EDGE-TRANSITIVE HOMOGENEOUS FACTORISATIONS OF COMPLETE UNIFORM HYPERGRAPHS

HU YE CHEN AND ZAI PING LU

Abstract

For a finite set V and a positive integer k with $k \leq n:=|V|$, letting $V^{\{k\}}$ be the set of all k-subsets of V, the pair $\mathcal{K}_{n}^{k}:=\left(V, V^{\{k\}}\right)$ is called the complete k-hypergraph on V, while each k-subset of V is called an edge. A factorisation of the complete k-hypergraph \mathcal{K}_{n}^{k} of index $s \geq 2$, simply a (k, s)-factorisation of order n, is a partition $\left\{E_{1}, E_{2}, \ldots, E_{s}\right\}$ of the edges into s disjoint subsets such that each k-hypergraph $\left(V, E_{i}\right)$, called a factor, is a spanning subhypergraph of \mathcal{K}_{n}^{k}. Such a factorisation is homogeneous if there exist two transitive subgroups G and M of the symmetric group of degree n such that G induces a transitive action on the set $\left\{E_{1}, E_{2}, \ldots, E_{s}\right\}$ and M lies in the kernel of this action.

In this paper, we give a classification of homogeneous factorisations of \mathcal{K}_{n}^{k} which admit a group acting transitively on the edges of \mathcal{K}_{n}^{k}. It is shown that, for $6 \leq 2 k \leq n$ and $s \geq 2$, there exists an edge-transitive homogeneous (k, s)-factorisation of order n if and only if (n, k, s) is one of $(32,3,5),(32,3,31),(33,4,5),\left(2^{d}, 3, \frac{\left(2^{d}-1\right)\left(2^{d-1}-1\right)}{3}\right)$ and $(q+1,3,2)$, where $d \geq 3$ and q is a prime power with $q \equiv 1(\bmod 4)$.

KEYWORDS: uniform hypergraph, self-complementary hypergraph, edge-transitive, homogeneous factorisation, homogeneous permutation group.

1. Introduction

Let V be a finite (nonempty) set. For a positive integer $k \leq|V|$, we use $V^{\{k\}}$ to denote the set of all k-subsets of V. In this paper, a k-uniform hypergraph (or k hypergraph) with vertex set V and edge set E is a pair (V, E), where E is a subset of $V^{\{k\}}$. Note that a 2-hypergraph is a graph. For a set V of size n and a positive integer $k \leq n$, we set $\mathcal{K}_{n}^{k}=\left(V, V^{\{k\}}\right)$, which is called the complete k-hypergraph (on V). Two k-hypergraphs $\mathcal{H}_{1}=\left(V_{1}, E_{1}\right)$ and $\mathcal{H}_{2}=\left(V_{2}, E_{2}\right)$ are said to be isomorphic if there is a bijection ϕ between V_{1} and V_{2} such that ϕ induces a bijection between E_{1} and E_{2}, while this bijection ϕ is called an isomorphism between \mathcal{H}_{1} and \mathcal{H}_{2}.

Let $\mathcal{H}=(V, E)$ be a k-hypergraph. An isomorphism from \mathcal{H} onto itself is called an automorphism of \mathcal{H}. Let Aut \mathcal{H} be the set of all automorphisms of \mathcal{H}. Then Aut \mathcal{H} is a subgroup of the symmetric group $\operatorname{Sym}(V)$. Note that $\operatorname{Sym}(V)$ acts transitively on $V^{\{k\}}$. Thus Aut $\mathcal{H}=\operatorname{Sym}(V)$ if and only if either $\mathcal{H}=\mathcal{K}_{n}^{k}$ or $E=\emptyset$. For a subgroup $G \leq \operatorname{Aut} \mathcal{H}$, the hypergraph \mathcal{H} is said to be G-vertex-transitive or G-edge-transitive if G acts transitively on V or E, respectively. The complement \mathcal{H}^{c} of \mathcal{H} is the k-hypergraph $\left(V, V^{\{k\}} \backslash E\right)$. Note that Aut $\mathcal{H}=$ Aut \mathcal{H}^{c}. If there is an isomorphism $\tau: \mathcal{H} \rightarrow \mathcal{H}^{c}$, then \mathcal{H} is said to be self-complementary, while the isomorphism τ is called an antimorphism of \mathcal{H}.

[^0]Self-complementary uniform hypergraphs have been extensively studied, see $[14,16$, $18,19,20,25]$ and the references therein for self-complementary graphs, and see [7, $8,9,23,24]$ for self-complementary uniform hypergraphs. In particular, Peisert [21] gave a complete classification for symmetric (i.e., vertex-transitive and edge-transitive) self-complementary graphs.

Let $k \geq 1$ and $s \geq 2$ be integers. A factorisation of \mathcal{K}_{n}^{k} of index s is a partition $\left\{E_{1}, E_{2}, \ldots, E_{s}\right\}$ of $V^{\{k\}}$ into s disjoint subsets such that each k-hypergraph $\left(V, E_{i}\right)$ is a spanning subhypergraph, that is, for every $i \in\{1,2, \ldots, s\}$, each $v \in V$ is contained in some $e \in E_{i}$. For convenience, we sometimes call such a factorisation a (k, s)-factorisation (on V) of order n, and call the resulting k-hypergraphs (V, E_{i}) its factors. Two (k, s)-factorisations $\mathcal{F}=\left\{E_{1}, E_{2}, \ldots, E_{s}\right\}$ on V and \mathcal{E} on U are said to be isomorphic, denoted by $\mathcal{F} \cong \mathcal{E}$, if there is a bijection $\phi: V \rightarrow U$ such that ϕ induces a bijection $V^{\{k\}} \rightarrow U^{\{k\}}$ and $\mathcal{E}=\left\{E_{i}^{\phi} \mid 1 \leq i \leq s\right\}$, while this bijection ϕ is called an isomorphism from \mathcal{F} to \mathcal{E}.

Let $\mathcal{F}=\left\{E_{1}, E_{2}, \ldots, E_{s}\right\}$ be a (k, s)-factorisation on V. An isomorphism from \mathcal{F} to itself is called an automorphism of \mathcal{F}. Let Aut \mathcal{F} be the set of all automorphisms of \mathcal{F}. Then it is easily shown that $\operatorname{Aut} \mathcal{F}$ is just the subgroup of $\operatorname{Sym}(V)$ which preserves the partition \mathcal{F}. For each $1 \leq i \leq s$, set $\mathcal{H}_{i}=\left(V, E_{i}\right)$, and let $\operatorname{Aut}\left(\mathcal{F}, E_{i}\right)$ be the subgroup of Aut \mathcal{F} fixing E_{i} set-wise. Then $\operatorname{Aut}\left(\mathcal{F}, E_{i}\right) \leq \operatorname{Aut} \mathcal{H}_{i}$. The factorisation \mathcal{F} is said to be factor-transitive if Aut \mathcal{F} acts transitively on the partition \mathcal{F}, and vertex-transitive (resp. edge-transitive) if further every factor \mathcal{H}_{i} is $\operatorname{Aut}\left(\mathcal{F}, E_{i}\right)$-vertex-transitive (resp. $\operatorname{Aut}\left(\mathcal{F}, E_{i}\right)$-edge-transitive). (Note that, for $k=2$, the edge-transitivity of factorisations considered in [15] is slightly more restricted than that given here.) The factorisation $\mathcal{F}=\left\{E_{1}, E_{2}, \ldots, E_{s}\right\}$ is said to be homogeneous if $\cap_{i=1}^{s} \operatorname{Aut}\left(\mathcal{F}, E_{i}\right)$, the kernel of $\operatorname{Aut}(\mathcal{F})$ acting on $\left\{E_{1}, E_{2}, \ldots, E_{s}\right\}$, is a transitive subgroup of $\operatorname{Sym}(V)$. Note that a vertextransitive ($k, 2$)-factorisation if exists must be homogeneous.

Vertex-transitive factorisations of complete uniform hypergraphs are natural generalizations of vertex-transitive self-complementary uniform hypergraphs. In fact, each factor of a vertex-transitive ($k, 2$)-factorisation is a vertex-transitive self-complementary k-hypergraph. Conversely, every vertex-transitive self-complementary k-hypergraph together with its complement gives a vertex-transitive ($k, 2$)-factorisation.

As generalizations of vertex-transitive self-complementary graphs, homogeneous factorisations of complete graphs (complete 2-hypergraphs) were introduced in [17] (and for graphs in general in [5]). The reader is referred to [5, 6, 11, 17] for the theory of homogeneous factorisations of graphs. In [15], Li, Lim and Praeger classified the homogeneous factorisations of complete graphs with all factors admitting a common edge-transitive group. This motivates us to consider in this paper the problem of classifying edgetransitive homogeneous factorisations of complete k-hypergraphs, where $k \geq 3$.

After collecting some preliminary results on permutation groups in Section 2, a global analysing is given in Section 3 for edge-transitive homogeneous factorisations. In Section 4, some examples of edge-transitive homogeneous factorisations are constructed. Finally, our main result is presented in Section 5.

2. Preliminaries

In this section, we assume that V is a finite nonempty set.
Let G be a permutation group on V, that is, G is a subgroup of the symmetric group $\operatorname{Sym}(V)$. For a subset $B \subseteq V$, denote by G_{B} and $G_{(B)}$ the subgroups of G fixing B set-wise and point-wise, respectively. Then $G_{(B)}$ is normal in G_{B} and is the kernel of G_{B} acting on B. If B is a singleton $\{v\}$ then $G_{B}=G_{(B)}=\left\{g \in G \mid v^{g}=v\right\}$. Write $G_{v}=\left\{g \in G \mid v^{g}=v\right\}$, and call it the stabilizer of v in G. For $v \in V$, the orbit of G containing v is the subset $v^{G}:=\left\{v^{g} \mid g \in G\right\}$. Note that $\left|v^{G}\right|$ equals to the index of G_{v} in G, that is, $\left|v^{G}\right|=\left|G: G_{v}\right|=\frac{|G|}{\left|G_{v}\right|}$. If G has only one orbit then G is said to be transitive. The permutation group G is semiregular if $G_{v}=1$ for all $v \in V$, and regular if further G is transitive on V.

Let G be a transitive permutation group on V. A block of G is a nonempty subset $B \subseteq V$ such that for every $g \in G$, either $B^{g}=B$ or $B^{g} \cap B=\emptyset$. A block is trivial if $|B|=1$ or $B=V$, and nontrivial otherwise. Then G is primitive if it has only trivial blocks. A partition \mathcal{B} of V is G-invariant if $B^{g} \in \mathcal{B}$ for $\forall B \in \mathcal{B}$ and $\forall g \in G$. Clearly, if B is a block then $\left\{B^{g} \mid g \in G\right\}$ is a G-invariant partition. Conversely, for a G-invariant partition \mathcal{B}, every part $B \in \mathcal{B}$ is a block of G, and $\mathcal{B}=\left\{B^{g} \mid g \in G\right\}$. For a block B and $v \in B$, we have $G_{v} \leq G_{B}$. This simple fact leads to a bijection between certain subgroups of G and blocks of G, refer to [4, Theorem 1.5A, p.13].
Lemma 2.1. Let G be a transitive permutation group on V. Then $H \mapsto v^{H}$ defines a bijection between the subgroups containing G_{v} and the blocks containing v. In particular, G is primitive if and only if for $v \in V$, the stabilizer G_{v} is a maximal subgroup of G.

Let G be a transitive permutation group on V, and let \mathcal{B} be a G-invariant partition of V. Then G induces a transitive permutation group $G^{\mathcal{B}}$ on \mathcal{B} with kernel $G_{(\mathcal{B})}=\cap_{B \in \mathcal{B}} G_{B}$, and $G^{\mathcal{B}} \cong G / G_{(\mathcal{B})}$. An extreme case is that $G_{(\mathcal{B})}$ acts transitively on each part of \mathcal{B}. By [4, Theorem 1.6A, p.18], the following lemma holds.

Lemma 2.2. Let G be a transitive permutation group on V, and M a normal subgroup of G. Then all M-orbits on V form a G-invariant partition \mathcal{B}, and $|\mathcal{B}|$ is a divisor of $|G: M|$. In particular, all M-orbits have the same length, and if G is primitive and $M \neq 1$ then M is transitive.

A G-invariant partition \mathcal{B}^{\prime} is a refinement of some G-invariant partition \mathcal{B} if every part of \mathcal{B} is the union of some parts of \mathcal{B}^{\prime}. By Lemma 2.1, the following lemma is easily shown.

Lemma 2.3. Let G be a transitive permutation group on V, and let \mathcal{B} and \mathcal{B}^{\prime} be G invariant partitions. Then \mathcal{B}^{\prime} is a refinement of \mathcal{B} if and only if $B=\cup_{g \in G_{B}}\left(B^{\prime}\right)^{g}$ for some $B \in \mathcal{B}$ and $B^{\prime} \in \mathcal{B}^{\prime}$.

Let k be an integer with $1 \leq k \leq|V|$, and let $V^{(k)}$ be the set of all ordered k-subsets of V. A permutation group G is k-transitive or k-homogeneous on V if G acts transitively on $V^{(k)}$ or $V^{\{k\}}$, respectively. A permutation group G on V is sharply k-transitive if it is regular on $V^{(k)}$.

Clearly, a k-transitive permutation group is k-homogeneous, and a k-homogeneous permutation group is also $(|V|-k)$-homogeneous. It is easy to see that for $k \geq 2$, a k-homogeneous permutation group is primitive. For $k \geq 2$, all (finite) k-transitive
permutation groups are known up to permutation isomorphism, see [2, 7.3 and 7.4] for example. (Recall that two permutation groups $G \leq \operatorname{Sym}(V)$ and $H \leq \operatorname{Sym}(U)$ are permutation isomorphic if there is a bijection $\lambda: V \rightarrow U$ and a group isomorphism $\phi: G \rightarrow H$ satisfying $\lambda(v)^{\phi}=\lambda\left(v^{\phi}\right)$ for all $v \in V$.) For $4 \leq 2 k \leq|V|$, Kantor [12] determined all k-homogeneous but not k-transitive permutation groups, refer to [1, p.290]. These classification results will be used in the following sections.

3. Global analysing

Let $\mathcal{F}=\left\{E_{1}, E_{2}, \ldots, E_{s}\right\}$ be an edge-transitive homogeneous (k, s)-factorisation on V of order n and index $s \geq 2$. Then $\left|E_{i}\right|=\frac{\binom{n}{k}}{s}<\binom{n}{k}$ for $1 \leq i \leq s$. For $v \in V$, set $E_{i}(v)=\left\{e \in E_{i} \mid v \in e\right\}$. Noting that $\cap_{i=1}^{s} \operatorname{Aut}\left(\mathcal{F}, E_{i}\right)$ is transitive on V, the size $\left|E_{i}(v)\right|$ is independent of the choice of v. We have $n\left|E_{i}(v)\right|=\left|E_{i}\right| k=k \frac{\binom{n}{k}}{s}<k\binom{n}{k}$. It follows that $2 \leq k \leq n-2$. For each $i \leq s$, set $E_{i}^{o p}=\left\{V \backslash e \mid e \in E_{i}\right\}$. Let $\mathcal{F}^{o p}=\left\{E_{1}^{o p}, E_{2}^{o p}, \ldots, E_{s}^{o p}\right\}$. The following lemma is trivial, which allows us to assume that $2 k \leq n$.

Lemma 3.1. $\operatorname{Aut} \mathcal{F}=\operatorname{Aut} \mathcal{F}^{o p}, \operatorname{Aut}\left(\mathcal{F}, E_{i}\right)=\operatorname{Aut}\left(\mathcal{F}^{o p}, E_{i}^{o p}\right)$, and $\mathcal{F}^{o p}$ is an edge-transitive homogeneous $(n-k, s)$-factorisation of order n.

For the rest of this section, we assume that $4 \leq 2 k \leq n$ and $M \leq G \leq$ Aut \mathcal{F} such that
(a) M is normal in G and lies in the kernel of G acting on $\left\{E_{1}, E_{2}, \ldots, E_{s}\right\}$; and
(b) M is transitive but not k-homogeneous on V, and G is k-homogeneous on V. Note that such G and M always exist, for example, $G=\operatorname{Aut} \mathcal{F}$ and $M=\cap_{i=1}^{s} \operatorname{Aut}\left(\mathcal{F}, E_{i}\right)$.

Claim 1. $\mathcal{F}=\left\{E_{1}, E_{2}, \ldots, E_{s}\right\}$ is a G-invariant partition of $V^{\{k\}}$, and $M G_{e} \leq G_{E_{i}}$ for $e \in E_{i} \in \mathcal{F}$.
Proof. By the choice of G, we know that G is transitive on $V^{\{k\}}$ and preserves the factorisation $\mathcal{F}=\left\{E_{1}, E_{2}, \ldots, E_{s}\right\}$. In particular, each $E_{i} \in \mathcal{F}$ is a block of G acting on $V^{\{k\}}$, and so $G_{e} \leq G_{E_{i}}$ for $e \in E_{i}$. Since M fixes each E_{i} set-wise, the claim follows.

Claim 2. All M-orbits on $V^{\{k\}}$ have the same length $\left|M: M_{e}\right|$ for any given $e \in V^{\{k\}}$, and the number of M-orbits on each E_{i} is equal to $t:=\frac{\left|G_{E_{i}}: M\right|}{\left|G_{e}: M_{e}\right|}=\frac{\binom{n}{k}}{s\left|M: M_{e}\right|}$.
Proof. Since M is normal in G and G is transitive on $V^{\{k\}}$, all M-orbits on $V^{\{k\}}$ have the same length, see Lemma 2.2. Let t be the number of M-orbits on E_{i}. Note that every M-orbit on $V^{\{k\}}$ has length $\left|M: M_{e}\right|$, where $e \in V^{\{k\}}$. Then $t=\frac{\left|E_{i}\right|}{\left|M: M_{e}\right|}$. Without loss of generality, we let $e \in E_{i}$. Then $\left|E_{i}\right|=\left|G_{E_{i}}: G_{e}\right|$, and so $t=\frac{\left|G_{E_{i}}: G_{e}\right|}{\left|M: M_{e}\right|}=\frac{\left|G_{E_{i}}\right|}{|M|} \frac{\left|M_{e}\right|}{\left|G_{e}\right|}=$ $\frac{\left|G_{E_{i}}: M\right|}{\left|G_{e}: M_{e}\right|}$. On the other hand, we have $\left|E_{i}\right|=\frac{\left|V^{\{k\}}\right|}{s}=\frac{\left.c_{k}^{n}\right)}{s}$. Then the claim follows.

For each $i \in\{1,2, \ldots, s\}$, denote by $\mathcal{E}_{i}=\left\{E_{i}^{j} \mid 1 \leq j \leq t\right\}$ the set of M-orbits on E_{i}. Set $\mathcal{E}=\cup_{i=1}^{s} \mathcal{E}_{i}$. Then we have the next two claims.

Claim 3. \mathcal{E} is a G-invariant refinement of \mathcal{F} and an edge-transitive homogeneous $(k, s t)$-factorisation of order n, and $\left\{\mathcal{E}_{i} \mid 1 \leq i \leq s\right\}$ is a G-invariant partition of \mathcal{E}; in particular, if G induces a primitive permutation group $G^{\mathcal{E}}$ on \mathcal{E} then $\mathcal{F}=\mathcal{E}$.

Proof. Note that \mathcal{E} consists of all M-orbits on $V^{\{k\}}$, and $|\mathcal{E}|=s t$. Since M is normal in G, we know that \mathcal{E} is a G-invariant partition of $V^{\{k\}}$, see Lemma 2.2. Then the first part of this claim follows. Considering the transitive action induced by G on \mathcal{E}, each \mathcal{E}_{i} is in fact an orbit of $G_{E_{i}}$, and $G_{\mathcal{E}_{i}}=G_{E_{i}}$. For $E \in \mathcal{E}_{i}$, recalling that E_{i} is a block of G acting on $V^{\{k\}}$, we have $G_{E} \leq G_{E_{i}}$. Then \mathcal{E}_{i} is a block of G acting on \mathcal{E}, see Lemma 2.1. Thus $\left\{\mathcal{E}_{i} \mid 1 \leq i \leq s\right\}$ is a G-invariant partition of \mathcal{E}. If G acts primitively on \mathcal{E} then \mathcal{E}_{i} has size 1 , and so $\mathcal{E}_{i}=\left\{E_{i}\right\}$, yielding $\mathcal{F}=\mathcal{E}$. Then our claim holds.

Claim 4. $G_{E}=M G_{e}$ for $e \in E \in \mathcal{E}$ and, if $E \subseteq E_{i}$ then $E_{i}=\cup_{g \in G_{E_{i}}} E^{g}$.
Proof. Let $E \in \mathcal{E}$. Then E is a block of G acting on $V^{\{k\}}$. Thus $G_{e} \leq G_{E}$ for $e \in E$, and G_{E} is transitive on E. Since M is transitive on E, we have $G_{E}=M G_{e}$. Then this claim follows from Claim 3 and Lemma 2.3.

Assume further that $k \geq 3$. Since G is k-homogeneous, G is $(k-1)$-transitive on V, refer to [4, Theorem 9.4B]. Then G has a unique minimal normal subgroup (see [4, Theorem 7.2B] for example), which is either a finite nonabelian simple group or isomorphic to \mathbb{Z}_{p}^{d} for some prime p and integer $d \geq 1$. Clearly, this minimal normal subgroup is contained in M. Recalling that M is not k-homogeneous on V, the next lemma follows from [12].

Lemma 3.2. Let $6 \leq 2 k \leq n$, and let G and M be as above. If G is not k-transitive on V then, up to permutation isomorphism, one of the following occurs:
(I) $k=3, n=8$, and the pair (G, M) is $\left(\mathrm{AGL}(1,8), \mathbb{Z}_{2}^{3}\right)$ or $\left(\mathrm{A} \Gamma \mathrm{L}(1,8), \mathbb{Z}_{2}^{3}\right)$;
(II) $k=3, n=32$, and the pair (G, M) is $\left(\mathrm{A} \Gamma(1,32), \mathbb{Z}_{2}^{5}\right)$ or ($\left.\mathrm{A} \Gamma(1,32), \mathbb{Z}_{2}^{5}: \mathbb{Z}_{31}\right)$;
(III) $k=4, n=32, M=\operatorname{PSL}(2,32)$, and $G=\operatorname{P\Gamma L}(2,32)$ is 4-homogeneous on V.

We next determine the k-transitive candidates of G. In this case, G is a 3 -transitive permutation group of degree n. All 3 -transitive finite permutation groups are explicitly known, refer to [2, 7.3 and 7.4]. Then we have the following lemma.

Lemma 3.3. Assume that G is k-transitive on V. Then $k=3$ and, up to permutation isomorphism, one of the following occurs:
(IV) $G=\operatorname{AGL}(d, 2)$ with $d \geq 3, M=\mathbb{Z}_{2}^{d}$ and $n=2^{d}$;
(V) $G=\mathbb{Z}_{2}^{4}: \mathrm{A}_{7}<\operatorname{AGL}(4,2), M=\mathbb{Z}_{2}^{4}$ and $n=16$;
(VI) $\operatorname{PSL}(2, q) \leq M \leq \operatorname{P\Sigma L}(2, q)$ and $\operatorname{PGL}(2, q) \leq G \leq \operatorname{P\Gamma L}(2, q)$ with $5 \leq q=$ $n-1 \equiv 1(\bmod 4)$.

Proof. Let N be the minimal normal subgroup of G. Assume first that $N \cong \mathbb{Z}_{p}^{d}$ for some prime p and integer $d \geq 1$. Then $6 \leq 2 k \leq n=|V|=p^{d}$. By [2, 7.3], one of parts (IV) and (V) occurs.

Assume that N is nonabelian simple. Checking Table 7.4 given in [2, 7.4], we know that either $k=3$ and $N=\operatorname{PSL}(2, q)$ with odd q, or N is k-transitive. Recall $N \leq M$ and M is not a k-homogeneous permutation group on V. We have $k=3$ and $N=\operatorname{PSL}(2, q)$ with odd $q=n-1$. Moveover, [12, Theorem 1] yields that $q \equiv 1(\bmod 4)$. Then part (VI) follows.

Based on the above argument, we can formulate a method to construct up to isomorphism all possible edge-transitive homogeneous (k, s)-factorisations of order n, where $6 \leq 2 k \leq n$ and $s \geq 2$.

Construction 3.4. Let G be a permutation group on V described as in one of (I)-(VI), and let M be the minimal normal subgroup of G. Take a k-subset e of V and $v \in e$. Then $G=M G_{v}$. Take a subgroup H of G_{v} such that $G_{e} \leq M H \neq G$. Let $E_{1}=e^{M H}$, the $M H$-orbit containing e. Then E_{1} consists of $\left|M H:\left(M G_{e}\right)\right|$ orbits of M on $V^{\{k\}}$. It is easily shown that $\mathcal{F}:=\left\{E_{1}^{g} \mid g \in G\right\}$ is an edge-transitive homogeneous (k, s) factorisations on V, where $s=|G:(M H)|$. Write $G=\cup_{i=1}^{s} M H g_{i}$ with $g_{i} \in G_{v}$ and $g_{1}=1$, and set $E_{i}=E_{1}^{g_{i}}$ for $1 \leq i \leq s$. It is easily shown that $\mathcal{F}=\left\{E_{i} \mid 1 \leq i \leq s\right\}$.

4. Examples

In this section we construct some edge-transitive homogeneous (k, s)-factorisations of order n, where $s \geq 2$ and $6 \leq 2 k \leq n$.

For a prime power q, denote by \mathbb{F}_{q} the finite field of order q, and \mathbb{F}_{q}^{*} the multiplicative group of \mathbb{F}_{q}. Then \mathbb{F}_{q}^{*} is cyclic and of order $q-1$. For an integer $d \geq 1$, denote by \mathbb{F}_{q}^{d} the d-dimensional vector space over \mathbb{F}_{q}. For each vector $\mathbf{u} \in \mathbb{F}_{q}^{d}$, denote by $\tau_{\mathbf{u}}$ the translation $\mathbb{F}_{q}^{d} \rightarrow \mathbb{F}_{q}^{d}, \mathbf{v} \mapsto \mathbf{v}+\mathbf{u}$. Set $T(d, q)=\left\{\tau_{\mathbf{u}} \mid \mathbf{u} \in \mathbb{F}_{q}^{d}\right\}$. Then $T(d, q)$ is normal in $\operatorname{A\Gamma L}(d, q)$, $\operatorname{AGL}(d, q)=T(d, q): \mathrm{GL}(d, q)$ and $\operatorname{A\Gamma L}(d, q)=T(d, q): \Gamma \mathrm{L}(d, q)$. Write $q=p^{f}$ for some prime p. Let σ be the Frobenius automorphism of the filed \mathbb{F}_{q}, that is, $\sigma: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}, \xi \mapsto \xi^{p}$. Then $\Gamma \mathrm{L}(d, q)=\operatorname{GL}(d, q):\langle\sigma\rangle$ and $\operatorname{ALL}(d, q)=\operatorname{AGL}(d, q):\langle\sigma\rangle$, where σ acts componentwise on the vectors in \mathbb{F}_{q}^{d}.
4.1. Factorisations arising from the affine geometry $\operatorname{AG}(d, 2)$. Let $d \geq 3$ be an integer. Note that each 3 -subset of \mathbb{F}_{2}^{d} is contained in a unique 2-dimensional affine subspace $\mathbf{v}+U$, where $\mathbf{v} \in \mathbb{F}_{2}^{d}$ and U is a 2-dimensional subspace of \mathbb{F}_{2}^{d}. This allows us to give a partition of $\left(\mathbb{F}_{2}^{d}\right)^{\{3\}}$ whose parts are indexed by the 2-dimensional subspaces of \mathbb{F}_{2}^{d}.
Example 4.1. For a 2-dimensional subspace U of \mathbb{F}_{2}^{d}, let $E_{U}=\cup_{\mathbf{v} \in \mathbb{F}_{2}^{d}}(\mathbf{v}+U)^{\{3\}}$. Then $\left|E_{U}\right|=2^{d}$, and $\left\{E_{U} \mid U\right.$ a 2-dimensional subspace of $\left.\mathbb{F}_{2}^{d}\right\}$ is a partition of $\left(\mathbb{F}_{2}^{d}\right)^{\{3\}}$. Clearly, the number of parts of this partition is equal to the number of 2-dimensional subspaces of \mathbb{F}_{2}^{d}, which is $\frac{\left(2^{d}-1\right)\left(2^{d-1}-1\right)}{3}$. Thus we have a $\left(3, \frac{\left(2^{d}-1\right)\left(2^{d-1}-1\right)}{3}\right)$-factorisation of order 2^{d}, namely,

$$
\mathcal{F}_{\left(2^{d} ; 3, \frac{\left(2^{d}-1\right)\left(2^{d-1}-1\right)}{3}\right)}=\left\{E_{U} \mid U \text { a 2-dimensional subspace of } \mathbb{F}_{2}^{d}\right\}
$$

It is easily shown that, for each 2-dimensional subspace U of \mathbb{F}_{2}^{d}, the set E_{U} is an orbit of $T(d, 2)$ on $\left(\mathbb{F}_{2}^{d}\right)^{\{3\}}$; in fact, $T(d, 2)$ acts regularly on E_{U}. Since $T(d, 2)$ is normal in $\operatorname{AGL}(d, 2)$ and $\operatorname{AGL}(d, 2)$ is transitive on $\left(\mathbb{F}_{2}^{d}\right)^{\{3\}}$, we know that $\mathcal{F}_{\left(2^{d} ; 3, \frac{\left(2^{d}-1\right)\left(2^{d-1}-1\right)}{3}\right)}$ is an edge-transitive homogeneous $\left(3, \frac{\left(2^{d}-1\right)\left(2^{d-1}-1\right)}{3}\right)$-factorisation of order 2^{d}. In particular,

$$
\operatorname{AGL}(d, 2) \leq \operatorname{Aut} \mathcal{F}_{\left(2^{d} ; 3, \frac{\left(2^{d}-1\right)\left(2^{d-1}-1\right)}{3}\right)}
$$

By Lemmas 3.2 and 3.3, we conclude that

$$
\operatorname{Aut} \mathcal{F}_{\left(2^{d} ; 3, \frac{\left(2^{d}-1\right)\left(2^{d-1}-1\right)}{3}\right)}=\operatorname{AGL}(d, 2) .
$$

Lemma 4.2. Let \mathcal{E} be the set of $T(d, 2)$-orbits on $\left(\mathbb{F}_{2}^{d}\right)^{\{3\}}$. Then $\operatorname{AGL}(d, 2)$ induces a primitive permutation group on \mathcal{E}.

Proof. Let $G=\operatorname{AGL}(d, 2), M=T(d, 2)$ and $H=\operatorname{GL}(d, 2)$. Then $G=M: H$, and M lies in the kernel $G_{(\mathcal{E})}$ of G acting on the G-invariant partition \mathcal{E}. Since $d \geq 3$, we know that $H \cong \operatorname{PSL}(d, q)$ is simple. It follows that $G_{(\mathcal{E})}=M$. Thus $G^{\mathcal{E}}$ is permutation isomorphic to $H^{\mathcal{E}}$, and $H^{\mathcal{E}} \cong H M / M \cong H$. Take $E \in \mathcal{E}$. Then there is a 2-dimensional subspace U of \mathbb{F}_{2}^{d} such that

$$
E=\cup_{\mathbf{v} \in \mathbb{F}_{2}^{d}}(\mathbf{v}+U)^{\{3\}}
$$

Then $H_{U} \leq H_{E}$. It is well-known that $H=\operatorname{GL}(d, 2)$ acts primitively on the set of 2-dimensional subspaces of \mathbb{F}_{2}^{d}. Then H_{U} is a maximal subgroup of H by Lemma 2.1. Since M is intransitive on $\left(\mathbb{F}_{2}^{d}\right)^{\{3\}}$, we have $G \neq M G_{e}=G_{E}$, where $e \in E$. Noting that $G_{E}=G_{E} \cap(M H)=M\left(G_{E} \cap H\right)=M H_{E}$, we have $H_{E} \neq H$. Thus $H_{E}=H_{U}$ is maximal in H. Then $H^{\mathcal{E}}$ is primitive by Lemma 2.1, and hence $G^{\mathcal{E}}$ is primitive.

Noting that $\mathbb{F}_{2^{d}}$ is a d-dimensional vector space over the field \mathbb{F}_{2} of order 2 , we may construct $\mathcal{F}_{(8 ; 3,7)}$ and $\mathcal{F}_{(32 ; 3,155)}$ alternatively as in the following two examples.
Example 4.3. Let $V=\mathbb{F}_{8}$, and set $\mathbb{F}_{8}^{*}=\langle\eta\rangle$. Then $V=\left\{0, \eta^{i} \mid 1 \leq i \leq 7\right\}$. It is easily shown that $\operatorname{AGL}(1,8)$ is regular on $V^{\{3\}}$. For $1 \leq i \leq 7$, take $e_{i}=\left\{0, \eta^{i-1}, \eta^{i}\right\} \in V^{\{3\}}$, and let $E_{i}=\left\{\left\{\xi, \eta^{i-1}+\xi, \eta^{i}+\xi\right\} \mid \xi \in \mathbb{F}_{8}\right\}$. Then $E_{i}=e_{i}^{T(1,8)}$, and $\left\{E_{i} \mid 1 \leq i \leq 7\right\}$ is a partition of $V^{\{3\}}$. Note that, identifying \mathbb{F}_{8} with \mathbb{F}_{2}^{3}, the group $\operatorname{AGL}(1,8)$ is permutation isomorphic to a 3 -homogeneous subgroup of $\operatorname{AGL}(3,2)$ with $T(1,8)$ corresponding to $T(3,2)$. It follows that $\left\{E_{i} \mid 1 \leq i \leq 7\right\}$ is isomorphic to $\mathcal{F}_{(8 ; 3,7)}$.
Example 4.4. Let $V=\mathbb{F}_{32}$, and set $\mathbb{F}_{32}^{*}=\langle\eta\rangle$. Then $V=\left\{0, \eta^{i} \mid 1 \leq i \leq 31\right\}$. For $1 \leq i \leq 31$ and $1 \leq j \leq 5$, take $e_{j}^{i}=\left\{0, \eta^{(i-1) 2^{j-1}}, \eta^{i 2^{j-1}}\right\} \in V^{\{3\}}$, and let $E_{j}^{i}=$ $\left\{\left\{\xi, \eta^{(i-1) 2^{j-1}}+\xi, \eta^{i 2^{j-1}}+\xi\right\} \mid \xi \in \mathbb{F}_{32}\right\}$. Set

$$
\mathcal{F}=\left\{E_{j}^{i} \mid 1 \leq i \leq 31,1 \leq j \leq 5\right\}
$$

It is easy to check that each E_{j}^{i} is a $T(1,32)$-orbit containing e_{j}^{i}, Aut $\mathcal{F} \geq \mathrm{A} \Gamma \mathrm{L}(1,32)$ and \mathcal{F} is an edge-transitive homogeneous $(3,155)$-factorisation of order 32 . Note that, identifying \mathbb{F}_{32} with \mathbb{F}_{2}^{5}, the group $\mathrm{A} \Gamma(1,32)$ is permutation isomorphic to a 3 -homogeneous subgroup of $\operatorname{AGL}(5,2)$ with $T(1,32)$ corresponding to $T(5,2)$. It follows that $\mathcal{F} \cong$ $\mathcal{F}_{(32 ; 3,155)}$.

In the following example, we construct two edge-transitive homogeneous factorisations of order 32 from $\mathcal{F}_{(32 ; 3,155)}$.
Example 4.5. Let V and E_{j}^{i} be as Example 4.4.
(1) For $1 \leq j \leq 5$, let $E_{j}=\cup_{i=1}^{31} E_{j}^{i}$. Then each E_{j} is one of the $\operatorname{AGL}(1,32)$-orbits on $V^{\{3\}}$, and $\mathrm{A} \Gamma \mathrm{L}(1,32)$ is regular on $V^{\{3\}}$. Set

$$
\mathcal{F}_{(32 ; 3,5)}=\left\{E_{j} \mid 1 \leq j \leq 5\right\} .
$$

Then $\mathcal{F}_{(32 ; 3,5)}$ is an edge-transitive homogeneous (3,5)-factorisation of order 32 .
(2) For $1 \leq i \leq 31$, let $E^{i}=\cup_{j=1}^{5} E_{j}^{i}$. Set

$$
\mathcal{F}_{(32 ; 3,31)}=\left\{E^{i} \mid 1 \leq i \leq 31\right\} .
$$

It is easy to see that E^{1} is a $(T(1,32):\langle\sigma\rangle)$-orbit, where σ is the Frobenius automorphism of \mathbb{F}_{32}. By Construction 3.4, we conclude that $\mathcal{F}_{(32 ; 3,31)}$ is an edge-transitive homogeneous $(3,31)$-factorisation of order 32.

Lemma 4.6. Aut. $\mathcal{F}_{(32 ; 3,5)}=\operatorname{Aut} \mathcal{F}_{(32 ; 3,31)}=\operatorname{A\Gamma L}(1,32)$.
Proof. Let $s \in\{5,31\}$. Then Aut $\mathcal{F}_{(32 ; 3, s)} \geq \operatorname{A\Gamma L}(1,32)$. Suppose that Aut $\mathcal{F}_{(32 ; 3, s)} \neq$ АГL $(1,32)$. Then, by Lemmas 3.2 and 3.3, we conclude that Aut $\mathcal{F}_{(32 ; 3, s)}$ is permutation isomorphic to $\operatorname{AGL}(5,2)$. Thus $\mathcal{F}_{(32 ; 3, s)}$ is isomorphic to an edge-transitive homogeneous $(3, s)$-factorisation \mathcal{F}^{\prime} (of order 32) arising from the action of $\operatorname{AGL}(5,2)$ on the vector space \mathbb{F}_{2}^{5}. Note that $\operatorname{AGL}(5,2)$ has a unique proper normal subgroup, which is $T(5,2)$. Let \mathcal{E} be the set of $T(5,2)$-orbits on $\left(\mathbb{F}_{2}^{5}\right)^{\{3\}}$. Then $\mathcal{E}=\mathcal{F}_{(32 ; 3,155)}$, see Example 4.1. By Claim 3 and Lemma 4.2, we get $\mathcal{F}^{\prime}=\mathcal{E}=\mathcal{F}_{(32 ; 3,155)}$. Thus $\mathcal{F}_{(32 ; 3, s)} \cong \mathcal{F}_{(32 ; 3,155)}$, yielding $s=155$, a contradiction. This completes the proof.
4.2. Factorisations arising from the projective line $\operatorname{PG}(1, q)$. Let $q=p^{f}$, where p is a prime and f is a positive integer. For a nonzero vector $(\alpha, \beta) \in \mathbb{F}_{q}^{2}$, denote by $[\alpha, \beta]$ the 1 -dimensional subspace spanned by (α, β). Then the projective line $\operatorname{PG}(1, q)$ over the field \mathbb{F}_{q} can be identified with $\mathbb{F}_{q} \cup\{\infty\}$ by

$$
[\xi, 1] \mapsto \xi,[1,0] \mapsto \infty, \xi \in \mathbb{F}_{q} .
$$

The group PGL $(2, q)$ then consists of all fractional linear mappings of the form

$$
t_{\alpha \beta \gamma \delta}: \xi \mapsto \frac{\alpha \xi+\beta}{\gamma \xi+\delta}, \alpha, \beta, \gamma, \delta \in \mathbb{F}_{q} \text { with } \alpha \delta-\beta \gamma \neq 0
$$

acting sharply 3-transitively on $\mathbb{F}_{q} \cup\{\infty\}$, where $\frac{\alpha \infty+\beta}{\gamma \infty+\delta}=\alpha \gamma^{-1}$ for $\gamma \neq 0, \frac{\alpha \infty+\beta}{\delta}=\infty$ for $\alpha \neq 0$ and $\frac{\zeta}{0}=\infty$ for $\zeta \in \mathbb{F}_{q}^{*}$. Note that $t_{\alpha \beta \gamma \delta}=t_{\alpha^{\prime} \beta^{\prime} \gamma^{\prime} \delta^{\prime}}$ if and only if the vector $\left(\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}, \delta^{\prime}\right)$ is a nonzero multiple of $(\alpha, \beta, \gamma, \delta)$. Further,

$$
\operatorname{PSL}(2, q)=\left\{t_{\alpha \beta \gamma \delta} \mid \alpha, \beta, \gamma, \delta \in \mathbb{F}_{q} \text { with } \alpha \delta-\beta \gamma \text { a nonzero square in } \mathbb{F}_{q}\right\} .
$$

The Frobenius automorphism of \mathbb{F}_{q} induces a permutation on $\operatorname{PG}(1, q)$ by $\sigma: \xi \mapsto \xi^{p}$ with $\infty^{p}=\infty$. Then $t_{\alpha \beta \gamma \delta}^{\sigma}=t_{\alpha^{p} \beta^{p} \gamma^{p} \delta p}, \operatorname{P\Gamma L}(2, q)=\operatorname{PGL}(2, q):\langle\sigma\rangle$ and $\operatorname{P\Sigma L}(2, q)=$ $\operatorname{PSL}(2, q):\langle\sigma\rangle$. (See [1, p.192] and [4, p.242] for example.)

Let $e=\{0,1, \infty\}$. Noting that $\operatorname{PGL}(2, q)$ is sharply 3-transitive, we have $\operatorname{PGL}(2, q)_{e} \cong$ S_{3}. Since $|\operatorname{PGL}(2, q): \operatorname{PSL}(2, q)| \leq 2$, we know that $\left|\operatorname{PSL}(2, q)_{e}\right|$ is divisible by 3. Let $g \in \operatorname{PGL}(2, q)_{e}$ such that $1^{g}=1$ and $0^{g}=\infty$. Then $g=t_{0 \beta \beta 0}$ for $0 \neq \beta \in \mathbb{F}_{q}$, and so $g \in \operatorname{PSL}(2, q)_{e}$ if and only if $-\beta^{2}$ is a square in \mathbb{F}_{q}, i.e., either q is even or $q \equiv 1(\bmod 4)$. Thus $\operatorname{PGL}(2, q)_{e}=\operatorname{PSL}(2, q)_{e}$ if and only if either q is even or $q \equiv 1(\bmod 4)$.

Example 4.7. Let $V=\operatorname{PG}(1, q)$ with $q \equiv 1(\bmod 4)$. Then $\operatorname{PSL}(2, q)$ has exactly two orbits on $V^{\{3\}}$, and $\operatorname{PGL}(2, q)=\operatorname{PSL}(2, q) \cup \operatorname{PSL}(2, q) t_{\eta 001}$, where η is a generator of the multiplicative group of \mathbb{F}_{q}. Set

$$
E_{1}=\left\{\left.\left\{\frac{\beta}{\delta}, \frac{\alpha+\beta}{\gamma+\delta}, \frac{\alpha \eta+\beta}{\gamma \eta+\delta}\right\} \right\rvert\, \alpha, \beta, \gamma, \delta \in \mathbb{F}_{q}, \alpha \delta-\beta \gamma=\eta^{2 i-1}, 1 \leq i \leq \frac{q-1}{2}\right\}
$$

and

$$
E_{2}=\left\{\left.\left\{\frac{\beta}{\delta}, \frac{\alpha+\beta}{\gamma+\delta}, \frac{\alpha \eta+\beta}{\gamma \eta+\delta}\right\} \right\rvert\, \alpha, \beta, \gamma, \delta \in \mathbb{F}_{q}, \alpha \delta-\beta \gamma=\eta^{2 i}, 1 \leq i \leq \frac{q-1}{2}\right\}
$$

Then E_{1} and E_{2} are distinct $\operatorname{PSL}(2, q)$-orbits, and $E_{1}^{t^{\eta} 001}=E_{2}$. Moreover, $\operatorname{since} \operatorname{PSL}(2, q)$ is normal in $\operatorname{P\Gamma L}(2, q)$, it is easily shown that $\left\{E_{1}, E_{2}\right\}$ is $\operatorname{P\Gamma L}(2, q)$-invariant. Thus $\mathcal{F}_{(q+1 ; 3,2)}=\left\{E_{1}, E_{2}\right\}$ is an edge-transitive homogeneous $(3,2)$-factorisation of order $q+1$. Moreover, by Lemmas 3.2 and 3.3, we conclude that $\operatorname{Aut} \mathcal{F}_{(q+1 ; 3,2)}=\operatorname{P\Gamma L}(2, q)$.

Remark 4.8. The factors of $\mathcal{F}_{(q+1 ; 3,2)}$ constructed in Example 4.7 are complementary 3hypergraphs admitting a 2 -transitive group of automorphisms, which are essentially due to Taylor [26, Example 6.2]. Noting that Aut $\mathcal{F}_{(q+1 ; 3,2)}$ contains an element interchanging the parts of $\mathcal{F}_{(q+1 ; 3,2)}$, those two 3-hypergraphs are self-complementary. Moreover, by [22, 27], a 3-hypergraph with 2-transitive automorphism group is self-complementary if and only if it is isomorphic to the factors of $\mathcal{F}_{(q+1 ; 3,2)}$.

Example 4.9. Let $V=\mathrm{PG}(1,32)$. Then, by Lemma 3.2, $\mathrm{P} \Gamma \mathrm{L}(2,32)$ is 4-homogeneous but not 4 -transitive on V (see also [1, 6.18, p.196]). Let $e=\left\{0,1, \eta, \eta^{2}\right\}$, where η is a generator of the multiplicative group of \mathbb{F}_{32}. Then $\mathrm{P} \Gamma \mathrm{L}(2,32)_{e}$ has order 4 . Since $|\operatorname{P\Gamma L}(2,32): \operatorname{PSL}(2,32)|=5$, we have $\operatorname{P\Gamma L}(2,32)_{e}<\operatorname{PSL}(2,32)$. It follows that $\operatorname{PSL}(2,32)$ has 5 obits on $V^{\{4\}}$. Note that $\operatorname{P\Gamma L}(2,32)=\cup_{i=1}^{5} \mathrm{PSL}(2,32) \sigma^{i-1}$, where σ is the Frobenius automorphism of the field \mathbb{F}_{32}. We may write those five orbits as follows:

$$
E_{i}=\left\{\left.\left\{\frac{\beta}{\delta}, \frac{\alpha+\beta}{\gamma+\delta}, \frac{\alpha \eta^{2^{i-1}}+\beta}{\gamma \eta^{2^{i-1}}+\delta}, \frac{\alpha \eta^{2^{i}}+\beta}{\gamma \eta^{2^{i}}+\delta}\right\} \right\rvert\, \alpha, \beta, \gamma, \delta \in \mathbb{F}_{32}, \alpha \delta-\beta \gamma \neq 0\right\}, 1 \leq i \leq 5
$$

Set

$$
\mathcal{F}_{(33 ; 4,5)}=\left\{E_{i} \mid 1 \leq 5 \leq i\right\} .
$$

Then $\mathcal{F}_{(33 ; 4,5)}$ is an edge-transitive homogeneous $(4,5)$-factorisation of order 33. By Lemmas 3.2 and 3.3, we conclude that Aut $\mathcal{F}_{(33 ; 4,5)}=\mathrm{P} \Gamma \mathrm{L}(2,32)$.

5. The main result

Now we are ready to state and prove our main result.
Theorem 5.1. Let \mathcal{F} be an edge-transitive homogeneous (k, s)-factorisation of order n, where $s \geq 2$ and $6 \leq 2 k \leq n$. Then $\mathcal{F} \cong \mathcal{F}_{(n ; k, s)}$ with n, k, s and Aut $\mathcal{F}_{(n ; k, s)}$ listed in Table 1 and defined in one of the examples in Section 4.

n	k	s	Aut	Kernel	Condition	Reference
32	3	5	$\operatorname{A\Gamma L}(1,32)$	$\operatorname{AGL}(1,32)$		Example 4.5 (1)
32	3	31	$\operatorname{A\Gamma L}(1,32)$	$T(1,32)$		Example 4.5 (2)
33	4	5	$\operatorname{P\Gamma L}(2,32)$	$\operatorname{PSL}(2,32)$		Example 4.9
2^{d}	3	$\frac{\left(2^{d}-1\right)\left(2^{d-1}-1\right)}{3}$	$\operatorname{AGL}(d, 2)$	$T(d, 2)$	$d \geq 3$	Example 4.1
$q+1$	3	2	$\operatorname{P\Gamma L}(2, q)$	$\operatorname{P\Sigma L}(2, q)$	$q \equiv 1(\bmod 4)$	Example 4.7

Table 1. Edge-transitive homogeneous factorisations

Proof. Assume that $\mathcal{F}=\left\{E_{i} \mid 1 \leq i \leq s\right\}$ is an edge-transitive homogeneous (k, s) factorisation on V of order n. Take $M \unlhd G \leq$ Aut \mathcal{F} such that M fixes every E_{i} set-wise, G is transitive on $V^{\{k\}}$ and M is transitive on V. Then, up to isomorphism of factorisations,
we may let G be one of the k-homogeneous permutation groups listed in Lemmas 3.2 and 3.3. Recall that G has a unique minimal normal subgroup, which is transitive on V. We choose M to be the minimal normal subgroup of G. Let \mathcal{E} be the set of M-orbits on $V^{\{k\}}$. Then \mathcal{E} is a refinement of \mathcal{F}. We next deal with all possible candidates of G one by one.

Let G be as in (I) of Lemma 3.2. Then $k=3$, and we may choose $V=\mathbb{F}_{8}$ and $M=T(1,8)$. Recall that every E_{i} is the union of some M-orbits on $V^{\{3\}}$. Since $\left|V^{\{3\}}\right|=56$ and G contains a regular subgroup $\operatorname{AGL}(1,8)$ (acting on $V^{\{3\}}$), the only possibility is that every E_{i} has size 8 and is an M-orbit. Then, identifying \mathbb{F}_{8} with \mathbb{F}_{2}^{3}, we have $\mathcal{F} \cong \mathcal{F}_{(8 ; 3,7)}$, see Example 4.3. Thus line 4 of Table 1 occurs.

Let $G=\mathrm{A} \Gamma \mathrm{L}(1,32)$ be as in (II) of Lemma 3.2. Then $k=3$, and we may choose $V=$ \mathbb{F}_{32} and $M=T(1,32)$. If \mathcal{F} is the set of M-orbits, that is, $\mathcal{F}=\mathcal{E}$, then $\mathcal{F} \cong \mathcal{F}_{(32 ; 3,155)}$ by a similar argument as above (see also Example 4.4), and so line 4 of Table 1 occurs. Thus we assume that every $E \in \mathcal{F}$ consists of more than one M-orbits. Then $M G_{e} \leq$ $G_{E} \neq M G_{e}$ for $e \in E$, see Claims 1-4. Since $32 \cdot 31 \cdot 5=|\mathrm{A} \Gamma \mathrm{L}(1,32)|=\left|V^{\{3\}}\right|$, we know that G is regular on $V^{\{3\}}$, and so $G_{e}=1$. Checking the subgroups of $G=\mathrm{A} \Gamma \mathrm{L}(1,32)$, we conclude that either $G_{E}=\operatorname{AGL}(1,32)$ or G_{E} is conjugate to $T(1,32):\langle\sigma\rangle$, where σ is the Frobenius automorphism of \mathbb{F}_{32}. Thus \mathcal{F} is isomorphic to one of $\mathcal{F}_{(32 ; 3,5)}$ and $\mathcal{F}_{(32 ; 3,31)}$, which are constructed in Example 4.5. By Lemma 4.6, one of the first two lines of Table 1 follows.

Let $G=\mathrm{P} \Gamma \mathrm{L}(2,32)$ be as in (III) of Lemma 3.2. Then $k=4$, and we may choose $V=\operatorname{PG}(1,32)=\mathbb{F}_{32} \cup\{\infty\}$ and $M=\operatorname{PSL}(2,32)$. By the argument given in Example 4.9, we know that M has 5 -orbits on $V^{\{4\}}$. In particular, G acts primitively on the set \mathcal{E} of M-orbits. Then, by Claim 3, we have $\mathcal{F}=\mathcal{E}$. Then \mathcal{F} is (isomorphic to) the factorisation $\mathcal{F}_{(33 ; 4,5)}$ given in Example 4.9, and hence line 3 of Table 1 follows.

Let $G=\operatorname{AGL}(d, 2)$ be as in (IV) of Lemma 3.3. Then $k=3, V=\mathbb{F}_{2}^{d}, M=T(d, 2)$ and $\mathcal{E}=\mathcal{F}_{\left(2^{d} ; 3, \frac{\left(2^{d}-1\right)\left(2^{d-1}-1\right)}{3}\right)}$. By Lemma $4.2, G^{\mathcal{E}}$ is primitive. Thus $\mathcal{F}=\mathcal{E}$ by Claim 3, and so line 4 of Table 1 follows.

Let $G=\mathbb{Z}_{2}^{4}: \mathrm{A}_{7}$ be as in (V) of Lemma 3.3. Then $\mathcal{E}=\mathcal{F}_{(16 ; 3,35)}$. Arguing similarly as in the proof of Lemma $4.2, G^{\mathcal{E}}$ is permutation isomorphic to a transitive subgroup A_{7} of GL $(4,2)$ acting on the 352 -dimensional subspaces of \mathbb{F}_{2}^{4}. Checking the subgroups of A_{7} in the Atlas [3], we know that every subgroup of A_{7} with index 35 is maximal. It follows from Lemma 2.1 that $G^{\mathcal{E}}$ is primitive. Then $\mathcal{F}=\mathcal{E}$, and so line 4 of Table 1 occurs.

Finally, if G is described as in (VI) of Lemma 3.3, then line 5 of Table 1 follows from the argument in Example 4.7.

A k-hypergraph is said to be symmetric if it is both vertex-transitive and edgetransitive. Note that there is a bijection $(V, E) \mapsto\left(V, E^{o p}\right)$ between self-complementary k-hypergraphs and self-complementary $(n-k)$-hypergraphs of order n. The next result is a direct consequence of Theorem 5.1.

Corollary 5.2. Let k and n be positive integers with $6 \leq 2 k \leq n$. Then there exists a symmetric self-complementary k-hypergraph of order n if and only if $k=3, n-1 \equiv$ $1(\bmod 4)$ and $n-1$ is a power of some odd prime.

Let \mathcal{H} be an edge-transitive self-complementary 3 -hypergraph of order n. Then $n \geq$ 5. Noting that the 5 -cycle is a symmetric self-complementary 2-hypergraph, the next corollary follows.

Corollary 5.3. There exists a symmetric self-complementary 3-hypergraph of order $n \geq$ 5 if and only if either $n=5$, or $n-1 \equiv 1(\bmod 4)$ and $n-1$ is a prime power.

We end this paper by the following remark on Theorem 5.1.
Remark 5.4. Let n, k and t be positive integers with $n>k \geq t$.
(1) A k-hypergraph $\mathcal{H}=(V, E)$ on n vertices is t-subset regular if there is a constant $\lambda \geq 1$ such that each t-subset of V is contained in exactly λ edges. Let \mathcal{F} be one of the factorisations in Theorem 5.1. Then the factors of \mathcal{F} are t-subset regular k-hypergraphs with t and λ listed in Table 2. The reader is referred to $[10,13,23,24]$ for more examples and results on t-subset regular hypergraphs.

n	k	s, N	t	λ	Condition
32	3	5	2	6	
32	3	31	1	15	
33	4	5	3	6	
2^{d}	3	$\frac{\left(2^{d}-1\right)\left(2^{d-1}-1\right)}{3}$	1	3	$d \geq 3$
$q+1$	3	2	2	$\frac{q-1}{2}$	$q \equiv 1(\bmod 4)$

Table 2. The parameters t and λ.
(2) Recall that a large set of $t-(n, k, \lambda)$ designs of size N, denoted by $\operatorname{LS}[N](t, k, n)$, is a partition of the set of all k-subsets of an n-set into block sets of N disjoint t (n, k, λ) designs, where $N \lambda=\binom{n-t}{k-t}$. Let \mathcal{F} be one of the factorisations in Theorem 5.1. Note that a t-subset regular k-hypergraph is a t - (n, k, λ) design, where λ is number of edges containing a given t-subset. Then, using terminology from design theory, \mathcal{F} is an $\operatorname{LS}[N](t, k, n)$ in which all designs are flag-transitive and admit a common pointtransitive group, where N, t, k and n are listed in Table 2.

References

[1] T. Beth, D. Jungnickel and H. Lenz, Design Theorey I (second edition), Cambridge University Press, 1999.
[2] P. J. Cameron, Permutation Groups, Cambridge University Press, 1999.
[3] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of Finite Groups, Clarendon Press, Oxford, 1985.
[4] J. D. Dixon and B. Mortimer, Permutation Groups, Springer-Verlag, New York, 1996.
[5] M. Giudici, C. H. Li, P. Potočnik and C. E. Praeger, Homogeneous factorisations of graphs and digraphs, European J. Combin. 27 (2006), 11-37.
[6] M. Giudici, C.H. Li, P. Potočnik and C. E. Praeger, Homogeneous factorisations of graph products, Discrete Math. 308 (2008), 3652-3667.
[7] S. Gosselin, Vertex-transitive self-complementary uniform hypergraphs of prime order, Discrete Math. 310 (2010), 671-680.
[8] S. Gosselin, Generating self-complementary uniform hypergraphs, Discrete Math. 310 (2010), 13661372.
[9] S. Gosselin, Constructing regular self-complementary uniform hypergraphs, J. Combin. Des. 19 (2011), 439-454.
[10] S. Gosselin, Self-complementary non-uniform hypergraphs, Graphs and Combinatorics 28 (2012), 615-635.
[11] R. M. Guralnick, C. H. Li, C. E. Praeger and J. Saxl, On orbital partitions and exceptionality of primitive permutation groups, Trans. Amer. Math. Soc. 356 (2004), 4857-4872.
[12] W. M. Kantor, k-homogeneous groups, Math. Z. 124 (1972), 261-265.
[13] M. Knor and P. Potočnik, A note on 2-subset-regular self-complementary 3-uniform hypergraphs, Ars Combinatoria, 111 (2008), 33-36.
[14] C. H. Li, On self-complementary vertex-transitive graphs, Comm. Algebra 25 (1997), 3903-3908.
[15] C. H. Li, T. K. Lim and C. E. Praeger, Homogeneous factorisations of complete graphs with edge-transitive factors, J. Algebr. Comb. 29 (2009), 107-132.
[16] C. H. Li and C. E. Praeger, Self-complementary vertex-transitive graphs need not be Cayley graphs, Bull. London Math. Soc. 33 (2001), 653-661.
[17] C. H. Li and C. E. Praeger, On partitioning the orbitals of a transitive permutation group, Trans. Amer. Math. Soc. 355 (2003), 637-653.
[18] C. H. Li, G. Rao and S. J. Song, On finite self-complementary metacirculants, J. Algebr. Comb. 40 (2014), 1135-1144.
[19] R. Mathon, On selfcomplementary strongly regular graphs, Discrete Math. 69 (1988), 263-281.
[20] M. Muzychuk, On Sylow subgraphs of vertex-transitive self-complementary graphs, Bull. London Math. Soc. 31 (1999), 531-533.
[21] W. Peisert, All self-complementary symmetric graphs, J. Algebra 240 (2001), 209-229.
[22] P. Potočnik and M. Šajna, Self-complementary two-graphs and almost self-complementary double covers, European J. Combin. 28 (2007), 1561-1574.
[23] P. Potočnik and M. Šajna, Vertex-transitive self-complementary uniform hypergraphs, European J. Combin. 30 (2009), 327-337.
[24] P. Potočnik and M. Šajna, The existence of regular self-complementary 3-uniform hypergraphs, Discrete Math. 309 (2009), 950-954.
[25] S. B. Rao, On regular and strongly regular selfcomplementary graphs, Discrete Math. 54 (1983), 73-82.
[26] D. E. Taylor, Regular 2-graphs, Proc. London Math. Soc. 35 (3) (1977), 257-274.
[27] D. E. Taylor, Two-graphs and doubly transitive groups, J. Combin. Theory Ser. A 61 (1992), 113-122.

Huye Chen, Center for Combinatorics, LPMC-TJKLC, Nankai University, Tianjin 300071, China

E-mail address: 1120140003@mail.nankai.edu.cn
Zaiping Lu, Center for Combinatorics, LPMC-TJKLC, Nankai University, Tianjin 300071, China

E-mail address: lu@nankai.edu.cn

[^0]: 2010 Mathematics Subject Classification. 05C65, 05C70, 05E18, 20 B 20.
 This work was supported by National Natural Science Foundation of China (11371204).

