SYMMETRIC FACTORIZATIONS OF THE COMPLETE UNIFORM HYPERGRAPH

HU YE CHEN AND ZAI PING LU

Abstract

A factorization of the complete k-hypergraph ($V, V^{\{k\}}$) of index $s \geq 2$, simply a (k, s) factorization on V, is a partition $\left\{F_{1}, F_{2}, \cdots, F_{s}\right\}$ of the edge set $V^{\{k\}}$ into s disjoint subsets such that each k-hypergraph $\left(V, F_{i}\right)$, called a factor, is a spanning subhypergraph of $\left(V, V^{\{k\}}\right)$. A (k, s) factorization $\left\{F_{1}, F_{2}, \cdots, F_{s}\right\}$ on V is symmetric if there is a subgroup G of the symmetric group $\operatorname{Sym}(V)$ such that G induces a transitive action on $\left\{F_{1}, F_{2}, \cdots, F_{s}\right\}$ and for each i, the stabilizer $G_{F_{i}}$ is transitive on both V and F_{i}. A symmetric factorization on V is homogeneous if all its factors admit a common transitive subgroup of $\operatorname{Sym}(V)$.

In this paper, we give a complete classification of symmetric (k, s) factorizations on a set of size n under the assumption that $s \geq 2$ and $6 \leq 2 k \leq n$. It is proved that, up to isomorphism, there are two infinite families and 29 sporadic examples of symmetric factorizations which are not homogeneous. Among these symmetric factorizations, only 8 of them are not 1-factorizations.

KEYWORDS. Uniform hypergraph, 1 -factorization, symmetric factorization, k-homogeneous permutation group, fractional linear mapping, Mathieu group, Steiner system.

1. INTRODUCTION

Let V be a finite (non-empty) set, and let k be a positive integer with $k \leq|V|$. Denote by $V^{\{k\}}$ the set of all k-subsets of V. In this paper, for a subset $E \subseteq V^{\{k\}}$, the pair (V, E) is called a k-uniform hypergraph (k-hypergraph, simply), where the elements in V and E are called vertices and edges respectively, and the size $|V|$ of V is called the order of this hypergraph. The pair $\left(V, V^{\{k\}}\right)$ is called the complete k-uniform hypergraph (complete k-hypergraph) on V, and denoted by \mathbb{K}_{n}^{k} when $V=\{1,2,3, \cdots, n-1, n\}$.

A factorization of the complete k-hypergraph $\left(V, V^{\{k\}}\right)$ of index s is a partition of $V^{\{k\}}$ into s subsets $\left\{F_{1}, F_{2}, \cdots, F_{s}\right\}$, in which each F_{i} covers V, that is, $V=\cup_{e \in F_{i}} e$. For convenience, letting $|V|=n$, we sometimes call such a partition a (k, s) factorization of order n (on V), and call each F_{i} or the resulting k-hypergraph $\left(V, F_{i}\right)$ a factor. For the case where k is a divisor of $|V|$, a factorization of the complete k-hypergraph $\left(V, V^{\{k\}}\right)$ is a 1 -factorization if every factor is a set of $\frac{|V|}{k}$ pairwise disjoint k-subsets (i.e., kuniform partition) of V. By Baranyai's Theorem (see [1]), if $|V|$ is divisible by k then the complete k-hypergraph $\left(V, V^{\{k\}}\right)$ admits a 1-factorization (of index $\binom{V \mid-1}{k-1}$). In this paper, we focus on the 1-factorizations of $\left(V, V^{\{k\}}\right)$ which are invariant under the actions of certain subgroups of the symmetric group $\operatorname{Sym}(V)$.

Two k-hypergraphs $\left(V_{1}, E_{1}\right)$ and $\left(V_{2}, E_{2}\right)$ are called isomorphic if there is a bijection $\phi: V_{1} \rightarrow V_{2}$ such that $e \in E_{1}$ if and only if $\phi(e) \in E_{2}$, while the bijection ϕ is an

2010 Mathematics Subject Classification. 05C65, 05C70, 05E18, 20B25.
This work was supported by National Natural Science Foundation of China (11371204).
isomorphism from $\left(V_{1}, E_{1}\right)$ to $\left(V_{2}, E_{2}\right)$. An isomorphism from a k-hypergraph (V, E) onto itself is called an automorphism of (V, E). Then all automorphisms of a k-hypergraph (V, E) form a subgroup of the symmetric $\operatorname{group} \operatorname{Sym}(V)$, denoted by $\operatorname{Aut}(V, E)$ and called the automorphism group of (V, E).

Two factorizations \mathcal{F} on V and \mathcal{E} on U are isomorphic, denoted by $\mathcal{F} \cong \mathcal{E}$, if there is a bijection $\phi: V \rightarrow U$ such that $F \in \mathcal{F}$ if and only if $F^{\phi} \in \mathcal{E}$. while this bijection ϕ is called an isomorphism from \mathcal{F} to \mathcal{E}. Let $\mathcal{F}=\left\{F_{1}, F_{2}, \cdots, F_{s}\right\}$ be a (k, s) factorization on V. The set Aut \mathcal{F} of all isomorphisms from \mathcal{F} onto itself is a subgroup of $\operatorname{Sym}(V)$, called the automorphism group of \mathcal{F}. The factorization $\mathcal{F}=\left\{F_{1}, F_{2}, \cdots, F_{s}\right\}$ is factor-transitive if Aut \mathcal{F} acts transitively on the partition $\left\{F_{1}, F_{2}, \cdots, F_{s}\right\}$. For each $1 \leq i \leq s$, let $\operatorname{Aut}\left(\mathcal{F}, F_{i}\right)$ be the subgroup of $\operatorname{Aut} \mathcal{F}$ fixing F_{i} set-wise. Note that $\operatorname{Aut}\left(\mathcal{F}, F_{i}\right)$ is a subgroup of $\operatorname{Aut}\left(V, F_{i}\right)$, in fact, $\operatorname{Aut}\left(\mathcal{F}, F_{i}\right)=\operatorname{Aut}\left(V, F_{i}\right) \cap \operatorname{Aut}(\mathcal{F})$. Then the factorization $\mathcal{F}=$ $\left\{F_{1}, F_{2}, \cdots, F_{s}\right\}$ is symmetric if it is factor-transitive and, for each i, the $\operatorname{group} \operatorname{Aut}\left(\mathcal{F}, F_{i}\right)$ is transitive on both V and F_{i}. A factor-transitive factorization $\mathcal{F}=\left\{F_{1}, F_{2}, \cdots, F_{s}\right\}$ is homogeneous if $\cap_{i=1}^{s} \operatorname{Aut}\left(\mathcal{F}, F_{i}\right)$, the kernel of $\operatorname{Aut}(\mathcal{F})$ acting on $\left\{F_{1}, F_{2}, \cdots, F_{s}\right\}$, is a transitive subgroup of $\operatorname{Sym}(V)$.

Homogeneous factorizations of complete graphs (complete 2-hypergraphs) were introduced in [11]. In [10], Li, Lim and Praeger classified the homogeneous factorizations of complete graphs with all factors admitting a common edge-transitive group. Recently, we considered in [6] an analogous problem on complete k-hypergraphs, where $k \geq 3$.
Theorem 1.1 ([6]). Let n, k and s be integers with $n \geq 2 k \geq 6$ and $s \geq 2$. Then there exists a symmetric homogeneous (k, s) factorization of order n if and only if (n, k, s) is one of $(32,3,5),(32,3,31),(33,4,5),\left(2^{d}, 3, \frac{\left(2^{d}-1\right)\left(2^{d-1}-1\right)}{3}\right)$ and $(q+1,3,2)$, where $d \geq 3$ and q is a power of some prime with $q \equiv 1(\bmod 4)$. In particular, there is no symmetric homogeneous 1 -factorization of index s and order n with $s \geq 2, n \geq 6$.

Theorem 1.1 suggests us an interesting problem: Is there a symmetric 1-factorization of order at least 6? The answer is affirmative. In fact, we shall prove the following result in this paper.
Theorem 1.2. Let n be a positive integer and k a proper divisor of n with $k \geq 3$. Then \mathbb{K}_{n}^{k} has a symmetric 1-factorization if and only if either $n=2 k$ or (n, k) is one of $(q+1,3)$ and $(24,4)$, where q is a power of some prime with $q \equiv 2(\bmod 3)$ and $q \geq 8$.

In general, we have the following result on symmetric factorizations.
Theorem 1.3. Let \mathcal{F} be a symmetric (k, s) factorization of order n, where n, k and s are integers with $n \geq 2 k \geq 6$ and $s \geq 2$. Then one of the following holds:
(1) \mathcal{F} is homogeneous;
(2) \mathcal{F} is a 1-factorization;
(3) (n, k, s) is one of $(8,3,7),(10,3,12),(12,3,11),(20,3,57)$ and $(12,5,66)$.

The paper is organized as follows. Some preliminary results on permutation groups are collected in Section 2. In Section 3, a group-theoretic construction for symmetric factorizations is presented. In Section 4, we give all possible candidates for Aut \mathcal{F} such that \mathcal{F} is a symmetric factorization but not homogeneous factorization of the complete k-hypergraph for $k \geq 3$. Section 5 consists of some examples and a classification for symmetric factorizations, and then Theorems 1.2 and 1.3 are proved.

2. Preliminaries

Let V be a finite set. Assume that G is a permutation group on V, that is, G is a subgroup of the symmetric group $\operatorname{Sym}(V)$. For a point $v \in V$, denote by G_{v} the stabilizer of v in G, that is, $G_{v}=\left\{g \in G \mid v^{g}=v\right\}$. Then G_{v} is a subgroup of G, $G_{v^{g}}=G_{v}^{g}:=g^{-1} G_{v} g$ for $g \in G$, and the orbit $v^{G}:=\left\{v^{g} \mid g \in G\right\}$ has size $\left|G: G_{v}\right|:=\frac{|G|}{\left|G_{v}\right|}$. For a subset $B \subseteq V$, denote by G_{B} and $G_{(B)}$ the subgroups of G fixing B set-wise and point-wise, respectively. Then $G_{(B)}$ is the kernel of G_{B} acting on B. Denote by G_{B}^{B} the permutation group on B induced by G_{B}. Then $G_{B}^{B} \cong G_{B} / G_{(B)}$.

A permutation group G on V is transitive if it has only one orbit, that is, $V=v^{G}$ for any $v \in V$. The size $|V|$ of V is the degree of G.
Lemma 2.1. Let G be a transitive permutation group on a finite set V. If $X \leq G$ with $(|G: X|,|V|)=1$, then $G=X G_{v}$ for any $v \in V$; in particular, X is transitive on V.
Proof. Let X be a subgroup of G with index coprime to $|V|$. Take $v \in V$. Then $\left|G:\left(X \cap G_{v}\right)\right|$ is divisible by both $|V|=\left|G: G_{v}\right|$ and $|G: X|$, and so $\left|G:\left(X \cap G_{v}\right)\right|$ is divisible by $|V||G: X|$. Thus

$$
|V||G: X| \leq\left|G:\left(X \cap G_{v}\right)\right|=\left|G: G_{v}\right|\left|G_{v}:\left(X \cap G_{v}\right)\right|=|V| \frac{\left|X G_{v}\right|}{|X|} \leq|V||G: X|
$$

This implies that $|G|=\left|X G_{v}\right|$, and then the lemma follows.
Let G be a transitive permutation group on V. A partition \mathcal{B} of V is G-invariant if $B^{g} \in \mathcal{P}$ for all $g \in G$ and $B \in \mathcal{B}$. For a G-invariant partition \mathcal{B} of V, it is easily shown that $G_{v} \leq G_{B}$ for all $v \in B \in \mathcal{B}, G_{B}$ is transitive on B and \mathcal{B} is a $\left|G_{B}: G_{v}\right|^{-}$ uniform partition. Conversely, if $H \leq G$ with $G_{v} \leq H$ for some $v \in V$, then we have a G-invariant partition $\left\{B^{g} \mid g \in G\right\}$, where $B=v^{H}$. In particular, for a given point $v \in V$, there is a bijection between the G-invariant partitions of V and the subgroups of G containing G_{v}, see [8, Theorem 1.5A, p.13] for example. Thus the next lemma follows.
Lemma 2.2. Let G be a transitive permutation group on V, and let k be a positive divisor of $|V|$. Then V has a G-invariant k-uniform partition if and only if G has a subgroup H such that $G_{v} \leq H$ and $k=\left|H: G_{v}\right|$ for some $v \in V$.

Let k be an integer with $1 \leq k \leq|V|$. Denote by $V^{\{k\}}$ the set of all k-subsets of V, and by $V^{(k)}$ the set of all k-tuples of distinct points of V. Let $G \leq \operatorname{Sym}(V)$. Then the group G acts naturally on $V^{\{k\}}$ and $V^{(k)}$ by

$$
\left\{v_{1}, v_{2}, \cdots, v_{k}\right\}^{g}=\left\{v_{1}^{g}, v_{2}^{g}, \cdots, v_{k}^{g}\right\} \text { and }\left(v_{1}, v_{2}, \cdots, v_{k}\right)^{g}=\left(v_{1}^{g}, v_{2}^{g}, \cdots, v_{k}^{g}\right),
$$

respectively. The permutation group G is k-homogeneous or k-transitive if G acts transitively on $V^{\{k\}}$ or $V^{(k)}$, respectively. The permutation group G is sharply k-transitive if it is k-transitive and $|G|=\left|V^{\{k\}}\right|$. Clearly, if G is k-homogeneous then it is $(|V|-k)$ homogeneous, and if G is k-transitive then G is also k-homogeneous. Moreover, it is well-known that for $2 \leq k \leq \frac{|V|}{2}$, a k-homogeneous permutation group on V is $(k-1)$ transitive, refer to $[8$, Theorem 9.4 B$]$. Thus for $2 \leq k \leq \frac{|V|}{2}$, a k-homogeneous group on V is both transitive (i.e. 1-transitive) and ($k-1$)-homogeneous. For a transitive permutation group G on V, define two parameters:

$$
\begin{aligned}
& h(G)=\max \left\{k \left\lvert\, 1 \leq k \leq \frac{|V|}{2}\right., G \text { is } k \text {-homogeneous }\right\} \\
& t(G)=\max \{k|1 \leq k \leq|V|, G \text { is } k \text {-transitive }\}
\end{aligned}
$$

Then, up to permutation isomorphism, the following result gives all transitive permutation groups G with $h(G) \geq 3$, refer to [3, Tables 7.3 and 7.4] and [8, Theorem 9.4B]. (Note that two permutation groups $G \leq \operatorname{Sym}(V)$ and $H \leq \operatorname{Sym}(U)$ are permutation isomorphic if there is a bijection $\lambda: V \rightarrow U$ and a group isomorphism $\phi: G \rightarrow H$ satisfying $\lambda(v)^{\phi(g)}=\lambda\left(v^{g}\right)$ for all $v \in V$ and $g \in G$.)

Theorem 2.3. Let G be a transitive permutation group of degree n with $h(G) \geq 3$. Then G has a unique minimal normal subgroup and, up to permutation isomorphism, one of (I) and (II) holds.
(I) $h(G)=t(G)+1$, and one of the following holds:
(1) $h(G)=3, G=\mathrm{AGL}(1,8), ~ А \Gamma \mathrm{~L}(1,8)$ or $\operatorname{A\Gamma L}(1,32)$;
(2) $h(G)=3, \operatorname{PSL}(2, q) \leq G \leq \operatorname{P\Sigma L}(2, q)$ with $q \equiv 3(\bmod 4)$;
(3) $h(G)=4, G=\operatorname{PGL}(2,8), \operatorname{P\Gamma L}(2,8)$ or $\operatorname{P\Gamma L}(2,32)$.
(II) G is $h(G)$-transitive, and one of the following holds:
(4) $h(G)=t(G)=3$, and G is one of $\operatorname{AGL}(d, 2)$ (with $d \geq 3$) and $\mathbb{Z}_{2}^{4}: \mathrm{A}_{7}$ (contained in AGL $(4,2)$);
(5) $h(G)=t(G)=3$, and $\mathrm{PSL}(2, q)<G \leq \mathrm{P} \Gamma \mathrm{L}(2, q)$ with $q \notin\{4,8,32\}$;
(6) $h(G)=t(G)=3$, and $G=\operatorname{PGL}(2,32)$;
(7) $h(G)=t(G)=3$, and G is one of $\mathrm{M}_{11}($ with $n=12)$ and M_{22};
(8) $h(G)=t(G)=4$, and $G=\mathrm{M}_{11}$ or M_{23};
(9) $h(G)=t(G)=5$, and $G=\mathrm{M}_{12}$ or M_{24};
(10) $n \geq 6$, and $G=\mathrm{A}_{n}$ or S_{n} with $t(G)=n-2$ or n, respectively.

All permutation groups list in Theorem 2.3 are assumed to be in their natural actions except that M_{11} acts 3-transitively on a set of size 12. See Section 4 for the details.

Note that the automorphism group of a symmetric factorization is a homogeneous permutation group. Employing the classification of k-homogeneous permutation groups, in the following sections, we shall construct examples and give a classification for the symmetric (k, s) factorizations, where $k \geq 3$ and $s \geq 2$. Since all symmetric homogeneous (k, s) factorizations were classified in [6], we are left the symmetric factorizations which are not homogeneous. Checking one by one the homogeneous permutation groups , we determine the possible candidates for the triple (G, X, e), each of which gives a symmetric factorization $\left\{\left\{e^{x g} \mid x \in X\right\} \mid g \in G\right\}$. Then all possible symmetric (k, s) factorizations are constructed up to isomorphism.

3. A group-theoretic construction

Let \mathcal{F} be a symmetric factorization of $\left(V, V^{\{k\}}\right)$. Then Aut \mathcal{F} is k-homogeneous on V, \mathcal{F} is an Aut \mathcal{F}-invariant partition of $V^{\{k\}}$, and all stabilizers of the factors give a conjugacy class of transitive subgroups of Aut \mathcal{F} (acting on V). By Lemma 2.2, we may take subgroups G and X of $\operatorname{Sym}(V)$ such that:
(c1) $X \leq G \leq \operatorname{Sym}(V)$ and $G_{e}=X_{e}$ for some $e \subseteq V$;
(c2) G is $|e|$-homogeneous on V, and X is transitive but not $|e|$-homogeneous on V.

Then each factor of \mathcal{F} has the form of $\left\{e^{x g} \mid x \in X\right\}$, where $g \in g$. Conversely, for a triple (G, X, e) satisfying the conditions (c1) and (c2), set

$$
\mathcal{F}(G, X, e)=\left\{\left\{e^{x g} \mid x \in X\right\} \mid g \in G\right\} .
$$

Then $\mathcal{F}(G, X, e)$ is a symmetric $(|e|,|G: X|)$ factorization on V, and $G \leq \operatorname{Aut} \mathcal{F}(G, X, e)$.
Let (G, X, e) be a triple satisfying (c1) and (c2). Since G is $|e|$-homogeneous, the normalizer $\mathbf{N}_{\text {Sym }(V)}(G)$ of G in $\operatorname{Sym}(V)$ is transitive on $V^{\{|e|\}}$, and so

$$
\mathbf{N}_{\mathrm{Sym}(V)}(G)=G\left(\mathbf{N}_{\mathrm{Sym}(V)}(G)\right)_{e}
$$

Set

$$
\mathbf{N}(G, X, e)=\left\{\tau \in \operatorname{Sym}(V) \mid G^{\tau}=G, X^{\tau}=X, e^{\tau}=e\right\}
$$

Lemma 3.1. Let (G, X, e) be a triple satisfying (c1) and (c2). Then $\mathcal{F}(G, X, e)^{\tau}=$ $\mathcal{F}\left(G, X^{\tau}, e^{\tau}\right)$ for $\tau \in \mathbf{N}_{\mathrm{Sym}(V)}(G)$. In particular, $\mathbf{N}(G, X, e) \leq \operatorname{Aut} \mathcal{F}(G, X, e)$.

Lemma 3.2. Let (G, X, e) be a triple satisfying (c1) and (c2). Then $\tau \in\left(\mathbf{N}_{\operatorname{Sym}(V)}(G)\right)_{e}$ is an automorphism of $\mathcal{F}(G, X, e)$ if and only if τ normalizes X. In particular, G is normal in $\operatorname{Aut} \mathcal{F}(G, X, e)$ if and only if Aut $\mathcal{F}(G, X, e)=G \mathbf{N}(G, X, e)$.
Proof. Let $\tau \in\left(\mathbf{N}_{\mathrm{Sym}(V)}(G)\right)_{e} \cap \operatorname{Aut} \mathcal{F}(G, X, e)$, and $F=\left\{e^{x} \mid x \in X\right\}$. Then

$$
\left\{F^{g} \mid g \in G\right\}^{\tau}=\mathcal{F}(G, X, e)^{\tau}=\mathcal{F}(G, X, e)=\left\{F^{g} \mid g \in G\right\}
$$

Since $e \in F \cap F^{\tau}$, we have $F^{\tau}=F$. Then $X=G_{F}=G_{F^{\tau}}=G_{F}^{\tau}=X^{\tau}$. Thus this lemma follows from Lemma 3.1.

Lemma 3.3. Let (G, X, e) and (G, Y, f) be two triples satisfying (c1) and (c2). Then $\mathcal{F}(G, X, e)=\mathcal{F}(G, Y, f)$ if and only if $X^{h}=Y$ and $e^{h}=f$ for some $h \in G$.
Proof. If $h \in G$ with $X^{h}=Y$ and $e^{h}=f$, then

$$
\mathcal{F}(G, X, e)=\left\{\left\{e^{x g} \mid x \in X\right\} \mid g \in G\right\}=\left\{\left\{\left(e^{h}\right)^{x^{h}\left(h^{-1} g\right)} \mid x \in X\right\} \mid g \in G\right\}=\mathcal{F}(G, Y, f)
$$

Let $\mathcal{F}(G, X, e)=\mathcal{F}(G, Y, f)$. Set $E=\left\{e^{x} \mid x \in X\right\}$ and $F=\left\{f^{y} \mid y \in Y\right\}$. Then $E^{g}=F$ for some $g \in G$, and so $e^{x g}=f$ for some $x \in X$. Let $h=x g$. Then $e^{h}=f$ and $Y=G_{F}=G_{E^{g}}=G_{E^{h}}=G_{E}^{h}=X^{h}$.

Lemma 3.4. Let (G, X, e) and (G, Y, f) be two triples satisfying (c1) and (c2). Assume that $G=\operatorname{Aut} \mathcal{F}(G, X, e)=\operatorname{Aut} \mathcal{F}(G, Y, f)$. If $\mathcal{F}(G, X, e) \cong \mathcal{F}(G, Y, f)$ then $X^{\tau}=Y$ and $e^{\tau}=f$ for some $\tau \in \mathbf{N}_{\mathrm{Sym}(V)}(G)$.

Proof. Let τ_{1} be an isomorphism from $\mathcal{F}(G, X, e)$ to $\mathcal{F}(G, Y, f)$. Then $\tau_{1} \in \operatorname{Sym}(V)$, and $G^{\tau_{1}}=(\operatorname{Aut} \mathcal{F}(G, X, e))^{\tau_{1}}=\operatorname{Aut} \mathcal{F}(G, Y, f)=G$. Thus $\tau_{1} \in \mathbf{N}_{\operatorname{Sym}(V)}(G)$. By Lemma 3.1,

$$
\mathcal{F}(G, Y, f)=\mathcal{F}(G, X, e)^{\tau_{1}}=\mathcal{F}\left(G, X^{\tau_{1}}, e^{\tau_{1}}\right)
$$

In particular, there is some $g \in G$ such that

$$
F:=\left\{e^{\tau_{1} x^{\tau_{1}}} \mid x \in X\right\}=\left\{f^{y g} \mid y \in Y\right\}=\left\{f^{y} \mid y \in Y\right\}^{g} \in \mathcal{F}(G, Y, f)
$$

Thus $X^{\tau_{1}}=G_{\left\{e^{\tau_{1} x^{\tau_{1}}} \mid x \in X\right\}}=G_{F}=G_{\left\{f^{y} \mid y \in Y\right\}^{g}}=Y^{g}$, and so $X^{\tau_{1} g^{-1}}=Y$. Take $x \in X$ such that $f^{g}=e^{\tau_{1} x^{\tau_{1}}}$. Let $\tau=x \tau_{1} g^{-1}$. Then $\tau \in \mathbf{N}_{\mathrm{Sym}(V)}(G), X^{\tau}=Y$ and $e^{\tau}=$ $e^{x \tau_{1} g^{-1}}=\left(e^{\tau_{1} x^{\tau_{1}}}\right)^{g^{-1}}=f$, as desired.

We end this section by two easy observations.

Lemma 3.5. Let (G, X, e) be a triple satisfying (c1) and (c2). If $G \leq G_{1} \leq \operatorname{Sym}(V)$, $X \leq X_{1} \leq G_{1},|G: X|=\left|G_{1}: X_{1}\right|$ and $\left(X_{1}\right)_{e}=\left(G_{1}\right)_{e}$, then $\mathcal{F}(G, X, e)=\mathcal{F}\left(G_{1}, X_{1}, e\right)$.

Lemma 3.6. Let (G, X, e) be a triple satisfying (c1) and (c2). Let G_{1} be a permutation group on a set V_{1}, which is permutation isomorphic to G. Take a group isomorphism $\phi: G \rightarrow G_{1}$ and a bijection $\lambda: V \rightarrow V_{1}$ such that $\lambda\left(v^{g}\right)=\lambda(v)^{\phi(g)}$ for all $v \in V$ and $g \in G$. Then $\mathcal{F}(G, X, e) \cong \mathcal{F}\left(G_{1}, \phi(X), \lambda(e)\right)$.

4. The feasible triples

In this section, we always assume that (G, X, e) is a triple satisfying the conditions (c1) and (c2) given in Section 3. Recall that the socle $\operatorname{soc}(G)$ of G is the subgroup generated by all minimal normal subgroups of G. For convenience, we call the triple (G, X, e) feasible on V if $\operatorname{soc}(G) \not \leq X$ and $3 \leq|e| \leq h(G)$. Note that, up to permutation isomorphism, all possible candidates for G are listed in Theorem 2.3.
Lemma 4.1. If $\operatorname{soc}(G) \cong \mathbb{Z}_{2}^{d}$ for some integer d with $d \geq 3$, then (G, X, e) is not feasible.
Proof. Let $\operatorname{soc}(G) \cong \mathbb{Z}_{2}^{d}$. By Theorem 2.3, $h(G)=3$, and so $|e|=3$. Since G is transitive on $V^{\{3\}}$, we have $\left|G: G_{e}\right|=\left|V^{\{3\}}\right|=\frac{2^{d}\left(2^{d}-1\right)\left(2^{d-1}-1\right)}{3}$. Let $G_{(e)}$ be the point-wise stabilizer of e in G. Then $G_{e} / G_{(e)}$ is (isomorphic to) a subgroup of S_{3}. Choose $u \in e$ such that $G_{e}=\left(G_{e}\right)_{u}$ or $\left|G_{e}:\left(G_{e}\right)_{u}\right|=3$. Then $\left|G:\left(G_{e}\right)_{u}\right|$ is a divisor of $2^{d}\left(2^{d}-1\right)\left(2^{d-1}-1\right)$. Note that $X_{u} \geq\left(G_{e}\right)_{u}$ as $X_{e}=G_{e}$. Thus $\left|G: X_{u}\right|$ is a divisor of $2^{d}\left(2^{d}-1\right)\left(2^{d-1}-1\right)$. Since X is transitive on V, we have $\left|X: X_{u}\right|=2^{d}$. It follows that $|G: X|$ is a divisor of $\left(2^{d}-1\right)\left(2^{d-1}-1\right)$; in particular, X contains a Sylow 2-subgroup of G. This yields that $\operatorname{soc}(G) \leq X$, and so (G, X, e) is not feasible.

For a power $q=p^{f}$ of a prime p, denote by \mathbb{F}_{q} the field of order q. Identify the point set of the projective line $\operatorname{PG}(1, q)$ with $\mathbb{F}_{q} \cup\{\infty\}$. The group $\operatorname{PGL}(2, q)$ then consists of all fractional linear mappings of the form

$$
t_{\alpha, \beta, \gamma, \delta}: \xi \mapsto \frac{\alpha \xi+\beta}{\gamma \xi+\delta}, \alpha, \beta, \gamma, \delta \in \mathbb{F}_{q} \text { with } \alpha \delta-\beta \gamma \neq 0
$$

where $\frac{\alpha \infty+\beta}{\gamma \infty+\delta}=\alpha \gamma^{-1}$ for $\gamma \neq 0, \frac{\alpha \infty+\beta}{\delta}=\infty$ for $\alpha \neq 0$ and $\frac{\zeta}{0}=\infty$ for $0 \neq \zeta \in \mathbb{F}_{q}$. The group $\operatorname{PGL}(2, q)$ is sharply 3 -transitive on $\mathbb{F}_{q} \cup\{\infty\}$. Further,
$\operatorname{PSL}(2, q)=\left\{t_{\alpha, \beta, \gamma, \delta} \mid \alpha, \beta, \gamma, \delta \in \mathbb{F}_{q}\right.$ with $\alpha \delta-\beta \gamma$ a non-zero square in $\left.\mathbb{F}_{q}\right\}$.
The Frobenius automorphism of \mathbb{F}_{q} induces a permutation on $\mathbb{F}_{q} \cup\{\infty\}$ by $\sigma: \xi \mapsto \xi^{p}$ with $\infty^{p}=\infty$. Then $t_{\alpha, \beta, \gamma, \delta}^{\sigma}=t_{\alpha^{p}, \beta^{p}, \gamma^{p}, \delta^{p}}, \operatorname{P\Gamma L}(2, q)=\operatorname{PGL}(2, q):\langle\sigma\rangle$ and $\operatorname{P\Sigma L}(2, q)=$ $\operatorname{PSL}(2, q):\langle\sigma\rangle$. (See [2, p.192] and [8, p.242] for example.)
Lemma 4.2. Let $\operatorname{soc}(G)=\operatorname{PSL}(2, q)$ and G act on the point set V of $\operatorname{PG}(1, q)$. If (G, X, e) is feasible then $|e|=3$ and one of the following holds:
(1) $G=\operatorname{PSL}(2,7)$ and $X \cong \mathrm{~S}_{4}$;
(2) $G=\operatorname{PSL}(2,11)$ and $X \cong \mathrm{~A}_{4}$ or A_{5};
(3) $G=\operatorname{PSL}(2,19)$ and $X \cong \mathrm{~A}_{5}$;
(4) $G=\operatorname{PSL}(2,23)$ and $X \cong \mathrm{~S}_{4}$;
(5) $G=\operatorname{PSL}(2,59)$ and $X \cong \mathrm{~A}_{5}$;
(6) $\operatorname{P\Gamma L}(2, q) \geq G \geq \operatorname{PSL}(2, q)$ with $q \equiv-1(\bmod 12),|G: X|=\mid \operatorname{PSL}(2, q):$ $(\operatorname{PSL}(2, q) \cap X) \mid, \operatorname{PSL}(2, q) \cap X \cong \mathrm{D}_{q+1}$ and $\operatorname{PSL}(2, q)_{e}=(\operatorname{PSL}(2, q) \cap X)_{e}$;
(7) $G=\operatorname{PGL}(2,11), X \cong \mathrm{~S}_{4}$ and $\operatorname{PSL}(2,11) \cap X \cong \mathrm{~A}_{4}$;
(8) $G=\mathrm{P} \Gamma \mathrm{L}(2,9)$ with $X \cong \mathrm{~S}_{5}$, or G is one of $\operatorname{PGL}(2,9)$ and M_{10} with $X \cong \mathrm{~A}_{5}$;
(9) $G=\operatorname{PGL}(2,29)$ and $X \cong \mathrm{~A}_{5}$;
(10) $\operatorname{P\Gamma L}(2, q) \geq G \geq \operatorname{PGL}(2, q)$ with $q \equiv 2(\bmod 3)$ and $q>4,|G: X|=\mid \operatorname{PGL}(2, q)$: $(\operatorname{PGL}(2, q) \cap X) \mid, \operatorname{PGL}(2, q) \cap X \cong \mathrm{D}_{2(q+1)}$ and $\operatorname{PGL}(2, q)_{e}=(\operatorname{PGL}(2, q) \cap X)_{e}$.

Proof. Assume that (G, X, e) is a feasible triple. By Theorem 2.3, $h(G)=3$ or 4 , and so $|e|=3$ or 4 . Suppose that $|e|=4$. Then $G=\operatorname{PGL}(2,8), \operatorname{P\Gamma L}(2,8)$ or $\operatorname{P\Gamma L}(2,32)$, and G_{e} has order divisible by 4 . Since $X \geq G_{e}$ and X is transitive, X has order divisible $4|V|$. Checking the subgroups of G in the Atlas [7], we have $\operatorname{soc}(G) \leq X$, a contradiction. Thus $|e|=3$. Since $q+1=|V| \geq 2 h(G) \geq 2|e|=6$, we have $q \geq 5$.

Without loss of generality, we choose $e=\{0,1, \infty\}$. Let $F_{0}=\left\{e^{x} \mid x \in X\right\}$. Then F_{0} is a factor of $\mathcal{F}:=\mathcal{F}(G, X, e)$. Note that $\left(V, F_{0}\right)$ is a 3-hypergraph and X is transitive on both V and F_{0}. Then $|V| r=3\left|F_{0}\right|$, where r is the number of edges incident with any given vertex. In particular, $\left|F_{0}\right|=\frac{r|V|}{3}=\frac{r(q+1)}{3}$, and so \mathcal{F} has $\frac{q(q-1)}{2 r}$ factors.

Choose a subgroup of G as follows: if $G \geq \operatorname{PGL}(2, q)$ then $M=\operatorname{PGL}(2, q)$, and if $\operatorname{PGL}(2, q) \not \leq G$ then $M=\operatorname{PSL}(2, q)$. Noting that $X_{e}=G_{e}$, we have $M_{e}=M \cap G_{e}=$ $M \cap X_{e} \leq(M \cap X)_{e} \leq M_{e}$, yielding $M_{e}=(M \cap X)_{e}$.

Case 1. Assume that either $q \equiv 3(\bmod 4)$, or $\operatorname{PGL}(2, q) \leq G$. In this case, $M_{e} \cong \mathbb{Z}_{3}$ or S_{3}, and M is 3 -homogeneous on V. Then M is transitive on the factors of $\mathcal{F}(G, X, e)$, and so $G=M X$. Thus $|G|=|M X|=\frac{|M||X|}{|M \cap X|}$, yielding $|G: X|=|M:(M \cap X)|$. Since $\frac{q(q-1)}{2 r}=|\mathcal{F}|=|G: X|$, we have $|M:(M \cap X)|=\frac{q(q-1)}{2 r}$, and so $|M \cap X|=\frac{2 r|M|}{q(q-1)}$.

Let $M=\operatorname{PSL}(2, q)$. Then, by the choice of M, we have $q \equiv 3(\bmod 4)$ and $|M \cap X|=$ $r(q+1)$. Checking the subgroups of $\operatorname{PSL}(2, q)$ (refer to [9, II.8.27]), we conclude that either $M \cap X$ is isomorphic to one of $\mathrm{A}_{4}, \mathrm{~S}_{4}$ and A_{5}, or $r=1$ and $M \cap X \cong \mathrm{D}_{q+1}$. For the former case, since $|M \cap X|=r(q+1)$, we have $q \in\{7,11,19,23,59\}$, and so one of (1)-(5) of this lemma follows. Let $M \cap X \cong \mathrm{D}_{q+1}$. Then $q+1$ is divisible by 3 , and so $q \equiv-1(\bmod 12)$. Since M is transitive on V, the stabilizer M_{u} of $u \in V$ has odd order $\frac{q(q-1)}{2}$. It follows that $M \cap X$ is transitive on V. Recalling that $M_{e}=(M \cap X)_{e}$ and $|G: X|=|M:(M \cap X)|,(6)$ of this lemma follows.

Let $M=\operatorname{PGL}(2, q)$. In this case, $|M \cap X|=2 r(q+1)$ and, noting that M is sharply 3 -transitive, we have $(M \cap X)_{e}=M_{e} \cong \mathrm{~S}_{3}$. In particular, $M \cap X \nsubseteq \mathrm{~A}_{4}$ as A_{4} has no subgroups of order 6. By [5], we conclude that either $M \cap X \cong \mathrm{D}_{2(q+1)}$, or $M \cap X$ is isomorphic to one of S_{4} and A_{5}. For the former case, $M \cap X$ contains a Singer subgroup of $\operatorname{PGL}(2, q)$, and so $M \cap X$ is transitive on V, which yields (10) of this lemma.

Assume that $M \cap X \cong A_{5}$. Then $2 r(q+1)=60$, and so $q=9$ or 29 . If $q=29$ then (9) of this lemma follows. For $q=9$, since G is 3 -homogeneous, $G=\operatorname{PGL}(2,9)$ or $\mathrm{P} \Gamma \mathrm{L}(2,9)$, and so (8) of this lemma occurs.

Assume that $M \cap X \cong \mathrm{~S}_{4}$. Then $q=5$ or 11 . Suppose that $q=5$. Then $G=M=$ $\operatorname{PGL}(2,5) \cong \mathrm{S}_{5}$ and $X \cong \mathrm{~S}_{4}$. Thus $X \cap \operatorname{soc}(G) \cong \mathrm{A}_{4}$. Note that $X_{e}=G_{e} \cong \mathrm{~S}_{3}$, and $\operatorname{soc}(G)_{e}=\operatorname{soc}(G) \cap G_{e}=\operatorname{soc}(G) \cap X_{e}$. Then $\operatorname{soc}(G)_{e}$ is isomorphic to a subgroup of A_{4} and a subgroup of S_{3}. Noting that A_{4} has no subgroup of order 6 , it follows that $\operatorname{soc}(G)_{e}$ has order no more than 3 , and so $\left|\operatorname{soc}(G): \operatorname{soc}(G)_{e}\right| \geq 20=\left|V^{\{3\}}\right|$. In particular,
$\operatorname{soc}(G)=\operatorname{PSL}(2,5)$ is transitive on $V^{\{3\}}$. However, by Theorem 2.3, $\operatorname{PSL}(2,5)$ is not 3 -homogeneous on V, a contradiction. Thus $q=11$, and then (7) of this lemma follows.

Case 2. Assume that $\operatorname{PGL}(2, q) \not \leq G$ and $q \equiv 1(\bmod 4)$. In particular, q is odd and $\mathrm{P} \Sigma \mathrm{L}(2, q)$ is not 3 -homogeneous. Since G is 3 -homogeneous, $G \not \leq \mathrm{P} \Sigma \mathrm{L}(2, q)$, and so q not a prime. By the choice of M, we have $M=\operatorname{PSL}(2, q)$ and $(M \cap X)_{e}=M_{e} \cong \mathrm{~S}_{3}$. Note that M has at most two orbits on the factors of \mathcal{F}.

Suppose that M acts transitively on the factors of \mathcal{F}. Then $G=M X$, and we have $\frac{q(q-1)}{2 r}=|\mathcal{F}|=|G: X|=|M:(M \cap X)|$, and so $|M \cap X|=r(q+1)$. By [9, II.8.27], we conclude that either $r=1$ and $M \cap X \cong \mathrm{D}_{q+1}$, or $M \cap X$ is isomorphic to one of $\mathrm{A}_{4}, \mathrm{~S}_{4}$ and A_{5}. Assume that the later case holds. Then $r(q+1) \in\{12,24,60\}$. Recalling that q is not a prime, we conclude that $M \cap X \cong \mathrm{~A}_{5}$ and $q=9$; in this case, $G=\mathrm{M}_{10}$ and $\mathrm{A}_{5} \cong X \leq M$, yielding $G=M X=M$, a contradiction. Thus $M \cap X \cong \mathrm{D}_{q+1}$, and hence $q+1$ is divisible by 3 . It follows that $q \equiv 5(\bmod 12)$ and $q=p^{f}$ for some odd prime p and odd integer $f \geq 3$. Since $q \equiv 1(\bmod 4)$, we may take $\lambda \in \mathbb{F}_{q}$ such that λ is not a square. It is easy to see that λ^{m} is not a square for any odd integer m. Then $t_{\lambda^{m}, 0,0,1} \in \operatorname{PGL}(2, q) \backslash M$ for any odd integer m, and $\operatorname{P\Gamma L}(2, q)=(M:\langle\sigma\rangle)\left\langle t_{\lambda, 0,0,1}\right\rangle$, where σ is the permutation induced by the Frobenius automorphism of \mathbb{F}_{q}. Since $G \not \leq \mathrm{P} \Sigma \mathrm{L}(2, q)$, there exists some integers i and j such that $\sigma^{i} t_{\lambda^{j}, 0,0,1} \in G \backslash \mathrm{P} \Sigma \mathrm{L}(2, q)$, which yields that j is odd. Let d be the order of σ^{i}. Then d is a divisor of the order f of σ, and so d is odd. By an easy calculation, we have $\left(\sigma^{i} t_{\lambda^{j}, 0,0,1}\right)^{d}=t_{\lambda^{l}, 0,0,1} \in G$, where $l=j\left(1+p^{i}+\cdots+p^{(d-1) i}\right)$. Clearly, l is odd and λ^{l} is not a square. Then $t_{\lambda^{l}, 0,0,1} \in G \backslash M$, and so $G \geq M\left\langle t_{\lambda^{l}, 0,0,1}\right\rangle=\operatorname{PGL}(2, q)$, a contradiction.

Suppose that M has two orbits \mathcal{F}_{1} and \mathcal{F}_{2} on the factors of \mathcal{F}. Then $\left|\mathcal{F}_{1}\right|=\left|\mathcal{F}_{2}\right|$, and each \mathcal{F}_{i} is an M-invariant partition of E_{1} or E_{2}. Without loss of generality, let $e \in E_{1}=\cup_{F \in \mathcal{F}_{1}} F$. Then $F_{0} \in \mathcal{F}_{1}$ and, since E_{1} is an M-orbit, $M_{F_{0}}$ is transitive on F_{0}. Thus $\left|M_{F_{0}}: M_{e}\right|=\left|F_{0}\right|=\frac{r(q+1)}{3}$, and so $\left|M_{F_{0}}\right|=2 r(q+1)$. By [9, II.8.27], we conclude that $M_{F_{0}} \cong \mathrm{~A}_{4}, \mathrm{~S}_{4}$ or A_{5}. Recall that q is not a prime. If $M_{F_{0}} \cong \mathrm{~A}_{4}$ or S_{4} then $2 r(q+1)=12$ or 24 , and so $q=5$ or 11 , a contradiction. Let $M_{F_{0}} \cong \mathrm{~A}_{5}$. Then we have $q=9$, and hence $G=\mathrm{M}_{10}$. Thus (8) of this lemma occurs. This completes the proof.
Lemma 4.3. Let $G=\mathrm{A}_{n}$ or S_{n} act naturally on $V=\{1,2, \cdots, n\}$. Then (G, X, e) is feasible if and only if $n=2|e|$ and $X=G_{\{e, V \backslash e\}}$.
Proof. If $e<\frac{n}{2}$, then G_{e} is maximal in G by [12], yielding that any proper subgroup of G does not satisfy (c1) and (c2). Let $n=2|e|$. Again by [12], we conclude that the only proper transitive subgroup of G containing $G_{e}=(\operatorname{Sym}(e) \times \operatorname{Sym}(V \backslash e)) \cap G$ is the stabilizer of the partition $\{e, V \backslash e\}$. Then this lemma follows.

By Lemma 4.3 and the argument in Section 3, we have the following simple result.
Corollary 4.4. Let \mathcal{F} be a symmetric (k, s) factorization of order n, where $s \geq 2$ and $6 \leq 2 k \leq n$. Then $\mathrm{A}_{n} \leq \operatorname{soc}(\mathrm{Aut} \mathcal{F})$ if and only if $n=2 k$ and \mathcal{F} consists of all k-uniform partitions of a set of size $2 k$; in this case, we write $\mathcal{F}=\mathcal{U}_{(2 k, k)}$.

We next determine feasible triples arising from the Mathieu groups in their natural actions. It is well-known that, up to isomorphism there is a unique $S(5,6,12)$ Steiner system \mathbb{W}_{12} and a unique $S(5,8,24)$ Steiner system \mathbb{W}_{24}. As the automorphism group of \mathbb{W}_{n} with $n \in\{12,24\}$, the mathieu group M_{n} is 5 -transitive on the point set of \mathbb{W}_{n}, see
[8, Theorems 6.3B and 6.7C] for example. Let $(i, n) \in\{(1,12),(1,24),(2,24)\}$. Then the Mathieu group M_{n-i} is (isomorphic to) the point-wise stabilizer of some i-set of points in \mathbb{W}_{n}, which is $(5-i)$-transitive on the remain points.

Lemma 4.5. Let G be a Mathieu group, and let (G, X, e) be a feasible triple. Then neither $t(G)=4$ nor $G=\mathrm{M}_{22}$.

Proof. Suppose that $G=\mathrm{M}_{22}$. Then $t(G)=3,|e|=3$ and $\left|G_{e}\right|=2^{5} \cdot 3^{2}$. Since X is transitive, $|X|$ is divisible by 22 . Thus $|X|$ is divisible by $2^{5} \cdot 3^{2} \cdot 11$. Checking the maximal subgroups of M_{22} (in the Atlas [7]), we conclude that $X=\mathrm{M}_{22}$, a contradiction. Let $t(G)=4$. Then $|e|=3$ or 4 . Assume that $G=\mathrm{M}_{11}$. Then $|V|=11$, and $\left|G_{e}\right|=48$ or 24 for $e \in V^{\{|e|\}}$, respectively. Thus $|X|$ is divisible by $2^{3} \cdot 3 \cdot 11$, yielding $X=\mathrm{M}_{11}$, a contradiction. For $G=\mathrm{M}_{23}$, a similar argument yields $X=G$, a contradiction.

For further argument, we need some basic facts on the Steiner systems \mathbb{W}_{12} and \mathbb{W}_{24}, refer to [8, Sections 6.3 and 6.7] and [14, 5.2.3 and 5.3.7].
(a) Let B be a block of \mathbb{W}_{12}. Then the complement B^{\prime} of B is also a block, and $\mathrm{S}_{6} \cong$ $\left(\mathrm{M}_{12}\right)_{B} \leq\left(\mathrm{M}_{12}\right)_{\left\{B, B^{\prime}\right\}} \cong \mathrm{M}_{10}: \mathbb{Z}_{2}$. The pair $\left\{B, B^{\prime}\right\}$ is called a hexad pair of \mathbb{W}_{12}. If C is a block with $|B \cap C|=3$ then the symmetric difference $(B \backslash C) \cup(C \backslash B)$ is again a block.
(b) Let e be a 4 -subset of the point set of \mathbb{W}_{24}. Then the blocks containing e partition the 24 points into 6 subsets of size 4 , these 6 subsets form a sextet.

Lemma 4.6. Let $G=\mathrm{M}_{n}$ be a Mathieu group acting on the point set V of the Steiner system \mathbb{W}_{n}, where $n=12$ or 24 . Then (G, X, e) is a feasible triple if and only if either
(1) $G=\mathrm{M}_{12}, X=G_{\left\{B, B^{\prime}\right\}} \cong \mathrm{M}_{10}: \mathbb{Z}_{2}$ for a hexad pair $\left\{B, B^{\prime}\right\}$, and e is a 5 -subset of B or B^{\prime}; or
(2) $G=\mathrm{M}_{24}, X=G_{S} \cong \mathbb{Z}_{2}^{6}: 3 . \mathrm{S}_{6}$ for a sextet S, and $e \in S$.

Proof. It is easy to check that each triple satisfying (1) or (2) is feasible. We assume next that (G, X, e) is a feasible triple. Then $3 \leq|e| \leq h(G)=5$.

Assume that $G=\mathrm{M}_{12}$. Then $|G|=2^{6} \cdot 3^{3} \cdot 5 \cdot 11$ and $\left(|e|,\left|G_{e}\right|\right)=\left(3,2^{4} \cdot 3^{3}\right),\left(4,2^{6} \cdot 3\right)$ or $\left(5,2^{3} \cdot 3 \cdot 5\right)$. Since G is 5 -transitive on points, G_{e} is transitive on e. Then $\left(G_{e}\right)_{u}$ has order $\frac{\left|G_{e}\right|}{|e|}$, where $u \in e$. Noting that $X \geq G_{e}$, we have $X_{u} \geq\left(G_{e}\right)_{u}$, and so $\left|X_{u}\right|$ is divisible by $\frac{\left|G_{e}\right|}{|e|}$. Since X is transitive on the points, $|X|=|V|\left|X_{u}\right|$. Then X has order divisible by $\frac{12\left|G_{e}\right|}{|e|}$; in particular, neither 4 nor 9 is a divisor of $|G: X|$, and $|G: X|$ is odd if $|e| \neq 5$. Take a maximal subgroup M of G with $X \leq M$. Checking the maximal subgroups of M_{12} in the Atlas [7], we conclude that $|e|=\overline{5}$ and $M \cong \mathrm{M}_{10}: \mathbb{Z}_{2}=\mathrm{A}_{6} \cdot \mathbb{Z}_{2}^{2}$. Recalling that $|X|$ is divisible by $\frac{12\left|G_{e}\right|}{5}=2^{5} \cdot 3^{2}$, either $X=M$ or $|M: X|=5$. It is easily shown that $\mathrm{M}_{10}: \mathbb{Z}_{2}$ has no subgroup of index 5 . Then $X=M$. Note that G has two conjugacy classes of subgroups isomorphic to $\mathrm{M}_{10}: \mathbb{Z}_{2}$, one consists of stabilizers of 2-sets of points, and the other one consists of stabilizers of hexad pairs. Thus, since X is transitive, X is the stabilizer of some hexad pair $\left\{B, B^{\prime}\right\}$. Since $|e|=5$ and X is transitive on $\left\{B, B^{\prime}\right\}$, we conclude hat e is contained in either B or B^{\prime}.

Assume that $G=\mathrm{M}_{24}$. Then $|G|=2^{10} \cdot 3^{3} \cdot 5 \cdot 7 \cdot 11 \cdot 23$. By a similar argument as above, we conclude that $|X|$ is divisible by $2^{10} \cdot 3^{3} \cdot 5 \cdot 7,2^{10} \cdot 3^{3} \cdot 5$ or $2^{10} \cdot 3^{3}$ for $|e|=3,4$ or 5 , respectively. Take a maximal subgroup M of G with $X \leq M$. By the information
given for M_{24} in the Atlas [7], we conclude that $|e| \neq 3$, and $M=G_{S} \cong \mathbb{Z}_{2}^{6}: 3 . \mathrm{S}_{6}$ for some sextet $S=\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}\right\}$ of \mathbb{W}_{24}. Noting that $\mathbb{Z}_{2}^{6}: 3 . S_{6}$ has no subgroup of index 5 , we have $X=M$. Thus, by [14, 5.2.3], X is transitive on S and for each i, the point-wise stabilizer $X_{\left(e_{i}\right)} \cong \mathbb{Z}_{2}^{4}: \mathrm{A}_{5}$ is transitive on $V \backslash e_{i}$. Then X is transitive on V. Next we shall show that $e \in S$.

Note that $\left|X_{e}\right|=\left|G_{e}\right|=2^{7} \cdot 3^{2} \cdot 5$ for $|e|=5$, and $\left|X_{e}\right|=\left|G_{e}\right|=2^{9} \cdot 3^{2} \cdot 5$ for $|e|=4$. Let P be a Sylow 5 -subgroup of X_{e}. Then P fixes some e_{j}, say e_{6}, set-wise (and hence point-wise), and P acts transitively on $\left\{e_{j} \mid j \neq 6\right\}$. If $e \subseteq e_{6}$ then $e \in S$. Thus assume that $e \nsubseteq e_{6}$ and, without loss of generality, let $e \cap e_{5} \neq \emptyset$. Suppose that $e \neq e_{5}$. Then, since P is transitive on $\left\{e_{j} \mid j \neq 6\right\}$, we have $e \cap e_{j} \neq \emptyset$ for $1 \leq j \leq 5$. In particular, $e \cap e_{6}=\emptyset$ and $\left|e \cap e_{j}\right|=1$ for $j \neq 6$, and so $|e|=5$. Recall that $X_{\left(e_{6}\right)}$ and hence $X_{e_{6}}$ is transitive on $V \backslash e_{6}$, we know that $V \backslash e_{6}$ can be partitioned in to 4 subsets of size 5 , which form an $X_{e_{6}}$-orbit containing e on the 5 -subsets of $V \backslash e_{6}$. Let $f_{1}=e, f_{2}, f_{3}$ and f_{4} be these 4 subsets of size 5 . Then, by a similar argument as above, $\left|f_{i} \cap e_{j}\right|=1$ for $1 \leq i \leq 4$ and $j \neq 6$. This implies that $x \in X_{\left(e_{6}\right)}$ fixes V point-wise provided that x fixes every f_{k} set-wise. Clearly, $X_{\left(e_{6}\right)}$ is unfaithful on $\left\{f_{1}, f_{2}, f_{3}, f_{4}\right\}$. Thus $X_{\left(e_{6}\right)}$ is not faithful on V, a contradiction. Therefore, $e=e_{5} \in S$. This completes the proof.

Now we consider the case that M_{11} acts 3-transitively on a set of size 12. A dodecad of \mathbb{W}_{24} is the symmetric difference of two blocks which intersect in two points. In particular, a docecad has size 12. Let U_{1} be docecad and U_{2} is complement. By [8, Theorem 6.8A], $M:=\left(\mathrm{M}_{24}\right)_{U_{1}}=\left(\mathrm{M}_{24}\right)_{U_{2}} \cong \mathrm{M}_{12}$, and $\mathbb{W}_{12} \cong \mathbb{S}_{i}:=\left(U_{i}, \mathcal{B}_{i}\right)$, where

$$
\mathcal{B}_{i}=\left\{B \cap U_{i}| | B \cap U_{i} \mid=6, B \text { is a block of } \mathbb{W}_{24}\right\}, i=1,2
$$

Fix a point $u \in U_{2}$. By [2, IV.4.8 Lemma], for each $v \in U_{2} \backslash\{u\}$, there are exactly two blocks of \mathbb{W}_{24} which contain $\{u, v\}$ and intersect U_{1} in 6 points. These two blocks give two parallel blocks C_{v}^{1} and C_{v}^{2} of \mathbb{S}_{1}. Moreover, $\mathbb{H}:=\left(U_{1},\left\{C_{v}^{1}, C_{v}^{2} \mid v \in U_{2} \backslash\{u\}\right\}\right)$ is a $S_{2}(3,6,12)$ design. By [2, IV.5.4 Theorem], Aut $\mathbb{H} \cong M_{u} \cong \mathrm{M}_{11}$ and AutHI is 3-transitive on U_{1}. Note that every 3 -subset of U_{1} is contained exactly 2 blocks of \mathbb{H}. Then the following facts follows:
(c) if $\{v, w\} \in\left(U_{2} \backslash\{u\}\right)^{\{2\}}$ and $i, j \in\{1,2\}$, then $\left\{C_{v}^{i} \cap C_{w}^{j} \mid i, j=1,2\right\}$ is a 3 -uniform partition of U_{1}, called a quadrisection of \mathbb{H};
(d) \mathbb{H} has 55 quadrisection in total; for a quadrisection $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$, the unions $e_{i} \cup e_{j}$ give 6 blocks of \mathbb{S}_{1}, and only 4 of them are blocks of \mathbb{H}; moreover, Aut $\mathbb{H}_{\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}} \cong\left(M_{u}\right)_{\{v, w\}} \cong \mathrm{M}_{9}: \mathbb{Z}_{2}$ for some distinct $v, w \in U_{2} \backslash\{u\}$, see also [14, 5.3.7]; in particular, Aut \mathbb{H} is transitive on the set of all quadrisections of \mathbb{H}.
Lemma 4.7. Let $G=\mathrm{M}_{11}$ act on the point set of \mathbb{H}. Then (G, X, e) is a feasible triple if and only if $X=G_{Q}$ for a quadrisection Q of \mathbb{H}, and $e \in Q$.
Proof. Let V be the point set of \mathbb{H}. Assume that (G, X, e) is a feasible triple. Then $|e|=3$ as $h(G)=3$, and $\left|X_{e}\right|=\left|G_{e}\right|=\frac{|G|}{\left|V^{\{3\}}\right|}=2^{2} \cdot 3^{2}$. Since G is 3-transitive, G_{e} is transitive on e. Thus $\left|\left(X_{e}\right)_{v}\right|=\left|\left(G_{e}\right)_{v}\right|=\frac{\left|G_{e}\right|}{|e|}=12$ for $v \in e$; in particular, $\left|X_{v}\right|$ is divisible by 12. Thus $|X|=|V|\left|X_{v}\right|$ is divisible by 144. Checking the subgroups of M_{11} in the Atlas [7], we conclude that either $X \cong \mathrm{M}_{10}$, or $X \cong \mathrm{M}_{9}: \mathbb{Z}_{2}$ and X is a stabilizer of some quadrisection.

Suppose that $X \cong \mathrm{M}_{10}$. Since $(|G: X|, 12)=1$, by Lemma 2.1, X is transitive on V. Take $N \leq X$ with $N \cong \mathrm{~A}_{6}$. Then N is normal in X, and so all N-orbits on V have
the same size as X is transitive. Checking the subgroups of A_{6}, we know that N has no subgroups of index 12 . It follows that N is intransitive on V. Since $|X: N|=2$, we conclude that N has two orbits, say V_{1} and V_{2}, of size 6 on V. Then each $x \in X \backslash N$ interchanges V_{1} and V_{2}, which yields that $x \notin X_{e}$ by noting that $\left|V_{1} \cap e\right| \neq\left|V_{2} \cap e\right|$. Thus $X_{e} \leq N$. Moreover, N is 3 -homogeneous on both V_{1} and V_{2}. If e is contained in one of V_{1} and V_{2}, then $X_{e}=N_{e}$ has order 18, a contradiction. If $\left|V_{1} \cap e\right| \neq 0$ and $\left|V_{2} \cap e\right| \neq 0$ then $X_{e}=N_{e} \leq N_{v} \cong \mathrm{~A}_{5}$ for some $v \in e$, and so $\left|X_{e}\right|$ is not divisible by 9 , again a contradiction. Therefore, $X=G_{Q}$ for some quadrisection $Q=\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ of \mathbb{H}.

Now we show that $G_{e}=X_{e}$ if and only if $e \in Q$, and then the lemma follows. Since $|G: X|=55$, by Lemma 2.1, X is transitive on V. Then X acts transitively on Q, and so $X_{e_{i}}$ has order $\frac{|X|}{4}=36$, where $1 \leq i \leq 4$. This yields $X_{e_{i}}=G_{e_{i}}$. Let L be a normal subgroup of X with $L \cong \mathbb{Z}_{3}^{2}$. Then $L \leq X_{e_{i}}$, and L has four orbits of size 3 on V. It follows that Q consists of L-orbits. Assume that $G_{e}=X_{e}$ for a 3-set e of points. Then $\left|X_{e}\right|=36$, and so $L \leq X_{e}$. It implies that e is an orbit of L on the points, and thus $e \in Q$. This completes the proof.

5. A CLASSIFICATION OF SYMMETRIC FACTORIZATIONS

In this section, we shall determine all possible symmetric factorizations up to isomorphism of factorizations.
5.1. Symmetric factorizations on $\operatorname{PG}(1, q)$. Recall that $\operatorname{PGL}(2, q)$ consists of all fractional linear mappings of the form

$$
t_{\alpha, \beta, \gamma, \delta}: \xi \mapsto \frac{\alpha \xi+\beta}{\gamma \xi+\delta}, \alpha, \beta, \gamma, \delta \in \mathbb{F}_{q} \text { with } \alpha \delta-\beta \gamma \neq 0
$$

Set $q=p^{f}$ for a prime p. The Frobenius automorphism of \mathbb{F}_{q} induces a permutation on $\operatorname{PG}(1, q)$ by $\sigma: \xi \mapsto \xi^{p}$ with $\infty^{p}=\infty$.
Example 5.1. Assume that $5 \leq q \equiv 2(\bmod 3)$, that is, 3 is a divisor of $q+1$. Fix a generator η of the multiplicative group of \mathbb{F}_{q}. For $0 \leq i<q-1$ and $\beta \in \mathbb{F}_{q}$, set

$$
F_{i, \beta}=\left\{\left.\left\{\eta^{i} \xi+\beta, \frac{\eta^{i}}{1-\xi}+\beta, \eta^{i}-\frac{\eta^{i}}{\xi}+\beta\right\} \right\rvert\, \xi \in \operatorname{PG}(1, q)\right\}
$$

Then $F_{i, \beta}=F_{0,0}^{t_{n i, 0,0,1} t_{1, \beta, 0,1}}$, and $F_{0,0}$ is the set of $\left\langle t_{0,1,-1,1}\right\rangle$-orbits on the projective points. We write

$$
\mathcal{P} \mathcal{G}_{\left(q+1 ; 3, \frac{q(q-1)}{2}\right)}=\left\{F_{i, \beta} \mid 0 \leq i<q-1, \beta \in \mathbb{F}_{q}\right\} .
$$

Lemma 5.2. Let $q \equiv 2(\bmod 3)$ with $q \geq 5$. Then $\mathcal{P} \mathcal{G}_{\left(q+1 ; 3, \frac{q(q-1)}{2}\right)}$ is a symmetric 1 factorization of order $q+1$ and index $\frac{q(q-1)}{2}$. Moreover, $\operatorname{Aut}_{\mathcal{P} \mathcal{G}_{\left(q+1 ; 3, \frac{q(q-1)}{2}\right)}^{2}}=\mathrm{P} \Gamma \mathrm{L}(2, q)$ for $q>5$, and $\mathcal{P} \mathcal{G}_{(6 ; 3,10)} \cong \mathcal{U}_{(6,3)}$; if further $q \equiv 3(\bmod 4)$ then $\mathcal{P} \mathcal{G}_{\left(q+1 ; 3, \frac{q(q-1)}{2}\right)}=\left\{F_{0,0}^{g} \mid\right.$ $g \in \operatorname{PSL}(2, q)\}$.
Proof. Since $t_{0,1,-1,1}$ has order 3, by [9, II.8.5], $t_{0,1,-1,1}$ lies in a semiregular subgroup $\mathbb{Z}_{\frac{q+1}{(2, q-1)}}$ of $\operatorname{PSL}(2, q)$. Clearly, $F_{0,0}$ consists of all orbits of $\left\langle t_{0,1,-1,1}\right\rangle$ on projective points.

In particular, $\left|F_{0,0}\right|=\frac{q+1}{3}$, and $F_{0,0}$ is a 3 -uniform partition of the projective points, and so does every $F_{i, \beta}$. Let $M=\mathbf{N}_{\mathrm{PGL}(2, q)}\left(\left\langle t_{0,1,-1,1}\right\rangle\right)$ be the normalizer of $\left\langle t_{0,1,-1,1}\right\rangle$ in $\operatorname{PGL}(2, q)$. Then $M \cong \mathrm{D}_{2(q+1)}$ is maximal in $\operatorname{PGL}(2, q)$, and M fixes $F_{0,0}$ set-wise. Take $e=\{0,1, \infty\} \in F_{0,0}$. Then $M_{e} \geq\left\langle t_{0,1,-1,1}, t_{0,1,1,0}\right\rangle \cong \mathrm{S}_{3}$. Since $\operatorname{PGL}(2, q)$ is sharply 3transitive on the projective points, we have $\operatorname{PGL}(2, q)_{e} \cong S_{3}$. Thus $M_{e}=\operatorname{PGL}(2, q)_{e} \cong$ S_{3}. Noting that M is transitive on the projective points, $(\operatorname{PGL}(2, q), M, e)$ is a feasible triple. Then $\mathcal{F}=\mathcal{F}(\operatorname{PGL}(2, q), M, e)$ is a symmetric $\left(3, \frac{q(q-1)}{2}\right)$ factorization of order $q+1$.

Recalling that M fixes $F_{0,0}$ set-wise, since $\left|M: M_{e}\right|=\frac{q+1}{3}=\left|F_{0,0}\right|$, we know that $F_{0,0}$ is an orbit of M. Let $R=\left\langle t_{\eta, 0,0,1}, t_{1,1,0,1}\right\rangle$. Then $\mathbb{Z}_{p}^{f}: \mathbb{Z}_{q-1} \cong R=\operatorname{PGL}(2, q)_{\infty}$. Noting that M is transitive on the projective points, $\operatorname{PGL}(2, q)=M \operatorname{PGL}(2, q)_{\infty}=M R$. This implies that $\mathcal{F}=\left\{F_{0,0}^{x} \mid x \in R\right\}=\mathcal{P} \mathcal{G}_{\left(q+1 ; 3, \frac{q(q-1)}{2}\right)}$. Then $\mathcal{P} \mathcal{G}_{\left(q+1 ; 3, \frac{q(q-1)}{2}\right)}$ is a symmetric $\left(3, \frac{q(q-1)}{2}\right)$ factorization. Clearly, $\mathcal{P} \mathcal{G}_{\left(q+1 ; 3, \frac{q(q-1)}{2}\right)}$ is 1-factorization, and $\mathcal{P} \mathcal{G}_{(6 ; 3,10)}$ consists of all 3 -uniform partitions of the point set of $\operatorname{PG}(1,5)$.

Suppose that $q \equiv 3(\bmod 4)$. Then $\frac{q(q-1)}{2}$ is odd. Set $L=\left\langle t_{\eta^{2}, 0,0,1}, t_{1,1,0,1}\right\rangle$. Then $L \leq \operatorname{PSL}(2, q)$ and $R=L \times\left\langle t_{-1,0,0,1}\right\rangle$. In particular, L has index 2 in R. Recall R is transitive on the $\frac{q(q-1)}{2}$ factors of $\mathcal{P} \mathcal{G}_{\left(q+1 ; 3, \frac{q(q-1)}{2}\right)}$. It follows that L is transitive on the factors of $\mathcal{P} \mathcal{G}_{\left(q+1 ; 3, \frac{q(q-1)}{2}\right)}$. Then $\left\{F_{0,0}^{g} \mid g \in \operatorname{PGL}(2, q)\right\}=\mathcal{P} \mathcal{G}_{\left(q+1 ; 3, \frac{q(q-1)}{2}\right)}=\left\{F_{0,0}^{x} \mid x \in\right.$ $L\} \subseteq\left\{F_{0,0}^{g} \mid g \in \operatorname{PSL}(2, q)\right\}$, and so $\mathcal{P} \mathcal{G}_{\left(q+1 ; 3, \frac{q(q-1)}{2}\right)}=\left\{F_{0,0}^{g} \mid g \in \operatorname{PSL}(2, q)\right\}$, as required.

Finally, we determine $A:=\operatorname{Aut} \mathcal{P G}_{\left(q+1 ; 3, \frac{q(q-1)}{2}\right)}$. Since A is a 3 -homogeneous permutation group of degree $q+1$, by Theorem 2.3, we have $|A: \operatorname{soc}(A)|<\frac{q(q-1)}{2}$. Noting that $\left|A: A_{F_{0,0}}\right|=\frac{q(q-1)}{2}$, we have $\operatorname{soc}(A) \not \leq A_{F_{0,0}}$. Then $\left(A, A_{F_{0,0}},\{\infty, 0,1\}\right)$ is a feasible triple. Recall that σ is the permutation on $\operatorname{PG}(1, q)$ induced by the Frobenius automorphism of \mathbb{F}_{q}. It is easy to see that $\sigma \in A$, and so $\mathrm{P} \Gamma \mathrm{L}(2, q) \leq A$. Thus, by Lemmas 4.1-4.7, we conclude that $\operatorname{Aut}^{\left(q+1 ; 3, \frac{q(q-1)}{2}\right)}{ }=\mathrm{P} \Gamma \mathrm{L}(2, q)$ except for $q=5$.

Next we give several exceptional examples of symmetric factorizations. (All examples are constructed under the help of GAP.) For distinct points ξ_{1}, ξ_{2} and ξ_{3} of $\mathrm{PG}(1, q)$, we write $\left\{\xi_{1}, \xi_{2}, \xi_{3}\right\}$ as $\xi_{1} \xi_{2} \xi_{3}$.
Example 5.3. Let $\operatorname{PG}(1,11)=\{0,1,2,3, \cdots, 10, \infty\}$, and set

$$
\begin{array}{ll}
E_{1}=\{01 \infty, 259,367,4810\}, & E_{2}=\{057,189,2610,34 \infty\}, \\
E_{3}=\{024,1710,358,69 \infty\}, & E_{4}=\{068,123,479,510 \infty\} .
\end{array}
$$

Let $H=\left\langle t_{1,1,-4,-1}, t_{0,1,-1,1}\right\rangle$ and $R=\left\langle t_{1,5,-5,0}, t_{1,-5,4,3}\right\rangle$. Then all E_{i} are H-orbits. Set

$$
\mathcal{P} \mathcal{G}_{(12 ; 3,55)}^{i}=\left\{E_{i}^{x} \mid x \in R\right\}, i=1,2,3,4 .
$$

Lemma 5.4. All $\mathcal{P G}_{(12 ; 3,55)}^{i}$ are distinct symmetric 1-factorizations of order 12, and
(i) $\mathcal{P} \mathcal{G}_{(12 ; 3,55)}^{1} \cong \mathcal{P} \mathcal{G}_{(12 ; 3,55)}^{2}$, and $\mathcal{P G}_{(12 ; 3,55)}^{3} \nsubseteq \mathcal{P G}_{(12 ; 3,55)}^{4}$;
(ii) $\operatorname{Aut} \mathcal{P G}_{(12 ; 3,55)}^{1}=\operatorname{Aut} \mathcal{P} \mathcal{G}_{(12 ; 3,55)}^{2}=\operatorname{PSL}(2,11)$;
(iii) $\operatorname{Aut} \mathcal{P G}_{(12 ; 3,55)}^{3}=\operatorname{Aut} \mathcal{P G}_{(12 ; 3,55)}^{4}=\operatorname{PGL}(2,11)$.

Proof. It is easy to check that $H \cong \mathrm{~A}_{4}, R \cong \mathbb{Z}_{11}: \mathbb{Z}_{5}$ and $\operatorname{PSL}(2,11)=H R$. Thus $\mathcal{P} \mathcal{G}_{(12 ; 3,55)}^{i}=\left\{E_{i}^{x} \mid x \in G\right\}$. Let $e_{1}=01 \infty, e_{2}=2610, e_{3}=358$ and $e_{4}=479$.

Then $E_{i}=e_{i}^{H}$ for $1 \leq i \leq 4$, and each triple ($\left.\operatorname{PSL}(2,11), H, e_{i}\right)$ is feasible on the point set of $\operatorname{PG}(1,11)$. Then every $\mathcal{P} \mathcal{G}_{(12 ; 3,55)}^{i}$ is a symmetric 1 -factorization. Noting that $\mathbf{N}_{\mathrm{PSL}(2,11)}(H)=H$, by Lemma 3.3, all $\mathcal{P} \mathcal{G}_{(12 ; 3,55)}^{i}$ are distinct. Since $\operatorname{PSL}(2,11) \leq$ Aut $\mathcal{P G}_{(12 ; 3,55)}^{i}$, by Theorem 2.3 and Lemmas 4.1-4.7, we conclude that Aut $\mathcal{P} \mathcal{G}_{(12 ; 3,55)}^{i} \in$ $\left\{\operatorname{PSL}(2,11), \operatorname{PGL}(2,11), \mathrm{M}_{11}\right\}$.

By the information given in the Atlas [7], each subgroup $\operatorname{PSL}(2,11)$ of M_{11} is a stabilizer of M_{11} in its 3-transitive action of degree 12. Thus Aut $\mathcal{P G}_{(12 ; 3,55)}^{i} \neq \mathrm{M}_{11}$. Take $\tau=$ $t_{1,1,2,-1}$. Then $\tau \in \operatorname{PGL}(2,11) \backslash \operatorname{PSL}(2,11), e_{1}^{\tau}=e_{2}, e_{3}^{\tau}=e_{3}, e_{4}^{\tau}=e_{4}$ and τ normalizes H. It follows that $\mathcal{P} \mathcal{G}_{(12 ; 3,55)}^{1} \cong \mathcal{P} \mathcal{G}_{(12 ; 3,55)}^{2}$, Aut $\mathcal{P G}_{(12 ; 3,55)}^{1}=\operatorname{PSL}(2,11)$ and $\operatorname{Aut} \mathcal{P} \mathcal{G}_{(12 ; 3,55)}^{3}=$ Aut $\mathcal{P} \mathcal{G}_{(12 ; 3,55)}^{4}=\operatorname{PGL}(2,11)$. In particular, $\mathcal{P G}_{(12 ; 3,55)}^{i}=\mathcal{F}\left(\operatorname{PGL}(2,11), \operatorname{PGL}(2,11)_{e_{i}}, e_{i}\right)$ for $i=3,4$. Note that $\mathbf{N}_{\operatorname{Sym}(V)}(\mathrm{PGL}(2,11))$ is 3 -transitive on V. By Theorem 2.3, $\mathbf{N}_{\mathrm{Sym}(V)}(\mathrm{PGL}(2,11))=\operatorname{PGL}(2,11)$. Then $\mathcal{P} \mathcal{G}_{(12 ; 3,55)}^{3} \neq \mathcal{P} \mathcal{G}_{(12 ; 3,55)}^{4}$ by Lemma 3.4.

Similarly, we have the following three examples.

Example 5.5. Let $\operatorname{PG}(1,23)=\{0,1,2,3, \cdots, 22, \infty\}$. Set

$$
\begin{aligned}
& F_{1}=\{01 \infty, 161922,2711,31214,41020,5615,81321,91718\}, \\
& F_{2}=\{046,1915,21222,31319,1820 \infty, 51017,7816,111421\}, \\
& F_{3}=\{0910,1520,21921,31116,41518,617 \infty, 71213,81422\}, \\
& F_{4}=\{0518,1417,238,6920,71419,1015 \infty, 111322,121621\} .
\end{aligned}
$$

Take $H=\left\langle t_{1,-3,-6,-4}, t_{0,1,-1,1}\right\rangle$ and $R=\left\langle t_{1,1,0,1}, t_{2,0,0,1}\right\rangle$. Then $H \cong \mathrm{~S}_{4}, R \cong \mathbb{Z}_{23}: \mathbb{Z}_{11}$, $\operatorname{PSL}(2,23)=H R$, and every F_{i} is an H-orbit. Set

$$
\mathcal{P} \mathcal{G}_{(24 ; 3,253)}^{i}=\left\{F_{i}^{x} \mid x \in R\right\}, i=1,2,3,4 .
$$

Then all $\mathcal{P} \mathcal{G}_{(24 ; 3,253)}^{i}$ are non-isomorphic symmetric 1-factorizations of order 24, and

$$
\text { Aut } \mathcal{P} \mathcal{G}_{(24 ; 3,253)}^{i}=\operatorname{PSL}(2,23), i=1,2,3,4 .
$$

Example 5.6. Let $\operatorname{PG}(1,59)=\{0,1,2,3, \cdots, 58, \infty\}$. Set
$\begin{aligned} & F_{1}=\quad\{01 \infty, 2734,33947,4640,52241,81233,92448,101832,113138,131952,142844, \\ &152156,163542,172046,232655,254958,273043,294550,363754,515357\}, \\ & F_{2}=\{0727,13449,23058,31152,41044,54554,62028,85556,91938,121542,133948, \\ &143246,162123,171840,223651,243147,2543 \infty, 263335,293753,415057\}, \\ & F_{3}=\quad\{02848,1524,21737,32940,45056,61539,72042,84357,91422,102555,111858, \\ &121327,163454,193351,214547,263238,233149,305253,353646,4144 \infty\}, \\ &\{0514,1944,21646,31550,43945,62129,73537,81353,101123,123051,174254, \\ &182649,192757,203436,2248 \infty, 242841,253132,334352,385558,404756\}, \\ & F_{4}=\{0941,12228,23642,3421,54448,64750,74654,81930,103849,112526,125257, \\ &134351,1424 \infty, 154045,162037,173435,183155,233258,273353,293956\}, \\ & F_{5}=\{0225,12758,31924,41417,53757,61046,74349,82135,91139,121655,133847, \\ &152333,182044,224553,264256,283240,293641,3034 \infty, 314852,505154\}, \\ & F_{6}=\{03049,1243,33848,42032,52951,758, \infty, 61418,82342,94752,101728,111324, \\ &122126,153555,163356,193139,223750,252734,364557,404446,415354\}, \\ & F_{7}=\{02629,13340,2956,335 \infty, 41934,51218,64951,73850,81724,101354,114142, \\ &142130,152258,164452,203157,232853,253639,273245,374855,434647\}, \\ & F_{8}=\{0612,11647,24052,33758,42557,52149,71548,81041,93346,111753,132842, \\ &142651,182930,193236,202739,223538,232454,313445,434456,5055, \infty\}, \\ & F_{9}=\{03942,12345,21129,31730,4860,51631,6713,92636,104350,122048,141935,\end{aligned}, \begin{aligned} & 152728,183752,212434,223233,254156,384651,405358,445557,474954\} .\end{aligned}$
Let $H=\left\langle t_{1,12,34,31}, t_{0,1,1,1,1}\right\rangle$ and $R=\left\langle t_{1,1,0,1}, t_{4,0,0,1}\right\rangle$. Then $H \cong \mathrm{~A}_{5}, R \cong \mathbb{Z}_{59}: \mathbb{Z}_{29}$, $\operatorname{PSL}(2,59)=H R$ and all F_{i} are H-orbits. Set

$$
\mathcal{P \mathcal { G }}_{(60 ; 3,1711)}^{i}=\left\{F_{i}^{x} \mid x \in R\right\}, 1 \leq i \leq 10 .
$$

Then all $\mathcal{P G}_{(60 ; 3,1711)}^{i}$ are non-isomorphic symmetric 1 -factorizations of order 60 , and

$$
\operatorname{Aut} \mathcal{P G}_{(60 ; 3,1711)}^{i}=\operatorname{PSL}(2,59), 1 \leq i \leq 10 .
$$

Example 5.7. Let $\operatorname{PG}(1,29)=\{0,1,2,3, \cdots, 28, \infty\}$, and set
$F_{1}=\{01 \infty, 22425,32122,41018,5628,71523,8927,111314,122026,161719\} ;$ $F_{2}=\{0411,11926,21528,3513,6910,71214,822 \infty, 161823,172527,202124\}$.
Let $H=\left\langle t_{1,-13,-9,10}, t_{0,1,-1,1}\right\rangle$ and $R=\left\langle t_{1,1,0,1}, t_{2,0,0,1}\right\rangle$. Then $H \cong \mathrm{~A}_{5}, R \cong \mathbb{Z}_{29}: \mathbb{Z}_{28}$, $\operatorname{PGL}(2,29)=H R$ and each F_{i} is an H-orbit. Set

$$
\mathcal{P} \mathcal{G}_{(30 ; 3,406)}^{i}=\left\{F_{i}^{x} \mid x \in R\right\}, 1 \leq i \leq 2
$$

Then $\mathcal{P} \mathcal{G}_{(30 ; 3,406)}^{1}$ and $\mathcal{P} \mathcal{G}_{(30 ; 3,406)}^{2}$ are non-isomorphic symmetric 1-factorizations of order 30, and

$$
\text { Aut } \mathcal{P} \mathcal{G}_{(30 ; 3,406)}^{i}=\operatorname{PGL}(2,29), 1 \leq i \leq 2 .
$$

In the next four examples, we construct several symmetric factorizations which are not 1 -factorizations.

Example 5.8. Let $\operatorname{PG}(1,7)=\{0,1,2,3,4,5,6, \infty\}$. Set

$$
F_{1}=\{01 \infty, 015,05 \infty, 15 \infty, 246,346,236,234\}
$$

$$
\begin{aligned}
& F_{2}=\{12 \infty, 126,16 \infty, 26 \infty, 035,045,034,345\} \\
& F_{3}=\{23 \infty, 023,02 \infty, 03 \infty, 146,156,145,456\} \\
& F_{4}=\{34 \infty, 134,13 \infty, 14 \infty, 025,026,256,056\} \\
& F_{5}=\{45 \infty, 245,24 \infty, 25 \infty, 136,013,036,016\}, \\
& F_{6}=\{56 \infty, 356,35 \infty, 36 \infty, 024,124,014,012\}, \\
& F_{7}=\{06 \infty, 046,46 \infty, 04 \infty, 135,235,125,123\}
\end{aligned}
$$

Let $H=\left\langle t_{0,1,-1,1}, t_{1,3,2,1}\right\rangle$. Then F_{1} is an orbit of H on the 3 -subsets. Write

$$
\mathcal{P} \mathcal{G}_{(8 ; 3,7)}=\left\{F_{1}, F_{2}, F_{3}, F_{4}, F_{5}, F_{6}, F_{7}\right\} .
$$

Lemma 5.9. $\mathcal{P G}_{(8 ; 3,7)}$ is a symmetric factorization of order 8 , and

$$
\text { Aut } \mathcal{P} \mathcal{G}_{(8 ; 3,7)}=\operatorname{PSL}(2,7)
$$

Proof. It is easy to check that F_{1} is an orbit of H on the 3 -sets of projective points, and $F_{i}=F_{1}^{t_{1, i-1,0,1}}$ for $1 \leq i \leq 7$. Note that $t_{0,1,-1,1}, t_{1,3,2,1}$ and $t_{1,1,0,1}$ are element of $\operatorname{PSL}(2,7)$ with order 3,4 and 7 , respectively. It is easily shown that

$$
H=\left\langle t_{0,1,-1,1}, t_{1,3,2,1}\right\rangle \cong \mathrm{S}_{4}, \operatorname{PSL}(2,7)=\left\langle t_{0,1,-1,1}, t_{1,3,2,1}, t_{1,1,0,1}\right\rangle
$$

Moreover, for $e=01 \infty$, we have $H_{e}=\left\langle t_{0,1,-1,1}\right\rangle$. Since $\operatorname{PSL}(2,7)$ is 3-homogeneous, $\left|\operatorname{PSL}(2,7)_{e}\right|=\frac{|\operatorname{PSL}(2,7)|}{\left|V^{\{3\}}\right|}=3$, yielding $H_{e}=\left\langle t_{0,1,-1,1}\right\rangle=\operatorname{PSL}(2,7)_{e}$. Thus $(\operatorname{PSL}(2,7), H, e)$ is feasible. Note that $\operatorname{PSL}(2,7)=H\left\langle t_{1,1,0,1}\right\rangle$. We know that $\mathcal{P} \mathcal{G}_{(8 ; 3,7)}=\mathcal{F}(\operatorname{PSL}(2,7), H, e)$ is a symmetric factorization of order 8. By Theorem 2.3 and Lemmas 4.1-4.7, we conclude that $\operatorname{Aut} \mathcal{P} \mathcal{G}_{(8 ; 3,7)}=\operatorname{PSL}(2,7)$.

Example 5.10. Let $\operatorname{PG}(1,19)=\{0,1,2,3, \cdots, 17,18, \infty\}$. Set

$$
\begin{aligned}
F_{1}= & \{018,18 \infty, 61013,6713,51416,31115,51214,2315,51216,91718, \\
& 4917,71013,41718,2311,21115,4918,01 \infty, 08 \infty, 6710,121416\}, \\
F_{2}= & \{1313,589,5617,131415,51518,3816,111317,1910,1612,0318, \\
& 7814,911 \infty, 2616,0717,41014,1215 \infty, 21018,41116,0412,27 \infty\}, \\
F_{3}= & \{1214,468,1316 \infty, 4615,0510,3712,21417,4815,51011,7912, \\
& 1618 \infty, 1217,131618,0511,01011,1318 \infty, 3912,379,11417,6815\} .
\end{aligned}
$$

Let $H=\left\langle t_{0,1,-1,1}, t_{1,-2,-8,6}\right\rangle$ and $R=\left\langle t_{1,-4,6,0}, t_{1,2,-2,3}\right\rangle$. Set

$$
\mathcal{P} \mathcal{G}_{(20 ; 3,57)}^{i}=\left\{F_{i}^{x} \mid x \in R\right\}, i=1,2,3 .
$$

Lemma 5.11. All $\mathcal{P} \mathcal{G}_{(20 ; 3,57)}^{i}$ are non-isomorphic symmetric factorizations of order 20 , and

$$
\text { Aut } \mathcal{P G}_{(20 ; 3,57)}^{i}=\operatorname{PSL}(2,19) \text { for } i=1,2,3
$$

Proof. It is easily shown that $H \cong \mathrm{~A}_{5}$, every F_{i} is an orbit of H of size 20 , and $H_{e}=$ $\left\langle t_{0,1,-1,1}\right\rangle \cong \mathbb{Z}_{3}$, where $e \in\{01 \infty, 21018,379\}$. Moreover, $R \cong \mathbb{Z}_{19}: \mathbb{Z}_{9}, \operatorname{PSL}(2,19)=$ $H R$ and $t_{1,2,-2,3}^{3}=t_{0,1,-1,1}$. It is easy to see that $(\operatorname{PSL}(2,19), H, e)$ is a feasible triple. Then all $\mathcal{P G}_{(20 ; 3,57)}^{i}$ are symmetric factorizations of order 20. By Theorem 2.3 and Lemmas 4.1-4.7, we have $\operatorname{Aut} \mathcal{P G}_{(20 ; 3,57)}^{i}=\operatorname{PSL}(2,19)$, where $i=1,2,3$.

By Theorem 2.3, we conclude that $\mathbf{N}_{\operatorname{Sym}(V)}(\operatorname{PSL}(2,19))=\operatorname{PGL}(2,19)$, where V is the point set of $\operatorname{PG}(2,19)$. Checking the maximal subgroups of $\operatorname{PGL}(2,19)$, we know that PGL $(2,19)$ contains no element normalizing H. By Lemma 3.4, all $\mathcal{P} \mathcal{G}_{(20 ; 3,57)}^{i}$ are not isomorphic to every other.

Similarly, we have the following example.
Example 5.12. Let $\operatorname{PG}(1,11)=\{0,1,2,3, \cdots, 10, \infty\}$. Set

$$
\begin{aligned}
F_{1}:= & \{2610,045,34 \infty, 0210,1710,057,024,24 \infty, 69 \infty, 26 \infty, \\
& 0710,578,358,345,1610,169,39 \infty, 389,178,189\}, \\
F_{2}:= & \{01 \infty, 237,259,467,068,4810,510 \infty, 036,123,4910, \\
& 125,013,479,08 \infty, 279,810 \infty, 468,15 \infty, 5910,367\} .
\end{aligned}
$$

Let $H=\left\langle t_{1,-5,4,3}, t_{0,1,-1,1}\right\rangle$. Then $H \cong \mathrm{~A}_{5}, \operatorname{PSL}(2,11)=H\left\langle t_{1,1,0,1}\right\rangle$, and both F_{1} and F_{2} are H-orbits of length 20 . Set

$$
\mathcal{P G}_{(12 ; 3,11)}^{i}=\left\{F_{i}^{t_{1, j, 0,1}} \mid 0 \leq j<11\right\}, i=1,2 .
$$

Then $\mathcal{P} \mathcal{G}_{12 ; 3,11}^{1}$ and $\mathcal{P} \mathcal{G}_{12 ; 3,11}^{2}$ are non-isomorphic symmetric factorizations of order 12 , and

$$
\operatorname{Aut} \mathcal{P G}_{(12 ; 3,11)}^{i}=\operatorname{PSL}(2,11), i=1,2 .
$$

Example 5.13. Let η be a generator of the multiplicative group of \mathbb{F}_{9}. Then $\operatorname{PGL}(2,9)=$ $\left\langle t_{0,1,-1,1}, t_{\eta, 0,0,1}\right\rangle$. Let $H=\left\langle t_{0,1,-1,1}, t_{1,1, \eta^{3}, \eta}\right\rangle$, and $e=01 \infty$. Then $\mathrm{A}_{5} \cong H \leq \operatorname{PSL}(2,9)$, and $H_{e}=\left\langle t_{0,1,-1,1}, t_{0,1,1,0}\right\rangle \cong \mathrm{S}_{3}$. Since $\operatorname{PGL}(2,9)$ is sharply 3 -transitive on the projective points, we have $\operatorname{PGL}(2,9)_{e}=H_{e}$. Thus $(\operatorname{PGL}(2,9), H, e)$ is feasible. Denote by $\mathcal{P} \mathcal{G}_{(10 ; 3,12)}$ the resulting factorization. Set

$$
F=\left\{01 \infty, 0 \eta^{2} \eta^{3}, 0 \eta \eta^{6}, 1 \eta \eta^{5}, 1 \eta^{3} \eta^{7}, \eta \eta^{3} \eta^{4}, \eta^{2} \eta^{4} \eta^{6}, \eta^{2} \eta^{7} \infty, \eta^{4} \eta^{5} \eta^{7}, \eta^{5} \eta^{6} \infty\right\}
$$

Then $F=e^{H}$ and $\mathcal{P} \mathcal{G}_{(10 ; 3,12)}=\left\{F^{g} \mid g \in \operatorname{PGL}(2,9)\right\}$. Let σ be the permutation on $\mathrm{PG}(1,9)$ defined by $\sigma: \xi \mapsto \xi^{3}$ with $\infty^{3}=\infty$. Then $F^{\sigma}=F$, and so

$$
\left\{F^{g} \mid g \in \operatorname{PGL}(2,9)\right\}^{\sigma}=\left\{\left(F^{\sigma}\right)^{g^{\sigma}} \mid g \in \operatorname{PGL}(2,9)\right\}=\left\{F^{g} \mid g \in \operatorname{PGL}(2,9)\right\}
$$

Thus $\sigma \in \operatorname{Aut} \mathcal{P G}_{(10 ; 3,12)}$, and hence $\mathrm{P} \Gamma \mathrm{L}(2,9) \leq \operatorname{Aut}^{\boldsymbol{P}} \mathcal{G}_{(10 ; 3,12)}$. By Lemmas 4.1-4.7, we conclude that $\operatorname{Aut} \mathcal{P G}_{(10 ; 3,12)}=\operatorname{P\Gamma L}(2,9)$.

Theorem 5.14. Let (G, X, e) be a feasible triple on the point set V of $\operatorname{PG}(1, q)$. Then $\mathcal{F}(G, X, e)$ is isomorphic to one of the symmetric factorizations given in this subsection.

Proof. By Lemmas 3.5 and 4.2, we may choose G such that $\left(G, X, X_{e}\right)$ is listed in Table 1. In particular, $X_{e}=G_{e} \cong \mathbb{Z}_{3}$ or S_{3}. Set $F_{f}=\left\{f^{x} \mid x \in X\right\}$ for $f \in V^{\{3\}}$. Then

$$
\mathcal{F}(G, X, e)=\left\{F_{e}^{g} \mid g \in G\right\} .
$$

G	X	$X_{e}=G_{e}$	$\mathbf{N}_{X}(N)$	$l(G, X)$	Condition
$\operatorname{PSL}(2, q)$	D_{q+1}	\mathbb{Z}_{3}	X	$\frac{q+1}{3}$	$q \equiv-1(\bmod 12)$
$\operatorname{PGL}(2, q)$	$\mathrm{D}_{2(q+1)}$	S_{3}	X	$\frac{q+1}{3}$	$q \equiv 2(\bmod 3)$
$\operatorname{PSL}(2,11)$	A_{4}	\mathbb{Z}_{3}	\mathbb{Z}_{3}	1	
$\operatorname{PSL}(2,7)$	S_{4}	\mathbb{Z}_{3}	$\mathrm{~S}_{3}$	2	
$\operatorname{PSL}(2,11)$	A_{5}	\mathbb{Z}_{3}	$\mathrm{~S}_{3}$	2	
$\operatorname{PSL}(2,19)$	A_{5}	\mathbb{Z}_{3}	$\mathrm{~S}_{3}$	2	
$\operatorname{PSL}(2,23)$	S_{4}	\mathbb{Z}_{3}	$\mathrm{~S}_{3}$	2	
$\operatorname{PSL}(2,59)$	A_{5}	\mathbb{Z}_{3}	$\mathrm{~S}_{3}$	2	
$\operatorname{PGL}(2,29)$	A_{5}	$\mathrm{~S}_{3}$	$\mathrm{~S}_{3}$	1	
$\operatorname{PGL}(2,9)$	A_{5}	$\mathrm{~S}_{3}$	$\mathrm{~S}_{3}$	1	
M_{10}	$\mathrm{~A}_{5}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{3}$	1	

Table 1

Let $N=\langle\tau\rangle$ be the normal subgroup of G_{e} of order 3. Then $N \leq \operatorname{PSL}(2, q)$ as $|G: \operatorname{PSL}(2, q)| \leq 2$, and e is an orbit of N. It is easily shown that all subgroups of order 3 in G are conjugate. By Lemma 3.3, we may choose $\tau=t_{0,1,-1,1}$. Let $e_{0}=01 \infty$. Then e_{0} is an N-orbit on V.

Let O be the set of all N-orbits of size 3 on the projective points. Since G is 3 homogeneous, every 3 -set of points can be written as e_{0}^{g} for some $g \in G$. If $g \in \mathbf{N}_{G}(N)$ then $O^{g}=O$, and so $e_{0}^{g} \in O$. Conversely, let $e_{0}^{g} \in O$. Then N and N^{g} has a common orbit. It implies that $\tau \tau^{g}$ or $\tau^{-1} \tau^{g}$ fixes at least three points, and so $\tau \tau^{g}=1$ or $\tau^{-1} \tau^{g}=1$ by [9, II.8.5], yielding $N=N^{g}$. Thus $O=\left\{e_{0}^{x} \mid x \in \mathbf{N}_{G}(N)\right\}$. Recalling that τ fixes at most two projective points, we may determine the number $|O|$ of N-orbits. If $q+1$ is divisible by 3 , then $|O|=\frac{q+1}{3}$; if $q-1$ is divisible by 3 , then $|O|=\frac{q-1}{3}$; and if $q=9$ then $|O|=3$.

Assume that one of lines 1 and 2 of Table 1 occurs. Then $\mathbf{N}_{G}(N)=X$, and so $F_{e}=\left\{e^{x} \mid x \in X\right\}=O$. Thus, by Lemma 5.2, we get a unique (up to q) symmetric factorization described as in Example 5.1. In the following we assume that (G, X) is listed as in lines 3-11 of Table 1.

Note that all subgroups of G isomorphic to X are conjugate in G. By Lemma 3.1, up to isomorphism of factorizations, we may choose $X=H$ with H described as in one of Examples 5.3 5.5-5.8, 5.10, 5.12 and 5.13. Set $O_{1}=\left\{f \in O \mid X_{f}=G_{f}\right\}$. Then $e \in O_{1}$, and it is easy to see $e_{0} \in O_{1}$. Next we analyze all possible candidates for $e \in O_{1}$ which lead to distinct symmetric factorizations with the form of $\mathcal{F}(G, X, e)$.

Recall that $O \cap O^{g} \neq \emptyset$ if and only if $g \in \mathbf{N}_{G}(N)$. It follows that $F_{e} \cap O_{1} \subseteq\left\{e^{x} \mid\right.$ $\left.x \in \mathbf{N}_{X}(N)\right\}$. On the other hand, if $x \in \mathbf{N}_{X}(N)$ then, since X is transitive on F_{e}, we have $X_{e^{x}}=X_{e}^{x}=G_{e}^{x}=G_{e^{x}}$, yielding $e^{x} \in O_{1}$. Thus $F_{e} \cap O_{1}=\left\{e^{x} \mid x \in \mathbf{N}_{X}(N)\right\}$. Since $\left|X_{e}\right|=\left|G_{e}\right|=\left|G_{e_{0}}\right|=\left|X_{e_{0}}\right|$, we have $\left|F_{e} \cap O_{1}\right|=\left|\mathbf{N}_{X}(N): X_{e}\right|=\frac{\left|\mathbf{N}_{X}(N)\right|}{\left|X_{e_{0}}\right|}$, which is independent of the choice of $e \in O_{1}$.

Let $l(G, X)=\frac{\left|\mathbf{N}_{X}(N)\right|}{\left|X_{e_{0}}\right|}$. Then $\mathbf{N}_{X}(N)$ and $l(G, X)$ are listed in Table 1. It is easy to check that $\mathbf{N}_{G}(X)=X \leq \operatorname{soc}(G)=\operatorname{PSL}(2, q)$ for lines 3-11 of Table 1. By Lemma 3.3 $\mathcal{F}(G, X, e)=\mathcal{F}(G, X, f)$ for $f \in O_{1}$ if and only if $f=e^{g}$ for some $g \in N_{G}(X)$, and
hence $g \in \mathbf{N}_{G}(X) \cap \mathbf{N}_{G}(N)=\mathbf{N}_{X}(N)$. Thus for a given pair (G, X), we get exactly $\frac{\left|O_{1}\right|}{l(G, X)}$ distinct symmetric factorizations having the form of $\mathcal{F}(G, X, e)$.

Let $G=\operatorname{PSL}(2, q)$ with $q \in\{7,11,19,23,59\}$. Then $G_{e_{0}}=N$ and $O_{1}=O$. If $G=$ $\operatorname{PSL}(2,11)$ and $X \cong \mathrm{~A}_{4}$ then $|O|=\left|O_{1}\right|=4$, and $l(G, X)=1$, and so we get 4 distinct symmetric factorizations which are described as in Example 5.3. If $G=\operatorname{PSL}(2,7)$ then $\left|O_{1}\right|=2$ and $l(G, X)=2$, and so we get a unique symmetric factorization described as in Example 5.8. If $G=\operatorname{PSL}(2,11)$ and $X \cong \mathrm{~A}_{5}$, then $G_{e}=N,|O|=\left|O_{1}\right|=4$ and $l(G, X)=2$, and so we get two distinct symmetric factorizations described as in Example 5.12. If $G=\operatorname{PSL}(2,19)$ then $|O|=6=\left|O_{1}\right|$ and $l(G, X)=2$, and then we get three distinct symmetric factorizations described as in Example 5.10. Similarly, if $G=\operatorname{PSL}(2, q)$ with $q \in\{23,59\}$ then $|O|=\left|O_{1}\right|=\frac{q+1}{3}$ and $l(G, X)=2$, and we have 14 distinct symmetric factorizations described as in Examples 5.5 and 5.6.

Let $G=\operatorname{PGL}(2,29)$. Then $X \cong \mathrm{~A}_{5},|O|=10$ and $l(G, X)=1$. For $f \in O_{1}$, we have $N \leq X_{f}=G_{f} \cong \mathrm{~S}_{3}$ and, since $\mathbf{N}_{X}(N) \cong \mathrm{S}_{3}$, we get $X_{f}=\mathbf{N}_{X}(N)$. It follows that O_{1} consists of the orbits of $\mathbf{N}_{X}(N)$ on V. Let $x \in \mathbf{N}_{X}(N) \backslash N$. Then x has order 2, and an N-orbit f lies in O_{1} if and only if $f^{x}=f$. Thus $O_{1}=\left\{f \in O \mid f^{x}=f\right\}$. By [9, II.8.5], N is semiregular and x fixes exactly two projective points. It follows that x fixes exactly two orbits of N. Then $\left|O_{1}\right|=2$, and so we get two distinct symmetric factorizations described as in Example 5.7.

Finally, let $G=\operatorname{PGL}(2,9)$ or M_{10}. Then $|O|=3$ and $l(G, X)=1$. By a similar argument as above, we have $O_{1}=\left\{f \in O \mid f^{x}=f\right\}$, where $x \in \mathbf{N}_{X}(N) \backslash N$. By [9, II.8.5], N fixes a unique projective point, and x fixes exactly two projective points. It follows that x fixes a unique orbit of N of size 3 . Recalling $e_{0} \in O_{1}$, we have $e=e_{0}$, and so $F_{e}=F$ is described as in Example 5.13. Recall that $X=\left\langle t_{0,1,-1,1}, t_{1,1, \eta^{3}, \eta}\right\rangle$ by the choice of X, where η is a generator of the multiplicative group of \mathbb{F}_{9}. Then $X_{e_{0}}=\left\langle t_{0,1,-1,1}, t_{0,1,1,0}\right\rangle$. Let σ be the permutation on $\operatorname{PG}(1,9)$ defined by $\sigma: \xi \mapsto \xi^{3}$ with $\infty^{3}=\infty$. Then $e_{0}^{\sigma}=e_{0}, X^{\sigma}=X$ and $\left\langle X_{e_{0}}, \sigma\right\rangle \cong \mathrm{D}_{12}$. Set $\mathcal{F}_{1}=\left\{F^{g} \mid g \in\right.$ $\operatorname{PSL}(2,9)\}$, and take $g_{0} \in \operatorname{PGL}(2,9) \backslash \operatorname{PSL}(2,9)$. Then $\operatorname{PGL}(2,9)=\operatorname{PSL}(2,9)\left\langle g_{0}\right\rangle$, $\mathrm{M}_{10}=\operatorname{PSL}(2,9)\left\langle\sigma g_{0}\right\rangle$, and

$$
\mathcal{F}\left(\operatorname{PGL}(2,9), X, e_{0}\right)=\mathcal{F}_{1} \cup \mathcal{F}_{1}^{g_{0}}=\mathcal{P} \mathcal{G}_{(10 ; 3,12)}=\mathcal{F}_{1}^{\sigma} \cup \mathcal{F}_{1}^{\sigma g_{0}}=\mathcal{F}\left(\mathrm{M}_{10}, X, e_{0}\right)
$$

Thus get a symmetric factorization described as in Example 5.13.
5.2. Symmetric factorizations arising from \mathbb{W}_{24}. Take a dodecad W of \mathbb{W}_{24}, and let U be its complement. For distinct $u, v \in U$, denote by $B_{u v}^{1}$ and $B_{u v}^{2}$ the blocks of \mathbb{W}_{24} which contain $\{u, v\}$ and intersect W in 6 points. Let $F_{u v}$ be the set of 5 -subsets of $W \cap B_{u v}^{1}$ and $W \cap B_{u v}^{2}$. Set

$$
\mathcal{W}_{(12 ; 5,66)}=\left\{F_{u v} \mid\{u, v\} \in U^{\{2\}}\right\} .
$$

Fix a point $v \in U$. For distinct $u_{1}, u_{2} \in U \backslash\{v\}$, let

$$
E_{u_{1} u_{2}}=\left\{B_{u_{i} v}^{j} \cap B_{u_{i^{\prime}} v}^{j^{\prime}} \cap W \mid i, i^{\prime}, j, j^{\prime} \in\{1,2\}, i \neq i^{\prime}\right\} .
$$

Set

$$
\mathcal{H}_{(12 ; 3,55)}=\left\{E_{u_{1} u_{2}} \mid u_{1} \neq u_{2}, u_{1}, u_{2} \in U \backslash\{v\}\right\} .
$$

Let $\mathcal{W}_{(24 ; 4,1771)}$ be the set of 1771 sextets of \mathbb{W}_{24}. Then, by Lemmas 4.6 and 4.7 , we have the following result.

Theorem 5.15. Let (G, X, e) be a feasible triple on a set V.
(1) If $G=\mathrm{M}_{11}$, then $\mathcal{F}(G, X, e) \cong \mathcal{H}_{(12 ; 3,55)}$.
(2) If $G=\mathrm{M}_{12}$, then $\mathcal{F}(G, X, e) \cong \mathcal{W}_{(12 ; 5,66)}$.
(3) If $G=\mathrm{M}_{12}$, then $\mathcal{F}(G, X, e) \cong \mathcal{W}_{(24 ; 4,1771)}$.

Remark 5.16. Consider the action of $\operatorname{PSL}(2,11)$ on the projective line $V=\mathbb{F}_{11} \cup$ $\{\infty\}$. Take $B=\{\infty, 1,3,4,5,9\}$. By [2, IV.1.2 Construction], the incidence structure $\left(V, B^{\mathrm{PSL}(2,11)}\right)$ is an $S(5,6,12)$ Steiner system. Thus we may let $\mathbb{W}_{12}=\left(V, B^{\operatorname{PSL}(2,11)}\right)$. Note that $\operatorname{PSL}(2,11)$ acts transitively on the blocks of \mathbb{W}_{12}. Then $\operatorname{PSL}(2,11)$ acts transitively on the 66 hexad pairs. Let

$$
F=\left\{\begin{array}{l}
\infty 1345, \infty 3459, \infty 1459, \infty 1359, \infty 1345,13459, \\
02678,067810,027810,026810,026710,267810
\end{array}\right\},
$$

Then $\mathcal{W}_{(12 ; 5,66)}=\left\{F^{g} \mid g \in \operatorname{PSL}(2,11)\right\}$.
5.3. The conclusion. Let V be a set of size n, and let k and s be integers with $6 \leq$ $2 k \leq n$ and $s \geq 2$. Assume that $\mathcal{F}=\left\{F_{1}, F_{2}, \cdots, F_{s}\right\}$ is a symmetric (k, s) factorization on V. Then by the argument in Section 3 we have $\mathcal{F}=\mathcal{F}(G, X, e)$, where G, X and e satisfy the conditions (c1) and (c2) given in Section 3. If $\operatorname{soc}(G) \leq X$ then all factors (V, F_{i}) admit a common transitive subgroup of $\operatorname{Sym}(V)$, and so \mathcal{F} is homogeneous. Thus we assume that $\operatorname{soc}(G) \not \leq X$, that is, (G, X, e) is a feasible triple. By Lemma 3.6, up to isomorphism of factorizations, we may assume further that (G, X, e) is one of the feasible triples described as in Lemmas 4.2, 4.3, 4.6 and 4.7. Then by Corollary 4.4, Lemma 5.4 and Theorems 5.14 and 5.15 , a classification of symmetric factorizations follows, and thus Theorems 1.2 and 1.3 are proved.

Theorem 5.17. Let \mathcal{F} be a symmetric (k, s) factorization of order n, where n, k and s are integers with $n \geq 2 k \geq 6$ and $s \geq 2$. Then \mathcal{F} is either homogeneous or isomorphic to one of the following symmetric factorizations:
(1) $\mathcal{U}_{(2 k, k)} ; \mathcal{H}_{(12 ; 3,55)}, \mathcal{W}_{(24 ; 4,1771)} ; \mathcal{P G}_{\left(q+1 ; 3, \frac{q(q-1)}{2}\right)}, \mathcal{P G}_{(12 ; 3,55)}^{2}, \mathcal{P G}_{(12 ; 3,55)}^{3}, \mathcal{P} \mathcal{G}_{(12 ; 3,55)}^{4}$, $\mathcal{P} \mathcal{G}_{(30 ; 3,406)}^{1}, \mathcal{P} \mathcal{G}_{(30 ; 3,406)}^{2}, \mathcal{P} \mathcal{G}_{(24 ; 3,253)}^{i}$ and $\mathcal{P G}_{(60 ; 3,1711)}^{j}$, where $8 \leq q \equiv 2(\bmod 3)$, $1 \leq i \leq 4$ and $1 \leq j \leq 10 ;$
(2) $\mathcal{W}_{(12 ; 5,66)} ; \mathcal{P} \mathcal{G}_{(8 ; 3,7)}, \mathcal{P} \mathcal{G}_{(10 ; 3,12)}, \mathcal{P} \mathcal{G}_{(12 ; 3,11)}^{1}, \mathcal{P} \mathcal{G}_{(12 ; 3,11)}^{2}, \mathcal{P} \mathcal{G}_{(20 ; 3,57)}^{1}, \mathcal{P} \mathcal{G}_{(20 ; 3,57)}^{2}$ and $\mathcal{P} \mathcal{G}_{(20 ; 3,57)}^{3}$.
Moreover, \mathcal{F} is a 1-factorization if and only if it is not isomorphic to one of the factorizations listed in item (2).

Remark. Let $\mathcal{F}=\left\{F_{1}, F_{2}, \cdots, F_{s}\right\}$ be a symmetric factorization of the complete k hypergraph $\left(V, V^{\{k\}}\right)$, where $3 \leq k<n:=|V|$. For each $i \leq s$, set $F_{i}^{o p}=\left\{V \backslash e \mid e \in F_{i}\right\}$. Let $\mathcal{F}^{o p}=\left\{F_{1}^{o p}, F_{2}^{o p}, F_{3}^{o p}, \cdots, F_{s}^{o p}\right\}$. Then $\operatorname{Aut} \mathcal{F}=\operatorname{Aut} \mathcal{F}^{o p}, \operatorname{Aut}\left(\mathcal{F}, F_{i}\right)=\operatorname{Aut}\left(\mathcal{F}^{o p}, F_{i}^{o p}\right)$ and $\mathcal{F}^{o p}$ is a symmetric $(n-k, s)$ factorization. In view of this, \mathcal{F} and $\mathcal{F}^{o p}$ may be constructed from each other. If $k+3 \leq n<2 k$ then $\mathcal{F}^{o p}$ is known by [6] and Theorem 5.17, and thus \mathcal{F} is known. If $n=k+1$ then $\mathcal{F}^{o p}$ is just a uniform partition of V. For $n=k+2$, we know that $\mathcal{F}^{o p}$ is a factorization of the complete graph K_{n}. This case was investigated in [4, 10, 13].

REFERENCES

[1] Baranyai Z. On the factorization of the complete uniform hypergraph. In infinite and finite sets (Colloq., Keszthely, 1973), Vol. I, pp. 91-108. Colloq. Math. Soc. Jánōs Bolyai, Vol. 10. NorthHolland, Amsterdam, 1975.
[2] Beth T, Jungnickel D, Lenz H. Desigen Theorey I (second edition). Cambridge University Press, 1999.
[3] Cameron P J. Permutation Groups. Cambridge: Cambridge University Press, 1999.
[4] Cameron P J, Korchmàros G. One-factorizations of complete graphs with a doubly transitive automorphism group. Bull. London Math. Soc. 1993, 25: 1-6.
[5] Cameron P J, Omidi G R, Tayfeh-Rezaie B. 3-Designs from PGL(2, q). Electron J Combin, 2006, 13: Research Paper 50.
[6] Chen H Y, Lu Z P. Edge-transitive homogeneous factorisations of complete uniform hypergraphs. J. Graph Theory, in press.
[7] Conway J H, Curtis R T, Noton S P, Parker R A, Wilson R A. Atlas of Finite Groups. Oxford: Clarendon Press, 1985.
[8] Dixon J D, Mortimer B. Permutation Groups. New York: Springer-Verlag, 1996.
[9] Huppert B. Endliche gruppen I. Berlin: Springer-Verlag, 1967.
[10] Li C H, Lim T K, Praeger C E. Homogeneous factorisations of complete graphs with edge-transitive factors. J Algebraic Combin, 2009, 29: 107-132.
[11] Li C H, Praeger C E. On partitioning the orbitals of a transitive permutation group. Trans Amer Math Soc, 2003, 355: 637-653.
[12] Liebeck M, Praeger C E, Saxl J. A classification of the maximal subgroups of the finite alternating and symmetric groups. J Algebra, 1987, 111: 365-383.
[13] Sibley T Q. On classifying finite edge colored graphs with two transitive automorphism groups. J Combin Theory Ser B, 2004, 90: 121-138.
[14] Wilson Robert A. The Finite Simple Groups. London: Springer-Verlag, 2009.
Huye Chen, Center for Combinatorics, LPMC-TJKLC, Nankai University, Tianjin 300071, China

E-mail address: 1120140003@mail.nankai.edu.cn
Zaiping Lu, Center for Combinatorics, LPMC-TJKLC, Nankai University, Tianjin 300071, China

E-mail address: lu@nankai.edu.cn

