt}\left(\Delta_{2}\right)=N$. It is easy to check that a Sylow two-subgroup of N has index 2^{2} in some Sylow twosubgroup of A_{c}. Then N is properly contained in H. Noting that $|M: H|$ divides $|M: N|=2^{2}$ or 2^{3} and $|G: M|$ is even square-free, it follows that $|M: H|=1$. Then (4) holds.

Lemma 3.7. Let $c \geq 5$ be an integer. Let $\mathrm{A}_{c} \leq G \leq \mathrm{S}_{c}$ and let $H<G$ with $|G: H|$ being square-free. Assume that H has t orbits $\Delta_{1}, \ldots, \Delta_{t}$ on \mathbf{c}, where $t \geq 2$. Let $d_{j}=\left|\Delta_{j}\right|$ for $1 \leq j \leq t$. Let r be such that $b_{r+1}=\cdots=b_{t}=1$ and $b_{j}>1$ for $j \leq r$. Set $c_{1}=\sum_{i=1}^{r} d_{j}$.
(1) If $r \geq 2$ and $c_{1} \geq 5$, then, reordering d_{j} if necessary, either H is one of $\left(\mathrm{S}_{d_{1}} \times \cdots \times\right.$ $\left.\mathrm{S}_{d_{r-1}} \times \mathrm{A}_{d_{r}}\right) \cap G$ and $\left(\mathrm{S}_{d_{1}} \times \cdots \times \mathrm{S}_{d_{r}}\right) \cap G$ or, for each $d_{j}>1$, the pair $\left(d_{j}, H^{\Delta_{j}}\right)$ is as described in Tables 2, 3, 4 and 5 for $r=t$ and as in Tables 8, 9, 10 and 11 for $r<t$.
(2) If $r=1$ or $c_{1} \leq 5$, then $\left(d_{1}, H^{\Delta_{1}}\right)$ is as described in Tables 6 and 7.

Proof. Set $M_{1}:=\left(H^{\Delta_{1}} \times \cdots \times H^{\Delta_{t}}\right) \cap G$ and $M_{2}:=\left(\mathrm{S}_{d_{1}} \times \cdots \times \mathrm{S}_{d_{t}}\right) \cap G$. Then $H \leq M_{1}$ and $H \leq M_{2}$. Since $|G: H|$ is square-free, $\left|M_{i}: H\right|,\left|M_{2}: M_{1}\right|$ and $\left|G: M_{i}\right|$ are all squarefree, where $i=1,2$.

Case 1. Assume that H is fixed-point-free on \mathbf{c}, that is, $d_{j} \geq 2$ for all $j \leq t$.
Assume that $H^{\Delta_{j}} \leq \operatorname{Alt}\left(\Delta_{j}\right)$ for all $1 \leq j \leq t$. Then $H \leq \mathrm{A}_{c}$ and $M_{1}=H^{\Delta_{1}} \times \cdots \times H^{\Delta_{t}}$ as $\mathrm{A}_{c} \leq G$. If $G=\mathrm{S}_{c}$, then $|G: H|$ is divisible by 2^{t}, which contradicts the hypothesis. Thus $G=\mathrm{A}_{c}$. Then $M_{2}=\left(\mathrm{A}_{d_{1}} \times \cdots \times \mathrm{A}_{d_{t}}\right) \rtimes Z_{2}^{t-1}$, and hence $t=2$ and $\left|\mathrm{A}_{d_{j}}: H^{\Delta_{j}}\right|$ is

Table 2. Pairs of orbit length and subgroup transitive restriction Case 1.

c	d_{1}	d_{2}	$H^{\Delta_{1}}$	$H^{\Delta_{2}}$	Remark
$d_{1}+d_{2}$	≥ 5	≥ 3	$\mathrm{~A}_{d_{1}}$	$\mathrm{~A}_{d_{2}}$	$d_{1}-d_{2} \geq 2$
					$\mathrm{p}\left(d_{1}, d_{2}\right) / d_{2}$! odd square-free
$d_{1}+8$	≥ 36	8	$\mathrm{~A}_{d_{1}}$	$Z_{2}^{3} \rtimes \operatorname{PSL}(3,2)$	$\mathrm{p}\left(d_{1}, 8\right) /\left(2^{6} \cdot 3 \cdot 7\right)$ square-free
$d_{1}+8$	≥ 36	8	$\mathrm{~A}_{d_{1}}$	$Z_{2}^{3} \rtimes \mathrm{~S}_{4}$	$\mathrm{p}\left(d_{1}, 8\right) /\left(2^{6} \cdot 3\right)$ square-free
$d_{1}+8$	≥ 36	8	$\mathrm{~A}_{d_{1}}$	$\left(\mathrm{~S}_{4} 2 \mathrm{~S}_{2}\right) \cap \mathrm{A}_{8}$	$\mathrm{p}\left(d_{1}, 8\right) /\left(2^{6} \cdot 3^{2}\right)$ square-free
$d_{1}+7$	≥ 136	7	$\mathrm{~A}_{d_{1}}$	$\mathrm{PSL}(3,2)$	$\mathrm{p}\left(d_{1}, 7\right) / 168$ square-free
$d_{1}+6$	≥ 56	6	$\mathrm{~A}_{d_{1}}$	$\mathrm{~S}_{4}$	$\mathrm{p}\left(d_{1}, 6\right) / 24$ square-free
$d_{1}+4$	≥ 9	4	$\mathrm{~A}_{d_{1}}$	Z_{2}^{4}	$\mathrm{p}\left(d_{1}, 4\right) / 4$ square-free
7	4	3	$\mathrm{~A}_{4}$	$\mathrm{~A}_{3}$	
7	4	3	Z_{2}^{2}	$\mathrm{~A}_{3}$	

Table 3. Pairs of orbit length and subgroup transitive restriction Case 2.

d_{j}	d_{t}	$H^{\Delta_{j}}$	$H^{\Delta_{t}}$	Remark
>99	$2 a$	$\mathrm{S}_{d_{j}}$	$\mathrm{S}_{a} 乙 \mathrm{~S}_{2}, a=6,9,10,12,36$	$\mathrm{p}\left(d_{j}, 2 a\right) /\left[2 \cdot(a!)^{2}\right]$ square-free
			S_{4} \} \mathrm { S } _ { 2 }	$\mathrm{p}\left(d_{j}, 8\right) /\left[2 \cdot(4!)^{2}\right]$ square-free
			$\left(\mathrm{S}_{4} \backslash \mathrm{~S}_{2}\right) \cap \mathrm{A}_{8}$	$\mathrm{p}\left(d_{j}, 8\right) /\left[(4!)^{2}\right]$ square-free
≥ 36	8	$\mathrm{S}_{d_{j}}$	$Z_{2}^{3} \rtimes \mathrm{~S}_{4}, Z_{2}^{4} \rtimes\left[2^{2} \cdot 3\right], Z_{2}^{4} \rtimes \mathrm{~A}_{4}$	$\mathrm{p}\left(d_{j}, 8\right) /\left(3 \cdot 2^{6}\right)$ square-free
			$Z_{2}^{4} \rtimes \mathrm{~S}_{4}$ $Z^{3} \times \mathrm{PSL}(3,2)$	$\mathrm{p}\left(d_{j}, 8\right) /\left(3 \cdot 2^{7}\right)$ square-free
			$Z_{2}^{3} \rtimes \operatorname{PSL}(3,2)$	$\mathrm{p}\left(d_{j}, 8\right) /\left(3 \cdot 7 \cdot 2^{6}\right)$ square-free
≥ 136	7	$\mathrm{S}_{d_{j}}$	$\operatorname{PSL}(3,2)$	$\mathrm{p}\left(d_{j}, 7\right) /\left(3 \cdot 7 \cdot 2^{3}\right)$ square-free
≥ 36	6	$\mathrm{S}_{d_{j}}$	$\mathrm{S}_{4} \times Z_{2}$	p $\left(d_{j}, 6\right) / 48$ square-free
≥ 56			S_{4}	$\mathrm{p}\left(d_{j}, 6\right) / 24$ square-free
≥ 9			$\operatorname{PGL}(2,5)$	$\mathrm{p}\left(d_{j}, 6\right) / 120$ square-free
≥ 8			$Z_{3}^{2} \rtimes \mathrm{D}_{8}$	$\mathrm{p}\left(d_{j}, 6\right) / 72$ square-free
≥ 18	5	$\mathrm{S}_{d_{j}}$	$Z_{5} \rtimes \mathrm{Z}_{4}$	$\mathrm{p}\left(d_{j}, 5\right) / 20$ square-free
≥ 9	4	$\mathrm{S}_{d_{j}}$	D_{8}	$\mathrm{p}\left(d_{j}, 4\right) / 8$ square-free
			$\left[2^{2}\right]$	$\mathrm{p}\left(d_{j}, 4\right) / 4$ square-free

odd square-free for $i=1$ and 2. Thus either $H^{\Delta_{j}}=\mathrm{A}_{d_{i}}$ or $H^{\Delta_{j}}$ is known as in (2) or (3) as it is transitive on Δ_{i}. Calculating $\left|\mathrm{A}_{d_{j}}: H^{\Delta_{j}}\right|$ shows that $H^{\Delta_{j}}$ is one of $\mathrm{A}_{d_{j}}, \operatorname{PSL}(3,2)$ for $d_{j}=7, Z_{2}^{3} \rtimes \operatorname{PSL}(3,2)$ for $d_{j}=8,\left(\mathrm{~S}_{d_{i} / 2} \imath \mathrm{~S}_{2}\right) \cap \mathrm{A}_{d_{i}}$ for $d_{i} \in\{12,18,20,24,72\}$, $Z_{2}^{3} \rtimes \mathrm{~S}_{4}$ for $d_{j}=8,\left(\mathrm{~S}_{4} \backslash \mathrm{~S}_{2}\right) \cap \mathrm{A}_{8}$ for $d_{j}=8, \mathrm{~S}_{4}$ for $d_{j}=6$, or Z_{2}^{2} for $d_{j}=4$.

Since $\left|\mathrm{A}_{c}: M_{1}\right|$ and $\left|M_{2}: M_{1}\right|=2\left|\mathrm{~A}_{d_{1}}: H^{\Delta_{1}}\right|\left|\mathrm{A}_{d_{2}}: H^{\Delta_{2}}\right|$ are square-free, with the help of Lemma 3.1, Corollary 3.2 and Lemma 3.3, ($c, d_{1}, d_{2} ; H^{\Delta_{1}}, H^{\Delta_{2}}$) are listed in Table 2. Assume that $H^{\Delta_{i}} \not \leq \operatorname{Alt}\left(\Delta_{i}\right)$ for some $1 \leq i \leq t$. Then M_{1} has index two or one in $L_{1}:=H^{\Delta_{1}} \times \cdots \times H^{\Delta_{t}}$ depending on $G=\mathrm{A}_{c}$ or not, respectively; and the same thing occurs for M_{2} and $L_{2}:=\mathrm{S}_{d_{1}} \times \cdots \times \mathrm{S}_{d_{t}}$. Thus $\left|L_{2}: L_{1}\right|,\left|\mathrm{S}_{c}: L_{2}\right|,\left|\mathrm{S}_{c}: L_{1}\right|$ and $\left|\mathrm{S}_{d_{j}}: H^{\Delta_{j}}\right|$ are all square-free. Then $\left(d_{j}, H^{\Delta_{j}}\right)$ is one of the following pairs: $\left(d_{j}, \mathrm{~S}_{d_{j}}\right),\left(d_{j}, \mathrm{~A}_{d_{j}}\right),\left(\mathrm{S}_{7}, \operatorname{PSL}(3,2)\right),\left(\mathrm{S}_{8}, Z_{2}^{3} \rtimes \operatorname{PSL}(3,2)\right),\left(5, Z_{5} \rtimes Z_{4}\right),(6, \operatorname{PGL}(2,5))$,

Table 4. Pairs of orbit length and subgroup transitive restriction Case 3.

d_{j}	d_{t-1}	d_{t}	$H^{\Delta_{j}}$	$H^{\Delta_{t-1}}$	$H^{\Delta_{t}}$	Remark
≥ 36	≥ 36	8	$\mathrm{~S}_{d_{j}}$	$\mathrm{~A}_{d_{t-1}}$	$\mathrm{~S}_{4}<\mathrm{S}_{2}$	$\mathrm{p}\left(d_{j}, 8\right) /\left[2 \cdot(4!)^{2}\right]$ odd square-free
					$Z_{2}^{4} \rtimes \mathrm{~S}_{4}$	$\mathrm{p}\left(d_{j}, 8\right) /\left(2^{7} \cdot 3\right)$ odd square-free
≥ 36	≥ 36	6	$\mathrm{~S}_{d_{j}}$	$\mathrm{~A}_{d_{t-1}}$	$\mathrm{~S}_{4} \times Z_{2}$	$\mathrm{p}\left(d_{j}, 6\right) / 48$ odd square-free
≥ 9	≥ 9	4	$\mathrm{~S}_{d_{j}}$	$\mathrm{~A}_{d_{t-1}}$	D_{8}	$\mathrm{p}\left(d_{j}, 4\right) / 8$ odd square-free
≥ 36	4	4	$\mathrm{~S}_{d_{j}}$	$\mathrm{~S}_{4}$	D_{8}	$\mathrm{p}\left(d_{j}, 8\right) /\left(3 \cdot 2^{6}\right)$ square-free
≥ 36	4	4	$\mathrm{~S}_{d_{j}}$	$\mathrm{~A}_{4}$	D_{8}	$\mathrm{p}\left(d_{j}, 8\right) /\left(3 \cdot 2^{5}\right)$ square-free
≥ 36	4	3	$\mathrm{~S}_{d_{j}}$	D_{8}	$\mathrm{~S}_{3}$	$\mathrm{p}\left(d_{j}, 7\right) / 48$ square-free
≥ 136	4	3	$\mathrm{~S}_{d_{j}}$	D_{8}	$\mathrm{~A}_{3}$	$\mathrm{p}\left(d_{j}, 7\right) / 24$ square-free
				$\left[2^{2}\right]$	S_{3}	

Table 5. Pairs of orbit length and subgroup transitive restriction Case 4.

c	d_{1}	d_{2}	d_{3}	$H^{\Delta_{1}}$	$H^{\Delta_{2}}$	$H^{\Delta_{3}}$	Remark
$d_{1}+7$	$d_{1} \geq 36$	4	3	$\mathrm{~A}_{d_{1}}$	D_{8}	$\mathrm{~S}_{3}$	$\mathrm{p}\left(d_{1}, 7\right) / 48$ odd square-free
$d_{1}+8$	$d_{1} \geq 36$	4	4	$\mathrm{~A}_{d_{1}}$	D_{8}	$\mathrm{~S}_{4}$	$\mathrm{p}\left(d_{1}, 8\right) /\left(2^{6} \cdot 3\right)$ odd square-free
$d_{1}+8$	$d_{1} \geq 36$	8		$\mathrm{~A}_{d_{1}}$	$\mathrm{~S}_{4} 2 \mathrm{~S}_{2}$		$\mathrm{p}\left(d_{1}, 8\right) /\left[(4!)^{2} \cdot 2\right]$ odd square-free
$d_{1}+8$	$d_{1} \geq 36$	8		$\mathrm{~A}_{d_{1}}$	$Z_{2}^{4} \rtimes \mathrm{~S}_{4}$		$\mathrm{p}\left(d_{1}, 8\right) /\left(2^{7} \cdot 3\right)$ odd square-free
$d_{1}+6$	$d_{1} \geq 36$	6		$\mathrm{~A}_{d_{1}}$	$\mathrm{~S}_{4} \times Z_{2}$		$\mathrm{p}\left(d_{1}, 6\right) / 48$ odd square-free
$d_{1}+4$	$d_{1} \geq 9$	4		$\mathrm{~A}_{d_{1}}$	D_{8}		$\mathrm{p}\left(d_{1}, 4\right) / 8$ odd square-free
8	4	4		$\mathrm{~S}_{4}$	D_{8}		
7	4	3		D_{8}	$\mathrm{~S}_{3}, \mathrm{~A}_{3}$		
7	4	3		$\left[2^{2}\right]$	S_{3}		

Table 6. Pairs of orbit length and subgroup transitive restriction Case 5.

c	d_{1}	$c-c_{1}$	G	H	Remark
c	d_{1}	≤ 3	$\mathrm{~S}_{c}$	$\mathrm{~S}_{c_{1}}$	$\mathrm{p}\left(c_{1}, c-c_{1}\right)$ square-free
c	$c-1$	1	$\mathrm{~S}_{c}$	$\mathrm{~A}_{c_{1}}$	c odd square-free
	d_{1}	≤ 3	$\mathrm{~A}_{c}$	$\mathrm{~A}_{c_{1}}$	$\mathrm{p}\left(c_{1}, c-c_{1}\right)$ square-free
$2 a+1$	$2 a$	1	$\mathrm{~S}_{2 a+1}$	$\mathrm{~S}_{2} \imath \mathrm{~S}_{2}$	$a \in\{6,9,10,36\}$
			$\mathrm{A}_{2 a+1}$	$\left(\mathrm{~S}_{a} \imath \mathrm{~S}_{2}\right) \cap \mathrm{A}_{2 a}$	
7	6	1	$\mathrm{~S}_{7}$	$\mathrm{PGL}(2,5)$	
				$Z_{3}^{2} \rtimes \mathrm{D}_{8}$	
				$\mathrm{~S}_{4} \times \mathrm{Z}_{2}, \mathrm{~S}_{4}$	
			$\mathrm{~A}_{7}$	$Z_{3}^{2} \rtimes \mathrm{Z}_{4}, \mathrm{~A}_{4}, \mathrm{~S}_{4}$	
				$\mathrm{PSL}(2,5)$	

($2 a, \mathrm{~S}_{a}$ \} \mathrm { S } _ { 2 }) for a \in \{ 6 , 9 , 1 0 , 1 2 , 3 6 \} , (8 , \mathrm { S } _ { 4 } \backslash \mathrm { S } _ { 2 }) , (8 , (\mathrm { S } _ { 4 } \backslash \mathrm { S } _ { 2 }) \cap \mathrm { A } _ { 8 }) , (8 , Z _ { 2 } ^ { 4 } \rtimes [2 ^ { 2 } \cdot 3]) , $\left(8, Z_{2}^{4} \rtimes S_{4}\right),\left(8, Z_{2}^{4} \rtimes A_{4}\right),\left(8, Z_{2}^{3} \rtimes S_{4}\right),\left(6, S_{4}\right),\left(6, Z_{3}^{2} \rtimes D_{8}\right),\left(6, S_{4} \times Z_{2}\right),\left(4, S_{4}\right),\left(4, D_{8}\right)$ or (4, $\left.\left[2^{2}\right]\right)$. Noting that $\left|L_{2}: L_{1}\right|=\prod_{i=1}^{t}\left|\mathrm{~S}_{d_{j}}: H^{\Delta_{j}}\right|$, all $\left|\mathrm{S}_{d_{j}}: H^{\Delta_{j}}\right|$ are pairwise coprime,

Table 7. Pairs of orbit length and subgroup transitive restriction Case 6.

c	d_{1}	d_{2}	d_{3}	d_{4}	$H^{\Delta_{1}}$	$H^{\Delta_{2}}$	$H^{\Delta_{3}}$	$H^{\Delta_{4}}$	G	H
5	3	1	1		$\mathrm{~S}_{3}$	1	1		$\mathrm{~A}_{5}$	$\mathrm{~S}_{3}$
	2	2	1		Z_{2}	Z_{2}	1		$\mathrm{~S}_{5}$	Z_{2}^{2}
					Z_{2}	Z_{2}	1		$\mathrm{~A}_{5}$	Z_{2}
5	4	1			$\mathrm{~S}_{4}$	1			$\mathrm{~S}_{5}$	$\mathrm{~S}_{4}$
					$\mathrm{~A}_{4}$	1			$\mathrm{~S}_{5}$	$\mathrm{~A}_{4}$
					D_{8}	1			$\mathrm{~S}_{5}$	D_{8}
					$\left[2^{2}\right]$	1			$\mathrm{~S}_{5}$	$\left[2^{2}\right]$
					A_{4}	1			$\mathrm{~A}_{5}$	$\mathrm{~A}_{4}$
6	4	1	1		Z_{2}^{2}	1			$\mathrm{~S}_{5}$	Z_{2}^{2}
					$\mathrm{~A}_{4}$	1	1		$\mathrm{~S}_{6}$	$\mathrm{~S}_{4}$
7	4	2	1		$\mathrm{~S}_{4}$	Z_{2}	1		$\mathrm{~A}_{6}$	$\mathrm{~A}_{4}$
					$\mathrm{~A}_{4}$	Z_{2}	1		$\mathrm{~S}_{7}$	$\mathrm{~S}_{4} \times \mathrm{S}_{2}, \mathrm{~S}_{4}$
					$\mathrm{~S}_{4}$	Z_{2}	1		$\mathrm{~S}_{7}$	$\mathrm{~A}_{4} \times \mathrm{S}_{2}$
7	4	1	1	1	$\mathrm{~S}_{4}$	1	1	1	$\mathrm{~S}_{7}$	$\mathrm{~S}_{4}, \mathrm{~A}_{4}$
					$\mathrm{~A}_{4}$	1	1	1	$\mathrm{~A}_{7}$	$\mathrm{~S}_{4}$

Table 8. Pairs of orbit length and subgroup transitive restriction Case 7.

c	$t-r$	d_{1}	d_{2}	$H^{\Delta_{1}}$	$H^{\Delta_{2}}$	Remark
$d_{1}+d_{2}+1$	1	≥ 5	≥ 3	$\mathrm{~A}_{d_{1}}$	$\mathrm{~A}_{d_{2}}$	$d_{1}-d_{2} \geq 2$
						$\mathrm{p}\left(d_{1}, d_{2}+1\right) / d_{2}$! odd square-free
$d_{1}+7$	1	≥ 136	6	$\mathrm{~A}_{d_{1}}$	$\mathrm{~S}_{4}$	$\mathrm{p}\left(d_{1}, 7\right) / 24$ square-free
$d_{1}+5$	1	≥ 18	4	$\mathrm{~A}_{d_{1}}$	Z_{2}^{4}	$\mathrm{p}\left(d_{1}, 5\right) / 4$ square-free

Table 9. Pairs of orbit length and subgroup transitive restriction Case 8.

d_{j}	d_{r}	$H^{\Delta_{j}}$	$H^{\Delta_{r}}$	Remark
>99	$2 a$	$\mathrm{~S}_{d_{j}}$	$\mathrm{~S}_{a} \imath \mathrm{~S}_{2}, a=6,9,10,36$	$\mathrm{p}\left(d_{j}, 2 a+1\right) /\left[2(a!)^{2}\right]$ square-free
≥ 36	6	$\mathrm{~S}_{d_{j}}$	$\mathrm{~S}_{4} \times Z_{2}$	$\mathrm{p}\left(d_{j}, 7\right) / 48$ square-free
≥ 136			$\mathrm{~S}_{4}$	$\mathrm{p}\left(d_{j}, 7\right) / 24$ square-free
≥ 64	6	$\mathrm{~S}_{d_{j}}$	$\mathrm{PGL}(2,5)$	$\mathrm{p}\left(d_{j}, 7\right) / 120$ square-free
≥ 16			$Z_{3}^{2} \rtimes \mathrm{D}_{8}$	$\mathrm{p}\left(d_{j}, 7\right) / 72$ square-free
≥ 9	4	$\mathrm{~S}_{d_{j}}$	D_{8}	$\mathrm{p}\left(d_{j}, 5\right) / 8$ square-free
≥ 18			$\left[2^{2}\right]$	$\mathrm{p}\left(d_{j}, 5\right) / 4$ square-free

and so at most one of them is even square-free. If $H^{\Delta_{j}} \geq \mathrm{A}_{d_{j}}$ for all j, then $H=$ $\left(\mathrm{S}_{d_{1}} \times \cdots \times \mathrm{S}_{d_{t}}\right) \cap G$ or, reordering d_{j} if necessary, $H=\left(\mathrm{S}_{d_{1}} \times \cdots \times \mathrm{S}_{d_{t-1}} \times \mathrm{A}_{d_{t}}\right) \cap G$. For the other cases, with the help of Lemma 3.1, Corollary 3.2 and Lemmas 3.3 and 3.4, $\left(d_{j}, H^{\Delta_{j}}\right)$ is as described in Tables 3, 4 and 5.

Table 10. Pairs of orbit length and subgroup transitive restriction Case 9.

d_{j}	d_{r-1}	d_{r}	$H^{\Delta_{j}}$	$H^{\Delta_{r-1}}$	$H^{\Delta_{r}}$	Remark
≥ 136	≥ 136	6	$\mathrm{~S}_{d_{j}}$	$\mathrm{~A}_{d_{t-1}}$	$\mathrm{~S}_{4} \times Z_{2}$	$\mathrm{p}\left(d_{j}, 7\right) / 48$ odd square-free
≥ 18	≥ 18	4	$\mathrm{~S}_{d_{j}}$	$\mathrm{~A}_{d_{t-1}}$	D_{8}	$\mathrm{p}\left(d_{j}, 5\right) / 8$ odd square-free

Table 11. Pairs of orbit length and subgroup transitive restriction Case 10.

c	d_{1}	d_{2}	d_{3}	$H^{\Delta_{1}}$	$H^{\Delta_{2}}$	$H^{\Delta_{3}}$	Remark
$d_{1}+7$	$d_{1} \geq 136$	6	1	$\mathrm{~A}_{d_{1}}$	$\mathrm{~S}_{4} \times Z_{2}$	1	$\mathrm{p}\left(d_{1}, 7\right) / 48$ odd square-free
$d_{1}+5$	$d_{1} \geq 18$	4	1	$\mathrm{~A}_{d_{1}}$	D_{8}	1	$\mathrm{p}\left(d_{1}, 5\right) / 8$ odd square-free

Case 2. Assume that H fixes at least one point in c. Assume that $d_{r+1}=\cdots=d_{t}=1$ and $d_{j}>1$ for $1 \leq j \leq r$. Then, as $c \geq 5, r \geq 1$ and $t-r \leq 3$ by Lemma 3.4. If $\sum_{i=1}^{r} d_{i} \leq 4$, then $t \leq 4$ and $\sum_{i=1}^{t} d_{i} \leq 8$, and then $\left(c ; d_{1}, \ldots, d_{t} ; G, H\right)$ is as listed in Table 7. Assume that $c_{1}:=\sum_{i=1}^{r} d_{i} \geq 5$. Then $H \leq G_{1}:=\mathrm{S}_{c_{1}} \cap G$ and $|G: H|=$ $c(c-1) \cdots(c-t+r+1)\left|G_{1}: H\right|=\mathrm{p}\left(c_{1}, t-r-1\right)\left|G_{1}: H\right|$ is square-free.

Assume that $r=1$, that is, $c_{1}=d_{1}$ and $t-r=c-d_{1}$. Then, by Lemma 3.6, either $5 \leq c_{1}=d_{1} \leq 8$ and H is a transitive $\{2,3\}$-subgroup of square-free index in G_{1} or $\left(G_{1}, H\right)$ is one of $\left(\mathrm{S}_{c_{1}}, \mathrm{~S}_{c_{1}}\right),\left(\mathrm{S}_{c_{1}}, \mathrm{~A}_{c_{1}}\right),\left(\mathrm{A}_{c_{1}}, \mathrm{~A}_{c_{1}}\right),\left(\mathrm{A}_{5}, \mathrm{D}_{10}\right),\left(\mathrm{S}_{5}, Z_{5} \rtimes Z_{4}\right)$, $\left(\mathrm{A}_{6}, \operatorname{PSL}(2,5)\right),\left(\mathrm{S}_{6}, \operatorname{PGL}(2,5)\right),\left(\mathrm{S}_{7}, \operatorname{PSL}(3,2)\right)\left(\mathrm{A}_{7}, \operatorname{PSL}(3,2)\right),\left(\mathrm{S}_{8}, Z_{2}^{3} \rtimes \operatorname{PSL}(3,2)\right)$, $\left(\mathrm{A}_{8}, Z_{2}^{3} \rtimes \operatorname{PSL}(3,2)\right),\left(\mathrm{S}_{2 a}, \mathrm{~S}_{a} \imath \mathrm{~S}_{2}\right)$ or $\left(\mathrm{A}_{2 a},\left(\mathrm{~S}_{a} \backslash \mathrm{~S}_{2}\right) \cap \mathrm{A}_{2 a}\right)$, where $a \in\{6,9,10,12,36\}$. Noting that $c|G: H|$ is square-free, then $\left(c ; c_{1}, c-c_{1} ; G, H\right)$ is as listed in Table 6.

Assume that $r \geq 2$. Consider the restrictions of H on Δ_{j} for $1 \leq j \leq r$. Then, by Case 1, consider all possible pairs $\left(d_{j}, H^{\Delta_{j}}\right)$. If a pair $\left(d_{j}, H^{\Delta_{j}}\right)$ appears in Tables 2 to 5 , then $\mathbf{p}\left(d_{1}, d_{j}\right) /\left|H^{\Delta_{j}}\right| \cdot \mathrm{p}\left(d_{1}+d_{j}, t-r-1\right)=\mathbf{p}\left(d_{1}, c-d_{1}\right) /\left|H^{\Delta_{j}}\right|$ should be square-free, and then we get Tables $8-11$. If $H^{\Delta_{j}} \geq \mathrm{A}_{d_{j}}$ for all $j \leq r$ and $H^{\Delta_{i}}=\mathrm{S}_{d_{i}}$ for some $i \leq r$, then $H=\left(\mathrm{S}_{d_{1}} \times \cdots \times \mathrm{S}_{d_{r}}\right) \cap G$ or, reordering d_{j} if necessary, $H=\left(\mathrm{S}_{d_{1}} \times \cdots \times \mathrm{S}_{d_{r-1}} \times\right.$ $\left.\mathrm{A}_{d_{r}}\right) \cap G$. This concludes the proof.

4. Proof of Theorem 1.1

Let G be a finite group with $\operatorname{soc}(G)=\mathrm{A}_{c}$ for $c \geq 5$. The first part of Theorem 1.1 follows form Lemmas 3.6 and 3.7. In the following, assume that Γ is a connected ($G, 2$)-arc-transitive graph on square-free number vertices and sometimes, setting $H=G_{\alpha}$ for some $\alpha \in V \Gamma$, write $\Gamma=\operatorname{Cos}(G, H, H x H)$ for some $x \in G$ satisfying Lemma 2.1. Then the second part of Theorem 1.1 follows from Lemmas 4.1, 4.2, 4.3, 4.4 and 4.5.

Lemma 4.1. Assume that G is one of $\operatorname{PGL}(2,9), \mathrm{M}_{10}$ and $\operatorname{P\Gamma L}(2,9)$. Then Γ is isomorphic to K_{10} or the Tutte's 8-cage.

Proof. If G is primitive on $V \Gamma$, then, by [26, Main-Theorem (1)], we know that G is three-transitive on $V \Gamma$ and $\Gamma \cong \mathrm{K}_{10}$.

Thus we assume that H is not maximal in G. Then (G, H) is one of $\left(\operatorname{PGL}(2,9), \mathrm{S}_{4}\right)$, $\left(\mathrm{M}_{10}, \mathrm{~S}_{4}\right)$ and ($\left.\mathrm{P} \Gamma \mathrm{L}(2,9), \mathrm{S}_{4} \times Z_{2}\right)$. Further, for these three cases, G has a subgroup of index two which contains H, say, $X=\mathrm{S}_{6}$ for $G=\mathrm{P} \Gamma \mathrm{L}(2,9)$ and $X=\mathrm{A}_{6}$ for the other two cases. Thus Γ is a bipartite graph with two parts, say, U and V, each having size 15. It is easy to see that X acts primitively on both U and V. In particular, X acts transitively on the edges of Γ. We claim that the actions of X on U and V are not permutation equivalent; otherwise, X will have a primitive permutation representation of degree 15 with a two-transitive subconstituent, which contradicts the main theorem of [26]. Thus assume that U consists of two-subsets of $\mathbf{6}$ while V is the set of partitions of $\mathbf{6}$ into three parts with the same size. Let $\{\alpha, \beta\}$ be an edge of Γ with $\alpha \in U$ and $\beta \in V$. Then two possible cases arise. If α is not a part of β, then it is easily shown that $\Gamma(\alpha)=\beta^{H}=\left\{\beta^{h} \mid h \in H\right\}$ contains 12 partitions of $\mathbf{6}$, but H cannot act two-transitively on $\Gamma(\alpha)$, which contradicts the hypothesis. Thus α must be a part of β and, in this case, Γ is isomorphic to Tutte's 8 -cage.

Lemma 4.2. If H is a transitive subgroup of S_{c}, then $c=5,6$ and $\Gamma \cong \mathrm{K}_{6}$; or $c=6$ and $\Gamma \cong \mathrm{K}_{10}$; or $c=7,8$ and Γ or its complement graph in $\mathrm{K}_{15,15}$ is isomorphic to the point-hyperplane incidence graph of $\mathrm{PG}(3,2)$.

Proof. Assume that H is transitive on \mathbf{c} with respect to the natural action of S_{c}. Since Γ is ($G, 2$)-arc-transitive, $|H|=\left|G_{\alpha}\right|$ has at least one odd prime divisor. It follows from Lemma 3.6 and checking the imprimitive groups of degrees six and eight that one of the following three cases occurs: (i) H is maximal in G and H is one of $\left(\mathrm{S}_{a} \backslash \mathrm{~S}_{2}\right) \cap G$ for $c=2 a$ and $a \in\{6,9,10,12,36\},\left(Z_{5} \rtimes Z_{4}\right) \cap G$ for $c=5$, $\operatorname{PGL}(2,5) \cap G$ for $c=6$, $\left(Z_{3}^{2} \rtimes \mathrm{D}_{8}\right) \cap G$ for $c=6,\left(\mathrm{~S}_{4} \times Z_{2}\right) \cap G$ for $c=6$, $\operatorname{PSL}(3,2)$ for $c=7$ and $G=\mathrm{A}_{7}$, $\left(\mathrm{S}_{4} \backslash \mathrm{~S}_{2}\right) \cap G$ for $c=8$, and $Z_{2}^{4} \rtimes \mathrm{~S}_{4}$ for $c=8, Z_{2}^{3} \rtimes \operatorname{PSL}(3,2)$ for $c=8$ and $G=\mathrm{A}_{8}$; (ii) H is not maximal in G and (G, H) is one of ($\mathrm{S}_{7}, \operatorname{PSL}(3,2)$) and ($\mathrm{S}_{8}, Z_{2}^{3} \rtimes \operatorname{PSL}(3,2)$); and (iii) H is not maximal in G and (G, H) is one of $\left(\mathrm{A}_{6}, \mathrm{~A}_{4}\right),\left(\mathrm{S}_{6}, \mathrm{~S}_{4}\right),\left(\mathrm{S}_{6}, \mathrm{~A}_{4} \times Z_{2}\right)$, $\left(\mathrm{A}_{8}, Z_{2}^{3} \rtimes \mathrm{~S}_{4}\right),\left(\mathrm{A}_{8}, Z_{2}^{3} \rtimes \mathrm{~A}_{4}\right),\left(\mathrm{S}_{8}, Z_{2}^{3} \rtimes \mathrm{~S}_{4}\right)$ and $\left(\mathrm{S}_{8}, Z_{2}^{4} \rtimes \mathrm{~A}_{4}\right)$.
Case 1. Assume, first, that H is maximal in G. Then G is primitive on $V \Gamma$. Noting that H is transitive on \mathbf{c}, it follows from [26] that $c=5$ and $\Gamma \cong \mathrm{K}_{6}$, or $c=6$, $G=\mathrm{P} \Sigma \mathrm{L}(2,9)=\mathrm{S}_{6}$ and $\Gamma \cong \mathrm{K}_{10}$ (noting that this case was missed in [26]), or H is almost simple and primitive on \mathbf{c}, so H is one of $\operatorname{PGL}(2,5) \cap G$ and $\operatorname{PSL}(3,2)$. If $H=\operatorname{PGL}(2,5) \cap G$, then $\Gamma \cong \mathrm{K}_{6}$. Suppose that $G=\mathrm{A}_{7}$ and $H=\operatorname{PSL}(3,2)$. Then $|V \Gamma|=|G: H|=15$ is odd and Γ is of even valency. It yields $|\Gamma(\alpha)|=8$, and hence $H_{\beta}=G_{\alpha \beta} \cong Z_{7} \rtimes Z_{3}$ for some $\beta \in \Gamma(\alpha)$. It is easily shown that $\mathrm{N}_{G}\left(G_{\alpha \beta}\right)=G_{\alpha \beta}$. Then there is no $x \in \mathrm{~N}_{G}\left(G_{\alpha \beta}\right)$ with $\langle H, x\rangle=G$, which contradicts the hypothesis.

Case 2. Assume that $G=\mathrm{S}_{7}$ or S_{8} and $H=\operatorname{PSL}(3,2)$ or $Z_{2}^{3} \rtimes \operatorname{PSL}(3,2)$, respectively. Then $H \leq \operatorname{soc}(G)=\mathrm{A}_{c}, c=7$ or 8 . Then Γ is a bipartite graph with two parts, say, U and V, each having size 15 . Further, A_{c} is primitive on both U and V and transitive on $E \Gamma$.

Assume that the actions of A_{c} on U and on V are permutation equivalent. Then A_{c} is a primitive permutation group with degree 15 and a suborbit of size $|\Gamma(\alpha)|$.

It is known that such a primitive permutation group is two-transitive. Thus $|\Gamma(\alpha)|=14$ and $\Gamma \cong \mathrm{K}_{15,15}-15 \mathrm{~K}_{2}$, but such a graph cannot admit S_{c} acting transitively on its twoarcs, which contradicts the hypothesis.

Therefore, assume that U is the point set while V is the hyperplane set of the projective geometry $\mathrm{PG}(3,2)$, respectively. (Note that A_{7} is viewed as a transitive subgroup of $\operatorname{PSL}(4,2) \cong \mathrm{A}_{8}$ on projective points or on hyperplanes.) Then Γ or its complement graph in $\mathrm{K}_{15,15}$ is isomorphic to the point-hyperplane incidence graph of $\mathrm{PG}(3,2)$.

Case 3. Assume that $c=6$ or 8 and H is soluble. Then $H^{\Gamma(\alpha)}$ is a two-transitive affine group. Further, by checking one by one the possible $H=G_{\alpha}$ here, Γ is of valency three or four.

Suppose that Γ is of valency three. Note that the stabilizers for cubic two-arctransitive graphs are explicitly known (see [2, 18f], for example). Then the only possible case is $(G, H)=\left(\mathrm{S}_{6}, \mathrm{~S}_{4}\right)$, and so Γ is $\left.\left(\mathrm{S}_{6}\right), 4\right)$-arc-transitive. By [4], all cubic two-arc-transitive graphs of order 30 are isomorphic and five-transitive. Thus Γ is isomorphic to the graph given in Example 2.5, but such a graph cannot admit S_{6} acting transitively on vertices, which contradicts the hypothesis.

Now let Γ be of valency four. If Γ is (G, s)-transitive for $s \geq 4$, then H should contain a subgroup with quotient $\operatorname{GL}(2,3)$ by checking the stabilizers listed in Table 1, which is impossible. Thus Γ is $(G, 2)$-transitive or ($G, 3$)-transitive. Then, by Lemma 2.12, $(G, H)=\left(\mathrm{A}_{6}, \mathrm{~A}_{4}\right)$ or $\left(\mathrm{S}_{6}, \mathrm{~S}_{4}\right)$.

Suppose that $G=\mathrm{S}_{6}$ and $H=\mathrm{S}_{4} \leq \operatorname{soc}(G)=\mathrm{A}_{6}$. Then Γ is a bipartite graph with A_{6} acting primitively on both two parts, say, U and V. If the actions of A_{6} on U and V are not permutation equivalent, then a similar argument as in Lemma 4.1 yields that Γ is of valency three, which contradicts the hypothesis. Thus the actions of A_{6} on U and V are permutation equivalent. So A_{c} is a primitive group with degree 15 and a suborbit of size four, which is impossible.

The above argument implies that Γ is $\left(\mathrm{A}_{6}, 2\right)$-arc-transitive, and it is easily shown that $\left(\mathrm{A}_{6}\right)_{\alpha}=H \cap \mathrm{~A}_{6} \cong \mathrm{~A}_{4}$ is transitive on 6 . Then, replacing G by A_{6} if necessary, assume that $H=\langle\sigma, \tau\rangle$ and $G_{\alpha \beta}=\langle\sigma\rangle$, where $\sigma=(123)(456)$ and $\tau=(14)(25)$. Calculation indicates that there is no $x \in \mathrm{~N}_{G}\left(G_{\alpha \beta}\right)=\langle(123),(456)\rangle \rtimes\langle(23)(45)\rangle$ with $\langle x, H\rangle=G$, which contradicts the hypothesis.

By Lemmas 4.1 and 4.2, assume that $G \leq \mathrm{S}_{c}$ and H is intransitive on \mathbf{c} in the following three lemmas. Let $\Delta_{1}, \ldots, \Delta_{t}$ be H-orbits on \mathbf{c}, where $t \geq 2$. Let $d_{j}=\left|\Delta_{j}\right|$ for $1 \leq j \leq t$. Then Lemma 3.7 is available for our further argument. By Lemma 2.10, $H=G_{\alpha}$ has at most two insoluble composition factors. It follows that at most two of $H^{\Delta_{j}}$ are insoluble.

Lemma 4.3. If H is soluble, then Γ is isomorphic to one of $\mathrm{K}_{5}, \mathrm{O}_{3}$ and $\mathrm{K}_{5,5}-5 \mathrm{~K}_{2}$ for $c=5$, or to O_{4} for $c=7$.

Proof. Assume that $G \leq \mathrm{S}_{c}$ and H is a soluble intransitive subgroup of S_{c}.

Case 1. H is fixed-point-free on \mathbf{c}. In this case, it is shown that $d_{j} \leq 4$ for $1 \leq j \leq t$ by checking all possible $H^{\Delta_{j}}$ in Lemma 3.7. Thus $t \leq 4$ and $c=\sum_{j=1}^{t} \leq 8$ by Lemma 3.4. Further, Γ is of valency three or four by considering the possible two-transitive affine group $H^{\Gamma(\alpha)}$, and the fact that Γ is not (G, s)-transitive for $s \geq 4$, by Lemma 2.11, if Γ is of valency four.

Assume that Γ is valency three. Then (c, G, H) is one of $\left(5, \mathrm{~S}_{5}, \mathrm{~S}_{3} \times \mathrm{S}_{2}\right),\left(5, \mathrm{~A}_{5}\right.$, $\left.\left(S_{3} \times S_{2}\right) \cap A_{5}\right),\left(6, A_{6},\left(S_{4} \times S_{2}\right) \cap A_{6}\right),\left(6, S_{6}, S_{4} \times S_{2}\right)$ and $\left(7, A_{7},\left(\left[2^{2}\right] \times S_{3}\right) \cap A_{7}\right)$. If $c=7$, then $|V \Gamma|=|G: H|=210$, but there is no cubic arc-transitive graph with order 210 by [4], which contradicts the hypothesis. Each of the first four triples imply that G is primitive on $V \Gamma$, so then, by [26], the only possible case is that $c=5$ and $\Gamma \cong \mathrm{O}_{3}$.

Assume that Γ is valency four. Then (c, G, H) is one of $\left(6, \mathrm{~A}_{6},\left(\mathrm{~S}_{4} \times \mathrm{S}_{2}\right) \cap \mathrm{A}_{6}\right)$, $\left(7, S_{7}, S_{4} \times S_{3}\right),\left(7, A_{7},\left(S_{4} \times S_{3}\right) \cap A_{7}\right),\left(7, A_{7}, A_{4} \times A_{3}\right),\left(7, S_{7}, A_{4} \times S_{3}\right),\left(7, S_{7}\right.$, $\left.\mathrm{S}_{4} \times \mathrm{A}_{3}\right)$ and $\left(7, \mathrm{~A}_{7}, \mathrm{~A}_{4} \times \mathrm{A}_{3}\right)$. Each of the first three triples imply that G is primitive on $V \Gamma$, so then, by [26], $c=7$ and $\Gamma \cong \mathrm{O}_{4}$. Each of the last four triples imply that Γ is ($\mathrm{A}_{7}, 3$)-transitive. Thus suppose that $G=\mathrm{A}_{7}$ and $H=\mathrm{A}_{4} \times \mathrm{A}_{3}$. Then, for $\beta \in \Gamma(\alpha)$, calculation shows that $G_{\alpha \beta}=Z_{3}^{2}, \mathrm{~N}_{G}\left(G_{\alpha \beta}\right)=Z_{3}^{4} \rtimes Z_{4}$ and there is no $x \in \mathrm{~N}_{G}\left(G_{\alpha \beta}\right)$ with $x^{2} \in G_{\alpha \beta}$ and $\langle x, H\rangle=G$, which contradicts the hypothesis.

Case 2. H fixes exactly one point in \mathbf{c} and (c, G, H) is one of $\left(5, \mathrm{~S}_{5}, \mathrm{~S}_{4}\right),\left(5, \mathrm{~A}_{5}, \mathrm{~A}_{4}\right)$, $\left(5, S_{5}, A_{4}\right),\left(7, S_{7}, Z_{3}^{2} \rtimes D_{8}\right),\left(7, A_{7}, Z_{3}^{2} \rtimes Z_{4}\right),\left(7, S_{7}, S_{4} \times S_{2}\right),\left(7, S_{7}, A_{4} \times S_{2}\right),\left(7, S_{7}, S_{4}\right)$, $\left(7, A_{7}, S_{4}\right),\left(7, A_{7}, A_{4}\right)$. The first two triples yield $G=K_{5}$. The third triple yields $\Gamma \cong \mathrm{K}_{5,5}-5 \mathrm{~K}_{2}$.

Thus assume that $c=7$. The first two triples for $c=7 \mathrm{imply}$ that Γ is of valency nine, while the others yield that Γ is of valency three or four and $H \neq \mathrm{A}_{4} \times \mathrm{S}_{2}$. Assume that H fixes the point 7 in 7 .

Suppose that Γ is of valency nine. Then, for $\beta \in \Gamma(\alpha), H_{\beta}=G_{\alpha \beta}=\mathrm{D}_{8}$ or Z_{4} and $\mathrm{N}_{G}\left(G_{\alpha \beta}\right)$, contained in S_{6}, is a Sylow two-subgroup of S_{7}. Thus $\langle x, H\rangle \leq \mathrm{S}_{6}$ and so $\langle x, H\rangle \neq G$ for each $x \in \mathrm{~N}_{G}\left(G_{\alpha \beta}\right)$, which contradicts the hypothesis.

Suppose that Γ is of valency three. Then $|V \Gamma|$ is even. By inspecting the stabilizers of cubic arc-transitive graphs, the only possible case is that $G=\mathrm{S}_{7}$ and $H=\mathrm{S}_{4}$, which leads to a similar contradiction to that above by considering the normalizer of an arc stabilizer in G.

Suppose that Γ is of valency four. Then there are three triples, say, $\left(7, S_{7}, S_{4}\right)$, $\left(7, \mathrm{~A}_{7}, \mathrm{~S}_{4}\right),\left(7, \mathrm{~A}_{7}, \mathrm{~A}_{4}\right)$. Since H fixes 7 and is transitive on $\mathbf{6}$, so $G_{\alpha \beta}$ fixes 7 and has two orbits on $\mathbf{6}$ with size three. Then each $x \in \mathrm{~N}_{G}\left(G_{\alpha \beta}\right)$ also fixes 7, yielding $\langle x, H\rangle \neq G$, which contradicts the hypothesis.

Case 3. H fixes at least two points in \mathbf{c} and (c, G, H) is one of $\left(7, \mathrm{~S}_{7}, \mathrm{~S}_{4}\right),\left(7, \mathrm{~A}_{7}, \mathrm{~A}_{4}\right)$, $\left(6, \mathrm{~S}_{6}, \mathrm{~S}_{4}\right),\left(6, \mathrm{~A}_{6}, \mathrm{~A}_{4}\right)$. Let $\beta \in \Gamma(\alpha)$. Each of these four cases yields that $H \leq \mathrm{S}_{4}$ and $\mathrm{N}_{G}\left(G_{\alpha \beta}\right) \leq \mathrm{S}_{4} \times \mathrm{S}_{c-4}$. Thus there is no $x \in \mathrm{~N}_{G}\left(G_{\alpha \beta}\right)$ with $\langle x, H\rangle=G$, which contradicts the hypothesis.

Lemma 4.4. If H is intransitive on \mathbf{c} and H has only one insoluble composition factor, then $\Gamma \cong \mathrm{K}_{c}, \mathrm{~K}_{c, c}-c \mathrm{~K}_{2}$ or the graph in Example 2.7.

Proof. Assume that $G \leq \mathrm{S}_{c}, H$ is intransitive on \mathbf{c} and H has only one insoluble composition factor. Assume that $H^{\Delta_{1}}$ is insoluble and each $H^{\Delta_{j}}$ is soluble for $j \geq 2$. Then, by Lemmas 3.4 and 3.7, $c_{2}:=\sum_{j=2}^{t} \leq 8$.

Case 1. Assume that $d_{1}>9$, or $d_{1}=9$ and $c_{2} \leq d_{1}-2$. In this case, since $\mathrm{A}_{d_{1}}$ is not a simple group of Lie type, $H^{\Gamma(\alpha)}=G_{\alpha}^{\Gamma(\alpha)} \cong \mathrm{S}_{d_{1}}$ or $\mathrm{A}_{d_{1}}$, by checking possible $H^{\Delta_{1}}$ in Lemma 3.7. In particular, Γ is of valency d_{1}. Further, by Lemma 2.11, Γ is not (G, s)-transitive for $s \geq 4$. Let $\beta \in \Gamma(\alpha)$. Then $G_{\alpha \beta}^{[1]}=1$ by Lemma 2.9. Recalling that $\left(G_{\alpha}^{[1]}\right)^{\Gamma(\beta)} \unlhd G_{\alpha \beta}^{\Gamma(\beta)} \cong G_{\alpha \beta}^{\Gamma(\alpha)}$ and $G_{\alpha}=G_{\alpha \beta}^{[1]} \cdot\left(G_{\alpha}^{[1]}\right)^{\Gamma(\beta)} \cdot G_{\alpha}^{\Gamma(\alpha)}=G_{\alpha}^{\Gamma(\alpha)}, G_{\alpha \beta} \cong \mathrm{S}_{d_{1}-1}$ or $\mathrm{A}_{d_{1}-1}$.

Suppose that some $d_{j} \neq 1$. Assume that $d_{2} \geq \cdots \geq d_{r}>d_{r+1}=\cdots=d_{t}=1$ for a suitable $r \geq 2$. Then $H=\Gamma$ fixes set-wise a subset $\Delta=\Delta_{2} \cup \cdots \cup \Delta_{r}$ of \mathbf{c}. Noting that $|\Delta| \leq 8<d_{1}-1, L:=\left(H^{\Delta_{2}} \times \cdots \times H^{\Delta_{r}}\right) \cap H \leq G_{\alpha}^{[1]} \leq G_{\alpha \beta} \leq H$ and L has no fixed point on Δ, this implies that each $x \in \mathrm{~N}_{G}\left(G_{\alpha \beta}\right)$ also fixes Δ set-wise, and hence $\langle x, H\rangle \neq G$, which contradicts the hypothesis.

Assume that $d_{j}=1$ for $t \geq j \geq 2$. Then $H=G_{\Delta_{1}}$ and $G_{\alpha \beta}$ fixes a δ in Δ_{1}. Let $\Delta_{1}=\mathbf{d}_{1}$ and $\delta=d_{1}$. Then $\mathrm{N}_{G}\left(G_{\alpha \beta}\right) \leq \mathrm{S}_{d_{1}-1} \times \operatorname{Sym}\left(\left\{d_{1}, \delta_{1}+1, \ldots, c\right\}\right)$. Thus $\langle x, H\rangle \neq G$ for $x \in \mathrm{~N}_{G}\left(G_{\alpha \beta}\right)$ with $x^{2} \in G_{\alpha \beta}$ unless $c-d_{1}=1$. It follows that $c=d_{1}+1$ and either $\Gamma \cong \mathrm{K}_{c, c}$ if $H=\mathrm{A}_{c-1}$ and $G=\mathrm{S}_{c}$ or $\Gamma=\mathrm{K}_{c}$ otherwise.

Case 2. Assume that $5 \leq d_{1} \leq 8$, or $d_{1}=9$ and $c_{2}=8$. By Lemma 3.7, noting that $|G: H|$ is square-free, $d_{1} \leq 8$ and three cases arise.
(1) H is maximal in G and H is one of $\mathrm{S}_{c-1} \cap G$ for $c=6$ and $7,\left(\mathrm{~S}_{5} \times \mathrm{S}_{2}\right) \cap G$ for $c=7,\left(\mathrm{~S}_{6} \times \mathrm{S}_{4}\right) \cap G$ for $c=10,\left(\mathrm{~S}_{7} \times \mathrm{S}_{4}\right) \cap G$ or $\mathrm{S}_{8} \times \mathrm{S}_{3}$ for $c=11$. Then $\Gamma=\mathrm{K}_{c}$ for $c=6,7$ follows from [26].
(2) $t=2$ or $3, d_{2}>1$ and H is one of $\left(\mathrm{S}_{8} \times Z_{3}^{2} \rtimes \mathrm{D}_{8}\right) \cap G$ for $c=14,\left(\mathrm{~A}_{8} \times \mathrm{S}_{3}\right) \cap G$ or $\left(\mathrm{S}_{8} \times \mathrm{A}_{3}\right) \cap G$ for $c=11,\left(\mathrm{~S}_{6} \times \mathrm{S}_{4}\right) \cap G$ for $c=11$, and $\mathrm{A}_{5} \times \mathrm{S}_{2}$ for $c=7$. Then $G^{\Gamma(\alpha)} \cong \mathrm{A}_{d_{1}}=\operatorname{PSL}(m, q)$ for suitable m and q, and Γ is of valency d_{1} or $q^{m}-1 /(q-1)$. It is easily shown that $\mathrm{N}_{G}\left(G_{\alpha \beta}\right) \leq \operatorname{Sym}\left(\mathbf{c} \backslash \Delta_{2}\right) \times \operatorname{Sym}\left(\Delta_{2}\right)$. Thus there is no $x \in \mathrm{~N}_{G}\left(G_{\alpha \beta}\right)$ with $\langle x, H\rangle=G$, which contradicts the hypothesis.
(3) $t=2$ or $3, d_{j}=1$ for $j>1, c=c$ and either $(G, H)=\left(\mathrm{S}_{7}, \mathrm{~A}_{6}\right)$ or H is one of $\operatorname{PGL}(2,5) \cap G$ for $t=2$, and $\mathrm{S}_{5} \cap G$ for $t=3$. The first case, that is, $(G, H)=\left(\mathrm{S}_{7}, \mathrm{~A}_{6}\right)$, yields $\Gamma \cong \mathrm{K}_{7,7}-7 \mathrm{~K}_{2}$.

Suppose that $t=3$. Then either $\mathrm{N}_{G}\left(G_{\alpha \beta}\right) \leq \operatorname{Sym}\left(\Delta_{1}\right) \times \operatorname{Sym}\left(7 \backslash \Delta_{1}\right)$ when Γ is of valency six or, for some $\left.\delta \in \Delta_{1}, \mathrm{~N}_{G}\left(G_{\alpha \beta}\right) \leq \operatorname{Sym}\left(\Delta_{1} \backslash\{\delta\}\right) \times \operatorname{Sym}\left(\left(7 \backslash \Delta_{1}\right)\right) \cup\{\delta\}\right)$ when Γ is of valency five. It is easily shown that there is no $x \in \mathrm{~N}_{G}\left(G_{\alpha \beta}\right)$ with $x^{2} \in \mathrm{~N}_{G}\left(G_{\alpha \beta}\right)$ and $\langle x, H\rangle=G$, which contradicts the hypothesis.

Assume that $t=2$ and $H=\operatorname{PGL}(2,5) \cap G$. Then $H \leq \operatorname{Sym}\left(\Delta_{1}\right)$. If Γ is of valency five, then $G_{\alpha \beta} \cong \mathrm{S}_{4}$ or A_{4} is transitive on Δ_{1}, and so $\mathrm{N}_{G}\left(G_{\alpha \beta}\right) \leq \operatorname{Sym}\left(\Delta_{1}\right)$ yields a similar contradiction to that above. Thus Γ is of valency six. It is easy to see that Γ is ($\mathrm{A}_{7}, 2$)-arc-transitive. Then, replacing G by $\operatorname{soc}(G)$ if necessary, $G_{\alpha \beta} \cong Z_{5} \rtimes Z_{2}$, and $G_{\alpha \beta}$ fixes a point $\delta \in \Delta_{1}$. Set $\Delta_{1}=\mathbf{6}, \delta=6$ and $G_{\alpha \beta}=\langle\sigma, \tau\rangle$, where $\sigma=(12345)$ and $\tau=(15)(24)$. Then $\mathrm{N}_{G}\left(G_{\alpha \beta}\right)=\langle\sigma, \pi\rangle \cong Z_{5} \rtimes Z_{4}$, where $\pi=(1452)(67)$. It is easy to show $\langle x, H\rangle=\mathrm{A}_{7}$ and $x^{2} \in G_{\alpha \beta}$ for $x \in \mathrm{~N}_{G}\left(G_{\alpha \beta}\right) \backslash H$, and $x=h \pi$ for some $h \in G_{\alpha \beta}$. Then $\Gamma \cong \operatorname{Cos}\left(\mathrm{A}_{7} ; \mathrm{A}_{5}, \mathrm{~A}_{5} \pi \mathrm{~A}_{5}\right)$, as in Example 2.7.

Lemma 4.5. If H is an intransitive subgroup of S_{c} and H has at least two insoluble composition factors, then $\Gamma \cong \mathrm{O}_{k}, k \in\{6,9,10,12,36\}$.

Proof. Assume that H is intransitive on \mathbf{c} and H has at least two insoluble composition factors. By Corollary $2.10, H$ has exactly two insoluble composition factors. Consider the restrictions of H on its orbits Δ_{j} on \mathbf{c}. Then one or two of those restrictions are insoluble, and the others are soluble.

Suppose that H has two isomorphic insoluble composition factors. Then $H^{\Gamma(\alpha)}=$ $G_{\alpha}^{\Gamma(\alpha)}$ is an affine two-transitive group. By Lemmas 3.4 and 3.7, $t=2, d_{1}=2 a, d_{2}=1$, $H=\left(\mathrm{S}_{a} 乙 \mathrm{~S}_{2}\right) \cap G$ and $G=\mathrm{S}_{2 a+1}$ or $\mathrm{A}_{2 a+1}$, where $a \in\{6,9,10,36\}$. But such an H can not have an insoluble affine quotient, which contradicts the hypothesis.

Therefore, H has two nonisomorphic insoluble composition factors. Then $H^{\Gamma(\alpha)}=$ $G_{\alpha}^{\Gamma(\alpha)}$ is an almost simple two-transitive group. Further, by Lemma 3.7, assume that $H^{\Delta_{1}}$ and $H^{\Delta_{2}}$ is insoluble and any other $H^{\Delta_{j}}$ is soluble. Assume, further, that $d_{1}=\left|\Delta_{1}\right| \geq d_{2}=\left|\Delta_{2}\right|$. Noting that $H \leq \mathrm{S}_{d_{1}} \times \cdots \times \mathrm{S}_{d_{t}} \cap G$ and $|G: H|$ is square-free, $\mathrm{f}\left(c ; d_{1}, \ldots, d_{t}\right)$ is square-free. Then $d_{1}>d_{2}$ and $H^{\Delta_{1}}=\mathrm{A}_{d_{1}}$ or $\mathrm{S}_{d_{1}}$ by Lemma 3.4. So $G_{\alpha}^{\Gamma(\alpha)} \cong \mathrm{A}_{d_{1}}$ or $\mathrm{S}_{d_{1}}$.

Assume that $d_{1} \leq 8$. Then either $\mathrm{A}_{d_{1}} \times \cdots \times \mathrm{A}_{d_{r}} \leq H \leq \mathrm{S}_{d_{1}} \times \cdots \times \mathrm{S}_{d_{r}}$ for some $2 \leq r \leq t$ such that $d_{1}, \ldots, d_{r} \geq 2$ and $d_{j}=1$ for $j>r$ or the pair $\left(H^{\Delta_{1}}, H^{\Delta_{2}}\right)$ appears in Table 2 for $c=d_{1}+d_{2}$ and in Table 8 for $c=d_{1}+d_{2}+1$. By calculation, these two cases yield $t=2=r, H=\left(\mathrm{S}_{6} \times \mathrm{S}_{5}\right) \cap G$ for $c=11$ and $\mathrm{A}_{8} \times \mathrm{A}_{6} \leq H \leq \mathrm{S}_{8} \times \mathrm{S}_{6}$ for $c=14$. If $c=14$, then $\operatorname{soc}\left(G_{\alpha}^{\Gamma(\alpha)}\right) \cong \mathrm{A}_{8}$ and the other insoluble composition factor of H should be A_{7} or $\operatorname{PSL}(3,2)$, which contradicts the hypothesis. Thus $c=11$, and $H=\left(\mathrm{S}_{6} \times \mathrm{S}_{5}\right) \cap G$ is maximal in G. Then $\Gamma \cong \mathrm{O}_{6}$ follows from [26].

Assume that $d_{1} \geq 9$. Then Γ is of valency d_{1}, and Γ is not (G, s)-transitive for $s \geq 4$ by Lemma 2.11, so $\mathrm{G}_{\alpha \beta}^{[1]}=1$ by Lemma 2.9. Then, by (2.1), we conclude that $H=G_{\alpha}=G_{\alpha \beta}^{[1]} \cdot\left(G_{\alpha}^{[1]}\right)^{\Gamma(\beta)} \cdot G_{\alpha}^{\Gamma(\alpha)} \cong\left(\mathrm{A}_{d_{1}} \times \mathrm{A}_{d_{1}-1}\right) \rtimes Z_{2}^{l}$ for some $l \leq 2$. In particular, $d_{2}=d_{1}-1$. By Lemma 3.4, $\mathrm{f}\left(d_{1}+d_{2} ; d_{1}, d_{2}\right)=\left(2 d_{1}-1\right)!/\left(d_{1}!\left(d_{1}-1\right)!\right)$ is squarefree. Then $d_{1} \in\{9,10,12,36\}$ by Corollary 3.2. It is easy to see that $|G: H|=$ $c!/\left(d_{1}!\left(d_{1}-1\right)!\cdot 2^{l-i}\right)$ for $i=1$ or 2 . Since $|G: H|$ is square-free, calculation indicates that $1 \leq i \leq l$ and $c=2 d_{1}-1$. It implies that $H=\left(\mathrm{S}_{d_{1}} \times \mathrm{S}_{d_{1}-1}\right) \cap G$ is maximal in G. Then $\Gamma \cong \mathrm{O}_{d_{1}}$ follows from [26].

References

[1] R. W. Baddeley, 'Two-arc transitive graphs and twisted wreath products', J. Algebraic Combin. 2 (1993), 215-237.
[2] N. Biggs, Algebraic Graph Theory (Cambridge University Press, New York, 1992).
[3] Y. Cheng and J. Oxley, 'On weakly symmetric graphs of order twice a prime', J. Combin. Theory B 42 (1987), 196-211.
[4] M. Conder and P. Dobcsányi, 'Trivalent symmetric graphs on up to 768 vertices', J. Combin. Math. Combin. Comput. 40 (2002), 41-63.
[5] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of Finite Groups (Oxford University Press, Eynsham, 1985).
[6] J. D. Dixon and B. Mortimer, Permutation Groups (Springer, New York-Berlin-Heidelberg, 1996).
[7] X. G. Fang and C. E. Praeger, 'Finite two-arc transitive graphs admitting a Suzuki simple group', Comm. Algebra 27 (1999), 3727-3754.
[8] X. G. Fang and C. E. Praeger, 'Finite two-arc transitive graphs admitting a Ree simple group', Comm. Algebra 27 (1999), 3755-3769.
[9] A. Gardiner, 'Arc transitivity in graphs', Quart. J. Math. Oxford (2) 24 (1973), 399-407.
[10] A. Hassani, M. Iranmanesh and C. E. Praeger, 'On vertex-imprimitive graphs of order a product of three distinct odd primes', J. Combin. Math. Combin. Comput. 28 (1998), 187-213.
[11] A. Hassani, L. R. Nochefranca and C. E. Praeger, 'Two-arc transitive graphs admitting a twodimensional projective linear group', J. Group Theory 2 (1999), 335-353.
[12] M. A. Iranmanesh and C. E. Praeger, 'On non-Cayley vertex-transitive graphs of order a product of three primes', J. Combin. Theory B $\mathbf{8 1}$ (2001), 1-19.
[13] A. A. Ivanov and C. E. Praeger, 'On finite affine 2-arc transitive graphs. Algebraic combinatorics', Eur. J. Combin. 14(5) (1993), 421-444.
[14] W. M. Kantor, 'Homogeneous designs and geometric lattices', J. Combin. Theory A 38 (1985), 66-74.
[15] C. H. Li, 'A family of quasiprimitive 2-arc-transitive graphs which have non-quasiprimitive full automorphism groups', Eur. J. Combin. 19 (1998), 499-502.
[16] C. H. Li, 'On automorphism groups of quasiprimitive 2-arc transitive graphs', J. Algebric Combin. 28 (2008), 261-270.
[17] C. H. Li, Z. Liu and Z. P. Lu, 'The edge-transitive tetravalent Cayley graphs of square-free order', Discrete Math. 312 (2012), 1952-1967.
[18] C. H. Li, Z. P. Lu and D. Marušič, 'On primitive permutation groups with small suborbits and their orbital graphs', J. Algebra 279 (2004), 749-770.
[19] C. H. Li, Z. P. Lu and G. X. Wang, 'Vertex-transitive cubic graphs of square-free order', J. Graph Theory 75 (2014), 1-19.
[20] C. H. Li and A. Seress, 'The primitive permutation groups of square-free degree', Bull. Lond. Math. Soc. 35 (2003), 635-644.
[21] C. H. Li and A. Seress, 'On vertex-primitive non-Cayley graphs of square-free order', Des. Codes Cryptogr. 34 (2005), 265-281.
[22] D. Marušič and P. Potočnik, 'Classifying 2-arc-transitive graphs of order a product of two primes', Discrete Math. 244 (2002), 331-338.
[23] A. A. Miller and C. E. Praeger, 'Non-Cayley vertex-transitive graphs of order twice the product of two odd primes', J. Algebraic Combin. 3 (1994), 77-111.
[24] C. E. Praeger, 'An O'Nan-Scott theorem for finite quasiprimitive permutation groups and an application to 2-arc transitive graphs', J. Lond. Math. Soc. 47 (1992), 227-239.
[25] C. E. Praeger, 'On a reduction theorem for finite bipartite 2-arc transitive graphs', Australas. J. Combin. 7 (1993), 21-36.
[26] C. E. Praeger and J. Wang, 'On primitive representations of finite alternating and symmetric groups with a 2-transitive subconstituent', J. Algebra 180 (1996), 808-833.
[27] C. E. Praeger, R. J. Wang and M. Y. Xu, 'Symmetric graphs of order a product of two distinct primes', J. Combin. Theory Ser. B 58 (1993), 299-318.
[28] C. E. Praeger and M. Y. Xu, 'Vertex-primitive graphs of order a product of two distinct primes', J. Combin. Theory Ser. B 59 (1993), 245-266.
[29] G. Sabidussi, 'Vertex-transitive graphs', Monatsh. Math. 68 (1964), 426-438.
[30] A. Seress, 'On vertex-transitive, non-Cayley graphs of order pqr', Discrete Math. 182 (1998), 279-292.
[31] J. M. Turner, 'Point-symmetric graphs with a prime number of points', J. Combin. Theory $\mathbf{3}(2)$ (1967), 136-145.
[32] R. J. Wang and M. Y. Xu, 'A classification of symmetric graph of order $3 p$ ', J. Combin. Theory B 58 (1993), 197-216.
[33] R. Weiss, 'Groups with a (B, N)-pair and locally transitive graphs', J. Nagoya Math. 74 (1979), $1-21$.
[34] R. Weiss, 's-transitive graphs, Algebraic methods in graph theory', Colloq. Soc. Janos Bolyai 25 (1981), 827-847.
[35] R. Weiss, 'The nonexistence of 8-transitive graphs', Combinatorica $\mathbf{1}$ (1981), 309-311.

GAI XIA WANG, Department of Applied Mathematics,
AnHui University of Technology, Ma' an shan 243002, PR China e-mail: wgx075@163.com

ZAI PING LU, Center for Combinatorics, LPMC, Nankai University, Tianjin 300071, PR China e-mail: lu@nankai.edu.cn

[^0]: This work is supported by National Natural Science Foundation of China (11371204) and NNSFC (11601005).
 (C) 2017 Australian Mathematical Publishing Association Inc. 1446-7887/2017 \$16.00

