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Abstract

Let G be a graph with n vertices and L(G) its Laplacian matrix. Define ρG =

1
dG
L(G) to be the density matrix of G, where dG denotes the sum of degrees of all

vertices of G. Let λ1, λ2, . . . , λn be the eigenvalues of ρG. The von Neumann entropy

of G is defined as S(G) = −
∑n

i=1 λi log2 λi. In this paper, we establish a lower bound

and an upper bound to the von Neumann entropy for random multipartite graphs.
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1 Introduction

Let G be a simple undirected graph with vertex set VG = {v1, v2, . . . , vn} and edge set

EG. The adjacency matrix A(G) of G is the symmetric matrix [Aij ], where Aij = Aji = 1

if vertices vi and vj are adjacent, otherwise Aij = Aji = 0. Let dG(vi) denote the degree

of the vertex vi, that is, the number of edges incident to vi. The Laplacian matrix of G

is the matrix L(G) = D(G) − A(G), where D(G), called the degree matrix, is a diagonal

matrix with the diagonal entries the degrees of the vertices of G.

The von Neumann entropy was originally introduced by von Neumann around 1927 for

proving the irreversibility of quantum measurement processes in quantum mechanics [18].

It is defined to be

S = −
∑
i=1

µi log2 µi,
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where µi are the eigenvalues of the density matrix describing the quantum-mechanical

system (Normally, a density matrix is a positive semidefinite matrix whose trace is equal

to 1). Up until now, there are lots of studies on the von Neumann entropy, and we refer

the reader to [1–3,9–12,15,16,18,20].

In [4], Braunstein et al. defined the density matrix of a graph G as

ρG :=
1

dG
L(G) =

1

Tr(D(G))
L(G),

where dG =
∑

vi∈VG dG(vi) = Tr(D(G)) is the degree sum of G, and Tr(D(G)) means the

trace of D(G). Suppose that λ1 ≥ λ2 ≥ · · · ≥ λn = 0 are the eigenvalues of ρG. Then

S(G) := −
n∑
i=1

λi log2 λi,

is called the von Neumann entropy of a graph G. By convention, define 0 log2 0 = 0. It is

known that this quantity can be interpreted as a measure of regularity of graphs [?] and

also that it can be used as a measure of graph complexity [8].

Up until now, lots of results on the von Neumann entropy of a graph have been

given. For examples, Braunstein et al. [4] proved that, for a graph G on n vertices,

0 ≤ S(G) ≤ log2(n − 1), with the left equality holding if and only if G is a graph with

only one edge, and the right equality holding if and only if G is the complete graph Kn.

In [14], Passerini and Severini showed that the von Neumann entropy of regular graphs

with n vertices tends to log2(n − 1) as n tends to ∞. More interesting, in [6], Du et

al. considered the von Neumann entropy of the Erdős-Rényi model Gn(p), named after

Erdős and Rényi [7]. They proved that, for almost all Gn(p) ∈ Gn(p), almost surely

S(Gn(p)) = (1 + o(1)) log2 n, independently of p, where an event in a probability space is

said to be held asymptotically almost surely (a.s. for short) if its probability goes to one

as n tends to infinity.

The purpose of this paper is to study the von Neumann entropy of random multipartite

graphs. We use Kn;β1,...,βk to denote the complete k-partite graph with vertex set V

(|V | = n), whose parts are V1, . . . , Vk (2 ≤ k = k(n) ≤ n) satisfying |Vi| = nβi = nβi(n),

i = 1, 2, . . . , k. The random k-partite graph model Gn;β1,...,βk(p) consist of all random k-

partite graphs in which the edges are chosen independently with probability p from the set

of edges of Kn;β1,...,βk . We denote by An,k := A(Gn;β1,...,βk(p)) = (xij)n×n the adjacency

matrix of random k-partite graphs Gn;β1,...,βk(p) ∈ Gn;β1,...,βk(p), where xij is a random

indicator variable for {vi, vj} being an edge with probability p, for i ∈ Vl and j ∈ V \Vl,

i 6= j, 1 ≤ l ≤ k. Then An,k satisfies the following properties:
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• xij ’s, 1 ≤ i < j ≤ n, are independent random variables with xij = xji;

• Pr(xij = 1) = 1 − Pr(xij = 0) = p if i ∈ Vl and j ∈ V \Vl, while Pr(xij = 0) = 1 if

i ∈ Vl and j ∈ Vl, 1 ≤ l ≤ k.

Note that when k = n, Gn;β1,...,βk = Gn(p), that is, the random multipartite graph

model can be viewed as a generalization to the Erdős-Rényi model.

In this paper, we establish a lower bound and an upper bound to S(Gn;β1,...,βk) for

almost all Gn;β1,...,βk(p) ∈ Gn;β1,...,βk(p) by the limiting behavior of the spectra of random

symmetric matrices. Our main result is stated as follows:

Theorem 1. Let Gn;β1,...,βk(p) ∈ Gn;β1,...,βk(p) . Then almost surely

1 + o(1)

1−
k∑
i=1

β2i

log2

(
n

(
1−

k∑
i=1

β2i

))
≤ S(Gn;β1,...,βk(p))

≤ −
1− max

1≤i≤k
{βi}+ o(1)

1−
k∑
i=1

β2i

log2


1− max

1≤i≤k
{βi}

n

(
1−

k∑
i=1

β2i

)
 ,

independently of 0 < p < 1, where o(1) means a quantity goes to 0 as n goes to infinity.

2 Proof of Theorem 1

Before proceeding, we give some definitions and lemmas.

Lemma 1 (Bryc et al. [5]). Let X be a symmetric random matrix satisfying that the

entries Xij, 1 ≤ i < j ≤ n, are a collection of independent identically distributed

(i.i.d.) random variables with E(X12) = 0,Var(X12) = 1 and E(X4
12) < ∞. Define

S := diag
(∑

i 6=j Xij

)
1≤i≤n

and let M = S−X, where diag{·} denotes a diagonal matrix.

Denote by ‖M ‖ the spectral radius of M . Then

lim
n→∞

‖M ‖√
2n log n

= 1 a.s.,

i.e., with probability 1,
‖M ‖√
2n log n

converges weakly to 1 as n tends to infinity.

Lemma 2 (Weyl [19]). Let X, Y and Z be n×n Hermitian matrices such that X = Y +Z.

Suppose that X,Y, Z have eigenvalues, respectively, λ1(X) ≥ · · · ≥ λn(X), λ1(Y ) ≥ · · · ≥

λn(Y ), λ1(Z) ≥ · · · ≥ λn(Z). Then, for i = 1, 2, . . . , n, the following inequalities hold:

λi(Y ) + λn(Z) ≤ λi(X) ≤ λi(Y ) + λ1(Z).
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Lemma 3 (Shiryaev [17]). Let X1, X2, . . . be an infinite sequence of i.i.d. random variables

with expected value E(X1) = E(X2) = · · · = µ, and E|Xj | <∞. Then

Xn :=
1

n
(X1 +X2 + · · ·+Xn)→ µ a.s.

Proof of Theorem 1. Note that the parts V1, . . . , Vk of the random k-partite graph

Gn;β1,...,βk(p) satisfy |Vi| = nβi, i = 1, 2, . . . , k. Then the adjacency matrix An,k of

Gn;β1,...,βk(p) satisfies

An,k +A′n,k = An,

where

A′n,k =


Anβ1

Anβ2
. . .

Anβk


n×n,

An := A(Gn(p)), and Anβi := A(Gnβi(p)) for i = 1, 2, . . . , k.

The degree matrix Dn,k := D(Gn;β1,...,βk(p)) of Gn;β1,...,βk(p) satisfies

Dn,k +D′n,k = Dn,

where

D′n,k =


Dnβ1

Dnβ2

. . .

Dnβk


n×n,

Dn := D(Gn(p)), and Dnβi := D(Gnβi(p)) for i = 1, 2, . . . , k.

The Laplacian matrix Ln,k := L(Gn;β1,...,βk(p)) of Gn;β1,...,βk(p) satisfies

Ln,k + L′n,k = Ln,

where

L′n,k =


Lnβ1

Lnβ2
. . .

Lnβk


n×n,

Ln := L(Gn(p)), and Lnβi := L(Gnβi(p)) for i = 1, 2, . . . , k.

Let

S =
1√

p(1− p)
[Dn − p(n− 1)In]
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and

X =
1√

p(1− p)
[An − p(Jn − In)],

where Jn is the n × n all-ones matrix, and In is the n × n identity matrix. Define an

auxiliary matrix

L̃n :=Ln − p(n− 1)In + p(Jn − In)

=(Dn − p(n− 1)In)− (An − p(Jn − In))

=
√
p(1− p)(S −X).

Note that E(X12) = 0,Var(X12) = 1, and

E(X4
12) =

1

p2(1− p)2
(p− 4p2 + 6p3 − 3p4) <∞.

By Lemma 1, we have

lim
n→∞

‖ L̃n ‖√
2p(1− p)n log n

= 1 a.s.

Then

lim
n→∞

‖ L̃n ‖
n

= 0 a.s.,

i.e.,

‖ L̃n ‖= o(1)n a.s.

Let Rn := p(n− 1)In − p(Jn − In). Then

L̃n +Rn = Ln.

Suppose that Ln, L̃n, Rn have eigenvalues, respectively, µ1(Ln) ≥ · · · ≥ µn(Ln), λ1(L̃n) ≥

· · · ≥ λn(L̃n), λ1(Rn) ≥ · · · ≥ λn(Rn). It follows from Lemma 2 that

λi(Rn) + λn(L̃n) ≤ µi(Ln) ≤ λi(Rn) + λ1(L̃n), for i = 1, 2, . . . , n.

Note that λi(Rn) = pn for i = 1, 2, . . . , n− 1 and λn(Rn) = 0. We have

µi(Ln) = (p+ o(1))n a.s. for 1 ≤ i ≤ n− 1, (2.1)

and

µn(Ln) = o(1)n a.s. (2.2)

In the following, we evaluate the eigenvalues of Ln,k according to the spectral distribution

of Ln and L′n,k.

Since Ln,k = Ln − L′n,k, Lemma 2 implies that for 1 ≤ i ≤ n,

µi(Ln) + µn(−L′n,k) ≤ µi(Ln,k) ≤ µi(Ln) + µ1(−L′n,k), (2.3)
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where µn(−L′n,k) and µ1(−L′n,k) are the minimum and maximum eigenvalues of −L′n,k
respectively. By (2.1), (2.2) and (2.3), we have

np(1− max
1≤i≤k

{βi}) + o(1)n ≤ µi(Ln,k) ≤ np+ o(1)n a.s., for 1 ≤ i ≤ n− 1, (2.4)

and

−np max
1≤i≤k

{βi}+ o(1)n ≤ µn(Ln,k) ≤ o(1)n a.s. (2.5)

Consider the trace Tr(Dn,k) of Dn,k. Note that Tr(Dn,k) = 2
∑

i>j(An,k)ij . Since

(An)ij (i > j) are i.i.d. with mean p and variance p(1 − p), according to Lemma 3, we

obtain that with probability 1,

lim
n→∞

∑
i>j(An)ij
n(n−1)

2

= p,

i.e., ∑
i>j

(An)ij = (p/2 + o(1))n2 a.s.

Then

Tr(Dn) = (p+ o(1))n2 a.s.

Similarly, for i = 1, 2, . . . , k,

Tr(Dnβi) = (p+ o(1))n2β2i a.s.

Thus,

Tr(Dn,k) = 2
∑
i>j

(An,k)ij = 2
∑
i>j

(An −A′n,k)ij

= 2
∑
i>j

(An)ij − 2
∑
i>j

(A′n,k)ij

= 2
∑

n≥i>j≥1
(An)ij − 2

 ∑
nβ1≥i>j≥1

(Anβ1)ij + · · ·+
∑

nβk≥i>j≥1
(Anβk)ij


= (p+ o(1))n2

(
(p+ o(1))(nβ1)

2 + · · ·+ (p+ o(1))(nβk)
2
)

= p

(
1−

k∑
i=1

β2i

)
n2 + o(1)n2 a.s. (2.6)

By (2.4), (2.5) and (2.6), the eigenvalues of ρGn,k
=

Ln,k
Tr(Dn,k)

satisfy that, for 1 ≤ i ≤ n−1,

p

(
1− max

1≤i≤k
{βi}

)
+ o(1)

p

(
1−

k∑
i=1

β2i

)
n+ o(1)n

≤ λi(ρGn,k
) ≤ p+ o(1)

p

(
1−

k∑
i=1

β2i

)
n+ o(1)n

a.s., (2.7)
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and

−p max
1≤i≤k

{βi}+ o(1)

p

(
1−

k∑
i=1

β2i

)
n+ o(1)n

≤ λn(ρGn,k
) ≤ o(1)

p

(
1−

k∑
i=1

β2i

)
n+ o(1)n

a.s. (2.8)

Then (2.7) and (2.8) imply that

S(Gn;β1,...,βk(p)) ≥ −
n−1∑
i=1

 p+ o(1)

p

(
1−

k∑
i=1

β2i

)
n+ o(1)n

log2

 p+ o(1)

p

(
1−

k∑
i=1

β2i

)
n+ o(1)n




− o(1)

p

(
1−

k∑
i=1

β2i

)
n+ o(1)n

log2

 o(1)

p

(
1−

k∑
i=1

β2i

)
n+ o(1)n


=

1 + o(1)

1−
k∑
i=1

β2i

log2

(
n

(
1−

k∑
i=1

β2i

))
(2.9)

and

S(Gn;β1,...,βk(p)) ≤ −
n−1∑
i=1


p

(
1− max

1≤i≤k
{βi}

)
+ o(1)

p

(
1−

k∑
i=1

β2i

)
n+ o(1)n

log2


p

(
1− max

1≤i≤k
{βi}

)
+ o(1)

p

(
1−

k∑
i=1

β2i

)
n+ o(1)n




−
−p max

1≤i≤k
{βi}+ o(1)

p

(
1−

k∑
i=1

β2i

)
n+ o(1)n

log2


−p max

1≤i≤k
{βi}+ o(1)

p

(
1−

k∑
i=1

β2i

)
n+ o(1)n



= −
1− max

1≤i≤k
{βi}+ o(1)

1−
k∑
i=1

β2i

log2


1− max

1≤i≤k
{βi}

n

(
1−

k∑
i=1

β2i

)
 . (2.10)

This completes the proof. �

At last, we present some results implied by Theorem 1.

Corollary 1. Let Gn;β1,...,βk(p) ∈ Gn;β1,...,βk(p). Then

S(Gn;β1,...,βk(p)) = (1 + o(1)) log2 n a.s.

if and only if max{nβ1, . . . , nβk} = o(1)n.

Note that if k = n, then Gn;β1,...,βk(p) = Gn(p), that is, βi = 1
n , 1 ≤ i ≤ k. By

Corollary 1, we have the following result immediately.
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Corollary 2. ( [6]) Let Gn(p) ∈ Gn(p) be a random graph. Then almost surely S(Gn(p)) =

(1 + o(1)) log2 n.

Corollary 3. Let Gn;β1,...,βk(p) ∈ Gn;β1,...,βk(p) satisfying lim
n→∞

max1≤i≤k{βi} > 0 and

lim
n→∞

βi
βj

= 1. Then

1 + o(1)

1− 1
k

log2

(
n

(
1− 1

k

))
≤ S(Gn;β1,...,βk(p)) ≤

(
1 +

k − 1

k
o(1)

)
log2 n.

Let f(n), g(n) be two functions of n. Then f(n) = o(g(n)) means that f(n)/g(n)→ 0,

as n → ∞; and f(n) = O(g(n)) means that there exists a constant C such that |f(n)| ≤

Cg(n), as n→∞.

Corollary 4. Let Gn;β1,...,βk(p) ∈ Gn;β1,...,βk(p) satisfying lim
n→∞

max1≤i≤k{βi} > 0, and

there exist βi and βj such that lim
n→∞

βi
βj
< 1, that is, there exists an integer r ≥ 1 such that

|V1|, . . . , |Vr| are of order O(n) and |Vr+1|, . . . , |Vk| are of order o(n). Then almost surely

1 + o(1)

1−
r∑
i=1

β2i

log2

(
n

(
1−

r∑
i=1

β2i

))
≤ S(Gn;β1,...,βk(p))

≤ −
1− max

1≤i≤r
{βi}+ o(1)

1−
r∑
i=1

β2i

log2

 1− max
1≤i≤r

{βi}

n

(
1−

r∑
i=1

β2i

)
 .
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