EDGE-TRANSITIVE HOMOGENEOUS FACTORISATIONS OF COMPLETE UNIFORM HYPERGRAPHS

HU YE CHEN AND ZAI PING LU

ABSTRACT. For a finite set V and a positive integer k with $k \leq n := |V|$, letting $V^{\{k\}}$ be the set of all k-subsets of V, the pair $\mathcal{K}_n^k := (V, V^{\{k\}})$ is called the complete k-hypergraph on V, while each k-subset of V is called an edge. A factorisation of the complete k-hypergraph \mathcal{K}_n^k of index $s \geq 2$, simply a (k, s)-factorisation of order n, is a partition $\{E_1, E_2, \ldots, E_s\}$ of the edges into s disjoint subsets such that each k-hypergraph (V, E_i) , called a factor, is a spanning subhypergraph of \mathcal{K}_n^k . Such a factorisation is homogeneous if there exist two transitive subgroups G and M of the symmetric group of degree n such that G induces a transitive action on the set $\{E_1, E_2, \ldots, E_s\}$ and M lies in the kernel of this action.

In this paper, we give a classification of homogeneous factorisations of \mathcal{K}_n^k which admit a group acting transitively on the edges of \mathcal{K}_n^k . It is shown that, for $6 \leq 2k \leq n$ and $s \geq 2$, there exists an edge-transitive homogeneous (k, s)-factorisation of order n if and only if (n, k, s) is one of (32, 3, 5), (32, 3, 31), (33, 4, 5), $(2^d, 3, \frac{(2^d-1)(2^{d-1}-1)}{3})$ and (q+1, 3, 2), where $d \geq 3$ and q is a prime power with $q \equiv 1 \pmod{4}$.

KEYWORDS: uniform hypergraph, self-complementary hypergraph, edge-transitive, homogeneous factorisation, homogeneous permutation group.

1. INTRODUCTION

Let V be a finite (nonempty) set. For a positive integer $k \leq |V|$, we use $V^{\{k\}}$ to denote the set of all k-subsets of V. In this paper, a k-uniform hypergraph (or khypergraph) with vertex set V and edge set E is a pair (V, E), where E is a subset of $V^{\{k\}}$. Note that a 2-hypergraph is a graph. For a set V of size n and a positive integer $k \leq n$, we set $\mathcal{K}_n^k = (V, V^{\{k\}})$, which is called the *complete k-hypergraph* (on V). Two k-hypergraphs $\mathcal{H}_1 = (V_1, E_1)$ and $\mathcal{H}_2 = (V_2, E_2)$ are said to be *isomorphic* if there is a bijection ϕ between V_1 and V_2 such that ϕ induces a bijection between E_1 and E_2 , while this bijection ϕ is called an isomorphism between \mathcal{H}_1 and \mathcal{H}_2 .

Let $\mathcal{H} = (V, E)$ be a k-hypergraph. An isomorphism from \mathcal{H} onto itself is called an automorphism of \mathcal{H} . Let $\operatorname{Aut}\mathcal{H}$ be the set of all automorphisms of \mathcal{H} . Then $\operatorname{Aut}\mathcal{H}$ is a subgroup of the symmetric group $\operatorname{Sym}(V)$. Note that $\operatorname{Sym}(V)$ acts transitively on $V^{\{k\}}$. Thus $\operatorname{Aut}\mathcal{H} = \operatorname{Sym}(V)$ if and only if either $\mathcal{H} = \mathcal{K}_n^k$ or $E = \emptyset$. For a subgroup $G \leq \operatorname{Aut}\mathcal{H}$, the hypergraph \mathcal{H} is said to be *G*-vertex-transitive or *G*-edge-transitive if *G* acts transitively on *V* or *E*, respectively. The *complement* \mathcal{H}^c of \mathcal{H} is the *k*-hypergraph $(V, V^{\{k\}} \setminus E)$. Note that $\operatorname{Aut}\mathcal{H} = \operatorname{Aut}\mathcal{H}^c$. If there is an isomorphism $\tau : \mathcal{H} \to \mathcal{H}^c$, then \mathcal{H} is said to be *self-complementary*, while the isomorphism τ is called an *antimorphism* of \mathcal{H} .

²⁰¹⁰ Mathematics Subject Classification. 05C65, 05C70, 05E18, 20B20.

This work was supported by National Natural Science Foundation of China (11371204).

Self-complementary uniform hypergraphs have been extensively studied, see [14, 16, 18, 19, 20, 25] and the references therein for self-complementary graphs, and see [7, 8, 9, 23, 24] for self-complementary uniform hypergraphs. In particular, Peisert [21] gave a complete classification for symmetric (i.e., vertex-transitive and edge-transitive) self-complementary graphs.

Let $k \geq 1$ and $s \geq 2$ be integers. A factorisation of \mathcal{K}_n^k of index s is a partition $\{E_1, E_2, \ldots, E_s\}$ of $V^{\{k\}}$ into s disjoint subsets such that each k-hypergraph (V, E_i) is a spanning subhypergraph, that is, for every $i \in \{1, 2, \ldots, s\}$, each $v \in V$ is contained in some $e \in E_i$. For convenience, we sometimes call such a factorisation a (k, s)-factorisation (on V) of order n, and call the resulting k-hypergraphs (V, E_i) its factors. Two (k, s)-factorisations $\mathcal{F} = \{E_1, E_2, \ldots, E_s\}$ on V and \mathcal{E} on U are said to be isomorphic, denoted by $\mathcal{F} \cong \mathcal{E}$, if there is a bijection $\phi : V \to U$ such that ϕ induces a bijection $V^{\{k\}} \to U^{\{k\}}$ and $\mathcal{E} = \{E_i^{\phi} \mid 1 \leq i \leq s\}$, while this bijection ϕ is called an isomorphism from \mathcal{F} to \mathcal{E} .

Let $\mathcal{F} = \{E_1, E_2, \ldots, E_s\}$ be a (k, s)-factorisation on V. An isomorphism from \mathcal{F} to itself is called an *automorphism* of \mathcal{F} . Let $\operatorname{Aut}\mathcal{F}$ be the set of all automorphisms of \mathcal{F} . Then it is easily shown that $\operatorname{Aut}\mathcal{F}$ is just the subgroup of $\operatorname{Sym}(V)$ which preserves the partition \mathcal{F} . For each $1 \leq i \leq s$, set $\mathcal{H}_i = (V, E_i)$, and let $\operatorname{Aut}(\mathcal{F}, E_i)$ be the subgroup of $\operatorname{Aut}\mathcal{F}$ fixing E_i set-wise. Then $\operatorname{Aut}(\mathcal{F}, E_i) \leq \operatorname{Aut}\mathcal{H}_i$. The factorisation \mathcal{F} is said to be *factor-transitive* if $\operatorname{Aut}\mathcal{F}$ acts transitively on the partition \mathcal{F} , and *vertex-transitive* (resp. *edge-transitive*) if further every factor \mathcal{H}_i is $\operatorname{Aut}(\mathcal{F}, E_i)$ -vertex-transitive (resp. $\operatorname{Aut}(\mathcal{F}, E_i)$ -edge-transitive). (Note that, for k = 2, the edge-transitivity of factorisations considered in [15] is slightly more restricted than that given here.) The factorisation $\mathcal{F} = \{E_1, E_2, \ldots, E_s\}$ is said to be *homogeneous* if $\bigcap_{i=1}^s \operatorname{Aut}(\mathcal{F}, E_i)$, the kernel of $\operatorname{Aut}(\mathcal{F})$ acting on $\{E_1, E_2, \ldots, E_s\}$, is a transitive subgroup of $\operatorname{Sym}(V)$. Note that a vertextransitive (k, 2)-factorisation if exists must be homogeneous.

Vertex-transitive factorisations of complete uniform hypergraphs are natural generalizations of vertex-transitive self-complementary uniform hypergraphs. In fact, each factor of a vertex-transitive (k, 2)-factorisation is a vertex-transitive self-complementary k-hypergraph. Conversely, every vertex-transitive self-complementary k-hypergraph together with its complement gives a vertex-transitive (k, 2)-factorisation.

As generalizations of vertex-transitive self-complementary graphs, homogeneous factorisations of complete graphs (complete 2-hypergraphs) were introduced in [17] (and for graphs in general in [5]). The reader is referred to [5, 6, 11, 17] for the theory of homogeneous factorisations of graphs. In [15], Li, Lim and Praeger classified the homogeneous factorisations of complete graphs with all factors admitting a common edge-transitive group. This motivates us to consider in this paper the problem of classifying edgetransitive homogeneous factorisations of complete k-hypergraphs, where $k \geq 3$.

After collecting some preliminary results on permutation groups in Section 2, a global analysing is given in Section 3 for edge-transitive homogeneous factorisations. In Section 4, some examples of edge-transitive homogeneous factorisations are constructed. Finally, our main result is presented in Section 5.

2. Preliminaries

In this section, we assume that V is a finite nonempty set.

Let G be a permutation group on V, that is, G is a subgroup of the symmetric group $\operatorname{Sym}(V)$. For a subset $B \subseteq V$, denote by G_B and $G_{(B)}$ the subgroups of G fixing B set-wise and point-wise, respectively. Then $G_{(B)}$ is normal in G_B and is the kernel of G_B acting on B. If B is a singleton $\{v\}$ then $G_B = G_{(B)} = \{g \in G \mid v^g = v\}$. Write $G_v = \{g \in G \mid v^g = v\}$, and call it the stabilizer of v in G. For $v \in V$, the orbit of G containing v is the subset $v^G := \{v^g \mid g \in G\}$. Note that $|v^G|$ equals to the index of G_v in G, that is, $|v^G| = |G : G_v| = \frac{|G|}{|G_v|}$. If G has only one orbit then G is said to be transitive. The permutation group G is semiregular if $G_v = 1$ for all $v \in V$, and regular if further G is transitive on V.

Let G be a transitive permutation group on V. A block of G is a nonempty subset $B \subseteq V$ such that for every $g \in G$, either $B^g = B$ or $B^g \cap B = \emptyset$. A block is trivial if |B| = 1 or B = V, and nontrivial otherwise. Then G is primitive if it has only trivial blocks. A partition \mathcal{B} of V is G-invariant if $B^g \in \mathcal{B}$ for $\forall B \in \mathcal{B}$ and $\forall g \in G$. Clearly, if B is a block then $\{B^g \mid g \in G\}$ is a G-invariant partition. Conversely, for a G-invariant partition \mathcal{B} , every part $B \in \mathcal{B}$ is a block of G, and $\mathcal{B} = \{B^g \mid g \in G\}$. For a block B and $v \in B$, we have $G_v \leq G_B$. This simple fact leads to a bijection between certain subgroups of G and blocks of G, refer to [4, Theorem 1.5A, p.13].

Lemma 2.1. Let G be a transitive permutation group on V. Then $H \mapsto v^H$ defines a bijection between the subgroups containing G_v and the blocks containing v. In particular, G is primitive if and only if for $v \in V$, the stabilizer G_v is a maximal subgroup of G.

Let G be a transitive permutation group on V, and let \mathcal{B} be a G-invariant partition of V. Then G induces a transitive permutation group $G^{\mathcal{B}}$ on \mathcal{B} with kernel $G_{(\mathcal{B})} = \bigcap_{B \in \mathcal{B}} G_B$, and $G^{\mathcal{B}} \cong G/G_{(\mathcal{B})}$. An extreme case is that $G_{(\mathcal{B})}$ acts transitively on each part of \mathcal{B} . By [4, Theorem 1.6A, p.18], the following lemma holds.

Lemma 2.2. Let G be a transitive permutation group on V, and M a normal subgroup of G. Then all M-orbits on V form a G-invariant partition \mathcal{B} , and $|\mathcal{B}|$ is a divisor of |G: M|. In particular, all M-orbits have the same length, and if G is primitive and $M \neq 1$ then M is transitive.

A *G*-invariant partition \mathcal{B}' is a *refinement* of some *G*-invariant partition \mathcal{B} if every part of \mathcal{B} is the union of some parts of \mathcal{B}' . By Lemma 2.1, the following lemma is easily shown.

Lemma 2.3. Let G be a transitive permutation group on V, and let \mathcal{B} and \mathcal{B}' be Ginvariant partitions. Then \mathcal{B}' is a refinement of \mathcal{B} if and only if $B = \bigcup_{g \in G_B} (B')^g$ for some $B \in \mathcal{B}$ and $B' \in \mathcal{B}'$.

Let k be an integer with $1 \le k \le |V|$, and let $V^{(k)}$ be the set of all ordered k-subsets of V. A permutation group G is k-transitive or k-homogeneous on V if G acts transitively on $V^{(k)}$ or $V^{\{k\}}$, respectively. A permutation group G on V is sharply k-transitive if it is regular on $V^{(k)}$.

Clearly, a k-transitive permutation group is k-homogeneous, and a k-homogeneous permutation group is also (|V| - k)-homogeneous. It is easy to see that for $k \ge 2$, a k-homogeneous permutation group is primitive. For $k \ge 2$, all (finite) k-transitive

permutation groups are known up to permutation isomorphism, see [2, 7.3 and 7.4] for example. (Recall that two permutation groups $G \leq \text{Sym}(V)$ and $H \leq \text{Sym}(U)$ are *permutation isomorphic* if there is a bijection $\lambda : V \to U$ and a group isomorphism $\phi : G \to H$ satisfying $\lambda(v)^{\phi} = \lambda(v^{\phi})$ for all $v \in V$.) For $4 \leq 2k \leq |V|$, Kantor [12] determined all k-homogeneous but not k-transitive permutation groups, refer to [1, p.290]. These classification results will be used in the following sections.

3. Global analysing

Let $\mathcal{F} = \{E_1, E_2, \dots, E_s\}$ be an edge-transitive homogeneous (k, s)-factorisation on V of order n and index $s \geq 2$. Then $|E_i| = \frac{\binom{n}{k}}{s} < \binom{n}{k}$ for $1 \leq i \leq s$. For $v \in V$, set $E_i(v) = \{e \in E_i \mid v \in e\}$. Noting that $\bigcap_{i=1}^s \operatorname{Aut}(\mathcal{F}, E_i)$ is transitive on V, the size $|E_i(v)|$ is independent of the choice of v. We have $n|E_i(v)| = |E_i|k = k\frac{\binom{n}{k}}{s} < k\binom{n}{k}$. It follows that $2 \leq k \leq n-2$. For each $i \leq s$, set $E_i^{op} = \{V \setminus e \mid e \in E_i\}$. Let $\mathcal{F}^{op} = \{E_1^{op}, E_2^{op}, \dots, E_s^{op}\}$. The following lemma is trivial, which allows us to assume that $2k \leq n$.

Lemma 3.1. Aut $\mathcal{F} = \operatorname{Aut}\mathcal{F}^{op}$, $\operatorname{Aut}(\mathcal{F}, E_i) = \operatorname{Aut}(\mathcal{F}^{op}, E_i^{op})$, and \mathcal{F}^{op} is an edge-transitive homogeneous (n - k, s)-factorisation of order n.

For the rest of this section, we assume that $4 \leq 2k \leq n$ and $M \leq G \leq Aut\mathcal{F}$ such that

(a) M is normal in G and lies in the kernel of G acting on $\{E_1, E_2, \ldots, E_s\}$; and

(b) M is transitive but not k-homogeneous on V, and G is k-homogeneous on V.

Note that such G and M always exist, for example, $G = \operatorname{Aut}\mathcal{F}$ and $M = \bigcap_{i=1}^{s} \operatorname{Aut}(\mathcal{F}, E_i)$.

Claim 1. $\mathcal{F} = \{E_1, E_2, \dots, E_s\}$ is a *G*-invariant partition of $V^{\{k\}}$, and $MG_e \leq G_{E_i}$ for $e \in E_i \in \mathcal{F}$.

Proof. By the choice of G, we know that G is transitive on $V^{\{k\}}$ and preserves the factorisation $\mathcal{F} = \{E_1, E_2, \ldots, E_s\}$. In particular, each $E_i \in \mathcal{F}$ is a block of G acting on $V^{\{k\}}$, and so $G_e \leq G_{E_i}$ for $e \in E_i$. Since M fixes each E_i set-wise, the claim follows. \Box

Claim 2. All *M*-orbits on $V^{\{k\}}$ have the same length $|M: M_e|$ for any given $e \in V^{\{k\}}$, and the number of *M*-orbits on each E_i is equal to $t := \frac{|G_{E_i}:M|}{|G_e:M_e|} = \frac{\binom{n}{k}}{s|M:M_e|}$.

Proof. Since M is normal in G and G is transitive on $V^{\{k\}}$, all M-orbits on $V^{\{k\}}$ have the same length, see Lemma 2.2. Let t be the number of M-orbits on E_i . Note that every M-orbit on $V^{\{k\}}$ has length $|M:M_e|$, where $e \in V^{\{k\}}$. Then $t = \frac{|E_i|}{|M:M_e|}$. Without loss of generality, we let $e \in E_i$. Then $|E_i| = |G_{E_i}:G_e|$, and so $t = \frac{|G_{E_i}:G_e|}{|M:M_e|} = \frac{|G_{E_i}:M|}{|G_e|} = \frac{|G_{E_i}:M|}{|G_e:M_e|}$. On the other hand, we have $|E_i| = \frac{|V^{\{k\}}|}{s} = \frac{\binom{n}{s}}{s}$. Then the claim follows.

For each $i \in \{1, 2, ..., s\}$, denote by $\mathcal{E}_i = \{E_i^j \mid 1 \le j \le t\}$ the set of *M*-orbits on E_i . Set $\mathcal{E} = \bigcup_{i=1}^s \mathcal{E}_i$. Then we have the next two claims.

Claim 3. \mathcal{E} is a *G*-invariant refinement of \mathcal{F} and an edge-transitive homogeneous (k, st)-factorisation of order n, and $\{\mathcal{E}_i \mid 1 \leq i \leq s\}$ is a *G*-invariant partition of \mathcal{E} ; in particular, if *G* induces a primitive permutation group $G^{\mathcal{E}}$ on \mathcal{E} then $\mathcal{F} = \mathcal{E}$.

Proof. Note that \mathcal{E} consists of all M-orbits on $V^{\{k\}}$, and $|\mathcal{E}| = st$. Since M is normal in G, we know that \mathcal{E} is a G-invariant partition of $V^{\{k\}}$, see Lemma 2.2. Then the first part of this claim follows. Considering the transitive action induced by G on \mathcal{E} , each \mathcal{E}_i is in fact an orbit of G_{E_i} , and $G_{\mathcal{E}_i} = G_{E_i}$. For $E \in \mathcal{E}_i$, recalling that E_i is a block of G acting on $V^{\{k\}}$, we have $G_E \leq G_{E_i}$. Then \mathcal{E}_i is a block of G acting on \mathcal{E} , see Lemma 2.1. Thus $\{\mathcal{E}_i \mid 1 \leq i \leq s\}$ is a G-invariant partition of \mathcal{E} . If G acts primitively on \mathcal{E} then \mathcal{E}_i has size 1, and so $\mathcal{E}_i = \{E_i\}$, yielding $\mathcal{F} = \mathcal{E}$. Then our claim holds.

Claim 4. $G_E = MG_e$ for $e \in E \in \mathcal{E}$ and, if $E \subseteq E_i$ then $E_i = \bigcup_{q \in G_E} E^q$.

Proof. Let $E \in \mathcal{E}$. Then E is a block of G acting on $V^{\{k\}}$. Thus $G_e \leq G_E$ for $e \in E$, and G_E is transitive on E. Since M is transitive on E, we have $G_E = MG_e$. Then this claim follows from Claim 3 and Lemma 2.3.

Assume further that $k \geq 3$. Since G is k-homogeneous, G is (k-1)-transitive on V, refer to [4, Theorem 9.4B]. Then G has a unique minimal normal subgroup (see [4, Theorem 7.2B] for example), which is either a finite nonabelian simple group or isomorphic to \mathbb{Z}_p^d for some prime p and integer $d \geq 1$. Clearly, this minimal normal subgroup is contained in M. Recalling that M is not k-homogeneous on V, the next lemma follows from [12].

Lemma 3.2. Let $6 \le 2k \le n$, and let G and M be as above. If G is not k-transitive on V then, up to permutation isomorphism, one of the following occurs:

- (I) k = 3, n = 8, and the pair (G, M) is $(AGL(1, 8), \mathbb{Z}_2^3)$ or $(A\Gamma L(1, 8), \mathbb{Z}_2^3)$;
- (II) k = 3, n = 32, and the pair (G, M) is $(A\Gamma L(1, 32), \mathbb{Z}_2^5)$ or $(A\Gamma L(1, 32), \mathbb{Z}_2^5:\mathbb{Z}_{31})$;
- (III) k = 4, n = 32, M = PSL(2, 32), and $G = P\Gamma L(2, 32)$ is 4-homogeneous on V.

We next determine the k-transitive candidates of G. In this case, G is a 3-transitive permutation group of degree n. All 3-transitive finite permutation groups are explicitly known, refer to [2, 7.3 and 7.4]. Then we have the following lemma.

Lemma 3.3. Assume that G is k-transitive on V. Then k = 3 and, up to permutation isomorphism, one of the following occurs:

- (IV) G = AGL(d, 2) with $d \ge 3$, $M = \mathbb{Z}_2^d$ and $n = 2^d$;
- (V) $G = \mathbb{Z}_2^4: A_7 < AGL(4, 2), M = \mathbb{Z}_2^4 \text{ and } n = 16;$
- (VI) $PSL(2,q) \leq M \leq P\SigmaL(2,q)$ and $PGL(2,q) \leq G \leq P\GammaL(2,q)$ with $5 \leq q = n-1 \equiv 1 \pmod{4}$.

Proof. Let N be the minimal normal subgroup of G. Assume first that $N \cong \mathbb{Z}_p^d$ for some prime p and integer $d \ge 1$. Then $6 \le 2k \le n = |V| = p^d$. By [2, 7.3], one of parts (IV) and (V) occurs.

Assume that N is nonabelian simple. Checking Table 7.4 given in [2, 7.4], we know that either k = 3 and N = PSL(2, q) with odd q, or N is k-transitive. Recall $N \leq M$ and M is not a k-homogeneous permutation group on V. We have k = 3 and N = PSL(2, q) with odd q = n - 1. Moveover, [12, Theorem 1] yields that $q \equiv 1 \pmod{4}$. Then part (VI) follows.

Based on the above argument, we can formulate a method to construct up to isomorphism all possible edge-transitive homogeneous (k, s)-factorisations of order n, where $6 \le 2k \le n$ and $s \ge 2$.

Construction 3.4. Let G be a permutation group on V described as in one of (I)-(VI), and let M be the minimal normal subgroup of G. Take a k-subset e of V and $v \in e$. Then $G = MG_v$. Take a subgroup H of G_v such that $G_e \leq MH \neq G$. Let $E_1 = e^{MH}$, the MH-orbit containing e. Then E_1 consists of $|MH : (MG_e)|$ orbits of M on $V^{\{k\}}$. It is easily shown that $\mathcal{F} := \{E_1^g \mid g \in G\}$ is an edge-transitive homogeneous (k, s)factorisations on V, where s = |G : (MH)|. Write $G = \bigcup_{i=1}^s MHg_i$ with $g_i \in G_v$ and $g_1 = 1$, and set $E_i = E_1^{g_i}$ for $1 \leq i \leq s$. It is easily shown that $\mathcal{F} = \{E_i \mid 1 \leq i \leq s\}$.

4. Examples

In this section we construct some edge-transitive homogeneous (k, s)-factorisations of order n, where $s \ge 2$ and $6 \le 2k \le n$.

For a prime power q, denote by \mathbb{F}_q the finite field of order q, and \mathbb{F}_q^* the multiplicative group of \mathbb{F}_q . Then \mathbb{F}_q^* is cyclic and of order q-1. For an integer $d \geq 1$, denote by \mathbb{F}_q^d the d-dimensional vector space over \mathbb{F}_q . For each vector $\mathbf{u} \in \mathbb{F}_q^d$, denote by $\tau_{\mathbf{u}}$ the translation $\mathbb{F}_q^d \to \mathbb{F}_q^d$, $\mathbf{v} \mapsto \mathbf{v} + \mathbf{u}$. Set $T(d,q) = \{\tau_{\mathbf{u}} \mid \mathbf{u} \in \mathbb{F}_q^d\}$. Then T(d,q) is normal in $A\Gamma L(d,q)$, AGL(d,q) = T(d,q):GL(d,q) and $A\Gamma L(d,q) = T(d,q):\Gamma L(d,q)$. Write $q = p^f$ for some prime p. Let σ be the Frobenius automorphism of the filed \mathbb{F}_q , that is, $\sigma : \mathbb{F}_q \to \mathbb{F}_q$, $\xi \mapsto \xi^p$. Then $\Gamma L(d,q) = GL(d,q):\langle \sigma \rangle$ and $A\Gamma L(d,q) = AGL(d,q):\langle \sigma \rangle$, where σ acts componentwise on the vectors in \mathbb{F}_q^d .

4.1. Factorisations arising from the affine geometry AG(d, 2). Let $d \ge 3$ be an integer. Note that each 3-subset of \mathbb{F}_2^d is contained in a unique 2-dimensional affine subspace $\mathbf{v} + U$, where $\mathbf{v} \in \mathbb{F}_2^d$ and U is a 2-dimensional subspace of \mathbb{F}_2^d . This allows us to give a partition of $(\mathbb{F}_2^d)^{\{3\}}$ whose parts are indexed by the 2-dimensional subspaces of \mathbb{F}_2^d .

Example 4.1. For a 2-dimensional subspace U of \mathbb{F}_2^d , let $E_U = \bigcup_{\mathbf{v} \in \mathbb{F}_2^d} (\mathbf{v} + U)^{\{3\}}$. Then $|E_U| = 2^d$, and $\{E_U \mid U \text{ a 2-dimensional subspace of } \mathbb{F}_2^d\}$ is a partition of $(\mathbb{F}_2^d)^{\{3\}}$. Clearly, the number of parts of this partition is equal to the number of 2-dimensional subspaces of \mathbb{F}_2^d , which is $\frac{(2^d-1)(2^{d-1}-1)}{3}$. Thus we have a $(3, \frac{(2^d-1)(2^{d-1}-1)}{3})$ -factorisation of order 2^d , namely,

$$\mathcal{F}_{(2^d;3,\frac{(2^d-1)(2^{d-1}-1)}{2})} = \{E_U \mid U \text{ a 2-dimensional subspace of } \mathbb{F}_2^d\}.$$

It is easily shown that, for each 2-dimensional subspace U of \mathbb{F}_2^d , the set E_U is an orbit of T(d, 2) on $(\mathbb{F}_2^d)^{\{3\}}$; in fact, T(d, 2) acts regularly on E_U . Since T(d, 2) is normal in $\operatorname{AGL}(d, 2)$ and $\operatorname{AGL}(d, 2)$ is transitive on $(\mathbb{F}_2^d)^{\{3\}}$, we know that $\mathcal{F}_{(2^d;3, \frac{(2^d-1)(2^{d-1}-1)}{3})}$ is an edge-transitive homogeneous $(3, \frac{(2^d-1)(2^{d-1}-1)}{3})$ -factorisation of order 2^d . In particular, $\operatorname{AGL}(d, 2) \leq \operatorname{Aut}\mathcal{F}_{(2^d;3, \frac{(2^d-1)(2^{d-1}-1)}{3})}$.

By Lemmas 3.2 and 3.3, we conclude that

Aut
$$\mathcal{F}_{(2^d;3,\frac{(2^d-1)(2^{d-1}-1)}{3})} = \mathrm{AGL}(d,2).$$

Lemma 4.2. Let \mathcal{E} be the set of T(d, 2)-orbits on $(\mathbb{F}_2^d)^{\{3\}}$. Then AGL(d, 2) induces a primitive permutation group on \mathcal{E} .

Proof. Let $G = \operatorname{AGL}(d, 2)$, M = T(d, 2) and $H = \operatorname{GL}(d, 2)$. Then G = M:H, and M lies in the kernel $G_{(\mathcal{E})}$ of G acting on the G-invariant partition \mathcal{E} . Since $d \geq 3$, we know that $H \cong \operatorname{PSL}(d, q)$ is simple. It follows that $G_{(\mathcal{E})} = M$. Thus $G^{\mathcal{E}}$ is permutation isomorphic to $H^{\mathcal{E}}$, and $H^{\mathcal{E}} \cong HM/M \cong H$. Take $E \in \mathcal{E}$. Then there is a 2-dimensional subspace U of \mathbb{F}_2^d such that

$$E = \bigcup_{\mathbf{v} \in \mathbb{F}_2^d} (\mathbf{v} + U)^{\{3\}}.$$

Then $H_U \leq H_E$. It is well-known that $H = \operatorname{GL}(d, 2)$ acts primitively on the set of 2-dimensional subspaces of \mathbb{F}_2^d . Then H_U is a maximal subgroup of H by Lemma 2.1. Since M is intransitive on $(\mathbb{F}_2^d)^{\{3\}}$, we have $G \neq MG_e = G_E$, where $e \in E$. Noting that $G_E = G_E \cap (MH) = M(G_E \cap H) = MH_E$, we have $H_E \neq H$. Thus $H_E = H_U$ is maximal in H. Then $H^{\mathcal{E}}$ is primitive by Lemma 2.1, and hence $G^{\mathcal{E}}$ is primitive. \Box

Noting that \mathbb{F}_{2^d} is a *d*-dimensional vector space over the field \mathbb{F}_2 of order 2, we may construct $\mathcal{F}_{(8;3,7)}$ and $\mathcal{F}_{(32;3,155)}$ alternatively as in the following two examples.

Example 4.3. Let $V = \mathbb{F}_8$, and set $\mathbb{F}_8^* = \langle \eta \rangle$. Then $V = \{0, \eta^i \mid 1 \le i \le 7\}$. It is easily shown that AGL(1,8) is regular on $V^{\{3\}}$. For $1 \le i \le 7$, take $e_i = \{0, \eta^{i-1}, \eta^i\} \in V^{\{3\}}$, and let $E_i = \{\{\xi, \eta^{i-1} + \xi, \eta^i + \xi\} \mid \xi \in \mathbb{F}_8\}$. Then $E_i = e_i^{T(1,8)}$, and $\{E_i \mid 1 \le i \le 7\}$ is a partition of $V^{\{3\}}$. Note that, identifying \mathbb{F}_8 with \mathbb{F}_2^3 , the group AGL(1,8) is permutation isomorphic to a 3-homogeneous subgroup of AGL(3,2) with T(1,8) corresponding to T(3,2). It follows that $\{E_i \mid 1 \le i \le 7\}$ is isomorphic to $\mathcal{F}_{(8;3,7)}$.

Example 4.4. Let $V = \mathbb{F}_{32}$, and set $\mathbb{F}_{32}^* = \langle \eta \rangle$. Then $V = \{0, \eta^i \mid 1 \leq i \leq 31\}$. For $1 \leq i \leq 31$ and $1 \leq j \leq 5$, take $e_j^i = \{0, \eta^{(i-1)2^{j-1}}, \eta^{i2^{j-1}}\} \in V^{\{3\}}$, and let $E_j^i = \{\{\xi, \eta^{(i-1)2^{j-1}} + \xi, \eta^{i2^{j-1}} + \xi\} \mid \xi \in \mathbb{F}_{32}\}$. Set

$$\mathcal{F} = \{ E_j^i \mid 1 \le i \le 31, \ 1 \le j \le 5 \}.$$

It is easy to check that each E_j^i is a T(1, 32)-orbit containing e_j^i , $\operatorname{Aut} \mathcal{F} \geq A\Gamma L(1, 32)$ and \mathcal{F} is an edge-transitive homogeneous (3, 155)-factorisation of order 32. Note that, identifying \mathbb{F}_{32} with \mathbb{F}_2^5 , the group $A\Gamma L(1, 32)$ is permutation isomorphic to a 3-homogeneous subgroup of AGL(5, 2) with T(1, 32) corresponding to T(5, 2). It follows that $\mathcal{F} \cong \mathcal{F}_{(32;3,155)}$.

In the following example, we construct two edge-transitive homogeneous factorisations of order 32 from $\mathcal{F}_{(32;3,155)}$.

Example 4.5. Let V and E_i^i be as Example 4.4.

(1) For $1 \leq j \leq 5$, let $E_j = \bigcup_{i=1}^{31} E_j^i$. Then each E_j is one of the AGL(1,32)-orbits on $V^{\{3\}}$, and A Γ L(1,32) is regular on $V^{\{3\}}$. Set

$$\mathcal{F}_{(32;3,5)} = \{ E_j \mid 1 \le j \le 5 \}.$$

Then $\mathcal{F}_{(32;3,5)}$ is an edge-transitive homogeneous (3, 5)-factorisation of order 32.

(2) For $1 \le i \le 31$, let $E^i = \bigcup_{j=1}^5 E_j^i$. Set

$$\mathcal{F}_{(32;3,31)} = \{ E^i \mid 1 \le i \le 31 \}.$$

It is easy to see that E^1 is a $(T(1, 32):\langle \sigma \rangle)$ -orbit, where σ is the Frobenius automorphism of \mathbb{F}_{32} . By Construction 3.4, we conclude that $\mathcal{F}_{(32;3,31)}$ is an edge-transitive homogeneous (3, 31)-factorisation of order 32.

Lemma 4.6. $\operatorname{Aut}\mathcal{F}_{(32;3,5)} = \operatorname{Aut}\mathcal{F}_{(32;3,31)} = \operatorname{A}\Gamma L(1,32).$

Proof. Let $s \in \{5, 31\}$. Then $\operatorname{Aut}\mathcal{F}_{(32;3,s)} \geq \operatorname{A\GammaL}(1, 32)$. Suppose that $\operatorname{Aut}\mathcal{F}_{(32;3,s)} \neq \operatorname{A\GammaL}(1, 32)$. Then, by Lemmas 3.2 and 3.3, we conclude that $\operatorname{Aut}\mathcal{F}_{(32;3,s)}$ is permutation isomorphic to $\operatorname{AGL}(5, 2)$. Thus $\mathcal{F}_{(32;3,s)}$ is isomorphic to an edge-transitive homogeneous (3, s)-factorisation \mathcal{F}' (of order 32) arising from the action of $\operatorname{AGL}(5, 2)$ on the vector space \mathbb{F}_2^5 . Note that $\operatorname{AGL}(5, 2)$ has a unique proper normal subgroup, which is T(5, 2). Let \mathcal{E} be the set of T(5, 2)-orbits on $(\mathbb{F}_2^5)^{\{3\}}$. Then $\mathcal{E} = \mathcal{F}_{(32;3,155)}$, see Example 4.1. By Claim 3 and Lemma 4.2, we get $\mathcal{F}' = \mathcal{E} = \mathcal{F}_{(32;3,155)}$. Thus $\mathcal{F}_{(32;3,s)} \cong \mathcal{F}_{(32;3,155)}$, yielding s = 155, a contradiction. This completes the proof. \Box

4.2. Factorisations arising from the projective line PG(1,q). Let $q = p^f$, where p is a prime and f is a positive integer. For a nonzero vector $(\alpha, \beta) \in \mathbb{F}_q^2$, denote by $[\alpha, \beta]$ the 1-dimensional subspace spanned by (α, β) . Then the projective line PG(1,q) over the field \mathbb{F}_q can be identified with $\mathbb{F}_q \cup \{\infty\}$ by

$$[\xi, 1] \mapsto \xi, [1, 0] \mapsto \infty, \ \xi \in \mathbb{F}_q.$$

The group PGL(2, q) then consists of all fractional linear mappings of the form

$$t_{\alpha\beta\gamma\delta}: \xi \mapsto \frac{lpha\xi + \beta}{\gamma\xi + \delta}, \ \alpha, \beta, \gamma, \delta \in \mathbb{F}_q \text{ with } \alpha\delta - \beta\gamma \neq 0$$

acting sharply 3-transitively on $\mathbb{F}_q \cup \{\infty\}$, where $\frac{\alpha \infty + \beta}{\gamma \infty + \delta} = \alpha \gamma^{-1}$ for $\gamma \neq 0$, $\frac{\alpha \infty + \beta}{\delta} = \infty$ for $\alpha \neq 0$ and $\frac{\zeta}{0} = \infty$ for $\zeta \in \mathbb{F}_q^*$. Note that $t_{\alpha\beta\gamma\delta} = t_{\alpha'\beta'\gamma'\delta'}$ if and only if the vector $(\alpha', \beta', \gamma', \delta')$ is a nonzero multiple of $(\alpha, \beta, \gamma, \delta)$. Further,

 $PSL(2,q) = \{ t_{\alpha\beta\gamma\delta} \mid \alpha, \beta, \gamma, \delta \in \mathbb{F}_q \text{ with } \alpha\delta - \beta\gamma \text{ a nonzero square in } \mathbb{F}_q \}.$

The Frobenius automorphism of \mathbb{F}_q induces a permutation on $\mathrm{PG}(1,q)$ by $\sigma: \xi \mapsto \xi^p$ with $\infty^p = \infty$. Then $t^{\sigma}_{\alpha\beta\gamma\delta} = t_{\alpha^p\beta^p\gamma^p\delta^p}$, $\mathrm{P\Gamma L}(2,q) = \mathrm{PGL}(2,q):\langle\sigma\rangle$ and $\mathrm{P\Sigma L}(2,q) = \mathrm{PSL}(2,q):\langle\sigma\rangle$. (See [1, p.192] and [4, p.242] for example.)

Let $e = \{0, 1, \infty\}$. Noting that PGL(2, q) is sharply 3-transitive, we have $PGL(2, q)_e \cong$ S₃. Since $|PGL(2, q) : PSL(2, q)| \le 2$, we know that $|PSL(2, q)_e|$ is divisible by 3. Let $g \in PGL(2, q)_e$ such that $1^g = 1$ and $0^g = \infty$. Then $g = t_{0\beta\beta0}$ for $0 \ne \beta \in \mathbb{F}_q$, and so $g \in PSL(2, q)_e$ if and only if $-\beta^2$ is a square in \mathbb{F}_q , i.e., either q is even or $q \equiv 1 \pmod{4}$. Thus $PGL(2, q)_e = PSL(2, q)_e$ if and only if either q is even or $q \equiv 1 \pmod{4}$.

Example 4.7. Let V = PG(1,q) with $q \equiv 1 \pmod{4}$. Then PSL(2,q) has exactly two orbits on $V^{\{3\}}$, and $PGL(2,q) = PSL(2,q) \cup PSL(2,q)t_{\eta 001}$, where η is a generator of the multiplicative group of \mathbb{F}_q . Set

$$E_1 = \{\{\frac{\beta}{\delta}, \frac{\alpha+\beta}{\gamma+\delta}, \frac{\alpha\eta+\beta}{\gamma\eta+\delta}\} \mid \alpha, \beta, \gamma, \delta \in \mathbb{F}_q, \ \alpha\delta-\beta\gamma = \eta^{2i-1}, \ 1 \le i \le \frac{q-1}{2}\}$$

and

$$E_2 = \{\{\frac{\beta}{\delta}, \frac{\alpha+\beta}{\gamma+\delta}, \frac{\alpha\eta+\beta}{\gamma\eta+\delta}\} \mid \alpha, \beta, \gamma, \delta \in \mathbb{F}_q, \ \alpha\delta-\beta\gamma = \eta^{2i}, \ 1 \le i \le \frac{q-1}{2}\}.$$

Then E_1 and E_2 are distinct PSL(2, q)-orbits, and $E_1^{t_{\eta001}} = E_2$. Moreover, since PSL(2, q) is normal in $P\Gamma L(2, q)$, it is easily shown that $\{E_1, E_2\}$ is $P\Gamma L(2, q)$ -invariant. Thus $\mathcal{F}_{(q+1;3,2)} = \{E_1, E_2\}$ is an edge-transitive homogeneous (3, 2)-factorisation of order q+1. Moreover, by Lemmas 3.2 and 3.3, we conclude that $Aut\mathcal{F}_{(q+1;3,2)} = P\Gamma L(2, q)$.

Remark 4.8. The factors of $\mathcal{F}_{(q+1;3,2)}$ constructed in Example 4.7 are complementary 3hypergraphs admitting a 2-transitive group of automorphisms, which are essentially due to Taylor [26, Example 6.2]. Noting that $\operatorname{Aut}\mathcal{F}_{(q+1;3,2)}$ contains an element interchanging the parts of $\mathcal{F}_{(q+1;3,2)}$, those two 3-hypergraphs are self-complementary. Moreover, by [22, 27], a 3-hypergraph with 2-transitive automorphism group is self-complementary if and only if it is isomorphic to the factors of $\mathcal{F}_{(q+1;3,2)}$.

Example 4.9. Let V = PG(1, 32). Then, by Lemma 3.2, $P\Gamma L(2, 32)$ is 4-homogeneous but not 4-transitive on V (see also [1, 6.18, p.196]). Let $e = \{0, 1, \eta, \eta^2\}$, where η is a generator of the multiplicative group of \mathbb{F}_{32} . Then $P\Gamma L(2, 32)_e$ has order 4. Since $|P\Gamma L(2, 32) : PSL(2, 32)| = 5$, we have $P\Gamma L(2, 32)_e < PSL(2, 32)$. It follows that PSL(2, 32) has 5 obits on $V^{\{4\}}$. Note that $P\Gamma L(2, 32) = \bigcup_{i=1}^5 PSL(2, 32)\sigma^{i-1}$, where σ is the Frobenius automorphism of the field \mathbb{F}_{32} . We may write those five orbits as follows:

$$E_i = \{\{\frac{\beta}{\delta}, \frac{\alpha+\beta}{\gamma+\delta}, \frac{\alpha\eta^{2^{i-1}}+\beta}{\gamma\eta^{2^{i-1}}+\delta}, \frac{\alpha\eta^{2^i}+\beta}{\gamma\eta^{2^i}+\delta}\} \mid \alpha, \beta, \gamma, \delta \in \mathbb{F}_{32}, \alpha\delta - \beta\gamma \neq 0\}, 1 \le i \le 5.$$

Set

$$\mathcal{F}_{(33;4,5)} = \{ E_i \mid 1 \le 5 \le i \}.$$

Then $\mathcal{F}_{(33;4,5)}$ is an edge-transitive homogeneous (4,5)-factorisation of order 33. By Lemmas 3.2 and 3.3, we conclude that $\operatorname{Aut}\mathcal{F}_{(33;4,5)} = \operatorname{P}\Gamma L(2,32)$.

5. The main result

Now we are ready to state and prove our main result.

Theorem 5.1. Let \mathcal{F} be an edge-transitive homogeneous (k, s)-factorisation of order n, where $s \geq 2$ and $6 \leq 2k \leq n$. Then $\mathcal{F} \cong \mathcal{F}_{(n;k,s)}$ with n, k, s and $\operatorname{Aut}\mathcal{F}_{(n;k,s)}$ listed in Table 1 and defined in one of the examples in Section 4.

n	k	s	Aut	Kernel	Condition	Reference
32	3	5	$A\Gamma L(1, 32)$	AGL(1, 32)		Example $4.5(1)$
32	3	31	$A\Gamma L(1, 32)$	T(1, 32)		Example $4.5(2)$
33	4	5	$P\Gamma L(2, 32)$	PSL(2, 32)		Example 4.9
2^d	3	$\frac{(2^d-1)(2^{d-1}-1)}{3}$	$\operatorname{AGL}(d,2)$	T(d,2)	$d \ge 3$	Example 4.1
q+1	3	$\overset{3}{2}$	$\Pr(2,q)$	$P\Sigma L(2,q)$	$q\equiv 1({\rm mod}4)$	Example 4.7

TABLE 1. Edge-transitive homogeneous factorisations

Proof. Assume that $\mathcal{F} = \{E_i \mid 1 \leq i \leq s\}$ is an edge-transitive homogeneous (k, s)-factorisation on V of order n. Take $M \trianglelefteq G \leq \operatorname{Aut} \mathcal{F}$ such that M fixes every E_i set-wise, G is transitive on $V^{\{k\}}$ and M is transitive on V. Then, up to isomorphism of factorisations,

we may let G be one of the k-homogeneous permutation groups listed in Lemmas 3.2 and 3.3. Recall that G has a unique minimal normal subgroup, which is transitive on V. We choose M to be the minimal normal subgroup of G. Let \mathcal{E} be the set of M-orbits on $V^{\{k\}}$. Then \mathcal{E} is a refinement of \mathcal{F} . We next deal with all possible candidates of G one by one.

Let G be as in (I) of Lemma 3.2. Then k = 3, and we may choose $V = \mathbb{F}_8$ and M = T(1,8). Recall that every E_i is the union of some *M*-orbits on $V^{\{3\}}$. Since $|V^{\{3\}}| = 56$ and G contains a regular subgroup AGL(1,8) (acting on $V^{\{3\}}$), the only possibility is that every E_i has size 8 and is an *M*-orbit. Then, identifying \mathbb{F}_8 with \mathbb{F}_2^3 , we have $\mathcal{F} \cong \mathcal{F}_{(8;3,7)}$, see Example 4.3. Thus line 4 of Table 1 occurs.

Let $G = A\Gamma L(1, 32)$ be as in (II) of Lemma 3.2. Then k = 3, and we may choose $V = \mathbb{F}_{32}$ and M = T(1, 32). If \mathcal{F} is the set of M-orbits, that is, $\mathcal{F} = \mathcal{E}$, then $\mathcal{F} \cong \mathcal{F}_{(32;3,155)}$ by a similar argument as above (see also Example 4.4), and so line 4 of Table 1 occurs. Thus we assume that every $E \in \mathcal{F}$ consists of more than one M-orbits. Then $MG_e \leq G_E \neq MG_e$ for $e \in E$, see Claims 1-4. Since $32 \cdot 31 \cdot 5 = |A\Gamma L(1, 32)| = |V^{\{3\}}|$, we know that G is regular on $V^{\{3\}}$, and so $G_e = 1$. Checking the subgroups of $G = A\Gamma L(1, 32)$, we conclude that either $G_E = AGL(1, 32)$ or G_E is conjugate to T(1, 32): $\langle \sigma \rangle$, where σ is the Frobenius automorphism of \mathbb{F}_{32} . Thus \mathcal{F} is isomorphic to one of $\mathcal{F}_{(32;3,5)}$ and $\mathcal{F}_{(32;3,31)}$, which are constructed in Example 4.5. By Lemma 4.6, one of the first two lines of Table 1 follows.

Let $G = P\Gamma L(2, 32)$ be as in (III) of Lemma 3.2. Then k = 4, and we may choose $V = PG(1, 32) = \mathbb{F}_{32} \cup \{\infty\}$ and M = PSL(2, 32). By the argument given in Example 4.9, we know that M has 5-orbits on $V^{\{4\}}$. In particular, G acts primitively on the set \mathcal{E} of M-orbits. Then, by Claim 3, we have $\mathcal{F} = \mathcal{E}$. Then \mathcal{F} is (isomorphic to) the factorisation $\mathcal{F}_{(33;4,5)}$ given in Example 4.9, and hence line 3 of Table 1 follows.

Let $G = \operatorname{AGL}(d, 2)$ be as in (IV) of Lemma 3.3. Then k = 3, $V = \mathbb{F}_2^d$, M = T(d, 2)and $\mathcal{E} = \mathcal{F}_{(2^d;3, \frac{(2^d-1)(2^{d-1}-1)}{3})}$. By Lemma 4.2, $G^{\mathcal{E}}$ is primitive. Thus $\mathcal{F} = \mathcal{E}$ by Claim 3, and so line 4 of Table 1 follows.

Let $G = \mathbb{Z}_2^4$: A_7 be as in (V) of Lemma 3.3. Then $\mathcal{E} = \mathcal{F}_{(16;3,35)}$. Arguing similarly as in the proof of Lemma 4.2, $G^{\mathcal{E}}$ is permutation isomorphic to a transitive subgroup A_7 of GL(4, 2) acting on the 35 2-dimensional subspaces of \mathbb{F}_2^4 . Checking the subgroups of A_7 in the Atlas [3], we know that every subgroup of A_7 with index 35 is maximal. It follows from Lemma 2.1 that $G^{\mathcal{E}}$ is primitive. Then $\mathcal{F} = \mathcal{E}$, and so line 4 of Table 1 occurs.

Finally, if G is described as in (VI) of Lemma 3.3, then line 5 of Table 1 follows from the argument in Example 4.7. $\hfill \Box$

A k-hypergraph is said to be symmetric if it is both vertex-transitive and edgetransitive. Note that there is a bijection $(V, E) \mapsto (V, E^{op})$ between self-complementary k-hypergraphs and self-complementary (n - k)-hypergraphs of order n. The next result is a direct consequence of Theorem 5.1.

Corollary 5.2. Let k and n be positive integers with $6 \le 2k \le n$. Then there exists a symmetric self-complementary k-hypergraph of order n if and only if k = 3, $n - 1 \equiv 1 \pmod{4}$ and n - 1 is a power of some odd prime.

Let \mathcal{H} be an edge-transitive self-complementary 3-hypergraph of order n. Then $n \geq 5$. Noting that the 5-cycle is a symmetric self-complementary 2-hypergraph, the next corollary follows.

Corollary 5.3. There exists a symmetric self-complementary 3-hypergraph of order $n \ge 5$ if and only if either n = 5, or $n - 1 \equiv 1 \pmod{4}$ and n - 1 is a prime power.

We end this paper by the following remark on Theorem 5.1.

Remark 5.4. Let n, k and t be positive integers with $n > k \ge t$.

(1) A k-hypergraph $\mathcal{H} = (V, E)$ on n vertices is t-subset regular if there is a constant $\lambda \geq 1$ such that each t-subset of V is contained in exactly λ edges. Let \mathcal{F} be one of the factorisations in Theorem 5.1. Then the factors of \mathcal{F} are t-subset regular k-hypergraphs with t and λ listed in Table 2. The reader is referred to [10, 13, 23, 24] for more examples and results on t-subset regular hypergraphs.

n	k	s, N	t	λ	Condition
32	3	5	2	6	
32	3	31	1	15	
33	4	5	3	6	
2^d	3	$\frac{(2^d-1)(2^{d-1}-1)}{3}$	1	3	$d \ge 3$
q+1	3	$\tilde{2}$	2	$\frac{q-1}{2}$	$q \equiv 1 (mod\ 4)$

TABLE 2. The parameters t and λ .

(2) Recall that a large set of $t \cdot (n, k, \lambda)$ designs of size N, denoted by $\mathrm{LS}[N](t, k, n)$, is a partition of the set of all k-subsets of an n-set into block sets of N disjoint $t \cdot (n, k, \lambda)$ designs, where $N\lambda = \binom{n-t}{k-t}$. Let \mathcal{F} be one of the factorisations in Theorem 5.1. Note that a t-subset regular k-hypergraph is a $t \cdot (n, k, \lambda)$ design, where λ is number of edges containing a given t-subset. Then, using terminology from design theory, \mathcal{F} is an $\mathrm{LS}[N](t, k, n)$ in which all designs are flag-transitive and admit a common pointtransitive group, where N, t, k and n are listed in Table 2.

References

- T. Beth, D. Jungnickel and H. Lenz, *Design Theorey I* (second edition), Cambridge University Press, 1999.
- [2] P. J. Cameron, Permutation Groups, Cambridge University Press, 1999.
- [3] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of Finite Groups, Clarendon Press, Oxford, 1985.
- [4] J. D. Dixon and B. Mortimer, *Permutation Groups*, Springer-Verlag, New York, 1996.
- [5] M. Giudici, C. H. Li, P. Potočnik and C. E. Praeger, Homogeneous factorisations of graphs and digraphs, *European J. Combin.* 27 (2006), 11-37.
- [6] M. Giudici, C.H. Li, P. Potočnik and C. E. Praeger, Homogeneous factorisations of graph products, Discrete Math. 308 (2008), 3652-3667.
- [7] S. Gosselin, Vertex-transitive self-complementary uniform hypergraphs of prime order, *Discrete Math.* **310** (2010), 671-680.

- [8] S. Gosselin, Generating self-complementary uniform hypergraphs, Discrete Math. 310 (2010), 1366-1372.
- [9] S. Gosselin, Constructing regular self-complementary uniform hypergraphs, J. Combin. Des. 19 (2011), 439-454.
- [10] S. Gosselin, Self-complementary non-uniform hypergraphs, Graphs and Combinatorics 28 (2012), 615-635.
- [11] R. M. Guralnick, C. H. Li, C. E. Praeger and J. Saxl, On orbital partitions and exceptionality of primitive permutation groups, *Trans. Amer. Math. Soc.* 356 (2004), 4857-4872.
- [12] W. M. Kantor, k-homogeneous groups, Math. Z. 124 (1972), 261-265.
- [13] M. Knor and P. Potočnik, A note on 2-subset-regular self-complementary 3-uniform hypergraphs, Ars Combinatoria, 111 (2008), 33-36.
- [14] C. H. Li, On self-complementary vertex-transitive graphs, Comm. Algebra 25 (1997), 3903-3908.
- [15] C. H. Li, T. K. Lim and C. E. Praeger, Homogeneous factorisations of complete graphs with edge-transitive factors, J. Algebr. Comb. 29 (2009), 107-132.
- [16] C. H. Li and C. E. Praeger, Self-complementary vertex-transitive graphs need not be Cayley graphs, Bull. London Math. Soc. 33 (2001), 653-661.
- [17] C. H. Li and C. E. Praeger, On partitioning the orbitals of a transitive permutation group, Trans. Amer. Math. Soc. 355 (2003), 637-653.
- [18] C. H. Li, G. Rao and S. J. Song, On finite self-complementary metacirculants, J. Algebr. Comb. 40 (2014), 1135-1144.
- [19] R. Mathon, On selfcomplementary strongly regular graphs, *Discrete Math.* 69 (1988), 263-281.
- [20] M. Muzychuk, On Sylow subgraphs of vertex-transitive self-complementary graphs, Bull. London Math. Soc. 31 (1999), 531-533.
- [21] W. Peisert, All self-complementary symmetric graphs, J. Algebra 240 (2001), 209-229.
- [22] P. Potočnik and M. Šajna, Self-complementary two-graphs and almost self-complementary double covers, *European J. Combin.* 28 (2007), 1561-1574.
- [23] P. Potočnik and M. Sajna, Vertex-transitive self-complementary uniform hypergraphs, European J. Combin. 30 (2009), 327-337.
- [24] P. Potočnik and M. Šajna, The existence of regular self-complementary 3-uniform hypergraphs, Discrete Math. 309 (2009), 950-954.
- [25] S. B. Rao, On regular and strongly regular selfcomplementary graphs, Discrete Math. 54 (1983), 73-82.
- [26] D. E. Taylor, Regular 2-graphs, Proc. London Math. Soc. 35 (3) (1977), 257-274.
- [27] D. E. Taylor, Two-graphs and doubly transitive groups, J. Combin. Theory Ser. A 61 (1992), 113-122.

HUYE CHEN, CENTER FOR COMBINATORICS, LPMC-TJKLC, NANKAI UNIVERSITY, TIANJIN 300071, CHINA

E-mail address: 1120140003@mail.nankai.edu.cn

ZAIPING LU, CENTER FOR COMBINATORICS, LPMC-TJKLC, NANKAI UNIVERSITY, TIANJIN 300071, CHINA

E-mail address: lu@nankai.edu.cn