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Abstract. A factorization of the complete k-hypergraph (V, V {k}) of index s ≥ 2,
simply a (k, s) factorization on V , is a partition {F1, F2, · · · , Fs} of the edge set V {k}

into s disjoint subsets such that each k-hypergraph (V, Fi), called a factor, is a spanning
subhypergraph of (V, V {k}). A (k, s) factorization {F1, F2, · · · , Fs} on V is symmetric if
there is a subgroup G of the symmetric group Sym(V ) such that G induces a transitive
action on {F1, F2, · · · , Fs} and for each i, the stabilizer GFi

is transitive on both V and
Fi. A symmetric factorization on V is homogeneous if all its factors admit a common
transitive subgroup of Sym(V ).

In this paper, we give a complete classification of symmetric (k, s) factorizations on
a set of size n under the assumption that s ≥ 2 and 6 ≤ 2k ≤ n. It is proved that, up
to isomorphism, there are two infinite families and 29 sporadic examples of symmetric
factorizations which are not homogeneous. Among these symmetric factorizations, only
8 of them are not 1-factorizations.

Keywords. Uniform hypergraph, 1-factorization, symmetric factorization, k-homogeneous
permutation group, fractional linear mapping, Mathieu group, Steiner system.

1. introduction

Let V be a finite (non-empty) set, and let k be a positive integer with k ≤ |V |. Denote
by V {k} the set of all k-subsets of V . In this paper, for a subset E ⊆ V {k}, the pair
(V,E) is called a k-uniform hypergraph (k-hypergraph, simply), where the elements in
V and E are called vertices and edges respectively, and the size |V | of V is called the
order of this hypergraph. The pair (V, V {k}) is called the complete k-uniform hypergraph
(complete k-hypergraph) on V , and denoted by Kk

n when V = {1, 2, 3, · · · , n− 1, n}.
A factorization of the complete k-hypergraph (V, V {k}) of index s is a partition of

V {k} into s subsets {F1, F2, · · · , Fs}, in which each Fi covers V , that is, V = ∪e∈Fie. For
convenience, letting |V | = n, we sometimes call such a partition a (k, s) factorization of
order n (on V ), and call each Fi or the resulting k-hypergraph (V, Fi) a factor. For the
case where k is a divisor of |V |, a factorization of the complete k-hypergraph (V, V {k})

is a 1-factorization if every factor is a set of |V |
k

pairwise disjoint k-subsets (i.e., k-
uniform partition) of V . By Baranyai’s Theorem (see [1]), if |V | is divisible by k then

the complete k-hypergraph (V, V {k}) admits a 1-factorization (of index
(|V |−1
k−1

)
). In this

paper, we focus on the 1-factorizations of (V, V {k}) which are invariant under the actions
of certain subgroups of the symmetric group Sym(V ).

Two k-hypergraphs (V1, E1) and (V2, E2) are called isomorphic if there is a bijection
φ : V1 → V2 such that e ∈ E1 if and only if φ(e) ∈ E2, while the bijection φ is an
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isomorphism from (V1, E1) to (V2, E2). An isomorphism from a k-hypergraph (V,E) onto
itself is called an automorphism of (V,E). Then all automorphisms of a k-hypergraph
(V,E) form a subgroup of the symmetric group Sym(V ), denoted by Aut(V,E) and
called the automorphism group of (V,E).

Two factorizations F on V and E on U are isomorphic, denoted by F ∼= E , if there is a
bijection φ : V → U such that F ∈ F if and only if F φ ∈ E . while this bijection φ is called
an isomorphism from F to E . Let F = {F1, F2, · · · , Fs} be a (k, s) factorization on V .
The set AutF of all isomorphisms from F onto itself is a subgroup of Sym(V ), called the
automorphism group of F . The factorization F = {F1, F2, · · · , Fs} is factor-transitive
if AutF acts transitively on the partition {F1, F2, · · · , Fs}. For each 1 ≤ i ≤ s, let
Aut(F , Fi) be the subgroup of AutF fixing Fi set-wise. Note that Aut(F , Fi) is a subgroup
of Aut(V, Fi), in fact, Aut(F , Fi) = Aut(V, Fi) ∩ Aut(F). Then the factorization F =
{F1, F2, · · · , Fs} is symmetric if it is factor-transitive and, for each i, the group Aut(F , Fi)
is transitive on both V and Fi. A factor-transitive factorization F = {F1, F2, · · · , Fs}
is homogeneous if ∩si=1Aut(F , Fi), the kernel of Aut(F) acting on {F1, F2, · · · , Fs}, is a
transitive subgroup of Sym(V ).

Homogeneous factorizations of complete graphs (complete 2-hypergraphs) were intro-
duced in [11]. In [10], Li, Lim and Praeger classified the homogeneous factorizations of
complete graphs with all factors admitting a common edge-transitive group. Recently,
we considered in [6] an analogous problem on complete k-hypergraphs, where k ≥ 3.

Theorem 1.1 ([6]). Let n, k and s be integers with n ≥ 2k ≥ 6 and s ≥ 2. Then there
exists a symmetric homogeneous (k, s) factorization of order n if and only if (n, k, s) is

one of (32, 3, 5), (32, 3, 31), (33, 4, 5), (2d, 3, (2
d−1)(2d−1−1)

3
) and (q + 1, 3, 2), where d ≥ 3

and q is a power of some prime with q ≡ 1 (mod 4). In particular, there is no symmetric
homogeneous 1-factorization of index s and order n with s ≥ 2, n ≥ 6.

Theorem 1.1 suggests us an interesting problem: Is there a symmetric 1-factorization
of order at least 6? The answer is affirmative. In fact, we shall prove the following result
in this paper.

Theorem 1.2. Let n be a positive integer and k a proper divisor of n with k ≥ 3.
Then Kk

n has a symmetric 1-factorization if and only if either n = 2k or (n, k) is one of
(q + 1, 3) and (24, 4), where q is a power of some prime with q ≡ 2 (mod 3) and q ≥ 8.

In general, we have the following result on symmetric factorizations.

Theorem 1.3. Let F be a symmetric (k, s) factorization of order n, where n, k and s
are integers with n ≥ 2k ≥ 6 and s ≥ 2. Then one of the following holds:

(1) F is homogeneous;
(2) F is a 1-factorization;
(3) (n, k, s) is one of (8, 3, 7), (10, 3, 12), (12, 3, 11), (20, 3, 57) and (12, 5, 66).

The paper is organized as follows. Some preliminary results on permutation groups
are collected in Section 2. In Section 3, a group-theoretic construction for symmetric
factorizations is presented. In Section 4, we give all possible candidates for AutF such
that F is a symmetric factorization but not homogeneous factorization of the complete
k-hypergraph for k ≥ 3. Section 5 consists of some examples and a classification for
symmetric factorizations, and then Theorems 1.2 and 1.3 are proved.
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2. Preliminaries

Let V be a finite set. Assume that G is a permutation group on V , that is, G is
a subgroup of the symmetric group Sym(V ). For a point v ∈ V , denote by Gv the
stabilizer of v in G, that is, Gv = {g ∈ G | vg = v}. Then Gv is a subgroup of G,

Gvg = Gg
v := g−1Gvg for g ∈ G, and the orbit vG := {vg | g ∈ G} has size |G : Gv| := |G|

|Gv | .

For a subset B ⊆ V , denote by GB and G(B) the subgroups of G fixing B set-wise and
point-wise, respectively. Then G(B) is the kernel of GB acting on B. Denote by GB

B the
permutation group on B induced by GB. Then GB

B
∼= GB/G(B).

A permutation group G on V is transitive if it has only one orbit, that is, V = vG for
any v ∈ V . The size |V | of V is the degree of G.

Lemma 2.1. Let G be a transitive permutation group on a finite set V . If X ≤ G with
(|G : X|, |V |) = 1, then G = XGv for any v ∈ V ; in particular, X is transitive on V .

Proof. Let X be a subgroup of G with index coprime to |V |. Take v ∈ V . Then
|G : (X ∩Gv)| is divisible by both |V | = |G : Gv| and |G : X|, and so |G : (X ∩Gv)| is
divisible by |V ||G : X|. Thus

|V ||G : X| ≤ |G : (X ∩Gv)| = |G : Gv||Gv : (X ∩Gv)| = |V |
|XGv|
|X|

≤ |V ||G : X|.

This implies that |G| = |XGv|, and then the lemma follows. �

Let G be a transitive permutation group on V . A partition B of V is G-invariant
if Bg ∈ P for all g ∈ G and B ∈ B. For a G-invariant partition B of V , it is easily
shown that Gv ≤ GB for all v ∈ B ∈ B, GB is transitive on B and B is a |GB : Gv|-
uniform partition. Conversely, if H ≤ G with Gv ≤ H for some v ∈ V , then we have
a G-invariant partition {Bg | g ∈ G}, where B = vH . In particular, for a given point
v ∈ V , there is a bijection between the G-invariant partitions of V and the subgroups of
G containing Gv, see [8, Theorem 1.5A, p.13] for example. Thus the next lemma follows.

Lemma 2.2. Let G be a transitive permutation group on V , and let k be a positive
divisor of |V |. Then V has a G-invariant k-uniform partition if and only if G has a
subgroup H such that Gv ≤ H and k = |H : Gv| for some v ∈ V .

Let k be an integer with 1 ≤ k ≤ |V |. Denote by V {k} the set of all k-subsets of V ,
and by V (k) the set of all k-tuples of distinct points of V . Let G ≤ Sym(V ). Then the
group G acts naturally on V {k} and V (k) by

{v1, v2, · · · , vk}g = {vg1 , v
g
2 , · · · , v

g
k} and (v1, v2, · · · , vk)g = (vg1 , v

g
2 , · · · , v

g
k),

respectively. The permutation group G is k-homogeneous or k-transitive if G acts tran-
sitively on V {k} or V (k), respectively. The permutation group G is sharply k-transitive
if it is k-transitive and |G| = |V {k}|. Clearly, if G is k-homogeneous then it is (|V | − k)-
homogeneous, and if G is k-transitive then G is also k-homogeneous. Moreover, it is

well-known that for 2 ≤ k ≤ |V |
2

, a k-homogeneous permutation group on V is (k − 1)-

transitive, refer to [8, Theorem 9.4B]. Thus for 2 ≤ k ≤ |V |
2

, a k-homogeneous group
on V is both transitive (i.e. 1-transitive) and (k − 1)-homogeneous. For a transitive
permutation group G on V , define two parameters:

h(G) = max{k | 1 ≤ k ≤ |V |
2
, G is k-homogeneous},

t(G) = max{k | 1 ≤ k ≤ |V |, G is k-transitive}.
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Then, up to permutation isomorphism, the following result gives all transitive permu-
tation groups G with h(G) ≥ 3, refer to [3, Tables 7.3 and 7.4] and [8, Theorem 9.4B].
(Note that two permutation groups G ≤ Sym(V ) and H ≤ Sym(U) are permutation
isomorphic if there is a bijection λ : V → U and a group isomorphism φ : G → H
satisfying λ(v)φ(g) = λ(vg) for all v ∈ V and g ∈ G.)

Theorem 2.3. Let G be a transitive permutation group of degree n with h(G) ≥ 3. Then
G has a unique minimal normal subgroup and, up to permutation isomorphism, one of
(I) and (II) holds.

(I) h(G) = t(G) + 1, and one of the following holds:
(1) h(G) = 3, G = AGL(1, 8), AΓL(1, 8) or AΓL(1, 32);
(2) h(G) = 3, PSL(2, q) ≤ G ≤ PΣL(2, q) with q ≡ 3 (mod 4);
(3) h(G) = 4, G = PGL(2, 8), PΓL(2, 8) or PΓL(2, 32).

(II) G is h(G)-transitive, and one of the following holds:
(4) h(G) = t(G) = 3, and G is one of AGL(d, 2) (with d ≥ 3) and Z4

2:A7

(contained in AGL(4, 2));
(5) h(G) = t(G) = 3, and PSL(2, q) < G ≤ PΓL(2, q) with q 6∈ {4, 8, 32};
(6) h(G) = t(G) = 3, and G = PGL(2, 32);
(7) h(G) = t(G) = 3, and G is one of M11 (with n = 12) and M22;
(8) h(G) = t(G) = 4, and G = M11 or M23;
(9) h(G) = t(G) = 5, and G = M12 or M24;

(10) n ≥ 6, and G = An or Sn with t(G) = n− 2 or n, respectively.

All permutation groups list in Theorem 2.3 are assumed to be in their natural actions
except that M11 acts 3-transitively on a set of size 12. See Section 4 for the details.

Note that the automorphism group of a symmetric factorization is a homogeneous
permutation group. Employing the classification of k-homogeneous permutation group-
s, in the following sections, we shall construct examples and give a classification for the
symmetric (k, s) factorizations, where k ≥ 3 and s ≥ 2. Since all symmetric homoge-
neous (k, s) factorizations were classified in [6], we are left the symmetric factorizations
which are not homogeneous. Checking one by one the homogeneous permutation group-
s, we determine the possible candidates for the triple (G,X, e), each of which gives a
symmetric factorization {{exg | x ∈ X} | g ∈ G}. Then all possible symmetric (k, s)
factorizations are constructed up to isomorphism.

3. A group-theoretic construction

Let F be a symmetric factorization of (V, V {k}). Then AutF is k-homogeneous on
V , F is an AutF -invariant partition of V {k}, and all stabilizers of the factors give a
conjugacy class of transitive subgroups of AutF (acting on V ). By Lemma 2.2, we may
take subgroups G and X of Sym(V ) such that:

(c1) X ≤ G ≤ Sym(V ) and Ge = Xe for some e ⊆ V ;
(c2) G is |e|-homogeneous on V , and X is transitive but not |e|-homogeneous on V .
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Then each factor of F has the form of {exg | x ∈ X}, where g ∈ g. Conversely, for a
triple (G,X, e) satisfying the conditions (c1) and (c2), set

F(G,X, e) = {{exg | x ∈ X} | g ∈ G}.
Then F(G,X, e) is a symmetric (|e|, |G : X|) factorization on V , and G ≤ AutF(G,X, e).

Let (G,X, e) be a triple satisfying (c1) and (c2). Since G is |e|-homogeneous, the
normalizer NSym(V )(G) of G in Sym(V ) is transitive on V {|e|}, and so

NSym(V )(G) = G(NSym(V )(G))e.

Set
N(G,X, e) = {τ ∈ Sym(V ) | Gτ = G,Xτ = X, eτ = e}.

Lemma 3.1. Let (G,X, e) be a triple satisfying (c1) and (c2). Then F(G,X, e)τ =
F(G,Xτ , eτ ) for τ ∈ NSym(V )(G). In particular, N(G,X, e) ≤ AutF(G,X, e).

Lemma 3.2. Let (G,X, e) be a triple satisfying (c1) and (c2). Then τ ∈ (NSym(V )(G))e
is an automorphism of F(G,X, e) if and only if τ normalizes X. In particular, G is
normal in AutF(G,X, e) if and only if AutF(G,X, e) = GN(G,X, e).

Proof. Let τ ∈ (NSym(V )(G))e ∩ AutF(G,X, e), and F = {ex | x ∈ X}. Then

{F g | g ∈ G}τ = F(G,X, e)τ = F(G,X, e) = {F g | g ∈ G}.
Since e ∈ F ∩ F τ , we have F τ = F . Then X = GF = GF τ = Gτ

F = Xτ . Thus this
lemma follows from Lemma 3.1. �

Lemma 3.3. Let (G,X, e) and (G, Y, f) be two triples satisfying (c1) and (c2). Then
F(G,X, e) = F(G, Y, f) if and only if Xh = Y and eh = f for some h ∈ G.

Proof. If h ∈ G with Xh = Y and eh = f , then

F(G,X, e) = {{exg | x ∈ X} | g ∈ G} = {{(eh)xh(h−1g) | x ∈ X} | g ∈ G} = F(G, Y, f).

Let F(G,X, e) = F(G, Y, f). Set E = {ex | x ∈ X} and F = {f y | y ∈ Y }. Then
Eg = F for some g ∈ G, and so exg = f for some x ∈ X. Let h = xg. Then eh = f and
Y = GF = GEg = GEh = Gh

E = Xh. �

Lemma 3.4. Let (G,X, e) and (G, Y, f) be two triples satisfying (c1) and (c2). Assume
that G = AutF(G,X, e) = AutF(G, Y, f). If F(G,X, e) ∼= F(G, Y, f) then Xτ = Y and
eτ = f for some τ ∈ NSym(V )(G).

Proof. Let τ1 be an isomorphism from F(G,X, e) to F(G, Y, f). Then τ1 ∈ Sym(V ), and
Gτ1 = (AutF(G,X, e))τ1 = AutF(G, Y, f) = G. Thus τ1 ∈ NSym(V )(G). By Lemma 3.1,

F(G, Y, f) = F(G,X, e)τ1 = F(G,Xτ1 , eτ1).

In particular, there is some g ∈ G such that

F := {eτ1xτ1 | x ∈ X} = {f yg | y ∈ Y } = {f y | y ∈ Y }g ∈ F(G, Y, f).

Thus Xτ1 = G{eτ1xτ1 |x∈X} = GF = G{fy |y∈Y }g = Y g, and so Xτ1g−1
= Y . Take x ∈ X

such that f g = eτ1x
τ1 . Let τ = xτ1g

−1. Then τ ∈ NSym(V )(G), Xτ = Y and eτ =

exτ1g
−1

= (eτ1x
τ1 )g

−1
= f , as desired. �

We end this section by two easy observations.



6 CHEN AND LU

Lemma 3.5. Let (G,X, e) be a triple satisfying (c1) and (c2). If G ≤ G1 ≤ Sym(V ),
X ≤ X1 ≤ G1, |G : X| = |G1 : X1| and (X1)e = (G1)e, then F(G,X, e) = F(G1, X1, e).

Lemma 3.6. Let (G,X, e) be a triple satisfying (c1) and (c2). Let G1 be a permutation
group on a set V1, which is permutation isomorphic to G. Take a group isomorphism
φ : G → G1 and a bijection λ : V → V1 such that λ(vg) = λ(v)φ(g) for all v ∈ V and
g ∈ G. Then F(G,X, e) ∼= F(G1, φ(X), λ(e)).

4. The feasible triples

In this section, we always assume that (G,X, e) is a triple satisfying the condi-
tions (c1) and (c2) given in Section 3. Recall that the socle soc(G) of G is the
subgroup generated by all minimal normal subgroups of G. For convenience, we call
the triple (G,X, e) feasible on V if soc(G) 6≤ X and 3 ≤ |e| ≤ h(G). Note that, up to
permutation isomorphism, all possible candidates for G are listed in Theorem 2.3.

Lemma 4.1. If soc(G) ∼= Zd2 for some integer d with d ≥ 3, then (G,X, e) is not feasible.

Proof. Let soc(G) ∼= Zd2. By Theorem 2.3, h(G) = 3, and so |e| = 3. Since G is transitive

on V {3}, we have |G : Ge| = |V {3}| = 2d(2d−1)(2d−1−1)
3

. Let G(e) be the point-wise stabilizer
of e in G. Then Ge/G(e) is (isomorphic to) a subgroup of S3. Choose u ∈ e such that
Ge = (Ge)u or |Ge : (Ge)u| = 3. Then |G : (Ge)u| is a divisor of 2d(2d − 1)(2d−1 − 1).
Note that Xu ≥ (Ge)u as Xe = Ge. Thus |G : Xu| is a divisor of 2d(2d − 1)(2d−1 − 1).
Since X is transitive on V , we have |X : Xu| = 2d. It follows that |G : X| is a divisor of
(2d − 1)(2d−1 − 1); in particular, X contains a Sylow 2-subgroup of G. This yields that
soc(G) ≤ X, and so (G,X, e) is not feasible. �

For a power q = pf of a prime p, denote by Fq the field of order q. Identify the point
set of the projective line PG(1, q) with Fq ∪ {∞}. The group PGL(2, q) then consists of
all fractional linear mappings of the form

tα,β,γ,δ : ξ 7→ αξ + β

γξ + δ
, α, β, γ, δ ∈ Fq with αδ − βγ 6= 0,

where α∞+β
γ∞+δ

= αγ−1 for γ 6= 0, α∞+β
δ

= ∞ for α 6= 0 and ζ
0

= ∞ for 0 6= ζ ∈ Fq. The

group PGL(2, q) is sharply 3-transitive on Fq ∪ {∞}. Further,

PSL(2, q) = {tα,β,γ,δ | α, β, γ, δ ∈ Fq with αδ − βγ a non-zero square in Fq}.
The Frobenius automorphism of Fq induces a permutation on Fq ∪ {∞} by σ : ξ 7→ ξp

with ∞p = ∞. Then tσα,β,γ,δ = tαp,βp,γp,δp , PΓL(2, q) = PGL(2, q):〈σ〉 and PΣL(2, q) =
PSL(2, q):〈σ〉. (See [2, p.192] and [8, p.242] for example.)

Lemma 4.2. Let soc(G) = PSL(2, q) and G act on the point set V of PG(1, q). If
(G,X, e) is feasible then |e| = 3 and one of the following holds:

(1) G = PSL(2, 7) and X ∼= S4;
(2) G = PSL(2, 11) and X ∼= A4 or A5;
(3) G = PSL(2, 19) and X ∼= A5;
(4) G = PSL(2, 23) and X ∼= S4;
(5) G = PSL(2, 59) and X ∼= A5;
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(6) PΓL(2, q) ≥ G ≥ PSL(2, q) with q ≡ −1 (mod 12), |G : X| = |PSL(2, q) :
(PSL(2, q) ∩X)|, PSL(2, q) ∩X ∼= Dq+1 and PSL(2, q)e = (PSL(2, q) ∩X)e;

(7) G = PGL(2, 11), X ∼= S4 and PSL(2, 11) ∩X ∼= A4;
(8) G = PΓL(2, 9) with X ∼= S5, or G is one of PGL(2, 9) and M10 with X ∼= A5;
(9) G = PGL(2, 29) and X ∼= A5;

(10) PΓL(2, q) ≥ G ≥ PGL(2, q) with q ≡ 2 (mod 3) and q > 4, |G : X| = |PGL(2, q) :
(PGL(2, q) ∩X)|, PGL(2, q) ∩X ∼= D2(q+1) and PGL(2, q)e = (PGL(2, q) ∩X)e.

Proof. Assume that (G,X, e) is a feasible triple. By Theorem 2.3, h(G) = 3 or 4, and
so |e| = 3 or 4. Suppose that |e| = 4. Then G = PGL(2, 8), PΓL(2, 8) or PΓL(2, 32),
and Ge has order divisible by 4. Since X ≥ Ge and X is transitive, X has order divisible
4|V |. Checking the subgroups of G in the Atlas [7], we have soc(G) ≤ X, a contradiction.
Thus |e| = 3. Since q + 1 = |V | ≥ 2h(G) ≥ 2|e| = 6, we have q ≥ 5.

Without loss of generality, we choose e = {0, 1,∞}. Let F0 = {ex | x ∈ X}. Then F0

is a factor of F := F(G,X, e). Note that (V, F0) is a 3-hypergraph and X is transitive
on both V and F0. Then |V |r = 3|F0|, where r is the number of edges incident with any

given vertex. In particular, |F0| = r|V |
3

= r(q+1)
3

, and so F has q(q−1)
2r

factors.
Choose a subgroup of G as follows: if G ≥ PGL(2, q) then M = PGL(2, q), and if

PGL(2, q) 6≤ G then M = PSL(2, q). Noting that Xe = Ge, we have Me = M ∩ Ge =
M ∩Xe ≤ (M ∩X)e ≤Me, yielding Me = (M ∩X)e.
Case 1. Assume that either q ≡ 3 (mod 4), or PGL(2, q) ≤ G. In this case, Me

∼= Z3

or S3, and M is 3-homogeneous on V . Then M is transitive on the factors of F(G,X, e),

and so G = MX. Thus |G| = |MX| = |M ||X|
|M∩X| , yielding |G : X| = |M : (M ∩X)|. Since

q(q−1)
2r

= |F| = |G : X|, we have |M : (M ∩X)| = q(q−1)
2r

, and so |M ∩X| = 2r|M |
q(q−1) .

Let M = PSL(2, q). Then, by the choice of M , we have q ≡ 3 (mod 4) and |M ∩X| =
r(q + 1). Checking the subgroups of PSL(2, q) (refer to [9, II.8.27]), we conclude that
either M ∩X is isomorphic to one of A4, S4 and A5, or r = 1 and M ∩X ∼= Dq+1. For
the former case, since |M ∩X| = r(q + 1), we have q ∈ {7, 11, 19, 23, 59}, and so one of
(1)-(5) of this lemma follows. Let M ∩X ∼= Dq+1. Then q + 1 is divisible by 3, and so
q ≡ −1 (mod 12). Since M is transitive on V , the stabilizer Mu of u ∈ V has odd order
q(q−1)

2
. It follows that M ∩ X is transitive on V . Recalling that Me = (M ∩ X)e and

|G : X| = |M : (M ∩X)|, (6) of this lemma follows.
Let M = PGL(2, q). In this case, |M ∩X| = 2r(q + 1) and, noting that M is sharply

3-transitive, we have (M ∩ X)e = Me
∼= S3. In particular, M ∩ X 6∼= A4 as A4 has no

subgroups of order 6. By [5], we conclude that either M ∩ X ∼= D2(q+1), or M ∩ X is
isomorphic to one of S4 and A5. For the former case, M ∩X contains a Singer subgroup
of PGL(2, q), and so M ∩X is transitive on V , which yields (10) of this lemma.

Assume that M ∩ X ∼= A5. Then 2r(q + 1) = 60, and so q = 9 or 29. If q = 29
then (9) of this lemma follows. For q = 9, since G is 3-homogeneous, G = PGL(2, 9) or
PΓL(2, 9), and so (8) of this lemma occurs.

Assume that M ∩X ∼= S4. Then q = 5 or 11. Suppose that q = 5. Then G = M =
PGL(2, 5) ∼= S5 and X ∼= S4. Thus X ∩ soc(G) ∼= A4. Note that Xe = Ge

∼= S3, and
soc(G)e = soc(G) ∩ Ge = soc(G) ∩ Xe. Then soc(G)e is isomorphic to a subgroup of
A4 and a subgroup of S3. Noting that A4 has no subgroup of order 6, it follows that
soc(G)e has order no more than 3, and so |soc(G) : soc(G)e| ≥ 20 = |V {3}|. In particular,
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soc(G) = PSL(2, 5) is transitive on V {3}. However, by Theorem 2.3, PSL(2, 5) is not
3-homogeneous on V , a contradiction. Thus q = 11, and then (7) of this lemma follows.

Case 2. Assume that PGL(2, q) 6≤ G and q ≡ 1 (mod 4). In particular, q is odd and
PΣL(2, q) is not 3-homogeneous. Since G is 3-homogeneous, G 6≤ PΣL(2, q), and so q
not a prime. By the choice of M , we have M = PSL(2, q) and (M ∩ X)e = Me

∼= S3.
Note that M has at most two orbits on the factors of F .

Suppose that M acts transitively on the factors of F . Then G = MX, and we have
q(q−1)

2r
= |F| = |G : X| = |M : (M ∩ X)|, and so |M ∩ X| = r(q + 1). By [9, II.8.27],

we conclude that either r = 1 and M ∩ X ∼= Dq+1, or M ∩ X is isomorphic to one
of A4, S4 and A5. Assume that the later case holds. Then r(q + 1) ∈ {12, 24, 60}.
Recalling that q is not a prime, we conclude that M ∩ X ∼= A5 and q = 9; in this
case, G = M10 and A5

∼= X ≤ M , yielding G = MX = M , a contradiction. Thus
M ∩ X ∼= Dq+1, and hence q + 1 is divisible by 3. It follows that q ≡ 5 (mod 12) and
q = pf for some odd prime p and odd integer f ≥ 3. Since q ≡ 1 (mod 4), we may
take λ ∈ Fq such that λ is not a square. It is easy to see that λm is not a square
for any odd integer m. Then tλm,0,0,1 ∈ PGL(2, q) \ M for any odd integer m, and
PΓL(2, q) = (M :〈σ〉)〈tλ,0,0,1〉, where σ is the permutation induced by the Frobenius
automorphism of Fq. Since G 6≤ PΣL(2, q), there exists some integers i and j such
that σitλj ,0,0,1 ∈ G \ PΣL(2, q), which yields that j is odd. Let d be the order of σi.
Then d is a divisor of the order f of σ, and so d is odd. By an easy calculation, we
have (σitλj ,0,0,1)

d = tλl,0,0,1 ∈ G, where l = j(1 + pi + · · · + p(d−1)i). Clearly, l is odd
and λl is not a square. Then tλl,0,0,1 ∈ G \M , and so G ≥ M〈tλl,0,0,1〉 = PGL(2, q), a
contradiction.

Suppose that M has two orbits F1 and F2 on the factors of F . Then |F1| = |F2|,
and each Fi is an M -invariant partition of E1 or E2. Without loss of generality, let
e ∈ E1 = ∪F∈F1F . Then F0 ∈ F1 and, since E1 is an M -orbit, MF0 is transitive on

F0. Thus |MF0 : Me| = |F0| = r(q+1)
3

, and so |MF0| = 2r(q + 1). By [9, II.8.27], we
conclude that MF0

∼= A4, S4 or A5. Recall that q is not a prime. If MF0
∼= A4 or S4 then

2r(q + 1) = 12 or 24, and so q = 5 or 11, a contradiction. Let MF0
∼= A5. Then we have

q = 9, and hence G = M10. Thus (8) of this lemma occurs. This completes the proof. �

Lemma 4.3. Let G = An or Sn act naturally on V = {1, 2, · · · , n}. Then (G,X, e) is
feasible if and only if n = 2|e| and X = G{e,V \e}.

Proof. If e < n
2
, then Ge is maximal in G by [12], yielding that any proper subgroup

of G does not satisfy (c1) and (c2). Let n = 2|e|. Again by [12], we conclude that the
only proper transitive subgroup of G containing Ge = (Sym(e)×Sym(V \ e)) ∩G is the
stabilizer of the partition {e, V \ e}. Then this lemma follows. �

By Lemma 4.3 and the argument in Section 3, we have the following simple result.

Corollary 4.4. Let F be a symmetric (k, s) factorization of order n, where s ≥ 2 and
6 ≤ 2k ≤ n. Then An ≤ soc(AutF) if and only if n = 2k and F consists of all k-uniform
partitions of a set of size 2k; in this case, we write F = U(2k,k).

We next determine feasible triples arising from the Mathieu groups in their natural
actions. It is well-known that, up to isomorphism there is a unique S(5, 6, 12) Steiner
system W12 and a unique S(5, 8, 24) Steiner system W24. As the automorphism group of
Wn with n ∈ {12, 24}, the mathieu group Mn is 5-transitive on the point set of Wn, see
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[8, Theorems 6.3B and 6.7C] for example. Let (i, n) ∈ {(1, 12), (1, 24), (2, 24)}. Then the
Mathieu group Mn−i is (isomorphic to) the point-wise stabilizer of some i-set of points
in Wn, which is (5− i)-transitive on the remain points.

Lemma 4.5. Let G be a Mathieu group, and let (G,X, e) be a feasible triple. Then
neither t(G) = 4 nor G = M22.

Proof. Suppose that G = M22. Then t(G) = 3, |e| = 3 and |Ge| = 25 · 32. Since X
is transitive, |X| is divisible by 22. Thus |X| is divisible by 25 · 32 · 11. Checking the
maximal subgroups of M22 (in the Atlas [7]), we conclude that X = M22, a contradiction.
Let t(G) = 4. Then |e| = 3 or 4. Assume that G = M11. Then |V | = 11, and |Ge| = 48
or 24 for e ∈ V {|e|}, respectively. Thus |X| is divisible by 23 · 3 · 11, yielding X = M11, a
contradiction. For G = M23, a similar argument yields X = G, a contradiction. �

For further argument, we need some basic facts on the Steiner systems W12 and W24,
refer to [8, Sections 6.3 and 6.7] and [14, 5.2.3 and 5.3.7].

(a) Let B be a block of W12. Then the complement B′ of B is also a block, and S6
∼=

(M12)B ≤ (M12){B,B′} ∼= M10:Z2. The pair {B,B′} is called a hexad pair of W12.
If C is a block with |B ∩C| = 3 then the symmetric difference (B \C)∪ (C \B)
is again a block.

(b) Let e be a 4-subset of the point set of W24. Then the blocks containing e partition
the 24 points into 6 subsets of size 4, these 6 subsets form a sextet.

Lemma 4.6. Let G = Mn be a Mathieu group acting on the point set V of the Steiner
system Wn, where n = 12 or 24. Then (G,X, e) is a feasible triple if and only if either

(1) G = M12, X = G{B,B′} ∼= M10:Z2 for a hexad pair {B,B′}, and e is a 5-subset
of B or B′; or

(2) G = M24, X = GS
∼= Z6

2:3.S6 for a sextet S, and e ∈ S.

Proof. It is easy to check that each triple satisfying (1) or (2) is feasible. We assume
next that (G,X, e) is a feasible triple. Then 3 ≤ |e| ≤ h(G) = 5.

Assume that G = M12. Then |G| = 26 · 33 · 5 · 11 and (|e|, |Ge|) = (3, 24 · 33), (4, 26 · 3)
or (5, 23 · 3 · 5). Since G is 5-transitive on points, Ge is transitive on e. Then (Ge)u
has order |Ge||e| , where u ∈ e. Noting that X ≥ Ge, we have Xu ≥ (Ge)u, and so |Xu| is

divisible by |Ge||e| . Since X is transitive on the points, |X| = |V ||Xu|. Then X has order

divisible by 12|Ge|
|e| ; in particular, neither 4 nor 9 is a divisor of |G : X|, and |G : X| is

odd if |e| 6= 5. Take a maximal subgroup M of G with X ≤ M . Checking the maximal
subgroups of M12 in the Atlas [7], we conclude that |e| = 5 and M ∼= M10:Z2 = A6.Z2

2.

Recalling that |X| is divisible by 12|Ge|
5

= 25 · 32, either X = M or |M : X| = 5. It
is easily shown that M10:Z2 has no subgroup of index 5. Then X = M . Note that G
has two conjugacy classes of subgroups isomorphic to M10:Z2, one consists of stabilizers
of 2-sets of points, and the other one consists of stabilizers of hexad pairs. Thus, since
X is transitive, X is the stabilizer of some hexad pair {B,B′}. Since |e| = 5 and X is
transitive on {B,B′}, we conclude hat e is contained in either B or B′.

Assume that G = M24. Then |G| = 210 · 33 · 5 · 7 · 11 · 23. By a similar argument as
above, we conclude that |X| is divisible by 210 · 33 · 5 · 7, 210 · 33 · 5 or 210 · 33 for |e| = 3, 4
or 5, respectively. Take a maximal subgroup M of G with X ≤M . By the information



10 CHEN AND LU

given for M24 in the Atlas [7], we conclude that |e| 6= 3, and M = GS
∼= Z6

2:3.S6 for some
sextet S = {e1, e2, e3, e4, e5, e6} of W24. Noting that Z6

2:3.S6 has no subgroup of index 5,
we have X = M . Thus, by [14, 5.2.3], X is transitive on S and for each i, the point-wise
stabilizer X(ei)

∼= Z4
2:A5 is transitive on V \ ei. Then X is transitive on V . Next we shall

show that e ∈ S.
Note that |Xe| = |Ge| = 27 · 32 · 5 for |e| = 5, and |Xe| = |Ge| = 29 · 32 · 5 for |e| = 4.

Let P be a Sylow 5-subgroup of Xe. Then P fixes some ej, say e6, set-wise (and hence
point-wise), and P acts transitively on {ej | j 6= 6}. If e ⊆ e6 then e ∈ S. Thus assume
that e 6⊆ e6 and, without loss of generality, let e ∩ e5 6= ∅. Suppose that e 6= e5. Then,
since P is transitive on {ej | j 6= 6}, we have e ∩ ej 6= ∅ for 1 ≤ j ≤ 5. In particular,
e ∩ e6 = ∅ and |e ∩ ej| = 1 for j 6= 6, and so |e| = 5. Recall that X(e6) and hence Xe6

is transitive on V \ e6, we know that V \ e6 can be partitioned in to 4 subsets of size 5,
which form an Xe6-orbit containing e on the 5-subsets of V \ e6. Let f1 = e, f2, f3 and
f4 be these 4 subsets of size 5. Then, by a similar argument as above, |fi ∩ ej| = 1 for
1 ≤ i ≤ 4 and j 6= 6. This implies that x ∈ X(e6) fixes V point-wise provided that x
fixes every fk set-wise. Clearly, X(e6) is unfaithful on {f1, f2, f3, f4}. Thus X(e6) is not
faithful on V , a contradiction. Therefore, e = e5 ∈ S. This completes the proof. �

Now we consider the case that M11 acts 3-transitively on a set of size 12. A dodecad of
W24 is the symmetric difference of two blocks which intersect in two points. In particular,
a docecad has size 12. Let U1 be docecad and U2 is complement. By [8, Theorem 6.8A],
M := (M24)U1 = (M24)U2

∼= M12, and W12
∼= Si := (Ui,Bi), where

Bi = {B ∩ Ui | |B ∩ Ui| = 6, B is a block of W24}, i = 1, 2.

Fix a point u ∈ U2. By [2, IV.4.8 Lemma], for each v ∈ U2 \ {u}, there are exactly two
blocks of W24 which contain {u, v} and intersect U1 in 6 points. These two blocks give
two parallel blocks C1

v and C2
v of S1. Moreover, H := (U1, {C1

v , C
2
v | v ∈ U2 \ {u}}) is a

S2(3, 6, 12) design. By [2, IV.5.4 Theorem], AutH ∼= Mu
∼= M11 and AutH is 3-transitive

on U1. Note that every 3-subset of U1 is contained exactly 2 blocks of H. Then the
following facts follows:

(c) if {v, w} ∈ (U2 \ {u}){2} and i, j ∈ {1, 2}, then {Ci
v ∩ Cj

w | i, j = 1, 2} is a
3-uniform partition of U1, called a quadrisection of H;

(d) H has 55 quadrisection in total; for a quadrisection {e1, e2, e3, e4}, the union-
s ei ∪ ej give 6 blocks of S1, and only 4 of them are blocks of H; moreover,
AutH{e1,e2,e3,e4} ∼= (Mu){v,w} ∼= M9:Z2 for some distinct v, w ∈ U2 \ {u}, see also
[14, 5.3.7]; in particular, AutH is transitive on the set of all quadrisections of H.

Lemma 4.7. Let G = M11 act on the point set of H. Then (G,X, e) is a feasible triple
if and only if X = GQ for a quadrisection Q of H, and e ∈ Q.

Proof. Let V be the point set of H. Assume that (G,X, e) is a feasible triple. Then

|e| = 3 as h(G) = 3, and |Xe| = |Ge| = |G|
|V {3}| = 22 · 32. Since G is 3-transitive, Ge

is transitive on e. Thus |(Xe)v| = |(Ge)v| = |Ge|
|e| = 12 for v ∈ e; in particular, |Xv| is

divisible by 12. Thus |X| = |V ||Xv| is divisible by 144. Checking the subgroups of M11

in the Atlas [7], we conclude that either X ∼= M10, or X ∼= M9:Z2 and X is a stabilizer
of some quadrisection.

Suppose that X ∼= M10. Since (|G : X|, 12) = 1, by Lemma 2.1, X is transitive on
V . Take N ≤ X with N ∼= A6. Then N is normal in X, and so all N -orbits on V have
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the same size as X is transitive. Checking the subgroups of A6, we know that N has
no subgroups of index 12. It follows that N is intransitive on V . Since |X : N | = 2, we
conclude that N has two orbits, say V1 and V2, of size 6 on V . Then each x ∈ X \ N
interchanges V1 and V2, which yields that x 6∈ Xe by noting that |V1∩e| 6= |V2∩e|. Thus
Xe ≤ N . Moreover, N is 3-homogeneous on both V1 and V2. If e is contained in one of
V1 and V2, then Xe = Ne has order 18, a contradiction. If |V1 ∩ e| 6= 0 and |V2 ∩ e| 6= 0
then Xe = Ne ≤ Nv

∼= A5 for some v ∈ e, and so |Xe| is not divisible by 9, again a
contradiction. Therefore, X = GQ for some quadrisection Q = {e1, e2, e3, e4} of H.

Now we show that Ge = Xe if and only if e ∈ Q, and then the lemma follows. Since
|G : X| = 55, by Lemma 2.1, X is transitive on V . Then X acts transitively on Q, and

so Xei has order |X|
4

= 36, where 1 ≤ i ≤ 4. This yields Xei = Gei . Let L be a normal
subgroup of X with L ∼= Z2

3. Then L ≤ Xei , and L has four orbits of size 3 on V . It
follows that Q consists of L-orbits. Assume that Ge = Xe for a 3-set e of points. Then
|Xe| = 36, and so L ≤ Xe. It implies that e is an orbit of L on the points, and thus
e ∈ Q. This completes the proof. �

5. A classification of symmetric factorizations

In this section, we shall determine all possible symmetric factorizations up to isomor-
phism of factorizations.

5.1. Symmetric factorizations on PG(1, q). Recall that PGL(2, q) consists of all
fractional linear mappings of the form

tα,β,γ,δ : ξ 7→ αξ + β

γξ + δ
, α, β, γ, δ ∈ Fq with αδ − βγ 6= 0.

Set q = pf for a prime p. The Frobenius automorphism of Fq induces a permutation on
PG(1, q) by σ : ξ 7→ ξp with ∞p =∞.

Example 5.1. Assume that 5 ≤ q ≡ 2 (mod 3), that is, 3 is a divisor of q + 1. Fix a
generator η of the multiplicative group of Fq. For 0 ≤ i < q − 1 and β ∈ Fq, set

Fi,β = {{ηiξ + β,
ηi

1− ξ
+ β, ηi − ηi

ξ
+ β} | ξ ∈ PG(1, q)}.

Then Fi,β = F
tηi,0,0,1t1,β,0,1
0,0 , and F0,0 is the set of 〈t0,1,−1,1〉-orbits on the projective points.

We write
PG

(q+1;3,
q(q−1)

2
)

= {Fi,β | 0 ≤ i < q − 1, β ∈ Fq}.
�

Lemma 5.2. Let q ≡ 2 (mod 3) with q ≥ 5. Then PG
(q+1;3,

q(q−1)
2

)
is a symmetric 1-

factorization of order q + 1 and index q(q−1)
2

. Moreover, AutPG
(q+1;3,

q(q−1)
2

)
= PΓL(2, q)

for q > 5, and PG(6;3,10) ∼= U(6,3); if further q ≡ 3 (mod 4) then PG
(q+1;3,

q(q−1)
2

)
= {F g

0,0 |
g ∈ PSL(2, q)}.

Proof. Since t0,1,−1,1 has order 3, by [9, II.8.5], t0,1,−1,1 lies in a semiregular subgroup
Z q+1

(2,q−1)
of PSL(2, q). Clearly, F0,0 consists of all orbits of 〈t0,1,−1,1〉 on projective points.



12 CHEN AND LU

In particular, |F0,0| = q+1
3

, and F0,0 is a 3-uniform partition of the projective points,
and so does every Fi,β. Let M = NPGL(2,q)(〈t0,1,−1,1〉) be the normalizer of 〈t0,1,−1,1〉 in
PGL(2, q). Then M ∼= D2(q+1) is maximal in PGL(2, q), and M fixes F0,0 set-wise. Take
e = {0, 1,∞} ∈ F0,0. Then Me ≥ 〈t0,1,−1,1, t0,1,1,0〉 ∼= S3. Since PGL(2, q) is sharply 3-
transitive on the projective points, we have PGL(2, q)e ∼= S3. Thus Me = PGL(2, q)e ∼=
S3. Noting that M is transitive on the projective points, (PGL(2, q),M, e) is a feasible

triple. Then F = F(PGL(2, q),M, e) is a symmetric (3, q(q−1)
2

) factorization of order
q + 1.

Recalling that M fixes F0,0 set-wise, since |M : Me| = q+1
3

= |F0,0|, we know that F0,0

is an orbit of M . Let R = 〈tη,0,0,1, t1,1,0,1〉. Then Zfp :Zq−1 ∼= R = PGL(2, q)∞. Noting
that M is transitive on the projective points, PGL(2, q) = MPGL(2, q)∞ = MR. This
implies that F = {F x

0,0 | x ∈ R} = PG
(q+1;3,

q(q−1)
2

)
. Then PG

(q+1;3,
q(q−1)

2
)

is a symmetric

(3, q(q−1)
2

) factorization. Clearly, PG
(q+1;3,

q(q−1)
2

)
is 1-factorization, and PG(6;3,10) consists

of all 3-uniform partitions of the point set of PG(1, 5).

Suppose that q ≡ 3 (mod 4). Then q(q−1)
2

is odd. Set L = 〈tη2,0,0,1, t1,1,0,1〉. Then
L ≤ PSL(2, q) and R = L×〈t−1,0,0,1〉. In particular, L has index 2 in R. Recall R is

transitive on the q(q−1)
2

factors of PG
(q+1;3,

q(q−1)
2

)
. It follows that L is transitive on the

factors of PG
(q+1;3,

q(q−1)
2

)
. Then {F g

0,0 | g ∈ PGL(2, q)} = PG
(q+1;3,

q(q−1)
2

)
= {F x

0,0 | x ∈
L} ⊆ {F g

0,0 | g ∈ PSL(2, q)}, and so PG
(q+1;3,

q(q−1)
2

)
= {F g

0,0 | g ∈ PSL(2, q)}, as required.

Finally, we determine A := AutPG
(q+1;3,

q(q−1)
2

)
. Since A is a 3-homogeneous permuta-

tion group of degree q + 1, by Theorem 2.3, we have |A : soc(A)| < q(q−1)
2

. Noting that

|A : AF0,0| =
q(q−1)

2
, we have soc(A) 6≤ AF0,0 . Then (A,AF0,0 , {∞, 0, 1}) is a feasible triple.

Recall that σ is the permutation on PG(1, q) induced by the Frobenius automorphism
of Fq. It is easy to see that σ ∈ A, and so PΓL(2, q) ≤ A. Thus, by Lemmas 4.1-4.7, we
conclude that AutPG

(q+1;3,
q(q−1)

2
)

= PΓL(2, q) except for q = 5. �

Next we give several exceptional examples of symmetric factorizations. (All examples
are constructed under the help of GAP.) For distinct points ξ1, ξ2 and ξ3 of PG(1, q),
we write {ξ1, ξ2, ξ3} as ξ1 ξ2 ξ3.

Example 5.3. Let PG(1, 11) = {0, 1, 2, 3, · · · , 10,∞}, and set

E1 = {0 1∞, 2 5 9, 3 6 7, 4 8 10}, E2 = {0 5 7, 1 8 9, 2 6 10, 3 4∞},
E3 = {0 2 4, 1 7 10, 3 5 8, 6 9∞}, E4 = {0 6 8, 1 2 3, 4 7 9, 5 10∞}.

Let H = 〈t1,1,−4,−1, t0,1,−1,1〉 and R = 〈t1,5,−5,0, t1,−5,4,3〉. Then all Ei are H-orbits. Set

PGi(12;3,55) = {Ex
i | x ∈ R}, i = 1, 2, 3, 4.

�

Lemma 5.4. All PGi(12;3,55) are distinct symmetric 1-factorizations of order 12, and

(i) PG1(12;3,55) ∼= PG2(12;3,55), and PG3(12;3,55) 6∼= PG4(12;3,55);
(ii) AutPG1(12;3,55) = AutPG2(12;3,55) = PSL(2, 11);

(iii) AutPG3(12;3,55) = AutPG4(12;3,55) = PGL(2, 11).

Proof. It is easy to check that H ∼= A4, R ∼= Z11:Z5 and PSL(2, 11) = HR. Thus
PGi(12;3,55) = {Ex

i | x ∈ G}. Let e1 = 0 1∞, e2 = 2 6 10, e3 = 3 5 8 and e4 = 4 7 9.
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Then Ei = eHi for 1 ≤ i ≤ 4, and each triple (PSL(2, 11), H, ei) is feasible on the
point set of PG(1, 11). Then every PGi(12;3,55) is a symmetric 1-factorization. Noting

that NPSL(2,11)(H) = H, by Lemma 3.3, all PGi(12;3,55) are distinct. Since PSL(2, 11) ≤
AutPGi(12;3,55), by Theorem 2.3 and Lemmas 4.1-4.7, we conclude that AutPGi(12;3,55) ∈
{PSL(2, 11),PGL(2, 11),M11}.

By the information given in the Atlas [7], each subgroup PSL(2, 11) of M11 is a stabi-
lizer of M11 in its 3-transitive action of degree 12. Thus AutPGi(12;3,55) 6= M11. Take τ =
t1,1,2,−1. Then τ ∈ PGL(2, 11)\PSL(2, 11), eτ1 = e2, e

τ
3 = e3, e

τ
4 = e4 and τ normalizes H.

It follows that PG1(12;3,55) ∼= PG2(12;3,55), AutPG1(12;3,55) = PSL(2, 11) and AutPG3(12;3,55) =

AutPG4(12;3,55) = PGL(2, 11). In particular, PGi(12;3,55) = F(PGL(2, 11),PGL(2, 11)ei , ei)
for i = 3, 4. Note that NSym(V )(PGL(2, 11)) is 3-transitive on V . By Theorem 2.3,

NSym(V )(PGL(2, 11)) = PGL(2, 11). Then PG3(12;3,55) 6∼= PG4(12;3,55) by Lemma 3.4. �

Similarly, we have the following three examples.

Example 5.5. Let PG(1, 23) = {0, 1, 2, 3, · · · , 22,∞}. Set

F1 = {0 1∞, 16 19 22, 2 7 11, 3 12 14, 4 10 20, 5 6 15, 8 13 21, 9 17 18},
F2 = {0 4 6, 1 9 15, 2 12 22, 3 13 19, 18 20∞, 5 10 17, 7 8 16, 11 14 21},
F3 = {0 9 10, 1 5 20, 2 19 21, 3 11 16, 4 15 18, 6 17∞, 7 12 13, 8 14 22},
F4 = {0 5 18, 1 4 17, 2 3 8, 6 9 20, 7 14 19, 10 15∞, 11 13 22, 12 16 21}.

Take H = 〈t1,−3,−6,−4, t0,1,−1,1〉 and R = 〈t1,1,0,1, t2,0,0,1〉. Then H ∼= S4, R ∼= Z23:Z11,
PSL(2, 23) = HR, and every Fi is an H-orbit. Set

PGi(24;3,253) = {F x
i | x ∈ R}, i = 1, 2, 3, 4.

Then all PGi(24;3,253) are non-isomorphic symmetric 1-factorizations of order 24, and

AutPGi(24;3,253) = PSL(2, 23), i = 1, 2, 3, 4.

�
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Example 5.6. Let PG(1, 59) = {0, 1, 2, 3, · · · , 58,∞}. Set

F1 = {0 1∞, 2 7 34, 3 39 47, 4 6 40, 5 22 41, 8 12 33, 9 24 48, 10 18 32, 11 31 38, 13 19 52, 14 28 44,
15 21 56, 16 35 42, 17 20 46, 23 26 55, 25 49 58, 27 30 43, 29 45 50, 36 37 54, 51 53 57},

F2 = {0 7 27, 1 34 49, 2 30 58, 3 11 52, 4 10 44, 5 45 54, 6 20 28, 8 55 56, 9 19 38, 12 15 42, 13 39 48,
14 32 46, 16 21 23, 17 18 40, 22 36 51, 24 31 47, 25 43∞, 26 33 35, 29 37 53, 41 50 57},

F3 = {0 28 48, 1 5 24, 2 17 37, 3 29 40, 4 50 56, 6 15 39, 7 20 42, 8 43 57, 9 14 22, 10 25 55, 11 18 58,
12 13 27, 16 34 54, 19 33 51, 21 45 47, 26 32 38, 23 31 49, 30 52 53, 35 36 46, 41 44∞},

F4 = {0 5 14, 1 9 44, 2 16 46, 3 15 50, 4 39 45, 6 21 29, 7 35 37, 8 13 53, 10 11 23, 12 30 51, 17 42 54,
18 26 49, 19 27 57, 20 34 36, 22 48∞, 24 28 41, 25 31 32, 33 43 52, 38 55 58, 40 47 56},

F5 = {0 9 41, 1 22 28, 2 36 42, 3 4 21, 5 44 48, 6 47 50, 7 46 54, 8 19 30, 10 38 49, 11 25 26, 12 52 57,
13 43 51, 14 24∞, 15 40 45, 16 20 37, 17 34 35, 18 31 55, 23 32 58, 27 33 53, 29 39 56},

F6 = {0 2 25, 1 27 58, 3 19 24, 4 14 17, 5 37 57, 6 10 46, 7 43 49, 8 21 35, 9 11 39, 12 16 55, 13 38 47,
15 23 33, 18 20 44, 22 45 53, 26 42 56, 28 32 40, 29 36 41, 30 34∞, 31 48 52, 50 51 54},

F7 = {0 30 49, 1 2 43, 3 38 48, 4 20 32, 5 29 51, 7 58,∞, 6 14 18, 8 23 42, 9 47 52, 10 17 28, 11 13 24,
12 21 26, 15 35 55, 16 33 56, 19 31 39, 22 37 50, 25 27 34, 36 45 57, 40 44 46, 41 53 54},

F8 = {0 26 29, 1 33 40, 2 9 56, 3 35∞, 4 19 34, 5 12 18, 6 49 51, 7 38 50, 8 17 24, 10 13 54, 11 41 42,
14 21 30, 15 22 58, 16 44 52, 20 31 57, 23 28 53, 25 36 39, 27 32 45, 37 48 55, 43 46 47},

F9 = {0 6 12, 1 16 47, 2 40 52, 3 37 58, 4 25 57, 5 21 49, 7 15 48, 8 10 41, 9 33 46, 11 17 53, 13 28 42,
14 26 51, 18 29 30, 19 32 36, 20 27 39, 22 35 38, 23 24 54, 31 34 45, 43 44 56, 50 55,∞},

F10 = {0 39 42, 1 23 45, 2 11 29, 3 17 30, 4 8 60, 5 16 31, 6 7 13, 9 26 36, 10 43 50, 12 20 48, 14 19 35,
15 27 28, 18 37 52, 21 24 34, 22 32 33, 25 41 56, 38 46 51, 40 53 58, 44 55 57, 47 49 54}.

Let H = 〈t1,12,34,31, t0,1,−1,1〉 and R = 〈t1,1,0,1, t4,0,0,1〉. Then H ∼= A5, R ∼= Z59:Z29,
PSL(2, 59) = HR and all Fi are H-orbits. Set

PGi(60;3,1711) = {F x
i | x ∈ R}, 1 ≤ i ≤ 10.

Then all PGi(60;3,1711) are non-isomorphic symmetric 1-factorizations of order 60, and

AutPGi(60;3,1711) = PSL(2, 59), 1 ≤ i ≤ 10.

�

Example 5.7. Let PG(1, 29) = {0, 1, 2, 3, · · · , 28,∞}, and set

F1 = {0 1∞, 2 24 25, 3 21 22, 4 10 18, 5 6 28, 7 15 23, 8 9 27, 11 13 14, 12 20 26, 16 17 19};
F2 = {0 4 11, 1 19 26, 2 15 28, 3 5 13, 6 9 10, 7 12 14, 8 22∞, 16 18 23, 17 25 27, 20 21 24}.

Let H = 〈t1,−13,−9,10, t0,1,−1,1〉 and R = 〈t1,1,0,1, t2,0,0,1〉. Then H ∼= A5, R ∼= Z29:Z28,
PGL(2, 29) = HR and each Fi is an H-orbit. Set

PGi(30;3,406) = {F x
i | x ∈ R}, 1 ≤ i ≤ 2.

Then PG1(30;3,406) and PG2(30;3,406) are non-isomorphic symmetric 1-factorizations of order
30, and

AutPGi(30;3,406) = PGL(2, 29), 1 ≤ i ≤ 2.

�

In the next four examples, we construct several symmetric factorizations which are
not 1-factorizations.

Example 5.8. Let PG(1, 7) = {0, 1, 2, 3, 4, 5, 6,∞}. Set

F1 = {0 1∞, 0 1 5, 0 5∞, 1 5∞, 2 4 6, 3 4 6, 2 3 6, 2 3 4},
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F2 = {1 2∞, 1 2 6, 1 6∞, 2 6∞, 0 3 5, 0 4 5, 0 3 4, 3 4 5},

F3 = {2 3∞, 0 2 3, 0 2∞, 0 3∞, 1 4 6, 1 5 6, 1 4 5, 4 5 6},

F4 = {3 4∞, 1 3 4, 1 3∞, 1 4∞, 0 2 5, 0 2 6, 2 5 6, 0 5 6},

F5 = {4 5∞, 2 4 5, 2 4∞, 2 5∞, 1 3 6, 0 1 3, 0 3 6, 0 1 6},

F6 = {5 6∞, 3 5 6, 3 5∞, 3 6∞, 0 2 4, 1 2 4, 0 1 4, 0 1 2},

F7 = {0 6∞, 0 4 6, 4 6∞, 0 4∞, 1 3 5, 2 3 5, 1 2 5, 1 2 3}.
Let H = 〈t0,1,−1,1, t1,3,2,1〉. Then F1 is an orbit of H on the 3-subsets. Write

PG(8;3,7) = {F1, F2, F3, F4, F5, F6, F7}.

�

Lemma 5.9. PG(8;3,7) is a symmetric factorization of order 8, and

AutPG(8;3,7) = PSL(2, 7).

Proof. It is easy to check that F1 is an orbit of H on the 3-sets of projective points,
and Fi = F

t1,i−1,0,1

1 for 1 ≤ i ≤ 7. Note that t0,1,−1,1, t1,3,2,1 and t1,1,0,1 are element of
PSL(2, 7) with order 3, 4 and 7, respectively. It is easily shown that

H = 〈t0,1,−1,1, t1,3,2,1〉 ∼= S4, PSL(2, 7) = 〈t0,1,−1,1, t1,3,2,1, t1,1,0,1〉.

Moreover, for e = 0 1∞, we have He = 〈t0,1,−1,1〉. Since PSL(2, 7) is 3-homogeneous,

|PSL(2, 7)e| = |PSL(2,7)|
|V {3}| = 3, yieldingHe = 〈t0,1,−1,1〉 = PSL(2, 7)e. Thus (PSL(2, 7), H, e)

is feasible. Note that PSL(2, 7) = H〈t1,1,0,1〉. We know that PG(8;3,7) = F(PSL(2, 7), H, e)
is a symmetric factorization of order 8. By Theorem 2.3 and Lemmas 4.1-4.7, we con-
clude that AutPG(8;3,7) = PSL(2, 7). �

Example 5.10. Let PG(1, 19) = {0, 1, 2, 3, · · · , 17, 18,∞}. Set

F1 = {0 1 8, 1 8∞, 6 10 13, 6 7 13, 5 14 16, 3 11 15, 5 12 14, 2 3 15, 5 12 16, 9 17 18,
4 9 17, 7 10 13, 4 17 18, 2 3 11, 2 11 15, 4 9 18, 0 1∞, 0 8∞, 6 7 10, 12 14 16},

F2 = {1 3 13, 5 8 9, 5 6 17, 13 14 15, 5 15 18, 3 8 16, 11 13 17, 1 9 10, 1 6 12, 0 3 18,
7 8 14, 9 11∞, 2 6 16, 0 7 17, 4 10 14, 12 15∞, 2 10 18, 4 11 16, 0 4 12, 2 7∞},

F3 = {1 2 14, 4 6 8, 13 16∞, 4 6 15, 0 5 10, 3 7 12, 2 14 17, 4 8 15, 5 10 11, 7 9 12,
16 18∞, 1 2 17, 13 16 18, 0 5 11, 0 10 11, 13 18∞, 3 9 12, 3 7 9, 1 14 17, 6 8 15}.

Let H = 〈t0,1,−1,1, t1,−2,−8,6〉 and R = 〈t1,−4,6,0, t1,2,−2,3〉. Set

PGi(20;3,57) = {F x
i | x ∈ R}, i = 1, 2, 3.

�

Lemma 5.11. All PGi(20;3,57) are non-isomorphic symmetric factorizations of order 20,
and

AutPGi(20;3,57) = PSL(2, 19) for i = 1, 2, 3.
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Proof. It is easily shown that H ∼= A5, every Fi is an orbit of H of size 20, and He =
〈t0,1,−1,1〉 ∼= Z3, where e ∈ {0 1∞, 2 10 18, 3 7 9}. Moreover, R ∼= Z19:Z9, PSL(2, 19) =
HR and t31,2,−2,3 = t0,1,−1,1. It is easy to see that (PSL(2, 19), H, e) is a feasible triple.

Then all PGi(20;3,57) are symmetric factorizations of order 20. By Theorem 2.3 and

Lemmas 4.1-4.7, we have AutPGi(20;3,57) = PSL(2, 19), where i = 1, 2, 3.
By Theorem 2.3, we conclude that NSym(V )(PSL(2, 19)) = PGL(2, 19), where V is the

point set of PG(2, 19). Checking the maximal subgroups of PGL(2, 19), we know that
PGL(2, 19) contains no element normalizing H. By Lemma 3.4, all PGi(20;3,57) are not
isomorphic to every other. �

Similarly, we have the following example.

Example 5.12. Let PG(1, 11) = {0, 1, 2, 3, · · · , 10,∞}. Set

F1 := {2 6 10, 0 4 5, 3 4∞, 0 2 10, 1 7 10, 0 5 7, 0 2 4, 2 4∞, 6 9∞, 2 6∞,
0 7 10, 5 7 8, 3 5 8, 3 4 5, 1 6 10, 1 6 9, 3 9∞, 3 8 9, 1 7 8, 1 8 9},

F2 := {0 1∞, 2 3 7, 2 5 9, 4 6 7, 0 6 8, 4 8 10, 5 10∞, 0 3 6, 1 2 3, 4 9 10,
1 2 5, 0 1 3, 4 7 9, 0 8∞, 2 7 9, 8 10∞, 4 6 8, 1 5∞, 5 9 10, 3 6 7}.

Let H = 〈t1,−5,4,3, t0,1,−1,1〉. Then H ∼= A5, PSL(2, 11) = H〈t1,1,0,1〉, and both F1 and F2

are H-orbits of length 20. Set

PGi(12;3,11) = {F t1,j,0,1
i | 0 ≤ j < 11}, i = 1, 2.

Then PG112;3,11 and PG212;3,11 are non-isomorphic symmetric factorizations of order 12,
and

AutPGi(12;3,11) = PSL(2, 11), i = 1, 2.

�

Example 5.13. Let η be a generator of the multiplicative group of F9. Then PGL(2, 9) =
〈t0,1,−1,1, tη,0,0,1〉. Let H = 〈t0,1,−1,1, t1,1,η3,η〉, and e = 0 1∞. Then A5

∼= H ≤ PSL(2, 9),
and He = 〈t0,1,−1,1, t0,1,1,0〉 ∼= S3. Since PGL(2, 9) is sharply 3-transitive on the projec-
tive points, we have PGL(2, 9)e = He. Thus (PGL(2, 9), H, e) is feasible. Denote by
PG(10;3,12) the resulting factorization. Set

F = {0 1∞, 0 η2 η3, 0 η η6, 1 η η5, 1 η3 η7, η η3 η4, η2 η4 η6, η2 η7∞, η4 η5 η7, η5 η6∞}.
Then F = eH and PG(10;3,12) = {F g | g ∈ PGL(2, 9)}. Let σ be the permutation on
PG(1, 9) defined by σ : ξ 7→ ξ3 with ∞3 =∞. Then F σ = F , and so

{F g | g ∈ PGL(2, 9)}σ = {(F σ)g
σ | g ∈ PGL(2, 9)} = {F g | g ∈ PGL(2, 9)}.

Thus σ ∈ AutPG(10;3,12), and hence PΓL(2, 9) ≤ AutPG(10;3,12). By Lemmas 4.1-4.7, we
conclude that AutPG(10;3,12) = PΓL(2, 9). �

Theorem 5.14. Let (G,X, e) be a feasible triple on the point set V of PG(1, q). Then
F(G,X, e) is isomorphic to one of the symmetric factorizations given in this subsection.

Proof. By Lemmas 3.5 and 4.2, we may choose G such that (G,X,Xe) is listed in
Table 1. In particular, Xe = Ge

∼= Z3 or S3. Set Ff = {fx | x ∈ X} for f ∈ V {3}. Then

F(G,X, e) = {F g
e | g ∈ G}.
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G X Xe = Ge NX(N) l(G,X) Condition

PSL(2, q) Dq+1 Z3 X q+1
3

q ≡ −1 (mod 12)
PGL(2, q) D2(q+1) S3 X q+1

3
q ≡ 2 (mod 3)

PSL(2, 11) A4 Z3 Z3 1
PSL(2, 7) S4 Z3 S3 2
PSL(2, 11) A5 Z3 S3 2
PSL(2, 19) A5 Z3 S3 2
PSL(2, 23) S4 Z3 S3 2
PSL(2, 59) A5 Z3 S3 2
PGL(2, 29) A5 S3 S3 1
PGL(2, 9) A5 S3 S3 1
M10 A5 S3 S3 1

Table 1

Let N = 〈τ〉 be the normal subgroup of Ge of order 3. Then N ≤ PSL(2, q) as
|G : PSL(2, q)| ≤ 2, and e is an orbit of N . It is easily shown that all subgroups of order
3 in G are conjugate. By Lemma 3.3, we may choose τ = t0,1,−1,1. Let e0 = 0 1∞. Then
e0 is an N -orbit on V .

Let O be the set of all N -orbits of size 3 on the projective points. Since G is 3-
homogeneous, every 3-set of points can be written as eg0 for some g ∈ G. If g ∈ NG(N)
then Og = O, and so eg0 ∈ O. Conversely, let eg0 ∈ O. Then N and N g has a common
orbit. It implies that ττ g or τ−1τ g fixes at least three points, and so ττ g = 1 or τ−1τ g = 1
by [9, II.8.5], yielding N = N g. Thus O = {ex0 | x ∈ NG(N)}. Recalling that τ fixes at
most two projective points, we may determine the number |O| of N -orbits. If q + 1 is
divisible by 3, then |O| = q+1

3
; if q − 1 is divisible by 3, then |O| = q−1

3
; and if q = 9

then |O| = 3.
Assume that one of lines 1 and 2 of Table 1 occurs. Then NG(N) = X, and so

Fe = {ex | x ∈ X} = O. Thus, by Lemma 5.2, we get a unique (up to q) symmetric
factorization described as in Example 5.1. In the following we assume that (G,X) is
listed as in lines 3-11 of Table 1.

Note that all subgroups of G isomorphic to X are conjugate in G. By Lemma 3.1, up
to isomorphism of factorizations, we may choose X = H with H described as in one of
Examples 5.3 5.5-5.8, 5.10, 5.12 and 5.13. Set O1 = {f ∈ O | Xf = Gf}. Then e ∈ O1,
and it is easy to see e0 ∈ O1. Next we analyze all possible candidates for e ∈ O1 which
lead to distinct symmetric factorizations with the form of F(G,X, e).

Recall that O ∩ Og 6= ∅ if and only if g ∈ NG(N). It follows that Fe ∩ O1 ⊆ {ex |
x ∈ NX(N)}. On the other hand, if x ∈ NX(N) then, since X is transitive on Fe, we
have Xex = Xx

e = Gx
e = Gex , yielding ex ∈ O1. Thus Fe ∩ O1 = {ex | x ∈ NX(N)}.

Since |Xe| = |Ge| = |Ge0| = |Xe0|, we have |Fe ∩ O1| = |NX(N) : Xe| = |NX(N)|
|Xe0 |

, which

is independent of the choice of e ∈ O1.

Let l(G,X) = |NX(N)|
|Xe0 |

. Then NX(N) and l(G,X) are listed in Table 1. It is easy to

check that NG(X) = X ≤ soc(G) = PSL(2, q) for lines 3-11 of Table 1. By Lemma 3.3
F(G,X, e) = F(G,X, f) for f ∈ O1 if and only if f = eg for some g ∈ NG(X), and
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hence g ∈ NG(X) ∩ NG(N) = NX(N). Thus for a given pair (G,X), we get exactly
|O1|
l(G,X)

distinct symmetric factorizations having the form of F(G,X, e).

Let G = PSL(2, q) with q ∈ {7, 11, 19, 23, 59}. Then Ge0 = N and O1 = O. If G =
PSL(2, 11) and X ∼= A4 then |O| = |O1| = 4, and l(G,X) = 1, and so we get 4 distinct
symmetric factorizations which are described as in Example 5.3. If G = PSL(2, 7) then
|O1| = 2 and l(G,X) = 2, and so we get a unique symmetric factorization described
as in Example 5.8. If G = PSL(2, 11) and X ∼= A5, then Ge = N , |O| = |O1| = 4
and l(G,X) = 2, and so we get two distinct symmetric factorizations described as in
Example 5.12. If G = PSL(2, 19) then |O| = 6 = |O1| and l(G,X) = 2, and then we
get three distinct symmetric factorizations described as in Example 5.10. Similarly, if
G = PSL(2, q) with q ∈ {23, 59} then |O| = |O1| = q+1

3
and l(G,X) = 2, and we have

14 distinct symmetric factorizations described as in Examples 5.5 and 5.6.
Let G = PGL(2, 29). Then X ∼= A5, |O| = 10 and l(G,X) = 1. For f ∈ O1, we have

N ≤ Xf = Gf
∼= S3 and, since NX(N) ∼= S3, we get Xf = NX(N). It follows that O1

consists of the orbits of NX(N) on V . Let x ∈ NX(N) \N . Then x has order 2, and an
N -orbit f lies in O1 if and only if fx = f . Thus O1 = {f ∈ O | fx = f}. By [9, II.8.5],
N is semiregular and x fixes exactly two projective points. It follows that x fixes exactly
two orbits of N . Then |O1| = 2, and so we get two distinct symmetric factorizations
described as in Example 5.7.

Finally, let G = PGL(2, 9) or M10. Then |O| = 3 and l(G,X) = 1. By a similar
argument as above, we have O1 = {f ∈ O | fx = f}, where x ∈ NX(N) \ N . By [9,
II.8.5], N fixes a unique projective point, and x fixes exactly two projective points. It
follows that x fixes a unique orbit of N of size 3. Recalling e0 ∈ O1, we have e = e0,
and so Fe = F is described as in Example 5.13. Recall that X = 〈t0,1,−1,1, t1,1,η3,η〉
by the choice of X, where η is a generator of the multiplicative group of F9. Then
Xe0 = 〈t0,1,−1,1, t0,1,1,0〉. Let σ be the permutation on PG(1, 9) defined by σ : ξ 7→ ξ3

with ∞3 = ∞. Then eσ0 = e0, X
σ = X and 〈Xe0 , σ〉 ∼= D12. Set F1 = {F g | g ∈

PSL(2, 9)}, and take g0 ∈ PGL(2, 9) \ PSL(2, 9). Then PGL(2, 9) = PSL(2, 9)〈g0〉,
M10 = PSL(2, 9)〈σg0〉, and

F(PGL(2, 9), X, e0) = F1 ∪ Fg01 = PG(10;3,12) = Fσ1 ∪ F
σg0
1 = F(M10, X, e0).

Thus get a symmetric factorization described as in Example 5.13. �

5.2. Symmetric factorizations arising from W24. Take a dodecad W of W24, and
let U be its complement. For distinct u, v ∈ U , denote by B1

uv and B2
uv the blocks of

W24 which contain {u, v} and intersect W in 6 points. Let Fuv be the set of 5-subsets
of W ∩B1

uv and W ∩B2
uv. Set

W(12;5,66) = {Fuv | {u, v} ∈ U{2}}.

Fix a point v ∈ U . For distinct u1, u2 ∈ U \ {v}, let

Eu1u2 = {Bj
uiv
∩Bj′

ui′v
∩W | i, i′, j, j′ ∈ {1, 2}, i 6= i′}.

Set

H(12;3,55) = {Eu1u2 | u1 6= u2, u1, u2 ∈ U \ {v}}.
Let W(24;4,1771) be the set of 1771 sextets of W24. Then, by Lemmas 4.6 and 4.7, we

have the following result.
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Theorem 5.15. Let (G,X, e) be a feasible triple on a set V .

(1) If G = M11, then F(G,X, e) ∼= H(12;3,55).
(2) If G = M12, then F(G,X, e) ∼=W(12;5,66).
(3) If G = M12, then F(G,X, e) ∼=W(24;4,1771).

Remark 5.16. Consider the action of PSL(2, 11) on the projective line V = F11 ∪
{∞}. Take B = {∞, 1, 3, 4, 5, 9}. By [2, IV.1.2 Construction], the incidence structure
(V,BPSL(2,11)) is an S(5, 6, 12) Steiner system. Thus we may let W12 = (V,BPSL(2,11)).
Note that PSL(2, 11) acts transitively on the blocks of W12. Then PSL(2, 11) acts
transitively on the 66 hexad pairs. Let

F =

{
∞ 1 3 4 5, ∞ 3 4 5 9, ∞ 1 4 5 9, ∞ 1 3 5 9, ∞ 1 3 4 5, 1 3 4 5 9,
0 2 6 7 8, 0 6 7 8 10, 0 2 7 8 10, 0 2 6 8 10, 0 2 6 7 10, 2 6 7 8 10

}
,

Then W(12;5,66) = {F g | g ∈ PSL(2, 11)}.

5.3. The conclusion. Let V be a set of size n, and let k and s be integers with 6 ≤
2k ≤ n and s ≥ 2. Assume that F = {F1, F2, · · · , Fs} is a symmetric (k, s) factorization
on V . Then by the argument in Section 3 we have F = F(G,X, e), where G, X and e
satisfy the conditions (c1) and (c2) given in Section 3. If soc(G) ≤ X then all factors
(V, Fi) admit a common transitive subgroup of Sym(V ), and so F is homogeneous. Thus
we assume that soc(G) 6≤ X, that is, (G,X, e) is a feasible triple. By Lemma 3.6, up to
isomorphism of factorizations, we may assume further that (G,X, e) is one of the feasible
triples described as in Lemmas 4.2, 4.3, 4.6 and 4.7. Then by Corollary 4.4, Lemma 5.4
and Theorems 5.14 and 5.15, a classification of symmetric factorizations follows, and
thus Theorems 1.2 and 1.3 are proved.

Theorem 5.17. Let F be a symmetric (k, s) factorization of order n, where n, k and s
are integers with n ≥ 2k ≥ 6 and s ≥ 2. Then F is either homogeneous or isomorphic
to one of the following symmetric factorizations:

(1) U(2k,k); H(12;3,55), W(24;4,1771); PG(q+1;3,
q(q−1)

2
)
, PG2(12;3,55), PG3(12;3,55), PG4(12;3,55),

PG1(30;3,406), PG2(30;3,406), PGi(24;3,253) and PGj(60;3,1711), where 8 ≤ q ≡ 2 (mod 3),

1 ≤ i ≤ 4 and 1 ≤ j ≤ 10;
(2) W(12;5,66); PG(8;3,7), PG(10;3,12), PG1(12;3,11), PG2(12;3,11), PG1(20;3,57), PG2(20;3,57) and

PG3(20;3,57).
Moreover, F is a 1-factorization if and only if it is not isomorphic to one of the factor-
izations listed in item (2).

Remark. Let F = {F1, F2, · · · , Fs} be a symmetric factorization of the complete k-
hypergraph (V, V {k}), where 3 ≤ k < n := |V |. For each i ≤ s, set F op

i = {V \e
∣∣ e ∈ Fi}.

Let Fop = {F op
1 , F

op
2 , F

op
3 , · · · , F op

s }. Then AutF = AutFop, Aut(F , Fi) = Aut(Fop, F op
i )

and Fop is a symmetric (n − k, s) factorization. In view of this, F and Fop may be
constructed from each other. If k + 3 ≤ n < 2k then Fop is known by [6] and Theorem
5.17, and thus F is known. If n = k + 1 then Fop is just a uniform partition of V . For
n = k+ 2, we know that Fop is a factorization of the complete graph Kn. This case was
investigated in [4, 10, 13].
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Holland, Amsterdam, 1975.

[2] Beth T, Jungnickel D, Lenz H. Desigen Theorey I (second edition). Cambridge University Press,
1999.

[3] Cameron P J. Permutation Groups. Cambridge: Cambridge University Press, 1999.
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