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Abstract. A path in an edge-colored graph is called conflict-free if it
contains a color that is used by exactly one of its edges. An edge-colored
graph G is conflict-free connected if for any two distinct vertices of G,
there is a conflict-free path connecting them. For a connected graph G,
the conflict-free connection number of G, denoted by cfc(G), is defined
as the minimum number of colors that are required to make G conflict-
free connected. In this paper, we investigate the conflict-free connection
numbers of connected claw-free graphs, especially line graphs. We use
L(G) to denote the line graph of a graph G. In general, the k-iterated

line graph of a graph G, denoted by Lk(G), is the line graph of the
graph Lk−1(G), where k ≥ 2 is a positive integer. We first show that
for an arbitrary connected graph G, there exists a positive integer k

such that cfc(Lk(G)) ≤ 2. Secondly, we get the exact value of the
conflict-free connection number of a connected claw-free graph, espe-
cially a connected line graph. Thirdly, we prove that for an arbitrary
connected graph G and an arbitrary positive integer k, we always have
cfc(Lk+1(G)) ≤ cfc(Lk(G)), with only the exception that G is isomor-
phic to a star of order at least 5 and k = 1. Finally, we obtain the exact
values of cfc(Lk(G)), and use them as an efficient tool to get the smallest
nonnegative integer k0 such that cfc(Lk0(G)) = 2.

Keywords: conflict-free connection number, claw-free graphs, line graph-
s, k-iterated line graphs.

1 Introduction

All graphs considered in this paper are simple, finite, and undirected. We follow
the terminology and notation of Bondy and Murty in [3] for those not defined
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here. For a connected graph G, let V (G), E(G), κ(G) and λ(G) denote the vertex
set, the edge set, the vertex-connectivity and the edge-connectivity of G, respec-
tively. Throughout this paper, we use Pn, Cn and Kn to denote a path, a cycle
and a complete graph of order n, respectively. And we call G a star of order
r+1, denoted by K1,r, which is a complete bipartite graph with the bipartition
V (G) = X ∪ Y satisfying |X | = 1 and |Y | = r.

Let G be a nontrivial connected graph with an edge-coloring c : E(G) →
{0, 1, . . . , t}, t ∈ N, where adjacent edges may be colored with the same color.
When adjacent edges of G receive different colors by c, the edge-coloring c is
called proper. The chromatic index of G, denoted by χ′(G), is the minimum
number of colors needed in a proper coloring of G. A path in G is called a
rainbow path if no two edges of the path are colored with the same color. The
graphG is called rainbow connected if for any two distinct vertices of G, there is a
rainbow path connecting them. For a connected graph G, the rainbow connection
number of G, denoted by rc(G), is defined as the minimum number of colors that
are needed to make G rainbow connected. These concepts were first introduced
by Chartrand et al. in [5] and have been well-studied since then. For further
details, we refer the reader to a book [11] and a survey paper [10].

Motivated by the rainbow connection coloring and proper coloring in graphs,
Andrews et al. [1] and Borozan et al. [4] proposed the concept of proper-path
coloring. Let G be a nontrivial connected graph with an edge-coloring. A path
in G is called a proper path if no two adjacent edges of the path are colored with
the same color. The graph G is called proper connected if for any two distinct
vertices of G, there is a proper path connecting them. The proper connection
number of G, denoted by pc(G), is defined as the minimum number of colors
that are needed to make G proper connected. For more details, we refer to a
dynamic survey [9].

Inspired by the above mentioned two connection colorings and conflict-free
colorings of graphs and hypergraphs [12], Czap et al. [7] recently introduced the
concept of the conflict-free connection number of a nontrivial connected graph.
Let G be a nontrivial connected graph with an edge-coloring c. A path in G is
called conflict-free if it contains a color that is used by exactly one of its edges.
The graph G is conflict-free connected (with respect to the edge-coloring c) if for
any two distinct vertices of G, there is a conflict-free path connecting them. In
this case, the edge-coloring c is called a conflict-free connection coloring (CFC-
coloring for short). For a connected graph G, the conflict-free connection number
of G, denoted by cfc(G), is defined as the minimum number of colors that are
required to make G conflict-free connected. For the graph with a single vertex or
without any vertex, we assume the value of its conflict-free connection number
equal to 0.

The conflict-free connection of graphs has the following application back-
ground. In a communication network between wireless signal towers, it is fun-
damental that the network is connected. We can assign signal connection paths
between signal towers which may have other signal towers as intermediaries while
requiring a large enough number of frequencies for this communication. If a same
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frequency appears more than once on a connection path between two towers A
and B, then we cannot use this frequency to communicate between A and B
along this path since mutual interference occurs, i.e., conflict happens. So we
need a connection path between the two towers A and B on which there is a
frequency that appears exactly once, and in this way we can use this unique fre-
quency to communicate between A and B along this path without any mutual
interference, i.e., conflict-free. Therefore, our goal is to allocate the minimum
number of frequencies such that any two signal towers will be able to connect in
this communication network without mutual interference, i.e., conflict-free. This
situation can be modeled by a graph. Suppose that we assign a vertex to each
signal tower, an edge between two vertices if the corresponding signal towers
are directly connected by a signal and assign a color to each edge based on the
assigned frequency used for the communication. Then, the minimum number
of frequencies needed to assign the connections between towers so that there is
always a connection path to communicate between each pair of towers with the
property that there is a frequency that appears exactly once on this path, i.e., we
can use this unique frequency to communicate between the pair of towers along
this path without mutual interference (conflict-free), is precisely the conflict-free
connection number of the corresponding graph.

The following observations are immediate.

Proposition 1 Let G be a connected graph on n ≥ 2 vertices. Then we have
(i) cfc(G) = 1 if and only if G is complete;
(ii) cfc(G) ≥ 2 if G is noncomplete;
(iii) cfc(G) ≤ n− 1.

In [7], Czap et al. first gave the exact value of the conflict-free connection
number for a path on n edges.

Theorem 1 ([7]) cfc(Pn) = ⌈log2 n⌉.

Then they investigated the graphs with conflict-free connection number 2.
If the number of components of G increases after removing an edge e from G,
then e is called a cut-edge of G. Let C(G) be the subgraph of a graph G induced
by the set of cut-edges of G. A linear forest in a graph G is a subgraph each
component of which is a path.

Theorem 2 ([7]) If G is a noncomplete 2-connected graph, then cfc(G) = 2.

Theorem 3 ([7]) If G is a connected graph with at least 3 vertices and C(G)
is a linear forest whose each component is of order 2, then cfc(G) = 2.

In fact, we can weaken the condition of Theorem 2, and get that the same
result holds for 2-edge-connected graphs, whose proof is similar to that of The-
orem 3 in [7]. For completeness, we give its proof here. Before we proceed to the
result and its proof, we need the following lemmas which are useful in our proof,
and can be found in [7].
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Lemma 1 ([7]) Let u, v be two distinct vertices and let e = xy be an edge of
a 2-connected graph G. Then there is a u – v path in G containing the edge e.

A block of a graph G is a maximal connected subgraph of G without cut-
vertices. A connected graph with no cut-vertex therefore has just one block,
namely the graph itself. An edge is a block if and only if it is a cut-edge. A
block consisting of an edge is called trivial. Note that any nontrivial block is 2-
connected.

Lemma 2 ([7]) Let G be a connected graph. Then from its every nontrivial
block an edge can be chosen so that the set of all such chosen edges forms a
matching.

Theorem 4 Let G be a noncomplete 2-edge-connected graph. Then cfc(G) = 2.

Proof. If G is a noncomplete 2-connected graph, then we are done. So we only
consider the case that G has at least one cut-vertex. Note that G has a block
decomposition with each block having at least 3 vertices, that is, each block is
nontrivial. By Lemma 2, we choose from each block one edge so that all chosen
edges create a matching S. Next we color the edges from S with color 2 and all
remaining edges of G with color 1.

Now we prove this coloring makes G conflict-free connected, that is, for any
two distinct vertices x and y, we need to find a conflict-free x – y path.

Case 1. Let x and y belong to the same block B. Then by Lemma 1, there
is an x – y path, in B, containing the edge of B colored with color 2. Clearly,
this x – y path is conflict-free.

Case 2. Let x and y be in different blocks. Consider a shortest x – y path
in G. This path goes through blocks, say B1, B2, . . . , Br, r ≥ 2, in this order,
where x ∈ V (B1) and y ∈ V (Br). Let vi be a common vertex of blocks Bi and
Bi+1, 1 ≤ i ≤ r− 1. Set y = vr. Clearly, x 6= v1. We choose an x – v1 path in B1

going through the edge assigned 2, and then a vi – vi+1 path in Bi+1 omitting
the edge colored with 2 in Bi for 1 ≤ i ≤ r − 1. Obviously, the concatenation of
the above r paths is an conflict-free x – y path.

For a general graph G with connectivity 1, the authors of [7] gave the bounds
on cfc(G). Let G be a connected graph and h(G) = max{cfc(K) : K is a
component of C(G)}. In fact, h(G) = 0 if G is 2-edge-connected. So we restate
that theorem as follows.

Theorem 5 ([7]) If G is a connected graph with at least one cut-edge, then
h(G) ≤ cfc(G) ≤ h(G) + 1. Moreover, these bounds are tight.

Line graphs form one of the most important graph classes, and there have
been a lot of results on line graphs, see [8]. In this paper we also deal with line
graphs. Recall that the line graph of a graph G is the graph L(G) whose vertex
set V (L(G)) = E(G) and two vertices e1, e2 of L(G) are adjacent if and only if
they are adjacent in G. The iterated line graph of a graph G, denoted by L2(G),
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is the line graph of the graph L(G). In general, the k-iterated line graph of a
graph G, denoted by Lk(G), is the line graph of the graph Lk−1(G), where k ≥ 2
is a positive integer. We call a graph claw-free if it does not contain a claw K1,3

as its induced subgraph. Notice that a line graph is claw-free; see [2] or [8].
This paper is organized as follows: In Section 2, we give some properties

concerning the line graphs, and based on them, we show that for an arbitrary
connected graph G, there exists a positive integer k such that cfc(Lk(G)) ≤ 2.
In Section 3, we start with the investigation of one special family of graphs, and
then classify the graphs among them with cfc(G) = h(G) + 1. Using this result,
we first get the exact value of the conflict-free connection number of a connected
claw-free graph. As a corollary, for a connected line graph G, we obtain the
value of cfc(G). Then, we prove that for an arbitrary connected graph G and an
arbitrary positive integer k, we always have cfc(Lk+1(G)) ≤ cfc(Lk(G)), with
only the exception that G is isomorphic to a star of order at least 5 and k = 1.
Finally, we obtain the exact values of cfc(Lk(G)), and use them as an efficient
tool to get the smallest nonnegative integer k0 such that cfc(Lk0(G)) = 2.

2 Dynamic behavior of the line graph operator

If one component C of C(G) is either a cut-edge or a path of order at least 3
whose internal vertices are all of degree 2 in G, then we call C a cut-path of G.

Lemma 3 For a connected claw-free graph G, each component of C(G) is a
cut-path of G.

Proof. Firstly, C(G) is a linear forest. Otherwise, there exists a vertex v ∈ C(G)
whose degree is larger than 2 in C(G). Then v and three neighbors of v in C(G)
induce a K1,3 in G, contradicting the condition that G is claw-free. Secondly,
with a similar reason, if one component of C(G) has at least 3 vertices, then all
of its internal vertices must be of degree 2 in G. So, each component of C(G)
must be a cut-path of G.

Since a line graph is claw-free, Lemma 3 is valid for line graphs.

Corollary 1 For a connected line graph G, every component of C(G) is a cut-
path of G.

In 1969, Chartrand and Stewart [6] showed that κ(L(G)) ≥ λ(G), if λ(G) ≥ 2.
So, the following result is obvious.

Lemma 4 The line graph of a 2-edge-connected graph is 2-connected.

Now, we examine the dynamic behavior of the line graph operator, and get
our main result of this section.

Theorem 6 For any connected graph G, there exists a positive integer k such
that cfc(Lk(G)) ≤ 2.
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Proof. If G is a 2-edge-connected graph, then by Proposition 1, Theorem 2 and
Lemma 4, we obtain cfc(L(G)) ≤ 2. In this case, we set k = 1. In the following,
we concentrate on the graphs having at least one cut-edge.

Let P be a set of paths in C(G) who have at least one internal vertex and
whose internal vertices are all of degree 2 in G. If P = ∅, then we show that L(G)
is 2-edge-connected. Suppose otherwise, if there is a cut-edge e1e2 in L(G), then
there is a path of length 2 in G whose internal vertex is of degree 2, which is a
contradiction. Thus, by Proposition 1 and Theorem 4, we have cfc(L(G)) ≤ 2.
Then we also set k = 1 in this case.

If P 6= ∅, let p be the length of a longest path among P . Notice that the
cut-paths of Li+1(G) are the same as the cut-paths of Li(G), shortened by one
edge (and no new cut-paths can appear). Then, by Corollary 1, each component
of C(Li(G)) must be a cut-path of Li(G) for 1 ≤ i ≤ p. Since L(Pj) = Pj−1

for any positive integer j ≥ 1, each component of C(Lp−1(G)) is of order 2. By
Theorem 3, we have cfc(Lp−1(G)) = 2. Thus, we set k = p− 1 in this case.

The proof is thus complete.

3 The values cfc(Lk(G)) of iterated line graphs

In this section, we first investigate the connected graphs G having at least one
cut-edge and each component of C(G) is a cut-path of G. Among them, we
characterize the graphs G satisfying cfc(G) = h(G), and the graphs G satisfying
cfc(G) = h(G) + 1. Let G be a connected graph of order n. If n = 2, G ∼= P2,
and hence cfc(G) = h(G) = 1. In the following, we assume n ≥ 3. If h(G) = 1,
then by Theorem 3, we always have cfc(G) = 2 = h(G) + 1. So we only need to
discuss the case of h(G) ≥ 2.

Theorem 7 Let G be a connected graph having at least one cut-edge, and C(G)
be its linear forest whose each component is a cut-path of G and h(G) ≥ 2.
Then cfc(G) = h(G) + 1 if and only if there are at least two components of
C(G) whose conflict-free connection numbers attain h(G); and cfc(G) = h(G) if
and only if there is only one component of C(G) whose conflict-free connection
number attains h(G).

Proof. We first consider the case that there are at least two components of C(G)
whose conflict-free connection numbers attain h(G), say C1 and C2. Consider the
two vertices v1 ∈ V (C1) and v2 ∈ V (C2) such that the distance d(v1, v2) between
v1 and v2 is maximum. Assume that there exists a CFC-coloring c of G with
h(G) colors. Since any v1 – v2 path in G contains all the edges of C1 and C2,
there is no conflict-free path connecting v1 and v2. Consequently, h(G) < cfc(G).
Together with Theorem 5, we have cfc(G) = h(G) + 1 in this case.

Next, we assume that there is only one component of C(G) whose conflict-
free connection number is h(G), say C0. Now we give an edge-coloring of G.
First, we color C0 with h(G) colors, say 1, 2, . . . , h(G), just like the coloring of
a path stated in Theorem 1 of [7]. Let e0 be the edge colored with color h(G)
in C0. Similarly, we color all the other components K of C(G) with the colors
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from {1, . . . , h(G)− 1}. Note that only e0 is assigned h(G) among all the edges
of C(G).

Then according to Lemma 2, we choose in any nontrivial block of G an edge
so that all chosen edges form a matching S. We color the edges from S with
color h(G), and the remaining edges with color 1.

In the following we have to show that for any two distinct vertices x and
y, there is a conflict-free x – y path. If the vertices x and y are from the same
component of C(G), then such a path exists according to Theorem 1. If they
are in the same nontrivial block, then by Lemma 1, there is an x – y path going
through the edge assigned h(G). If none of the above situations appears, then x

and y are either from distinct components of C(G), or distinct nontrivial blocks,
or one is from a component of C(G) and the other from a nontrivial block.

Consider a shortest x – y path P in G. Let v1, . . . , vr−1 be all cut-vertices of
G contained in P , in this order. Set x = v0 and y = vr. The path P goes through
blocks B1, B2 . . . , Br indicated by the vertices v0 and v1, v1 and v2, . . ., vr−1 and
vr, respectively. At least one of the blocks is nontrivial. If P must go through
the edge e0, then in each block Bi, 1 ≤ i ≤ r, we choose a monochromatic
vi−1 – vi path. The path concatenated of the above monochromatic paths is
a desired one, since h(G) only appears once. Otherwise, we consider the first
nontrivial block Bi, i ∈ {1, . . . , r}. In it, we choose a conflict-free vi−1 – vi
path going through the edge of Bi colored with h(G). Then in the remaining
blocks Bj , j ∈ {1, . . . , r} \ {i}, we choose a monochromatic vj−1 – vj path. The
searched conflict-free x – y path is then concatenated of these above paths. The
resulting x – y path contains only one edge assigned h(G). Combining the fact
cfc(G) ≥ h(G), we have cfc(G) = h(G) in this case.

Therefore, from above, it is easy to see that there does not exist the case
simultaneously satisfying cfc(G) = h(G) + 1 and there is only one component
of C(G) whose conflict-free connection number attains h(G).

In contrast, if cfc(G) = h(G), there is only one component of C(G) whose
conflict-free connection number attains h(G). Otherwise, cfc(G) = h(G) + 1.

The result thus follows.

As a byproduct, we can immediately get the value of the conflict-free con-
nection number of a connected claw-free graph. Before it, we state a structure
theorem concerning a connected claw-free graph. Notice that a complete graph
is claw-free. Recall that for a connected claw-free graph G, each component of
C(G) is a cut-path of G. Let p(G), or simply p, be the length of a longest cut-path
of G.

Theorem 8 Let G be a connected claw-free graph. Then G must belong to one
of the following four cases:

i) G is complete;

ii) G is noncomplete and 2-edge-connected;

iii) C(G) has at least two components K satisfying cfc(K) = ⌈log2(p+ 1)⌉;
iv) C(G) has only one component K satisfying cfc(K) = ⌈log2(p+ 1)⌉.
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Proof. There are two cases according to whether G has a cut-edge or not. If
G has no cut-edge, we can distinguish two subcases according to whether G is
complete or not. If G has a cut-edge, then we distinguish two subcases according
to whether C(G) has only one component K satisfying cfc(K) = ⌈log2(p+ 1)⌉
or not. Thus, a connected claw-free graph G must be in one of the above four
subcases.

According to Lemma 3, Theorems 3, 7 and 8, we get the following result.

Theorem 9 Let G be a connected claw-free graph of order n ≥ 2. Then we have
i) cfc(G) = 1 if G is complete;
ii) cfc(G) = 2 if G is noncomplete and 2-edge-connected, or p = 1 and

n ≥ 3;
iii) cfc(G) = ⌈log2(p + 1)⌉ + 1, if C(G) has at least two components K

satisfying cfc(K) = ⌈log2(p + 1)⌉; otherwise, cfc(G) = ⌈log2(p + 1)⌉, where
p ≥ 2.

Since line graphs are claw-free, from Theorems 8 and 9 we immediately get
the following result.

Corollary 2 Let G be a connected line graph of order n ≥ 2. Then we have
i) cfc(G) = 1 if G is complete;
ii) cfc(G) = 2 if G is noncomplete and 2-edge-connected, or p = 1 and

n ≥ 3;
iii) cfc(G) = ⌈log2(p + 1)⌉ + 1, if C(G) has at least two components K

satisfying cfc(K) = ⌈log2(p + 1)⌉; otherwise, cfc(G) = ⌈log2(p + 1)⌉, where
p ≥ 2.

Next, for a connected graphG and a positive integer k, we compare cfc(Lk+1(G))
and cfc(Lk(G)). For almost all cases, we find that cfc(Lk+1(G)) ≤ cfc(Lk(G)).
However, note that if G is a complete graph of order n ≥ 4, then L(G) is non-
complete, since there exist two nonadjacent edges in G. In this case, we have
cfc(L(G)) ≥ 2 > 1 = cfc(G). So we first characterize the connected graphs
whose line graphs are complete graphs.

Lemma 5 The line graph L(G) of a connected graph G is complete if and only
if G is isomorphic to a star or K3.

Proof. If G is isomorphic to a star or K3, then obviously L(G) is complete.
Conversely, suppose L(G) is complete. From Whitney isomorphism theorem

of line graphs (see [8]), i.e., two graphs H and H ′ have isomorphic line graphs if
and only if H and H ′ are isomorphic, or one of them is isomorphic to the claw
K1,3 and the other is isomorphic to the triangle K3, we immediately get that G
is isomorphic to a star or K3.

By Lemma 5 we get the following result.
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Theorem 10 Let G be a connected graph which is not isomorphic to a star of or-
der at least 5, and k be an arbitrary positive integer. Then we have cfc(Lk+1(G)) ≤
cfc(Lk(G)).

Proof. To the contrary, we suppose that there exists a positive integer k0 such
that cfc(Lk0+1(G)) > cfc(Lk0(G)). We first claim that Lk0+1(G) has at least one
cut-edge. Otherwise, by Proposition 1 and Theorem 4, we have cfc(Lk0+1(G)) ≤
2. If Lk0(G) is complete, then it follows from Lemma 5 that Lk0(G) ∼= C3.
Then Lk0+1(G) is also complete, implying cfc(Lk0+1(G)) = cfc(Lk0(G)) = 1.
If Lk0(G) is noncomplete, then by Proposition 1, we have cfc(Lk0(G)) ≥ 2;
clearly, cfc(Lk0+1(G)) ≤ cfc(Lk0(G)) in this case. In both cases, we have
cfc(Lk0+1(G)) ≤ cfc(Lk0(G)), a contradiction.

From Corollary 1, it follows that for a positive integer i, each component
of C(Li(G)) is a cut-path of Li(G). Let pi be the length of a largest path of
C(Li(G)). Then we have pi+1 = pi − 1, meaning h(Li+1(G)) ≤ h(Li(G)). Set
h(Lk0(G)) = q. Since Lk0+1(G) has a cut-edge, we deduce that q ≥ 2. And
we know h(Lk0+1(G)) = q − 1 or h(Lk0+1(G)) = q. If h(Lk0+1(G)) = q − 1,
by Theorem 5, we have q − 1 ≤ cfc(Lk0+1(G)) ≤ q. For the same reason,
q ≤ cfc(Lk0(G)) ≤ q+1. Thus, it makes a contradiction to the supposition that
cfc(Lk0+1(G)) > cfc(Lk0(G)).

Then we have h(Lk0+1(G)) = q, cfc(Lk0+1(G)) = q+1 and cfc(Lk0(G)) = q.
By Theorem 7, there are at least two components of C(Lk0+1(G)) whose conflict-
free connection numbers are q, and there is only one component of C(Lk0(G))
whose conflict-free connection number is q. Since every cut-path of Lk0+1(G)
corresponds to a cut-path of Lk0(G), a cut-path of Lk0+1(G) is shorter than
its corresponding cut-path of Lk0(G). So there is at most one component of
C(Lk0+1(G)) whose conflict-free connection number is q, a contradiction. Thus,
we have cfc(Lk+1(G)) ≤ cfc(Lk(G)) for any positive integer k.

If G is a star of order at least 5, then Li(G) (i ≥ 2) are noncomplete and 2-
connected. The following result is easily obtained according to Theorem 2.

Theorem 11 Let G be isomorphic to a star of order at least 5, and k ≥ 2 be a
positive integer. Then we have cfc(Lk+1(G)) = cfc(Lk(G)).

Combining the above two theorems, we get a main result of this section.

Theorem 12 For an arbitrary connected graph G and an arbitrary positive in-
teger k, we always have cfc(Lk+1(G)) ≤ cfc(Lk(G)), with only the exception
that G is isomorphic to a star of order at least 5 and k = 1.

From Theorem 6, we know the existence of a positive integer k such that
cfc(Lk(G)) ≤ 2. From Proposition 1 we know that only complete graphs have
the cfc-value equal to 1. So, the iterated line graph Lk(G) of a connected graph
G has a cfc-value 1 if and only if G is complete for k = 0 from Proposition 1,
or G is isomorphic to a star of order at least 3 for k = 1 from Lemma 5, or G

is K3 for all k ≥ 1, or G is a path of order n ≥ 4 for k = n− 2. Next, we want
to find the smallest nonnegative integer k0 such that cfc(Lk0(G)) = 2. Let k an
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arbitrary nonnegative integer. Based on Proposition 1, Theorems 1 through 4,
Lemmas 4 and 5, we begin with the investigation of the exact value of cfc(Lk(G))
when G is a path, a complete graph, a star, or a noncomplete 2-edge-connected
graph.

Lemma 6 Let n ≥ 2 be a positive integer. Then cfc(Lk(Pn)) = ⌈log2(n− k)⌉ if
k < n− 1; otherwise, cfc(Lk(Pn)) = 0.

Lemma 7 Let G be a complete graph of order n ≥ 3. Then cfc(Lk(G)) = 1 for
any nonnegative integer k if n = 3; cfc(G) = 1 and cfc(Lk(G)) = 2 for any
positive integer k if n ≥ 4.

Lemma 8 Let G be a star of order n ≥ 4. Then cfc(G) = n−1; cfc(L(G)) = 1;
for a positive integer k ≥ 2, cfc(Lk(G)) = 1 if n = 4, cfc(Lk(G)) = 2 if n ≥ 5.

Lemma 9 Let G be a noncomplete 2-edge-connected graph of order n ≥ 4. Then
cfc(Lk(G)) = 2 for a nonnegative integer k.

Let G = {G | G is a connected graph of order n ≥ 4, G has a cut-edge, G is
not a path or a star}. Except for the above four kinds of graphs in Lemmas 6
through 9, we know little about the exact values of the conflict-free connection
numbers of other connected graphs, even for a general tree. So for a graph G ∈ G,
it is difficult to give the value of cfc(Lk(G)) when k = 0. However, based on
Corollaries 1 and 2, we can give the value of cfc(Lk(G)) when k ≥ 1. Set p0
be the length of a longest cut-path of L(G), and let p0 = 0 if L(G) is 2-edge-
connected.

Lemma 10 Let G ∈ G and let k be an arbitrary positive integer. Then we have
i) cfc(Lk(G)) = 2 always holds if p0 ≤ 1 or there is only one component K

of C(L(G)) satisfying cfc(K) = h(L(G)) = 2;
ii) otherwise, for k ≤ p0 − 1, cfc(Lk(G)) = ⌈log2(p0 − k + 2)⌉ if there is

only one component K of C(Lk(G)) satisfying cfc(K) = ⌈log2(p0 − k+2)⌉, and
cfc(Lk(G)) = ⌈log2(p0 − k + 2)⌉+ 1 if there are at least two components K of
C(Lk(G)) satisfying cfc(K) = ⌈log2(p0−k+2)⌉; for k > p0−1, cfc(Lk(G)) = 2
always holds.

From Lemmas 6 through 10, we can easily get the smallest nonnegative in-
teger k0 such that cfc(Lk0(G)) = 2.

Theorem 13 Let G be a connected graph and k0 be the smallest nonnegative
integer such that cfc(Lk0(G)) = 2. Then we have

i) for G ∈ {K2,K3,K1,3}, k0 does not exist;
ii) for a path of order 3, k0 = 0; for a path of order n ≥ 4, k0 = n− 4;
iii) for a complete graph of order at least 4, k0 = 1;
iv) for a star of order at least 5, k0 = 2;
v) for a noncomplete 2-edge-connected graph, k0 = 0;
vi) for a graph G ∈ G, k0 = 0 if cfc(G) = 2; k0 = 1 if C(L(G)) = ∅

or C(L(G)) is a linear forest whose each component is of order 2 or there is
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only one component K of C(L(G)) satisfying cfc(K) = h(L(G)) = 2; otherwise,
k0 = p0 − 2 if there is only one path of length p0 in C(L(G)) and there is no
path of length p0 − 1 in C(L(G)) with p0 ≥ 4, k0 = p0 − 1 if there is only one
path of length p0 in C(L(G)) and there is a path of length p0 − 1 in C(L(G))
with p0 ≥ 3, k0 = p0 if there are at least two paths of length p0 in C(L(G)) with
p0 ≥ 2.

Proof. Obviously, we can get i) through v) from Lemmas 6 through 9.
For vi), if cfc(G) = 2, then we have k0 = 0. If C(L(G)) = ∅, then we have

L(G) is 2-edge-connected, and hence, cfc(L(G)) = 2 by Theorem 4; if C(L(G)) is
a linear forest whose each component is of order 2, then from Theorem 3 it follows
that cfc(L(G)) = 2; if there is only one component K of C(L(G)) satisfying
cfc(K) = h(L(G)) = 2, then it follows from Corollary 2 that cfc(L(G)) = 2.
Thus, in the above three cases, we obtain k0 = 1. In the following, we consider
the case that both cfc(G) ≥ 3 and cfc(L(G)) ≥ 3. First, we give a fact that
the largest integer ℓ such that cfc(Pℓ) = 2 is 4. Let G0 be a connected graph,
then from Corollary 2, we have cfc(G0) = 3 if there is a component K satisfying
cfc(K) = h(G0) = 3 or there are at least two componentsK satisfying cfc(K) =
h(G0) = 2. However, cfc(G0) = 2 if there is a path of length 3 and there is no
path of length 2 in C(G0), or if there is a path of length 2 and there is a path
of length 1 in C(G0), or if there are at least two components each of which is of
order 2 in C(G0). Correspondingly, we get our results.

Acknowledgement: The authors would like to thank the reviewers for helpful
suggestions and comments.
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