The von Neumann entropy of random multipartite graphs*

Dan Hu^{a}, Xueliang Li^{b}, Xiaogang Liu^{a}, Shenggui Zhang ${ }^{a, \dagger}$
${ }^{a}$ Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P.R. China
${ }^{b}$ Center for Combinatorics, Nankai University, Tianjin 300071, P.R. China

Abstract

Let G be a graph with n vertices and $L(G)$ its Laplacian matrix. Define $\rho_{G}=$ $\frac{1}{d_{G}} L(G)$ to be the density matrix of G, where d_{G} denotes the sum of degrees of all vertices of G. Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ be the eigenvalues of ρ_{G}. The von Neumann entropy of G is defined as $S(G)=-\sum_{i=1}^{n} \lambda_{i} \log _{2} \lambda_{i}$. In this paper, we establish a lower bound and an upper bound to the von Neumann entropy for random multipartite graphs.

Keywords: Random multipartite graphs; von Neumann entropy; Density matrix Mathematics Subject Classification: 05C50, 15A18.

1 Introduction

Let G be a simple undirected graph with vertex set $V_{G}=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and edge set E_{G}. The adjacency matrix $A(G)$ of G is the symmetric matrix $\left[A_{i j}\right]$, where $A_{i j}=A_{j i}=1$ if vertices v_{i} and v_{j} are adjacent, otherwise $A_{i j}=A_{j i}=0$. Let $d_{G}\left(v_{i}\right)$ denote the degree of the vertex v_{i}, that is, the number of edges incident to v_{i}. The Laplacian matrix of G is the matrix $L(G)=D(G)-A(G)$, where $D(G)$, called the degree matrix, is a diagonal matrix with the diagonal entries the degrees of the vertices of G.

The von Neumann entropy was originally introduced by von Neumann around 1927 for proving the irreversibility of quantum measurement processes in quantum mechanics [18]. It is defined to be

$$
S=-\sum_{i=1} \mu_{i} \log _{2} \mu_{i}
$$

[^0]where μ_{i} are the eigenvalues of the density matrix describing the quantum-mechanical system (Normally, a density matrix is a positive semidefinite matrix whose trace is equal to 1). Up until now, there are lots of studies on the von Neumann entropy, and we refer the reader to $[1-3,9-12,15,16,18,20]$.

In [4], Braunstein et al. defined the density matrix of a graph G as

$$
\rho_{G}:=\frac{1}{d_{G}} L(G)=\frac{1}{\operatorname{Tr}(D(G))} L(G),
$$

where $d_{G}=\sum_{v_{i} \in V_{G}} d_{G}\left(v_{i}\right)=\operatorname{Tr}(D(G))$ is the degree sum of G, and $\operatorname{Tr}(D(G))$ means the trace of $D(G)$. Suppose that $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}=0$ are the eigenvalues of ρ_{G}. Then

$$
S(G):=-\sum_{i=1}^{n} \lambda_{i} \log _{2} \lambda_{i},
$$

is called the von Neumann entropy of a graph G. By convention, define $0 \log _{2} 0=0$. It is known that this quantity can be interpreted as a measure of regularity of graphs [?] and also that it can be used as a measure of graph complexity [8].

Up until now, lots of results on the von Neumann entropy of a graph have been given. For examples, Braunstein et al. [4] proved that, for a graph G on n vertices, $0 \leq S(G) \leq \log _{2}(n-1)$, with the left equality holding if and only if G is a graph with only one edge, and the right equality holding if and only if G is the complete graph K_{n}. In [14], Passerini and Severini showed that the von Neumann entropy of regular graphs with n vertices tends to $\log _{2}(n-1)$ as n tends to ∞. More interesting, in [6], Du et al. considered the von Neumann entropy of the Erdős-Rényi model $\mathcal{G}_{n}(p)$, named after Erdős and Rényi [7]. They proved that, for almost all $G_{n}(p) \in \mathcal{G}_{n}(p)$, almost surely $S\left(G_{n}(p)\right)=(1+o(1)) \log _{2} n$, independently of p, where an event in a probability space is said to be held asymptotically almost surely (a.s. for short) if its probability goes to one as n tends to infinity.

The purpose of this paper is to study the von Neumann entropy of random multipartite graphs. We use $K_{n ; \beta_{1}, \ldots, \beta_{k}}$ to denote the complete k-partite graph with vertex set V $(|V|=n)$, whose parts are $V_{1}, \ldots, V_{k}(2 \leq k=k(n) \leq n)$ satisfying $\left|V_{i}\right|=n \beta_{i}=n \beta_{i}(n)$, $i=1,2, \ldots, k$. The random k-partite graph model $\mathcal{G}_{n ; \beta_{1}, \ldots, \beta_{k}}(p)$ consist of all random k partite graphs in which the edges are chosen independently with probability p from the set of edges of $K_{n ; \beta_{1}, \ldots, \beta_{k}}$. We denote by $A_{n, k}:=A\left(G_{n ; \beta_{1}, \ldots, \beta_{k}}(p)\right)=\left(x_{i j}\right)_{n \times n}$ the adjacency matrix of random k-partite graphs $G_{n ; \beta_{1}, \ldots, \beta_{k}}(p) \in \mathcal{G}_{n ; \beta_{1}, \ldots, \beta_{k}}(p)$, where $x_{i j}$ is a random indicator variable for $\left\{v_{i}, v_{j}\right\}$ being an edge with probability p, for $i \in V_{l}$ and $j \in V \backslash V_{l}$, $i \neq j, 1 \leq l \leq k$. Then $A_{n, k}$ satisfies the following properties:

- $x_{i j}$'s, $1 \leq i<j \leq n$, are independent random variables with $x_{i j}=x_{j i}$;
- $\operatorname{Pr}\left(x_{i j}=1\right)=1-\operatorname{Pr}\left(x_{i j}=0\right)=p$ if $i \in V_{l}$ and $j \in V \backslash V_{l}$, while $\operatorname{Pr}\left(x_{i j}=0\right)=1$ if $i \in V_{l}$ and $j \in V_{l}, 1 \leq l \leq k$.

Note that when $k=n, \mathcal{G}_{n ; \beta_{1}, \ldots, \beta_{k}}=\mathcal{G}_{n}(p)$, that is, the random multipartite graph model can be viewed as a generalization to the Erdős-Rényi model.

In this paper, we establish a lower bound and an upper bound to $S\left(G_{n ; \beta_{1}, \ldots, \beta_{k}}\right)$ for almost all $G_{n ; \beta_{1}, \ldots, \beta_{k}}(p) \in \mathcal{G}_{n ; \beta_{1}, \ldots, \beta_{k}}(p)$ by the limiting behavior of the spectra of random symmetric matrices. Our main result is stated as follows:

Theorem 1. Let $G_{n ; \beta_{1}, \ldots, \beta_{k}}(p) \in \mathcal{G}_{n ; \beta_{1}, \ldots, \beta_{k}}(p)$. Then almost surely

$$
\begin{aligned}
\frac{1+o(1)}{1-\sum_{i=1}^{k} \beta_{i}^{2}} \log _{2}\left(n\left(1-\sum_{i=1}^{k} \beta_{i}^{2}\right)\right) & \leq S\left(G_{n ; \beta_{1}, \ldots, \beta_{k}}(p)\right) \\
& \leq-\frac{1-\max _{1 \leq i \leq k}\left\{\beta_{i}\right\}+o(1)}{1-\sum_{i=1}^{k} \beta_{i}^{2}} \log _{2}\left(\frac{1-\max _{1 \leq i \leq k}\left\{\beta_{i}\right\}}{n\left(1-\sum_{i=1}^{k} \beta_{i}^{2}\right)}\right),
\end{aligned}
$$

independently of $0<p<1$, where o(1) means a quantity goes to 0 as n goes to infinity.

2 Proof of Theorem 1

Before proceeding, we give some definitions and lemmas.

Lemma 1 (Bryc et al. [5]). Let X be a symmetric random matrix satisfying that the entries $X_{i j}, 1 \leq i<j \leq n$, are a collection of independent identically distributed (i.i.d.) random variables with $\mathbb{E}\left(X_{12}\right)=0, \operatorname{Var}\left(X_{12}\right)=1$ and $\mathbb{E}\left(X_{12}^{4}\right)<\infty$. Define $S:=\operatorname{diag}\left(\sum_{i \neq j} X_{i j}\right)_{1 \leq i \leq n}$ and let $M=S-X$, where $\operatorname{diag}\{\cdot\}$ denotes a diagonal matrix. Denote by $\|M\|$ the spectral radius of M. Then

$$
\lim _{n \rightarrow \infty} \frac{\|M\|}{\sqrt{2 n \log n}}=1 \quad \text { a.s. }
$$

i.e., with probability $1, \frac{\|M\|}{\sqrt{2 n \log n}}$ converges weakly to 1 as n tends to infinity.

Lemma 2 (Weyl [19]). Let X, Y and Z be $n \times n$ Hermitian matrices such that $X=Y+Z$. Suppose that X, Y, Z have eigenvalues, respectively, $\lambda_{1}(X) \geq \cdots \geq \lambda_{n}(X), \lambda_{1}(Y) \geq \cdots \geq$ $\lambda_{n}(Y), \lambda_{1}(Z) \geq \cdots \geq \lambda_{n}(Z)$. Then, for $i=1,2, \ldots, n$, the following inequalities hold:

$$
\lambda_{i}(Y)+\lambda_{n}(Z) \leq \lambda_{i}(X) \leq \lambda_{i}(Y)+\lambda_{1}(Z) .
$$

Lemma 3 (Shiryaev [17]). Let X_{1}, X_{2}, \ldots be an infinite sequence of i.i.d. random variables with expected value $\mathbb{E}\left(X_{1}\right)=\mathbb{E}\left(X_{2}\right)=\cdots=\mu$, and $\mathbb{E}\left|X_{j}\right|<\infty$. Then

$$
\bar{X}_{n}:=\frac{1}{n}\left(X_{1}+X_{2}+\cdots+X_{n}\right) \rightarrow \mu \quad \text { a.s. }
$$

Proof of Theorem 1. Note that the parts V_{1}, \ldots, V_{k} of the random k-partite graph $G_{n ; \beta_{1}, \ldots, \beta_{k}}(p)$ satisfy $\left|V_{i}\right|=n \beta_{i}, \quad i=1,2, \ldots, k$. Then the adjacency matrix $A_{n, k}$ of $G_{n ; \beta_{1}, \ldots, \beta_{k}}(p)$ satisfies

$$
A_{n, k}+A_{n, k}^{\prime}=A_{n}
$$

where

$$
A_{n, k}^{\prime}=\left(\begin{array}{cccc}
A_{n \beta_{1}} & & & \\
& A_{n \beta_{2}} & & \\
& & \ddots & \\
& & & A_{n \beta_{k}}
\end{array}\right)_{n \times n,}
$$

$A_{n}:=A\left(G_{n}(p)\right)$, and $A_{n \beta_{i}}:=A\left(G_{n \beta_{i}}(p)\right)$ for $i=1,2, \ldots, k$.
The degree matrix $D_{n, k}:=D\left(G_{n ; \beta_{1}, \ldots, \beta_{k}}(p)\right)$ of $G_{n ; \beta_{1}, \ldots, \beta_{k}}(p)$ satisfies

$$
D_{n, k}+D_{n, k}^{\prime}=D_{n}
$$

where

$$
D_{n, k}^{\prime}=\left(\begin{array}{cccc}
D_{n \beta_{1}} & & & \\
& D_{n \beta_{2}} & & \\
& & \ddots & \\
& & & D_{n \beta_{k}}
\end{array}\right)_{n \times n,}
$$

$D_{n}:=D\left(G_{n}(p)\right)$, and $D_{n \beta_{i}}:=D\left(G_{n \beta_{i}}(p)\right)$ for $i=1,2, \ldots, k$.
The Laplacian matrix $L_{n, k}:=L\left(G_{n ; \beta_{1}, \ldots, \beta_{k}}(p)\right)$ of $G_{n ; \beta_{1}, \ldots, \beta_{k}}(p)$ satisfies

$$
L_{n, k}+L_{n, k}^{\prime}=L_{n}
$$

where

$$
L_{n, k}^{\prime}=\left(\begin{array}{cccc}
L_{n \beta_{1}} & & & \\
& L_{n \beta_{2}} & & \\
& & \ddots & \\
& & & L_{n \beta_{k}}
\end{array}\right)_{n \times n,}
$$

$L_{n}:=L\left(G_{n}(p)\right)$, and $L_{n \beta_{i}}:=L\left(G_{n \beta_{i}}(p)\right)$ for $i=1,2, \ldots, k$.
Let

$$
S=\frac{1}{\sqrt{p(1-p)}}\left[D_{n}-p(n-1) I_{n}\right]
$$

and

$$
X=\frac{1}{\sqrt{p(1-p)}}\left[A_{n}-p\left(J_{n}-I_{n}\right)\right]
$$

where J_{n} is the $n \times n$ all-ones matrix, and I_{n} is the $n \times n$ identity matrix. Define an auxiliary matrix

$$
\begin{aligned}
\widetilde{L_{n}} & :=L_{n}-p(n-1) I_{n}+p\left(J_{n}-I_{n}\right) \\
& =\left(D_{n}-p(n-1) I_{n}\right)-\left(A_{n}-p\left(J_{n}-I_{n}\right)\right) \\
& =\sqrt{p(1-p)}(S-X) .
\end{aligned}
$$

Note that $\mathbb{E}\left(X_{12}\right)=0, \operatorname{Var}\left(X_{12}\right)=1$, and

$$
\mathbb{E}\left(X_{12}^{4}\right)=\frac{1}{p^{2}(1-p)^{2}}\left(p-4 p^{2}+6 p^{3}-3 p^{4}\right)<\infty .
$$

By Lemma 1, we have

$$
\lim _{n \rightarrow \infty} \frac{\left\|\widetilde{L_{n}}\right\|}{\sqrt{2 p(1-p) n \log n}}=1 \quad \text { a.s. }
$$

Then

$$
\lim _{n \rightarrow \infty} \frac{\left\|\widetilde{L_{n}}\right\|}{n}=0 \quad \text { a.s. },
$$

i.e.,

$$
\left\|\widetilde{L_{n}}\right\|=o(1) n \quad \text { a.s. }
$$

Let $R_{n}:=p(n-1) I_{n}-p\left(J_{n}-I_{n}\right)$. Then

$$
\widetilde{L_{n}}+R_{n}=L_{n} .
$$

Suppose that $L_{n}, \widetilde{L_{n}}, R_{n}$ have eigenvalues, respectively, $\mu_{1}\left(L_{n}\right) \geq \cdots \geq \mu_{n}\left(L_{n}\right), \lambda_{1}\left(\widetilde{L_{n}}\right) \geq$ $\cdots \geq \lambda_{n}\left(\widetilde{L_{n}}\right), \lambda_{1}\left(R_{n}\right) \geq \cdots \geq \lambda_{n}\left(R_{n}\right)$. It follows from Lemma 2 that

$$
\lambda_{i}\left(R_{n}\right)+\lambda_{n}\left(\widetilde{L_{n}}\right) \leq \mu_{i}\left(L_{n}\right) \leq \lambda_{i}\left(R_{n}\right)+\lambda_{1}\left(\widetilde{L_{n}}\right), \text { for } i=1,2, \ldots, n .
$$

Note that $\lambda_{i}\left(R_{n}\right)=p n$ for $i=1,2, \ldots, n-1$ and $\lambda_{n}\left(R_{n}\right)=0$. We have

$$
\begin{equation*}
\mu_{i}\left(L_{n}\right)=(p+o(1)) n \quad \text { a.s. for } 1 \leq i \leq n-1, \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu_{n}\left(L_{n}\right)=o(1) n \text { a.s. } \tag{2.2}
\end{equation*}
$$

In the following, we evaluate the eigenvalues of $L_{n, k}$ according to the spectral distribution of L_{n} and $L_{n, k}^{\prime}$.

Since $L_{n, k}=L_{n}-L_{n, k}^{\prime}$, Lemma 2 implies that for $1 \leq i \leq n$,

$$
\begin{equation*}
\mu_{i}\left(L_{n}\right)+\mu_{n}\left(-L_{n, k}^{\prime}\right) \leq \mu_{i}\left(L_{n, k}\right) \leq \mu_{i}\left(L_{n}\right)+\mu_{1}\left(-L_{n, k}^{\prime}\right), \tag{2.3}
\end{equation*}
$$

where $\mu_{n}\left(-L_{n, k}^{\prime}\right)$ and $\mu_{1}\left(-L_{n, k}^{\prime}\right)$ are the minimum and maximum eigenvalues of $-L_{n, k}^{\prime}$ respectively. By (2.1), (2.2) and (2.3), we have

$$
\begin{equation*}
n p\left(1-\max _{1 \leq i \leq k}\left\{\beta_{i}\right\}\right)+o(1) n \leq \mu_{i}\left(L_{n, k}\right) \leq n p+o(1) n \quad \text { a.s., for } 1 \leq i \leq n-1, \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
-n p \max _{1 \leq i \leq k}\left\{\beta_{i}\right\}+o(1) n \leq \mu_{n}\left(L_{n, k}\right) \leq o(1) n \quad \text { a.s. } \tag{2.5}
\end{equation*}
$$

Consider the trace $\operatorname{Tr}\left(D_{n, k}\right)$ of $D_{n, k}$. Note that $\operatorname{Tr}\left(D_{n, k}\right)=2 \sum_{i>j}\left(A_{n, k}\right)_{i j}$. Since $\left(A_{n}\right)_{i j}(i>j)$ are $i . i . d$. with mean p and variance $p(1-p)$, according to Lemma 3, we obtain that with probability 1 ,

$$
\lim _{n \rightarrow \infty} \frac{\sum_{i>j}\left(A_{n}\right)_{i j}}{\frac{n(n-1)}{2}}=p
$$

i.e.,

$$
\sum_{i>j}\left(A_{n}\right)_{i j}=(p / 2+o(1)) n^{2} \quad \text { a.s. }
$$

Then

$$
\operatorname{Tr}\left(D_{n}\right)=(p+o(1)) n^{2} \quad \text { a.s. }
$$

Similarly, for $i=1,2, \ldots, k$,

$$
\operatorname{Tr}\left(D_{n \beta_{i}}\right)=(p+o(1)) n^{2} \beta_{i}^{2} \quad \text { a.s. }
$$

Thus,

$$
\begin{align*}
\operatorname{Tr}\left(D_{n, k}\right) & =2 \sum_{i>j}\left(A_{n, k}\right)_{i j}=2 \sum_{i>j}\left(A_{n}-A_{n, k}^{\prime}\right)_{i j} \\
& =2 \sum_{i>j}\left(A_{n}\right)_{i j}-2 \sum_{i>j}\left(A_{n, k}^{\prime}\right)_{i j} \\
& =2 \sum_{n \geq i>j \geq 1}\left(A_{n}\right)_{i j}-2\left(\sum_{n \beta_{1} \geq i>j \geq 1}\left(A_{n \beta_{1}}\right)_{i j}+\cdots+\sum_{n \beta_{k} \geq i>j \geq 1}\left(A_{n \beta_{k}}\right)_{i j}\right) \\
& =(p+o(1)) n^{2}\left((p+o(1))\left(n \beta_{1}\right)^{2}+\cdots+(p+o(1))\left(n \beta_{k}\right)^{2}\right) \\
& =p\left(1-\sum_{i=1}^{k} \beta_{i}^{2}\right) n^{2}+o(1) n^{2} \text { a.s. } \tag{2.6}
\end{align*}
$$

By (2.4), (2.5) and (2.6), the eigenvalues of $\rho_{G_{n, k}}=\frac{L_{n, k}}{\operatorname{Tr}\left(D_{n, k}\right)}$ satisfy that, for $1 \leq i \leq n-1$,

$$
\begin{equation*}
\frac{p\left(1-\max _{1 \leq i \leq k}\left\{\beta_{i}\right\}\right)+o(1)}{p\left(1-\sum_{i=1}^{k} \beta_{i}^{2}\right) n+o(1) n} \leq \lambda_{i}\left(\rho_{G_{n, k}}\right) \leq \frac{p+o(1)}{p\left(1-\sum_{i=1}^{k} \beta_{i}^{2}\right) n+o(1) n} \text { a.s., } \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{-p \max _{1 \leq i \leq k}\left\{\beta_{i}\right\}+o(1)}{p\left(1-\sum_{i=1}^{k} \beta_{i}^{2}\right) n+o(1) n} \leq \lambda_{n}\left(\rho_{G_{n, k}}\right) \leq \frac{o(1)}{p\left(1-\sum_{i=1}^{k} \beta_{i}^{2}\right) n+o(1) n} \text { a.s. } \tag{2.8}
\end{equation*}
$$

Then (2.7) and (2.8) imply that

$$
\begin{align*}
S\left(G_{n ; \beta_{1}, \ldots, \beta_{k}}(p)\right) \geq & -\sum_{i=1}^{n-1}\left(\frac{p+o(1)}{p\left(1-\sum_{i=1}^{k} \beta_{i}^{2}\right) n+o(1) n} \log _{2}\left(\frac{p+o(1)}{p\left(1-\sum_{i=1}^{k} \beta_{i}^{2}\right) n+o(1) n}\right)\right) \\
& -\frac{o(1)}{p\left(1-\sum_{i=1}^{k} \beta_{i}^{2}\right) n+o(1) n} \log _{2}\left(\frac{o(1)}{p\left(1-\sum_{i=1}^{k} \beta_{i}^{2}\right) n+o(1) n}\right) \\
= & \frac{1+o(1)}{1-\sum_{i=1}^{k} \beta_{i}^{2}} \log _{2}\left(n\left(1-\sum_{i=1}^{k} \beta_{i}^{2}\right)\right) \tag{2.9}
\end{align*}
$$

and

$$
\begin{align*}
S\left(G_{n ; \beta_{1}, \ldots, \beta_{k}}(p)\right) \leq & -\sum_{i=1}^{n-1}\left(\frac{p\left(1-\max _{1 \leq i \leq k}\left\{\beta_{i}\right\}\right)+o(1)}{p\left(1-\sum_{i=1}^{k} \beta_{i}^{2}\right) n+o(1) n} \log _{2}\left(\frac{p\left(1-\max _{1 \leq i \leq k}\left\{\beta_{i}\right\}\right)+o(1)}{p\left(1-\sum_{i=1}^{k} \beta_{i}^{2}\right) n+o(1) n}\right)\right) \\
& -\frac{-p \max _{1 \leq i \leq k}\left\{\beta_{i}\right\}+o(1)}{p\left(1-\sum_{i=1}^{k} \beta_{i}^{2}\right) n+o(1) n} \log _{2}\left(\frac{-p \max _{1 \leq i \leq k}\left\{\beta_{i}\right\}+o(1)}{p\left(1-\sum_{i=1}^{k} \beta_{i}^{2}\right) n+o(1) n}\right) \\
= & -\frac{1-\max _{1 \leq i \leq k}\left\{\beta_{i}\right\}+o(1)}{1-\sum_{i=1}^{k} \beta_{i}^{2}} \log _{2}\left(\frac{1-\max _{1 \leq i \leq k}\left\{\beta_{i}\right\}}{n\left(1-\sum_{i=1}^{k} \beta_{i}^{2}\right)}\right) . \tag{2.10}
\end{align*}
$$

This completes the proof.

At last, we present some results implied by Theorem 1.
Corollary 1. Let $G_{n ; \beta_{1}, \ldots, \beta_{k}}(p) \in \mathcal{G}_{n ; \beta_{1}, \ldots, \beta_{k}}(p)$. Then

$$
S\left(G_{n ; \beta_{1}, \ldots, \beta_{k}}(p)\right)=(1+o(1)) \log _{2} n \quad \text { a.s. }
$$

if and only if $\max \left\{n \beta_{1}, \ldots, n \beta_{k}\right\}=o(1) n$.
Note that if $k=n$, then $G_{n ; \beta_{1}, \ldots, \beta_{k}}(p)=G_{n}(p)$, that is, $\beta_{i}=\frac{1}{n}, 1 \leq i \leq k$. By Corollary 1 , we have the following result immediately.

Corollary 2. ([6]) Let $G_{n}(p) \in \mathcal{G}_{n}(p)$ be a random graph. Then almost surely $S\left(G_{n}(p)\right)=$ $(1+o(1)) \log _{2} n$.

Corollary 3. Let $G_{n ; \beta_{1}, \ldots, \beta_{k}}(p) \in \mathcal{G}_{n ; \beta_{1}, \ldots, \beta_{k}}(p)$ satisfying $\lim _{n \rightarrow \infty} \max _{1 \leq i \leq k}\left\{\beta_{i}\right\}>0$ and $\lim _{n \rightarrow \infty} \frac{\beta_{i}}{\beta_{j}}=1$. Then

$$
\frac{1+o(1)}{1-\frac{1}{k}} \log _{2}\left(n\left(1-\frac{1}{k}\right)\right) \leq S\left(G_{n ; \beta_{1}, \ldots, \beta_{k}}(p)\right) \leq\left(1+\frac{k-1}{k} o(1)\right) \log _{2} n .
$$

Let $f(n), g(n)$ be two functions of n. Then $f(n)=o(g(n))$ means that $f(n) / g(n) \rightarrow 0$, as $n \rightarrow \infty$; and $f(n)=O(g(n))$ means that there exists a constant C such that $|f(n)| \leq$ $C g(n)$, as $n \rightarrow \infty$.

Corollary 4. Let $G_{n ; \beta_{1}, \ldots, \beta_{k}}(p) \in \mathcal{G}_{n ; \beta_{1}, \ldots, \beta_{k}}(p)$ satisfying $\lim _{n \rightarrow \infty} \max _{1 \leq i \leq k}\left\{\beta_{i}\right\}>0$, and there exist β_{i} and β_{j} such that $\lim _{n \rightarrow \infty} \frac{\beta_{i}}{\beta_{j}}<1$, that is, there exists an integer $r \geq 1$ such that $\left|V_{1}\right|, \ldots,\left|V_{r}\right|$ are of order $O(n)$ and $\left|V_{r+1}\right|, \ldots,\left|V_{k}\right|$ are of order o(n). Then almost surely

$$
\begin{aligned}
\frac{1+o(1)}{1-\sum_{i=1}^{r} \beta_{i}^{2}} \log _{2}\left(n\left(1-\sum_{i=1}^{r} \beta_{i}^{2}\right)\right) & \leq S\left(G_{n ; \beta_{1}, \ldots, \beta_{k}}(p)\right) \\
& \leq-\frac{1-\max _{1 \leq i \leq r}\left\{\beta_{i}\right\}+o(1)}{1-\sum_{i=1}^{r} \beta_{i}^{2}} \log _{2}\left(\frac{1-\max _{1 \leq i \leq r}\left\{\beta_{i}\right\}}{n\left(1-\sum_{i=1}^{r} \beta_{i}^{2}\right)}\right) .
\end{aligned}
$$

References

[1] K. Anand, G. Bianconi, Entropy measures for networks: Toward an information theory of complex topologies, Phys. Rev. E, 80 (2009) 045102(R).
[2] K. Anand, G. Bianconi, S. Severini, Shannon and von Neumann entropy of random networks with heterogeneous expected degree, Phys. Rev. E, 83 (2011) 036109.
[3] K.M.R. Audenaert, A Sharp Fannes-type Inequality for the von Neumann Entropy, J. Phys. A, 40(28) (2007) 8127-8136.
[4] S.L. Braunstein, S. Ghosh, S. Severini, The Laplacian of a graph as a density matrix: a basic combinatorial approach to separability of mixed states, Ann. Comb., 10(3) (2006) 291-317.
[5] W. Bryc, A. Dembo, T. Jiang, Spectral measure of large random Hankel, Markov and Toeplitz matrices, Ann. Probab., 34 (2006) 1-38.
[6] W. Du, X. Li, Y. Li, S. Severini, A note on the von Neumann entropy of random graphs, Linear. Algebra. Appl., 433 (2010) 1722-1725.
[7] P. Erdős, A. Rényi, On random graphs I, Publ. Math. Debrecen., 6 (1959) 290-297.
[8] L. Han, F. Escolano, E.R. Hancock, Graph characterizations from von Neumann entropy, Pattern Recognit. Lett. 33(15) (2012) 1958-1967.
[9] Y. Li, Y. Wang, Further results on entropy and separability, J. Phys. A: Math. Theor., 45 (2012) 385305.
[10] T. Nie, Z. Guo, K. Zhao, Z. Lu, Using mapping entropy to identify node centrality in complex networks, Phys. A, 453 (2016) 290-297.
[11] O. Osenda, F.M. Pont, A. Okopińska, P. Serra, Exact finite reduced density matrix and von Neumann entropy for the Calogero model, J. Phys. A, 48(48) (2015) 485301.
[12] O. Osenda, P. Serra, Scaling of the von Neumann entropy in a two-electron system near the ionization threshold, Phys. Rev. A, 75(4) (2007) 810-814.
[13] F. Passerini and S. Severini, Quantifying complexity in networks: the von Neumann entropy, International Journal of Agent Technologies and Systems, 1(4) (2009) 58-67.
[14] F. Passerini, S. Severini, The von Neumann entropy of networks, December 142008. Available at SSRN: http://ssrn.com/abstract=1382662 or http://dx.doi.org/ 10.2139/ssrn.1382662.]
[15] D. Petz, Quantum Information Theory and Quantum Statistics, Springer, Berlin, 2008.
[16] C. Rovelli, F. Vidotto, Single particle in quantum gravity and Braunstein-GhoshSeverini entropy of a spin network, Phys. Rev. D, 81 (2010) 044038.
[17] A.N. Shiryaev, Probability, 2nd edition, New York: Springer-Verlag, 1996.
[18] J. von Neumann, Mathematische Grundlagen der Quantenmechanik, Berlin, 1932; English translation by R. T. Beyer, Mathematical Foundations of Quantum Mechanics, Princeton, 1955.
[19] H. Weyl, Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen, Math. Ann., 71 (2010) 441-479.
[20] L. Zhang, J. Wu, Von Neumann entropy-preserving quantum operation, Phys. Lett. A, 375 (2011) 4163-4165.

[^0]: *Supported by NSFC (No. 11571135, 11671320 and 11601431)
 ${ }^{\dagger}$ Corresponding author. E-mail addresses: hudan@mail.nwpu.edu.cn, lxl@nankai.edu.cn, xiaogliu@nwpu.edu.cn, sgzhang@nwpu.edu.cn.

