
EDGE-TRANSITIVE HOMOGENEOUS FACTORISATIONS OF
COMPLETE UNIFORM HYPERGRAPHS

HU YE CHEN AND ZAI PING LU

Abstract. For a finite set V and a positive integer k with k ≤ n := |V |, letting
V {k} be the set of all k-subsets of V , the pair Kk

n := (V, V {k}) is called the com-
plete k-hypergraph on V , while each k-subset of V is called an edge. A factorisation
of the complete k-hypergraph Kk

n of index s ≥ 2, simply a (k, s)-factorisation of or-
der n, is a partition {E1, E2, . . . , Es} of the edges into s disjoint subsets such that
each k-hypergraph (V,Ei), called a factor, is a spanning subhypergraph of Kk

n. Such
a factorisation is homogeneous if there exist two transitive subgroups G and M of
the symmetric group of degree n such that G induces a transitive action on the set
{E1, E2, . . . , Es} and M lies in the kernel of this action.

In this paper, we give a classification of homogeneous factorisations of Kk
n which

admit a group acting transitively on the edges of Kk
n. It is shown that, for 6 ≤ 2k ≤ n

and s ≥ 2, there exists an edge-transitive homogeneous (k, s)-factorisation of order n if

and only if (n, k, s) is one of (32, 3, 5), (32, 3, 31), (33, 4, 5), (2d, 3, (2d−1)(2d−1−1)
3 ) and

(q + 1, 3, 2), where d ≥ 3 and q is a prime power with q ≡ 1 (mod 4).

Keywords: uniform hypergraph, self-complementary hypergraph, edge-transitive, ho-
mogeneous factorisation, homogeneous permutation group.

1. introduction

Let V be a finite (nonempty) set. For a positive integer k ≤ |V |, we use V {k} to
denote the set of all k-subsets of V . In this paper, a k-uniform hypergraph (or k-
hypergraph) with vertex set V and edge set E is a pair (V,E), where E is a subset of
V {k}. Note that a 2-hypergraph is a graph. For a set V of size n and a positive integer
k ≤ n, we set Kkn = (V, V {k}), which is called the complete k-hypergraph (on V ). Two
k-hypergraphs H1 = (V1, E1) and H2 = (V2, E2) are said to be isomorphic if there is a
bijection φ between V1 and V2 such that φ induces a bijection between E1 and E2, while
this bijection φ is called an isomorphism between H1 and H2.

Let H = (V,E) be a k-hypergraph. An isomorphism from H onto itself is called an
automorphism of H. Let AutH be the set of all automorphisms of H. Then AutH is
a subgroup of the symmetric group Sym(V ). Note that Sym(V ) acts transitively on
V {k}. Thus AutH = Sym(V ) if and only if either H = Kkn or E = ∅. For a subgroup
G ≤ AutH, the hypergraph H is said to be G-vertex-transitive or G-edge-transitive if G
acts transitively on V or E, respectively. The complement Hc of H is the k-hypergraph
(V, V {k} \ E). Note that AutH = AutHc. If there is an isomorphism τ : H → Hc, then
H is said to be self-complementary, while the isomorphism τ is called an antimorphism
of H.
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Self-complementary uniform hypergraphs have been extensively studied, see [14, 16,
18, 19, 20, 25] and the references therein for self-complementary graphs, and see [7,
8, 9, 23, 24] for self-complementary uniform hypergraphs. In particular, Peisert [21]
gave a complete classification for symmetric (i.e., vertex-transitive and edge-transitive)
self-complementary graphs.

Let k ≥ 1 and s ≥ 2 be integers. A factorisation of Kkn of index s is a partition
{E1, E2, . . . , Es} of V {k} into s disjoint subsets such that each k-hypergraph (V,Ei)
is a spanning subhypergraph, that is, for every i ∈ {1, 2, . . . , s}, each v ∈ V is con-
tained in some e ∈ Ei. For convenience, we sometimes call such a factorisation a
(k, s)-factorisation (on V ) of order n, and call the resulting k-hypergraphs (V,Ei) its
factors. Two (k, s)-factorisations F = {E1, E2, . . . , Es} on V and E on U are said to be
isomorphic, denoted by F ∼= E , if there is a bijection φ : V → U such that φ induces
a bijection V {k} → U{k} and E = {Eφ

i | 1 ≤ i ≤ s}, while this bijection φ is called an
isomorphism from F to E .

Let F = {E1, E2, . . . , Es} be a (k, s)-factorisation on V . An isomorphism from F to
itself is called an automorphism of F . Let AutF be the set of all automorphisms of F .
Then it is easily shown that AutF is just the subgroup of Sym(V ) which preserves the
partition F . For each 1 ≤ i ≤ s, set Hi = (V,Ei), and let Aut(F , Ei) be the subgroup
of AutF fixing Ei set-wise. Then Aut(F , Ei) ≤ AutHi. The factorisation F is said to
be factor-transitive if AutF acts transitively on the partition F , and vertex-transitive
(resp. edge-transitive) if further every factor Hi is Aut(F , Ei)-vertex-transitive (resp.
Aut(F , Ei)-edge-transitive). (Note that, for k = 2, the edge-transitivity of factorisations
considered in [15] is slightly more restricted than that given here.) The factorisation
F = {E1, E2, . . . , Es} is said to be homogeneous if ∩si=1Aut(F , Ei), the kernel of Aut(F)
acting on {E1, E2, . . . , Es}, is a transitive subgroup of Sym(V ). Note that a vertex-
transitive (k, 2)-factorisation if exists must be homogeneous.

Vertex-transitive factorisations of complete uniform hypergraphs are natural gener-
alizations of vertex-transitive self-complementary uniform hypergraphs. In fact, each
factor of a vertex-transitive (k, 2)-factorisation is a vertex-transitive self-complementary
k-hypergraph. Conversely, every vertex-transitive self-complementary k-hypergraph to-
gether with its complement gives a vertex-transitive (k, 2)-factorisation.

As generalizations of vertex-transitive self-complementary graphs, homogeneous fac-
torisations of complete graphs (complete 2-hypergraphs) were introduced in [17] (and for
graphs in general in [5]). The reader is referred to [5, 6, 11, 17] for the theory of homoge-
neous factorisations of graphs. In [15], Li, Lim and Praeger classified the homogeneous
factorisations of complete graphs with all factors admitting a common edge-transitive
group. This motivates us to consider in this paper the problem of classifying edge-
transitive homogeneous factorisations of complete k-hypergraphs, where k ≥ 3.

After collecting some preliminary results on permutation groups in Section 2, a global
analysing is given in Section 3 for edge-transitive homogeneous factorisations. In Section
4, some examples of edge-transitive homogeneous factorisations are constructed. Finally,
our main result is presented in Section 5.
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2. Preliminaries

In this section, we assume that V is a finite nonempty set.
Let G be a permutation group on V , that is, G is a subgroup of the symmetric group

Sym(V ). For a subset B ⊆ V , denote by GB and G(B) the subgroups of G fixing B
set-wise and point-wise, respectively. Then G(B) is normal in GB and is the kernel of
GB acting on B. If B is a singleton {v} then GB = G(B) = {g ∈ G | vg = v}. Write
Gv = {g ∈ G | vg = v}, and call it the stabilizer of v in G. For v ∈ V , the orbit of G
containing v is the subset vG := {vg | g ∈ G}. Note that |vG| equals to the index of

Gv in G, that is, |vG| = |G : Gv| = |G|
|Gv | . If G has only one orbit then G is said to be

transitive. The permutation group G is semiregular if Gv = 1 for all v ∈ V , and regular
if further G is transitive on V .

Let G be a transitive permutation group on V . A block of G is a nonempty subset
B ⊆ V such that for every g ∈ G, either Bg = B or Bg ∩ B = ∅. A block is trivial if
|B| = 1 or B = V , and nontrivial otherwise. Then G is primitive if it has only trivial
blocks. A partition B of V is G-invariant if Bg ∈ B for ∀B ∈ B and ∀g ∈ G. Clearly, if
B is a block then {Bg | g ∈ G} is a G-invariant partition. Conversely, for a G-invariant
partition B, every part B ∈ B is a block of G, and B = {Bg | g ∈ G}. For a block B
and v ∈ B, we have Gv ≤ GB. This simple fact leads to a bijection between certain
subgroups of G and blocks of G, refer to [4, Theorem 1.5A, p.13].

Lemma 2.1. Let G be a transitive permutation group on V . Then H 7→ vH defines a
bijection between the subgroups containing Gv and the blocks containing v. In particular,
G is primitive if and only if for v ∈ V , the stabilizer Gv is a maximal subgroup of G.

Let G be a transitive permutation group on V , and let B be a G-invariant partition of
V . Then G induces a transitive permutation group GB on B with kernel G(B) = ∩B∈BGB,
and GB ∼= G/G(B). An extreme case is that G(B) acts transitively on each part of B. By
[4, Theorem 1.6A, p.18], the following lemma holds.

Lemma 2.2. Let G be a transitive permutation group on V , and M a normal subgroup
of G. Then all M-orbits on V form a G-invariant partition B, and |B| is a divisor of
|G : M |. In particular, all M-orbits have the same length, and if G is primitive and
M 6= 1 then M is transitive.

A G-invariant partition B′ is a refinement of some G-invariant partition B if every
part of B is the union of some parts of B′. By Lemma 2.1, the following lemma is easily
shown.

Lemma 2.3. Let G be a transitive permutation group on V , and let B and B′ be G-
invariant partitions. Then B′ is a refinement of B if and only if B = ∪g∈GB(B′)g for
some B ∈ B and B′ ∈ B′.

Let k be an integer with 1 ≤ k ≤ |V |, and let V (k) be the set of all ordered k-subsets of
V . A permutation group G is k-transitive or k-homogeneous on V if G acts transitively
on V (k) or V {k}, respectively. A permutation group G on V is sharply k-transitive if it
is regular on V (k).

Clearly, a k-transitive permutation group is k-homogeneous, and a k-homogeneous
permutation group is also (|V | − k)-homogeneous. It is easy to see that for k ≥ 2,
a k-homogeneous permutation group is primitive. For k ≥ 2, all (finite) k-transitive
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permutation groups are known up to permutation isomorphism, see [2, 7.3 and 7.4] for
example. (Recall that two permutation groups G ≤ Sym(V ) and H ≤ Sym(U) are
permutation isomorphic if there is a bijection λ : V → U and a group isomorphism
φ : G → H satisfying λ(v)φ = λ(vφ) for all v ∈ V .) For 4 ≤ 2k ≤ |V |, Kantor
[12] determined all k-homogeneous but not k-transitive permutation groups, refer to [1,
p.290]. These classification results will be used in the following sections.

3. Global analysing

Let F = {E1, E2, . . . , Es} be an edge-transitive homogeneous (k, s)-factorisation on

V of order n and index s ≥ 2. Then |Ei| =
(nk )

s
< (nk) for 1 ≤ i ≤ s. For v ∈ V , set

Ei(v) = {e ∈ Ei | v ∈ e}. Noting that ∩si=1Aut(F , Ei) is transitive on V , the size |Ei(v)|
is independent of the choice of v. We have n|Ei(v)| = |Ei|k = k

(nk )

s
< k(nk). It follows that

2 ≤ k ≤ n−2. For each i ≤ s, set Eop
i = {V \e | e ∈ Ei}. Let Fop = {Eop

1 , E
op
2 , . . . , E

op
s }.

The following lemma is trivial, which allows us to assume that 2k ≤ n.

Lemma 3.1. AutF = AutFop, Aut(F , Ei) = Aut(Fop, Eop
i ), and Fop is an edge-transitive

homogeneous (n− k, s)-factorisation of order n.

For the rest of this section, we assume that 4 ≤ 2k ≤ n and M ≤ G ≤ AutF such
that

(a) M is normal in G and lies in the kernel of G acting on {E1, E2, . . . , Es}; and
(b) M is transitive but not k-homogeneous on V , and G is k-homogeneous on V .

Note that such G and M always exist, for example, G = AutF and M = ∩si=1Aut(F , Ei).
Claim 1. F = {E1, E2, . . . , Es} is a G-invariant partition of V {k}, and MGe ≤ GEi

for e ∈ Ei ∈ F .

Proof. By the choice of G, we know that G is transitive on V {k} and preserves the
factorisation F = {E1, E2, . . . , Es}. In particular, each Ei ∈ F is a block of G acting on
V {k}, and so Ge ≤ GEi for e ∈ Ei. Since M fixes each Ei set-wise, the claim follows. �

Claim 2. All M -orbits on V {k} have the same length |M : Me| for any given e ∈ V {k},
and the number of M -orbits on each Ei is equal to t :=

|GEi :M |
|Ge:Me| =

(nk )

s|M :Me| .

Proof. Since M is normal in G and G is transitive on V {k}, all M -orbits on V {k} have
the same length, see Lemma 2.2. Let t be the number of M -orbits on Ei. Note that

every M -orbit on V {k} has length |M : Me|, where e ∈ V {k}. Then t = |Ei|
|M :Me| . Without

loss of generality, we let e ∈ Ei. Then |Ei| = |GEi : Ge|, and so t =
|GEi :Ge|
|M :Me| =

|GEi |
|M |

|Me|
|Ge| =

|GEi :M |
|Ge:Me| . On the other hand, we have |Ei| = |V {k}|

s
=

(nk )

s
. Then the claim follows. �

For each i ∈ {1, 2, . . . , s}, denote by Ei = {Ej
i | 1 ≤ j ≤ t} the set of M -orbits on Ei.

Set E = ∪si=1Ei. Then we have the next two claims.

Claim 3. E is a G-invariant refinement of F and an edge-transitive homogeneous
(k, st)-factorisation of order n, and {Ei | 1 ≤ i ≤ s} is a G-invariant partition of E ; in
particular, if G induces a primitive permutation group GE on E then F = E .
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Proof. Note that E consists of all M -orbits on V {k}, and |E| = st. Since M is normal
in G, we know that E is a G-invariant partition of V {k}, see Lemma 2.2. Then the first
part of this claim follows. Considering the transitive action induced by G on E , each Ei
is in fact an orbit of GEi , and GEi = GEi . For E ∈ Ei, recalling that Ei is a block of G
acting on V {k}, we have GE ≤ GEi . Then Ei is a block of G acting on E , see Lemma 2.1.
Thus {Ei | 1 ≤ i ≤ s} is a G-invariant partition of E . If G acts primitively on E then Ei
has size 1, and so Ei = {Ei}, yielding F = E . Then our claim holds. �

Claim 4. GE = MGe for e ∈ E ∈ E and, if E ⊆ Ei then Ei = ∪g∈GEiE
g.

Proof. Let E ∈ E . Then E is a block of G acting on V {k}. Thus Ge ≤ GE for e ∈ E,
and GE is transitive on E. Since M is transitive on E, we have GE = MGe. Then this
claim follows from Claim 3 and Lemma 2.3. �

Assume further that k ≥ 3. Since G is k-homogeneous, G is (k − 1)-transitive on
V , refer to [4, Theorem 9.4B]. Then G has a unique minimal normal subgroup (see
[4, Theorem 7.2B] for example), which is either a finite nonabelian simple group or
isomorphic to Zdp for some prime p and integer d ≥ 1. Clearly, this minimal normal
subgroup is contained in M . Recalling that M is not k-homogeneous on V , the next
lemma follows from [12].

Lemma 3.2. Let 6 ≤ 2k ≤ n, and let G and M be as above. If G is not k-transitive on
V then, up to permutation isomorphism, one of the following occurs:

(I) k = 3, n = 8, and the pair (G,M) is (AGL(1, 8),Z3
2) or (AΓL(1, 8),Z3

2);
(II) k = 3, n = 32, and the pair (G,M) is (AΓL(1, 32),Z5

2) or (AΓL(1, 32),Z5
2:Z31);

(III) k = 4, n = 32, M = PSL(2, 32), and G = PΓL(2, 32) is 4-homogeneous on V .

We next determine the k-transitive candidates of G. In this case, G is a 3-transitive
permutation group of degree n. All 3-transitive finite permutation groups are explicitly
known, refer to [2, 7.3 and 7.4]. Then we have the following lemma.

Lemma 3.3. Assume that G is k-transitive on V . Then k = 3 and, up to permutation
isomorphism, one of the following occurs:

(IV) G = AGL(d, 2) with d ≥ 3, M = Zd2 and n = 2d;
(V) G = Z4

2:A7 < AGL(4, 2), M = Z4
2 and n = 16;

(VI) PSL(2, q) ≤ M ≤ PΣL(2, q) and PGL(2, q) ≤ G ≤ PΓL(2, q) with 5 ≤ q =
n− 1 ≡ 1 (mod 4).

Proof. Let N be the minimal normal subgroup of G. Assume first that N ∼= Zdp for

some prime p and integer d ≥ 1. Then 6 ≤ 2k ≤ n = |V | = pd. By [2, 7.3], one of parts
(IV) and (V) occurs.

Assume that N is nonabelian simple. Checking Table 7.4 given in [2, 7.4], we know
that either k = 3 and N = PSL(2, q) with odd q, or N is k-transitive. Recall N ≤M and
M is not a k-homogeneous permutation group on V . We have k = 3 and N = PSL(2, q)
with odd q = n − 1. Moveover, [12, Theorem 1] yields that q ≡ 1 (mod 4). Then part
(VI) follows. �
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Based on the above argument, we can formulate a method to construct up to isomor-
phism all possible edge-transitive homogeneous (k, s)-factorisations of order n, where
6 ≤ 2k ≤ n and s ≥ 2.

Construction 3.4. Let G be a permutation group on V described as in one of (I)-(VI),
and let M be the minimal normal subgroup of G. Take a k-subset e of V and v ∈ e.
Then G = MGv. Take a subgroup H of Gv such that Ge ≤ MH 6= G. Let E1 = eMH ,
the MH-orbit containing e. Then E1 consists of |MH : (MGe)| orbits of M on V {k}.
It is easily shown that F := {Eg

1 | g ∈ G} is an edge-transitive homogeneous (k, s)-
factorisations on V , where s = |G : (MH)|. Write G = ∪si=1MHgi with gi ∈ Gv and
g1 = 1, and set Ei = Egi

1 for 1 ≤ i ≤ s. It is easily shown that F = {Ei | 1 ≤ i ≤ s}.

4. Examples

In this section we construct some edge-transitive homogeneous (k, s)-factorisations of
order n, where s ≥ 2 and 6 ≤ 2k ≤ n.

For a prime power q, denote by Fq the finite field of order q, and F∗q the multiplicative
group of Fq. Then F∗q is cyclic and of order q − 1. For an integer d ≥ 1, denote by

Fdq the d-dimensional vector space over Fq. For each vector u ∈ Fdq , denote by τu the

translation Fdq → Fdq , v 7→ v + u. Set T (d, q) = {τu | u ∈ Fdq}. Then T (d, q) is normal
in AΓL(d, q), AGL(d, q) = T (d, q):GL(d, q) and AΓL(d, q) = T (d, q):ΓL(d, q). Write
q = pf for some prime p. Let σ be the Frobenius automorphism of the filed Fq, that
is, σ : Fq → Fq, ξ 7→ ξp. Then ΓL(d, q) = GL(d, q):〈σ〉 and AΓL(d, q) = AGL(d, q):〈σ〉,
where σ acts componentwise on the vectors in Fdq .

4.1. Factorisations arising from the affine geometry AG(d, 2). Let d ≥ 3 be an
integer. Note that each 3-subset of Fd2 is contained in a unique 2-dimensional affine
subspace v + U , where v ∈ Fd2 and U is a 2-dimensional subspace of Fd2. This allows us
to give a partition of (Fd2){3} whose parts are indexed by the 2-dimensional subspaces of
Fd2.
Example 4.1. For a 2-dimensional subspace U of Fd2, let EU = ∪v∈Fd2(v + U){3}. Then

|EU | = 2d, and {EU | U a 2-dimensional subspace of Fd2} is a partition of (Fd2){3}. Clear-
ly, the number of parts of this partition is equal to the number of 2-dimensional subspaces

of Fd2, which is (2d−1)(2d−1−1)
3

. Thus we have a (3, (2
d−1)(2d−1−1)

3
)-factorisation of order 2d,

namely,
F

(2d;3,
(2d−1)(2d−1−1)

3
)

= {EU | U a 2-dimensional subspace of Fd2}.

It is easily shown that, for each 2-dimensional subspace U of Fd2, the set EU is an orbit
of T (d, 2) on (Fd2){3}; in fact, T (d, 2) acts regularly on EU . Since T (d, 2) is normal in
AGL(d, 2) and AGL(d, 2) is transitive on (Fd2){3}, we know that F

(2d;3,
(2d−1)(2d−1−1)

3
)

is an

edge-transitive homogeneous (3, (2
d−1)(2d−1−1)

3
)-factorisation of order 2d. In particular,

AGL(d, 2) ≤ AutF
(2d;3,

(2d−1)(2d−1−1)
3

)
.

By Lemmas 3.2 and 3.3, we conclude that

AutF
(2d;3,

(2d−1)(2d−1−1)
3

)
= AGL(d, 2).
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Lemma 4.2. Let E be the set of T (d, 2)-orbits on (Fd2){3}. Then AGL(d, 2) induces a
primitive permutation group on E.

Proof. Let G = AGL(d, 2), M = T (d, 2) and H = GL(d, 2). Then G = M :H, and
M lies in the kernel G(E) of G acting on the G-invariant partition E . Since d ≥ 3, we
know that H ∼= PSL(d, q) is simple. It follows that G(E) = M . Thus GE is permutation
isomorphic to HE , and HE ∼= HM/M ∼= H. Take E ∈ E . Then there is a 2-dimensional
subspace U of Fd2 such that

E = ∪v∈Fd2(v + U){3}.

Then HU ≤ HE. It is well-known that H = GL(d, 2) acts primitively on the set of
2-dimensional subspaces of Fd2. Then HU is a maximal subgroup of H by Lemma 2.1.
Since M is intransitive on (Fd2){3}, we have G 6= MGe = GE, where e ∈ E. Noting
that GE = GE ∩ (MH) = M(GE ∩H) = MHE, we have HE 6= H. Thus HE = HU is
maximal in H. Then HE is primitive by Lemma 2.1, and hence GE is primitive. �

Noting that F2d is a d-dimensional vector space over the field F2 of order 2, we may
construct F(8;3,7) and F(32;3,155) alternatively as in the following two examples.

Example 4.3. Let V = F8, and set F∗8 = 〈η〉. Then V = {0, ηi | 1 ≤ i ≤ 7}. It is easily
shown that AGL(1, 8) is regular on V {3}. For 1 ≤ i ≤ 7, take ei = {0, ηi−1, ηi} ∈ V {3},
and let Ei = {{ξ, ηi−1 + ξ, ηi + ξ} | ξ ∈ F8}. Then Ei = e

T (1,8)
i , and {Ei | 1 ≤ i ≤ 7} is a

partition of V {3}. Note that, identifying F8 with F3
2, the group AGL(1, 8) is permutation

isomorphic to a 3-homogeneous subgroup of AGL(3, 2) with T (1, 8) corresponding to
T (3, 2). It follows that {Ei | 1 ≤ i ≤ 7} is isomorphic to F(8;3,7).

Example 4.4. Let V = F32, and set F∗32 = 〈η〉. Then V = {0, ηi | 1 ≤ i ≤ 31}.
For 1 ≤ i ≤ 31 and 1 ≤ j ≤ 5, take eij = {0, η(i−1)2j−1

, ηi2
j−1} ∈ V {3}, and let Ei

j =

{{ξ, η(i−1)2j−1
+ ξ, ηi2

j−1
+ ξ} | ξ ∈ F32}. Set

F = {Ei
j | 1 ≤ i ≤ 31, 1 ≤ j ≤ 5}.

It is easy to check that each Ei
j is a T (1, 32)-orbit containing eij, AutF ≥ AΓL(1, 32) and

F is an edge-transitive homogeneous (3, 155)-factorisation of order 32. Note that, identi-
fying F32 with F5

2, the group AΓL(1, 32) is permutation isomorphic to a 3-homogeneous
subgroup of AGL(5, 2) with T (1, 32) corresponding to T (5, 2). It follows that F ∼=
F(32;3,155).

In the following example, we construct two edge-transitive homogeneous factorisations
of order 32 from F(32;3,155).

Example 4.5. Let V and Ei
j be as Example 4.4.

(1) For 1 ≤ j ≤ 5, let Ej = ∪31i=1E
i
j. Then each Ej is one of the AGL(1, 32)-orbits on

V {3}, and AΓL(1, 32) is regular on V {3}. Set

F(32;3,5) = {Ej | 1 ≤ j ≤ 5}.
Then F(32;3,5) is an edge-transitive homogeneous (3, 5)-factorisation of order 32.

(2) For 1 ≤ i ≤ 31, let Ei = ∪5j=1E
i
j. Set

F(32;3,31) = {Ei | 1 ≤ i ≤ 31}.
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It is easy to see that E1 is a (T (1, 32):〈σ〉)-orbit, where σ is the Frobenius automorphism
of F32. By Construction 3.4, we conclude that F(32;3,31) is an edge-transitive homogeneous
(3, 31)-factorisation of order 32.

Lemma 4.6. AutF(32;3,5) = AutF(32;3,31) = AΓL(1, 32).

Proof. Let s ∈ {5, 31}. Then AutF(32;3,s) ≥ AΓL(1, 32). Suppose that AutF(32;3,s) 6=
AΓL(1, 32). Then, by Lemmas 3.2 and 3.3, we conclude that AutF(32;3,s) is permutation
isomorphic to AGL(5, 2). Thus F(32;3,s) is isomorphic to an edge-transitive homogeneous
(3, s)-factorisation F ′ (of order 32) arising from the action of AGL(5, 2) on the vector
space F5

2. Note that AGL(5, 2) has a unique proper normal subgroup, which is T (5, 2).
Let E be the set of T (5, 2)-orbits on (F5

2)
{3}. Then E = F(32;3,155), see Example 4.1. By

Claim 3 and Lemma 4.2, we get F ′ = E = F(32;3,155). Thus F(32;3,s)
∼= F(32;3,155), yielding

s = 155, a contradiction. This completes the proof. �

4.2. Factorisations arising from the projective line PG(1, q). Let q = pf , where p
is a prime and f is a positive integer. For a nonzero vector (α, β) ∈ F2

q, denote by [α, β]
the 1-dimensional subspace spanned by (α, β). Then the projective line PG(1, q) over
the field Fq can be identified with Fq ∪ {∞} by

[ξ, 1] 7→ ξ, [1, 0] 7→ ∞, ξ ∈ Fq.
The group PGL(2, q) then consists of all fractional linear mappings of the form

tαβγδ : ξ 7→ αξ + β

γξ + δ
, α, β, γ, δ ∈ Fq with αδ − βγ 6= 0

acting sharply 3-transitively on Fq ∪ {∞}, where α∞+β
γ∞+δ

= αγ−1 for γ 6= 0, α∞+β
δ

= ∞
for α 6= 0 and ζ

0
= ∞ for ζ ∈ F∗q. Note that tαβγδ = tα′β′γ′δ′ if and only if the vector

(α′, β′, γ′, δ′) is a nonzero multiple of (α, β, γ, δ). Further,

PSL(2, q) = {tαβγδ | α, β, γ, δ ∈ Fq with αδ − βγ a nonzero square in Fq}.
The Frobenius automorphism of Fq induces a permutation on PG(1, q) by σ : ξ 7→ ξp

with ∞p = ∞. Then tσαβγδ = tαpβpγpδp , PΓL(2, q) = PGL(2, q):〈σ〉 and PΣL(2, q) =
PSL(2, q):〈σ〉. (See [1, p.192] and [4, p.242] for example.)

Let e = {0, 1,∞}. Noting that PGL(2, q) is sharply 3-transitive, we have PGL(2, q)e ∼=
S3. Since |PGL(2, q) : PSL(2, q)| ≤ 2, we know that |PSL(2, q)e| is divisible by 3. Let
g ∈ PGL(2, q)e such that 1g = 1 and 0g = ∞. Then g = t0ββ0 for 0 6= β ∈ Fq, and so
g ∈ PSL(2, q)e if and only if −β2 is a square in Fq, i.e., either q is even or q ≡ 1 (mod 4).
Thus PGL(2, q)e = PSL(2, q)e if and only if either q is even or q ≡ 1 (mod 4).

Example 4.7. Let V = PG(1, q) with q ≡ 1 (mod 4). Then PSL(2, q) has exactly two
orbits on V {3}, and PGL(2, q) = PSL(2, q)∪PSL(2, q)tη001, where η is a generator of the
multiplicative group of Fq. Set

E1 = {{β
δ
,
α + β

γ + δ
,
αη + β

γη + δ
} | α, β, γ, δ ∈ Fq, αδ − βγ = η2i−1, 1 ≤ i ≤ q − 1

2
}

and

E2 = {{β
δ
,
α + β

γ + δ
,
αη + β

γη + δ
} | α, β, γ, δ ∈ Fq, αδ − βγ = η2i, 1 ≤ i ≤ q − 1

2
}.
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Then E1 and E2 are distinct PSL(2, q)-orbits, and E
tη001
1 = E2. Moreover, since PSL(2, q)

is normal in PΓL(2, q), it is easily shown that {E1, E2} is PΓL(2, q)-invariant. Thus
F(q+1;3,2) = {E1, E2} is an edge-transitive homogeneous (3, 2)-factorisation of order q+1.
Moreover, by Lemmas 3.2 and 3.3, we conclude that AutF(q+1;3,2) = PΓL(2, q).

Remark 4.8. The factors of F(q+1;3,2) constructed in Example 4.7 are complementary 3-
hypergraphs admitting a 2-transitive group of automorphisms, which are essentially due
to Taylor [26, Example 6.2]. Noting that AutF(q+1;3,2) contains an element interchanging
the parts of F(q+1;3,2), those two 3-hypergraphs are self-complementary. Moreover, by
[22, 27], a 3-hypergraph with 2-transitive automorphism group is self-complementary if
and only if it is isomorphic to the factors of F(q+1;3,2).

Example 4.9. Let V = PG(1, 32). Then, by Lemma 3.2, PΓL(2, 32) is 4-homogeneous
but not 4-transitive on V (see also [1, 6.18, p.196]). Let e = {0, 1, η, η2}, where η
is a generator of the multiplicative group of F32. Then PΓL(2, 32)e has order 4. S-
ince |PΓL(2, 32) : PSL(2, 32)| = 5, we have PΓL(2, 32)e < PSL(2, 32). It follows that
PSL(2, 32) has 5 obits on V {4}. Note that PΓL(2, 32) = ∪5i=1PSL(2, 32)σi−1, where σ is
the Frobenius automorphism of the field F32. We may write those five orbits as follows:

Ei = {{β
δ
,
α + β

γ + δ
,
αη2

i−1
+ β

γη2i−1 + δ
,
αη2

i
+ β

γη2i + δ
} | α, β, γ, δ ∈ F32, αδ − βγ 6= 0}, 1 ≤ i ≤ 5.

Set
F(33;4,5) = {Ei | 1 ≤ 5 ≤ i}.

Then F(33;4,5) is an edge-transitive homogeneous (4, 5)-factorisation of order 33. By
Lemmas 3.2 and 3.3, we conclude that AutF(33;4,5) = PΓL(2, 32).

5. The main result

Now we are ready to state and prove our main result.

Theorem 5.1. Let F be an edge-transitive homogeneous (k, s)-factorisation of order n,
where s ≥ 2 and 6 ≤ 2k ≤ n. Then F ∼= F(n;k,s) with n, k, s and AutF(n;k,s) listed in
Table 1 and defined in one of the examples in Section 4.

n k s Aut Kernel Condition Reference
32 3 5 AΓL(1, 32) AGL(1, 32) Example 4.5 (1)
32 3 31 AΓL(1, 32) T (1, 32) Example 4.5 (2)
33 4 5 PΓL(2, 32) PSL(2, 32) Example 4.9

2d 3 (2d−1)(2d−1−1)
3

AGL(d, 2) T (d, 2) d ≥ 3 Example 4.1
q + 1 3 2 PΓL(2, q) PΣL(2, q) q ≡ 1 (mod 4) Example 4.7

Table 1. Edge-transitive homogeneous factorisations

Proof. Assume that F = {Ei | 1 ≤ i ≤ s} is an edge-transitive homogeneous (k, s)-
factorisation on V of order n. Take M�G ≤ AutF such that M fixes every Ei set-wise, G
is transitive on V {k} and M is transitive on V . Then, up to isomorphism of factorisations,
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we may let G be one of the k-homogeneous permutation groups listed in Lemmas 3.2
and 3.3. Recall that G has a unique minimal normal subgroup, which is transitive on
V . We choose M to be the minimal normal subgroup of G. Let E be the set of M -orbits
on V {k}. Then E is a refinement of F . We next deal with all possible candidates of G
one by one.

Let G be as in (I) of Lemma 3.2. Then k = 3, and we may choose V = F8 and
M = T (1, 8). Recall that every Ei is the union of some M -orbits on V {3}. Since
|V {3}| = 56 and G contains a regular subgroup AGL(1, 8) (acting on V {3}), the only
possibility is that every Ei has size 8 and is an M -orbit. Then, identifying F8 with F3

2,
we have F ∼= F(8;3,7), see Example 4.3. Thus line 4 of Table 1 occurs.

Let G = AΓL(1, 32) be as in (II) of Lemma 3.2. Then k = 3, and we may choose V =
F32 and M = T (1, 32). If F is the set of M -orbits, that is, F = E , then F ∼= F(32;3,155)

by a similar argument as above (see also Example 4.4), and so line 4 of Table 1 occurs.
Thus we assume that every E ∈ F consists of more than one M -orbits. Then MGe ≤
GE 6= MGe for e ∈ E, see Claims 1-4. Since 32 · 31 · 5 = |AΓL(1, 32)| = |V {3}|, we know
that G is regular on V {3}, and so Ge = 1. Checking the subgroups of G = AΓL(1, 32),
we conclude that either GE = AGL(1, 32) or GE is conjugate to T (1, 32):〈σ〉, where
σ is the Frobenius automorphism of F32. Thus F is isomorphic to one of F(32;3,5) and
F(32;3,31), which are constructed in Example 4.5. By Lemma 4.6, one of the first two
lines of Table 1 follows.

Let G = PΓL(2, 32) be as in (III) of Lemma 3.2. Then k = 4, and we may choose
V = PG(1, 32) = F32 ∪ {∞} and M = PSL(2, 32). By the argument given in Example
4.9, we know that M has 5-orbits on V {4}. In particular, G acts primitively on the set
E of M -orbits. Then, by Claim 3, we have F = E . Then F is (isomorphic to) the
factorisation F(33;4,5) given in Example 4.9, and hence line 3 of Table 1 follows.

Let G = AGL(d, 2) be as in (IV) of Lemma 3.3. Then k = 3, V = Fd2, M = T (d, 2)
and E = F

(2d;3,
(2d−1)(2d−1−1)

3
)
. By Lemma 4.2, GE is primitive. Thus F = E by Claim 3,

and so line 4 of Table 1 follows.
Let G = Z4

2:A7 be as in (V) of Lemma 3.3. Then E = F(16;3,35). Arguing similarly as
in the proof of Lemma 4.2, GE is permutation isomorphic to a transitive subgroup A7 of
GL(4, 2) acting on the 35 2-dimensional subspaces of F4

2. Checking the subgroups of A7

in the Atlas [3], we know that every subgroup of A7 with index 35 is maximal. It follows
from Lemma 2.1 that GE is primitive. Then F = E , and so line 4 of Table 1 occurs.

Finally, if G is described as in (VI) of Lemma 3.3, then line 5 of Table 1 follows from
the argument in Example 4.7. �

A k-hypergraph is said to be symmetric if it is both vertex-transitive and edge-
transitive. Note that there is a bijection (V,E) 7→ (V,Eop) between self-complementary
k-hypergraphs and self-complementary (n− k)-hypergraphs of order n. The next result
is a direct consequence of Theorem 5.1.

Corollary 5.2. Let k and n be positive integers with 6 ≤ 2k ≤ n. Then there exists
a symmetric self-complementary k-hypergraph of order n if and only if k = 3, n − 1 ≡
1 (mod 4) and n− 1 is a power of some odd prime.
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Let H be an edge-transitive self-complementary 3-hypergraph of order n. Then n ≥
5. Noting that the 5-cycle is a symmetric self-complementary 2-hypergraph, the next
corollary follows.

Corollary 5.3. There exists a symmetric self-complementary 3-hypergraph of order n ≥
5 if and only if either n = 5, or n− 1 ≡ 1 (mod 4) and n− 1 is a prime power.

We end this paper by the following remark on Theorem 5.1.

Remark 5.4. Let n, k and t be positive integers with n > k ≥ t.
(1) A k-hypergraph H = (V,E) on n vertices is t-subset regular if there is a constant

λ ≥ 1 such that each t-subset of V is contained in exactly λ edges. Let F be one of the
factorisations in Theorem 5.1. Then the factors of F are t-subset regular k-hypergraphs
with t and λ listed in Table 2. The reader is referred to [10, 13, 23, 24] for more examples
and results on t-subset regular hypergraphs.

n k s, N t λ Condition
32 3 5 2 6
32 3 31 1 15
33 4 5 3 6

2d 3 (2d−1)(2d−1−1)
3

1 3 d ≥ 3
q + 1 3 2 2 q−1

2
q ≡ 1 (mod 4)

Table 2. The parameters t and λ.

(2) Recall that a large set of t-(n, k, λ) designs of size N , denoted by LS[N ](t, k, n),
is a partition of the set of all k-subsets of an n-set into block sets of N disjoint t-
(n, k, λ) designs, where Nλ = (n−tk−t). Let F be one of the factorisations in Theorem
5.1. Note that a t-subset regular k-hypergraph is a t-(n, k, λ) design, where λ is number
of edges containing a given t-subset. Then, using terminology from design theory, F
is an LS[N ](t, k, n) in which all designs are flag-transitive and admit a common point-
transitive group, where N , t, k and n are listed in Table 2.
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