EDGE-TRANSITIVE HOMOGENEOUS FACTORISATIONS OF
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ABSTRACT. For a finite set V and a positive integer & with £ < n := |V, letting
V1ik} be the set of all k-subsets of V, the pair KF := (V,V{¥}) is called the com-
plete k-hypergraph on V', while each k-subset of V is called an edge. A factorisation
of the complete k-hypergraph KF of index s > 2, simply a (k, s)-factorisation of or-
der n, is a partition {Ej, Es,..., Es} of the edges into s disjoint subsets such that
each k-hypergraph (V, E;), called a factor, is a spanning subhypergraph of KF. Such
a factorisation is homogeneous if there exist two transitive subgroups G and M of
the symmetric group of degree n such that G induces a transitive action on the set
{E1,Es,...,Es} and M lies in the kernel of this action.

In this paper, we give a classification of homogeneous factorisations of ¥ which
admit a group acting transitively on the edges of k. It is shown that, for 6 < 2k <n
and s > 2, there exists an edge-transitive homogeneous (k, s)-factorisation of order n if

and only if (n, k,s) is one of (32,3,5), (32,3,31), (33,4,5), (24,3, Z=0CT =1y 45q
(¢g+1,3,2), where d > 3 and ¢ is a prime power with ¢ = 1 (mod 4).

KEYWORDS: uniform hypergraph, self-complementary hypergraph, edge-transitive, ho-
mogeneous factorisation, homogeneous permutation group.

1. INTRODUCTION

Let V be a finite (nonempty) set. For a positive integer k& < |V, we use VI* to
denote the set of all k-subsets of V. In this paper, a k-uniform hypergraph (or k-
hypergraph) with vertex set V' and edge set E is a pair (V, F), where E is a subset of
V1 Note that a 2-hypergraph is a graph. For a set V of size n and a positive integer
k < n, we set KF = (V,VI¥) which is called the complete k-hypergraph (on V). Two
k-hypergraphs H; = (V4, E1) and Hy = (Va, Ey) are said to be isomorphic if there is a
bijection ¢ between V; and V5 such that ¢ induces a bijection between E; and FEs, while
this bijection ¢ is called an isomorphism between H; and H.

Let H = (V, E) be a k-hypergraph. An isomorphism from H onto itself is called an
automorphism of H. Let AutH be the set of all automorphisms of H. Then AutH is
a subgroup of the symmetric group Sym(V). Note that Sym(V') acts transitively on
Vi Thus AutH = Sym(V) if and only if either H = K* or E = (). For a subgroup
G < AutH, the hypergraph H is said to be G-vertex-transitive or G-edge-transitive if G
acts transitively on V' or E, respectively. The complement H¢ of H is the k-hypergraph
(V,ViE\ E). Note that AutH = AutH°. If there is an isomorphism 7 : H — H¢, then
H is said to be self-complementary, while the isomorphism 7 is called an antimorphism

of H.
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Self-complementary uniform hypergraphs have been extensively studied, see [14, 16,
18, 19, 20, 25| and the references therein for self-complementary graphs, and see [7,
8, 9, 23, 24] for self-complementary uniform hypergraphs. In particular, Peisert [21]
gave a complete classification for symmetric (i.e., vertex-transitive and edge-transitive)
self-complementary graphs.

Let £ > 1 and s > 2 be integers. A factorisation of K¥ of index s is a partition
{E|,E,,...,E,} of VI*} into s disjoint subsets such that each k-hypergraph (V, E;)
is a spanning subhypergraph, that is, for every i € {1,2,...,s}, each v € V is con-
tained in some e € FE;. For convenience, we sometimes call such a factorisation a
(k, s)-factorisation (on V') of order n, and call the resulting k-hypergraphs (V, E;) its
factors. Two (k, s)-factorisations F = {F4, Es, ..., Es} on V and € on U are said to be
isomorphic, denoted by F = £, if there is a bijection ¢ : V' — U such that ¢ induces
a bijection VI — U and € = {E? | 1 < i < s}, while this bijection ¢ is called an
1somorphism from F to &.

Let F = {Ey, Es, ..., Es} be a (k, s)-factorisation on V. An isomorphism from F to
itself is called an automorphism of F. Let AutF be the set of all automorphisms of F.
Then it is easily shown that AutF is just the subgroup of Sym(V') which preserves the
partition F. For each 1 <1 <'s, set H; = (V, E;), and let Aut(F, E;) be the subgroup
of AutF fixing E; set-wise. Then Aut(F, E;) < AutH;. The factorisation F is said to
be factor-transitive if AutF acts transitively on the partition F, and vertex-transitive
(resp. edge-transitive) if further every factor H; is Aut(F, E;)-vertex-transitive (resp.
Aut(F, E;)-edge-transitive). (Note that, for k = 2, the edge-transitivity of factorisations
considered in [15] is slightly more restricted than that given here.) The factorisation
F ={E1, Es, ..., Es} is said to be homogeneous if N{_,Aut(F, E;), the kernel of Aut(F)
acting on {Ey, Fs, ..., Es}, is a transitive subgroup of Sym(V'). Note that a vertex-
transitive (k,2)-factorisation if exists must be homogeneous.

Vertex-transitive factorisations of complete uniform hypergraphs are natural gener-
alizations of vertex-transitive self-complementary uniform hypergraphs. In fact, each
factor of a vertex-transitive (k, 2)-factorisation is a vertex-transitive self-complementary
k-hypergraph. Conversely, every vertex-transitive self-complementary k-hypergraph to-
gether with its complement gives a vertex-transitive (k, 2)-factorisation.

As generalizations of vertex-transitive self-complementary graphs, homogeneous fac-
torisations of complete graphs (complete 2-hypergraphs) were introduced in [17] (and for
graphs in general in [5]). The reader is referred to [5, 6, 11, 17] for the theory of homoge-
neous factorisations of graphs. In [15], Li, Lim and Praeger classified the homogeneous
factorisations of complete graphs with all factors admitting a common edge-transitive
group. This motivates us to consider in this paper the problem of classifying edge-
transitive homogeneous factorisations of complete k-hypergraphs, where k£ > 3.

After collecting some preliminary results on permutation groups in Section 2, a global
analysing is given in Section 3 for edge-transitive homogeneous factorisations. In Section
4, some examples of edge-transitive homogeneous factorisations are constructed. Finally,
our main result is presented in Section 5.
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2. PRELIMINARIES

In this section, we assume that V' is a finite nonempty set.

Let G be a permutation group on V, that is, GG is a subgroup of the symmetric group
Sym(V'). For a subset B C V, denote by G and G(p) the subgroups of G fixing B
set-wise and point-wise, respectively. Then G (py is normal in G and is the kernel of
Gp acting on B. If B is a singleton {v} then Gp = Gy = {g € G | vI = v}. Write
G, = {9 € G| v9 = v}, and call it the stabilizer of v in G. For v € V| the orbit of G
containing v is the subset v“ := {09 | ¢ € G}. Note that [v“| equals to the index of

G, in G, that is, 0% = |G : G,| = % If G has only one orbit then G is said to be
transitive. The permutation group G is semireqular if G, =1 for all v € V, and reqular
if further G is transitive on V.

Let G be a transitive permutation group on V. A block of G is a nonempty subset
B C V such that for every g € G, either BY = B or BY N B = (). A block is trivial if
|B| =1 or B =V, and nontrivial otherwise. Then G is primitive if it has only trivial
blocks. A partition B of V' is G-invariant if B9 € B for VB € B and Vg € G. Clearly, if
B is a block then {BY | g € G} is a G-invariant partition. Conversely, for a G-invariant
partition B, every part B € B is a block of G, and B = {BY | ¢ € G}. For a block B
and v € B, we have GG, < Gg. This simple fact leads to a bijection between certain
subgroups of G and blocks of G, refer to [4, Theorem 1.5A, p.13].

Lemma 2.1. Let G be a transitive permutation group on V. Then H — v defines a
bijection between the subgroups containing G, and the blocks containing v. In particular,
G is primitive if and only if for v € V', the stabilizer G, is a mazximal subgroup of G.

Let G be a transitive permutation group on V', and let B be a G-invariant partition of
V. Then G induces a transitive permutation group G® on B with kernel G = NBesGs,
and G® = G/Gp). An extreme case is that G(g) acts transitively on each part of B. By
[4, Theorem 1.6A, p.18], the following lemma holds.

Lemma 2.2. Let G be a transitive permutation group on V', and M a normal subgroup
of G. Then all M-orbits on V' form a G-invariant partition B, and |B| is a divisor of
|G : M|. In particular, all M-orbits have the same length, and if G is primitive and
M # 1 then M is transitive.

A G-invariant partition B’ is a refinement of some G-invariant partition B if every
part of B is the union of some parts of 5’. By Lemma 2.1, the following lemma is easily
shown.

Lemma 2.3. Let G be a transitive permutation group on V, and let B and B’ be G-
invariant partitions. Then B’ is a refinement of B if and only if B = Ugeq,(B')? for
some B € B and B' € B'.

Let k be an integer with 1 < k < [V, and let V*) be the set of all ordered k-subsets of
V. A permutation group G is k-transitive or k-homogeneous on V' if G acts transitively
on V® or VI respectively. A permutation group G on V is sharply k-transitive if it
is regular on V*).

Clearly, a k-transitive permutation group is k-homogeneous, and a k-homogeneous
permutation group is also (|V| — k)-homogeneous. It is easy to see that for & > 2
a k-homogeneous permutation group is primitive. For & > 2, all (finite) k-transitive
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permutation groups are known up to permutation isomorphism, see [2, 7.3 and 7.4] for
example. (Recall that two permutation groups G < Sym(V) and H < Sym(U) are
permutation isomorphic if there is a bijection A : V' — U and a group isomorphism
¢ : G — H satisfying A(v)? = A(v?) for all v € V.) For 4 < 2k < |V], Kantor
[12] determined all k-homogeneous but not k-transitive permutation groups, refer to [1,
p-290]. These classification results will be used in the following sections.

3. GLOBAL ANALYSING

Let F = {Ey, Es, ..., Es} be an edge-transitive homogeneous (k, s)-factorisation on
V' of order n and index s > 2. Then |E;| = %) < () for1 <i<s. ForvelV, set
E;(v) = {e € E; | v € e}. Noting that N{_,Aut(F, E;) is transitive on V', the size |E;(v)]
is independent of the choice of v. We have n|E;(v)| = |E;|k = k% < k(}). It follows that
2<k<n-2. Foreachi<s,set E* ={V\e|ec€ E;}. Let F* = {E’, E5*, ..., E%}.
The following lemma is trivial, which allows us to assume that 2k < n.

Lemma 3.1. AutF = AutF?, Aut(F, E;) = Aut(FP, E?), and F° is an edge-transitive
homogeneous (n — k, s)-factorisation of order n.

For the rest of this section, we assume that 4 < 2k < n and M < G < AutF such
that

(a) M is normal in G and lies in the kernel of G acting on {E}, Es, ..., Es}; and
(b) M is transitive but not k-homogeneous on V', and G is k-homogeneous on V.

Note that such G and M always exist, for example, G = AutF and M = N{_,Aut(F, E;).

Claim 1. F = {E}, Es, ..., E,} is a G-invariant partition of VI* and MG, < Gj,
foree E; € F.

Proof. By the choice of G, we know that G is transitive on V{*' and preserves the
factorisation F = {E}, Es, ..., Es}. In particular, each E; € F is a block of G acting on
Vi and so G, < G g, for e € ;. Since M fixes each E; set-wise, the claim follows. [

Claim 2. All M-orbits on V{*} have the same length |M : M,| for any given e € V{k},
Ge:M| ()
God] — SEML

and the number of M-orbits on each F; is equal to t :=

Proof. Since M is normal in G and G is transitive on V{*} all M-orbits on V{*} have
the same length, see Lemma 2.2. Let ¢ be the number of M-orbits on F;. Note that
every M-orbit on V) has length [M : M,|, where e € V. Then ¢ = 2L Without

|M:Me|*
loss of generality, we let e € E;. Then |E;| = |Gg, : G|, and so t = |‘Gj\jlj\fe|| = ||GJ\Z| ||]‘G45|| —
A {k} n .
||gE:1]\f\[4 ||‘ On the other hand, we have |E;| = @ = (’;—) Then the claim follows. O

For each i € {1,2,...,5s}, denote by & = {E/ | 1 < j <t} the set of M-orbits on E;.
Set £ = U;_,&;. Then we have the next two claims.

Claim 3. £ is a G-invariant refinement of F and an edge-transitive homogeneous
(k, st)-factorisation of order n, and {&; | 1 < i < s} is a G-invariant partition of &; in
particular, if G induces a primitive permutation group G¢ on £ then F = £.
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Proof. Note that £ consists of all M-orbits on V{# and || = st. Since M is normal
in G, we know that & is a G-invariant partition of V{1, see Lemma 2.2. Then the first
part of this claim follows. Considering the transitive action induced by G on &£, each &;
is in fact an orbit of Gg,, and G¢, = Gg,. For E € &;, recalling that E; is a block of G
acting on VI we have Gy < Gpg,. Then &; is a block of GG acting on &£, see Lemma 2.1.
Thus {&; | 1 <i < s} is a G-invariant partition of £. If G acts primitively on £ then &;
has size 1, and so & = {E;}, yielding F = £. Then our claim holds. O

Claim 4. G = MG, foree F € £ and, if E C E; then E; = Ugeap, £9.

Proof. Let E € £. Then E is a block of G acting on V. Thus G. < G for e € E,
and G is transitive on E. Since M is transitive on E, we have G = MG,.. Then this
claim follows from Claim 3 and Lemma 2.3. O

Assume further that £ > 3. Since G is k-homogeneous, G is (k — 1)-transitive on
V', refer to [4, Theorem 9.4B]. Then G has a unique minimal normal subgroup (see
[4, Theorem 7.2B] for example), which is either a finite nonabelian simple group or
isomorphic to Zg for some prime p and integer d > 1. Clearly, this minimal normal
subgroup is contained in M. Recalling that M is not k-homogeneous on V', the next
lemma follows from [12].

Lemma 3.2. Let 6 < 2k < n, and let G and M be as above. If G is not k-transitive on
V' then, up to permutation isomorphism, one of the following occurs:

(I) k=3, n =38, and the pair (G, M) is (AGL(1,8),Z3) or (ATL(1,8),Z3);
(I1) k =3, n = 32, and the pair (G, M) is (ATL(1,32),Z3) or (ATL(1,32),Z5:Z31);
(III) k=4, n =32, M = PSL(2,32), and G = PI'L(2, 32) is 4-homogeneous on V.

We next determine the k-transitive candidates of GG. In this case, G is a 3-transitive
permutation group of degree n. All 3-transitive finite permutation groups are explicitly
known, refer to [2, 7.3 and 7.4]. Then we have the following lemma.

Lemma 3.3. Assume that G is k-transitive on V. Then k = 3 and, up to permutation
1somorphism, one of the following occurs:

(IV) G = AGL(d,2) with d >3, M = Z% and n = 2¢;

(V) G =Z3:A7 < AGL(4,2), M =Z3 and n = 16;

(VI) PSL(2,9) < M < PYL(2,q) and PGL(2,q) < G < PIL(2,q) with 5 < q =
n—1=1(mod 4).

Proof. Let N be the minimal normal subgroup of G. Assume first that N = Zg for
some prime p and integer d > 1. Then 6 < 2k <n = |V| = p?. By [2, 7.3], one of parts
(IV) and (V) occurs.

Assume that N is nonabelian simple. Checking Table 7.4 given in [2, 7.4], we know
that either £ = 3 and N = PSL(2, ¢) with odd ¢, or N is k-transitive. Recall N < M and
M is not a k-homogeneous permutation group on V. We have k = 3 and N = PSL(2, q)
with odd ¢ = n — 1. Moveover, [12, Theorem 1] yields that ¢ = 1 (mod 4). Then part
(VI) follows. O
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Based on the above argument, we can formulate a method to construct up to isomor-
phism all possible edge-transitive homogeneous (k, s)-factorisations of order n, where
6 <2k <nands>2.

Construction 3.4. Let G be a permutation group on V' described as in one of (I)-(VI),
and let M be the minimal normal subgroup of G. Take a k-subset e of V and v € e.
Then G = MG,. Take a subgroup H of G, such that G, < MH # G. Let B, = M,
the M H-orbit containing e. Then E; consists of [MH : (MG.)| orbits of M on V{¥},
It is easily shown that F := {E{ | ¢ € G} is an edge-transitive homogeneous (k, s)-
factorisations on V', where s = |G : (M H)|. Write G = U;_ M Hg; with g; € G, and
g1 =1, and set E; = EY' for 1 <i < s. It is easily shown that F = {E; | 1 <i < s}.

4. EXAMPLES

In this section we construct some edge-transitive homogeneous (k, s)-factorisations of
order n, where s > 2 and 6 < 2k < n.

For a prime power ¢, denote by F, the finite field of order ¢, and F} the multiplicative
group of F,. Then F; is cyclic and of order ¢ — 1. For an integer d > 1, denote by
Fg the d-dimensional vector space over F,. For each vector u € IFZ, denote by 7, the
translation F¢ — F¢, v — v +u. Set T(d,q) = {ry | u € F¢}. Then T'(d, q) is normal
in AT'L(d, q), AGL(d,q) = T(d,q):GL(d,q) and AI'L(d,q) = T(d,q):I'L(d,q). Write
q = p’ for some prime p. Let o be the Frobenius automorphism of the filed F,, that
is, o0 : F, = F,, £ = &. Then I'L(d, q) = GL(d, q):(0) and AT'L(d, q) = AGL(d, q):(0),

where o acts componentwise on the vectors in Fg.

4.1. Factorisations arising from the affine geometry AG(d,2). Let d > 3 be an
integer. Note that each 3-subset of F¢ is contained in a unique 2-dimensional affine
subspace v + U, where v € F¢ and U is a 2-dimensional subspace of FJ. This allows us
to give a partition of (F¢){3" whose parts are indexed by the 2-dimensional subspaces of
Fd.

Example 4.1. For a 2-dimensional subspace U of F4, let Eyy = Uy erg (v + U)} Then
|Ey| = 2%, and {Ey | U a 2-dimensional subspace of F¢} is a partition of (FZ){3}. Clear-
ly, the number of parts of this partition is equal to the number of 2-dimensional subspaces
of F4, which is %. Thus we have a (3, W)—factorisation of order 2¢,
namely,

]-"(2d_3 elnei-iy, = {Ey | U a 2-dimensional subspace of F$}.
i 3

It is easily shown that, for each 2-dimensional subspace U of F2, the set Ey is an orbit

of T(d,2) on (F2){3}; in fact, T(d,2) acts regularly on Ey. Since T(d,2) is normal in

AGL(d,2) and AGL(d, 2) is transitive on (F$)®®} we know that -7:(24.3 (2d_1)(2d—1_7, IS an
b 7#

)
(3 (2d71)(2d—171))
) 3

edge-transitive homogeneous ~factorisation of order 2%. In particular,

AGL(d, 2) S IA\ut.;.(2d’37 (2d,1)<§d71,1)).
By Lemmas 3.2 and 3.3, we conclude that
Autf(ng (2(1,1)(261—1,1)) - AGL(d, 2).
) 3
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Lemma 4.2. Let € be the set of T(d,2)-orbits on (F)B}. Then AGL(d,2) induces a
primitive permutation group on £.

Proof. Let G = AGL(d,2), M = T(d,2) and H = GL(d,2). Then G = M:H, and
M lies in the kernel G () of G' acting on the G-invariant partition £. Since d > 3, we
know that H = PSL(d, ¢) is simple. It follows that G(g) = M. Thus G* is permutation
isomorphic to H¢, and H & HM/M = H. Take E € £. Then there is a 2-dimensional
subspace U of F4 such that
E =U,cp(v+U)¥

Then Hy < Hp. It is well-known that H = GL(d,2) acts primitively on the set of
2-dimensional subspaces of F¢. Then Hy is a maximal subgroup of H by Lemma 2.1.
Since M is intransitive on (F)3} we have G # MG, = Gg, where e € E. Noting
that Gp = GgN(MH) = M(GgNH) = MHg, we have Hg # H. Thus Hg = Hy is
maximal in H. Then H¢ is primitive by Lemma 2.1, and hence G¢ is primitive. 0

Noting that Fys is a d-dimensional vector space over the field Fy of order 2, we may
construct Fg.37) and F(3a;3155) alternatively as in the following two examples.

Example 4.3. Let V = Fg, and set F; = (n). Then V ={0,n" | 1 <i < 7}. It is easily
shown that AGL(1,8) is regular on V{3, For 1 <i < 7, take ¢; = {0, %, 5’} € VI
and let B; = {{&,n" '+ &, i+ &} | € €Fs). Then By =e; ™ and {E; | 1<i<T7}isa
partition of V{3, Note that, identifying Fg with F3, the group AGL(1,8) is permutation
isomorphic to a 3-homogeneous subgroup of AGL(3,2) with 7'(1,8) corresponding to
T(3,2). It follows that {E; | 1 <14 < 7} is isomorphic to Fs3 7).

Example 4.4. Let V = Fs,, and set F, = (). Then V = {0,7° [ 1 < i < 31}
For 1 <i<3land 1< j <5, take ez- = {O,n(i_l)ijl,niQkI} e V8 and let EJ’ =
{En ™27+ 607 + €} € € Fan. Set
F={E/|1<i<31,1<j<5}

It is easy to check that each Ej is a T'(1,32)-orbit containing €}, AutF > AT'L(1, 32) and
F is an edge-transitive homogeneous (3, 155)-factorisation of order 32. Note that, identi-
fying F3, with 3, the group AT'L(1,32) is permutation isomorphic to a 3-homogeneous
subgroup of AGL(5,2) with T'(1,32) corresponding to 7°(5,2). It follows that F =
F(32;3,155)-

In the following example, we construct two edge-transitive homogeneous factorisations
of order 32 from ‘/_"(32;3?155).

Example 4.5. Let V and E} be as Example 4.4.
(1) For 1 < j <5, let E; = UL B, Then each Ej is one of the AGL(1, 32)-orbits on
Vi3 and ATL(1, 32) is regular on V{3}. Set
~7:(32;3,5) = {Ej | 1< j < 5}-
Then Fso.35) is an edge-transitive homogeneous (3, 5)-factorisation of order 32.
(2) For 1 <i <31, let E = U3_ | E}. Set

F32:331) = {E"]1<i<31}.
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It is easy to see that E' is a (T'(1, 32):(c))-orbit, where o is the Frobenius automorphism
of F35. By Construction 3.4, we conclude that F (32,3 31) is an edge-transitive homogeneous
(3, 31)-factorisation of order 32.

Lemma 4.6. Autf(32;3,5) = AUt./—'.(gg;;g,gl) = AFL(]_, 32)

Proof. Let s € {5,31}. Then AutFss3, > AT'L(1,32). Suppose that AutF(sss.) #
AT'L(1,32). Then, by Lemmas 3.2 and 3.3, we conclude that AutF(s23 s is permutation
isomorphic to AGL(5,2). Thus F(32:3,5) 1s isomorphic to an edge-transitive homogeneous
(3, s)-factorisation F’ (of order 32) arising from the action of AGL(5,2) on the vector
space IF3. Note that AGL(5,2) has a unique proper normal subgroup, which is 7'(5, 2).
Let € be the set of T(5,2)-orbits on (F3)®}. Then € = F(303155), see Example 4.1. By
Claim 3 and Lemma 42, we get F'=£E= f(32;37155). Thus F(32;3,s) = ]:(32;37155), yleldlng
s = 155, a contradiction. This completes the proof. O

4.2. Factorisations arising from the projective line PG(1,q). Let ¢ = p/, where p
is a prime and f is a positive integer. For a nonzero vector (a, §) € F2, denote by [a, ]
the 1-dimensional subspace spanned by («, ). Then the projective line PG(1,q) over
the field F, can be identified with F, U {cco} by

[gu 1] = gu [170] = 00, 5 € IFq'

The group PGL(2, q) then consists of all fractional linear mappings of the form

af + 8 :
tapys € — , a,B,7,0 € F, with ad — 0
Bys 1 § €T o, B, g with ad — By #
acting sharply 3-transitively on [F, U {oo}, where 3221? = ay ! for v # 0, QO?B = 00

for a # 0 and % = oo for { € Fy. Note that tapys = tarpye if and only if the vector
(o, 3,7, is a nonzero multiple of (a, 3,7,0). Further,

PSL(2,q) = {tagys | ., 5,7,0 € F, with ad — v a nonzero square in F,}.

The Frobenius automorphism of F, induces a permutation on PG(1,q) by o : £ — &P
with oo? = co. Then tJ5 ; = targersr, PI'L(2,q) = PGL(2,¢):(0) and PXL(2,q) =
PSL(2,q):(o). (See [1, p.192] and [4, p.242] for example.)

Let e = {0,1,00}. Noting that PGL(2, ¢) is sharply 3-transitive, we have PGL(2, q), =
Ss. Since |PGL(2,q) : PSL(2,q)| < 2, we know that |PSL(2, )| is divisible by 3. Let
g € PGL(2, ¢). such that 19 = 1 and 09 = co. Then g = tggp for 0 # 3 € F,, and so
g € PSL(2, q). if and only if —f? is a square in F,, i.e., either ¢ is even or ¢ = 1 (mod 4).
Thus PGL(2, ). = PSL(2, q). if and only if either ¢ is even or ¢ = 1 (mod 4).

Example 4.7. Let V = PG(1,q) with ¢ = 1 (mod 4). Then PSL(2, ¢) has exactly two

orbits on V{3 and PGL(2, ¢) = PSL(2, ¢) UPSL(2, q)t,001, where 7 is a generator of the

multiplicative group of F,. Set
a+p an+

B = B | p el B

0 ' vy+0 yn+9d

; —1
}\Oz,ﬁ,fyﬁqu,aé—ﬁfy:anfl’1§Z.SQT}

and
B a+pB an+p
8 y+0 yn+ao

Ey ={{

- 1
}la,B,7,0 € Fy, ad — By =™, 132'3‘]7}.
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Then E, and E; are distinct PSL(2, ¢)-orbits, and E{™" = E,. Moreover, since PSL(2, q)
is normal in PT'L(2,q), it is easily shown that {Ej, F»} is PT'L(2, ¢)-invariant. Thus
Flg+13,2) = {F1, B2} is an edge-transitive homogeneous (3, 2)-factorisation of order ¢+1.
Moreover, by Lemmas 3.2 and 3.3, we conclude that AutF(, 1,32 = PT'L(2,q).

Remark 4.8. The factors of F(44132) constructed in Example 4.7 are complementary 3-
hypergraphs admitting a 2-transitive group of automorphisms, which are essentially due
to Taylor [26, Example 6.2]. Noting that AutF1,3) contains an element interchanging
the parts of F(441:3,2), those two 3-hypergraphs are self-complementary. Moreover, by
[22, 27], a 3-hypergraph with 2-transitive automorphism group is self-complementary if
and only if it is isomorphic to the factors of F(g413.2)-

Example 4.9. Let V = PG(1,32). Then, by Lemma 3.2, PT'L(2, 32) is 4-homogeneous
but not 4-transitive on V (see also [1, 6.18, p.196]). Let e = {0,1,n,n?}, where 5
is a generator of the multiplicative group of Fsy. Then PI'L(2,32). has order 4. S-
ince |PT'L(2,32) : PSL(2,32)| = 5, we have PI'L(2,32). < PSL(2,32). It follows that
PSL(2,32) has 5 obits on V{*'. Note that PI'L(2,32) = U>_,PSL(2, 32)0" "}, where o is
the Frobenius automorphism of the field F3;. We may write those five orbits as follows:

B, = {{&, fa+p 0”721._1 + 04772i+5
I e I 7 EA S Iy EA )

Yl a,B8,7,0 € Fsp,a6 — By #0}, 1 <i<5.
Set
Fasus)y = {8 | 1 <5 < i}

Then F(33.4,5 is an edge-transitive homogeneous (4,5)-factorisation of order 33. By
Lemmas 3.2 and 3.3, we conclude that AutF(ss.4 5 = PI'L(2,32).

5. THE MAIN RESULT
Now we are ready to state and prove our main result.

Theorem 5.1. Let F be an edge-transitive homogeneous (k, s)-factorisation of order n,
where s > 2 and 6 < 2k < n. Then F = Fups) with n, k, s and AutF . ) listed in
Table 1 and defined in one of the examples in Section 4.

n |k s Aut Kernel Condition Reference

32 |3 5 ATL(1,32) | AGL(1, 32) Example 4.5 (1)

32 |3 31 ATL(L, 32) T(1,32) Example 4.5 (2)

33 |4 5 PT'L(2,32) | PSL(2,32) Exammple 4.9

od | 3| ENCT D | AGL(,2) | T(d,2) d>3 Example 4.1
g+11{3 2 PI'L(2,q9) | PXL(2,9) |¢g=1(mod 4)| Example 4.7

TABLE 1. Edge-transitive homogeneous factorisations

Proof. Assume that F = {E; | 1 < < s} is an edge-transitive homogeneous (k, s)-
factorisation on V of order n. Take M <G < AutF such that M fixes every F; set-wise, G
is transitive on V¥ and M is transitive on V. Then, up to isomorphism of factorisations,
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we may let G’ be one of the k-homogeneous permutation groups listed in Lemmas 3.2
and 3.3. Recall that G has a unique minimal normal subgroup, which is transitive on
V. We choose M to be the minimal normal subgroup of GG. Let £€ be the set of M-orbits
on V. Then £ is a refinement of F. We next deal with all possible candidates of G
one by one.

Let G be as in (I) of Lemma 3.2. Then k£ = 3, and we may choose V' = Fg and
M = T(1,8). Recall that every Ej; is the union of some M-orbits on V{3 Since
|V} = 56 and G contains a regular subgroup AGL(1,8) (acting on V{3}), the only
possibility is that every F; has size 8 and is an M-orbit. Then, identifying Fg with F3,
we have F = Fg.37), see Example 4.3. Thus line 4 of Table 1 occurs.

Let G = AT'L(1, 32) be as in (II) of Lemma 3.2. Then k = 3, and we may choose V' =
F3o and M = T'(1,32). If F is the set of M-orbits, that is, 7 = &, then F = F(32,3155)
by a similar argument as above (see also Example 4.4), and so line 4 of Table 1 occurs.
Thus we assume that every F € F consists of more than one M-orbits. Then MG, <
Gg # MG, for e € E, see Claims 1-4. Since 32-31-5 = |AT'L(1,32)| = |V}, we know
that G is regular on V1) and so G, = 1. Checking the subgroups of G = AI'L(1, 32),
we conclude that either Gg = AGL(1,32) or Gg is conjugate to T'(1,32):(c), where
o is the Frobenius automorphism of F3,. Thus F is isomorphic to one of F32.35) and
F(32:3,31), which are constructed in Example 4.5. By Lemma 4.6, one of the first two
lines of Table 1 follows.

Let G = PI'L(2,32) be as in (III) of Lemma 3.2. Then k& = 4, and we may choose
V =PG(1,32) = F3 U {oo} and M = PSL(2,32). By the argument given in Example
4.9, we know that M has 5-orbits on V. In particular, G acts primitively on the set
& of M-orbits. Then, by Claim 3, we have F = £. Then F is (isomorphic to) the
factorisation F(ss.4 5 given in Example 4.9, and hence line 3 of Table 1 follows.

Let G = AGL(d,2) be as in (IV) of Lemma 3.3. Then k = 3, V = F}, M = T(d,?2)
and £ = F(2d;3’(2d_1>(§d—1_1)). By Lemma 4.2, G¢ is primitive. Thus F = & by Claim 3,

and so line 4 of Table 1 follows.

Let G = Z3:A; be as in (V) of Lemma 3.3. Then £ = Fli6:3,35)- Arguing similarly as
in the proof of Lemma 4.2, G¢ is permutation isomorphic to a transitive subgroup A; of
GL(4,2) acting on the 35 2-dimensional subspaces of Fi. Checking the subgroups of A;
in the Atlas [3], we know that every subgroup of A; with index 35 is maximal. It follows
from Lemma 2.1 that G¢ is primitive. Then F = &, and so line 4 of Table 1 occurs.

Finally, if G is described as in (VI) of Lemma 3.3, then line 5 of Table 1 follows from
the argument in Example 4.7. 0

A k-hypergraph is said to be symmetric if it is both vertex-transitive and edge-
transitive. Note that there is a bijection (V| E) — (V, E°?) between self-complementary
k-hypergraphs and self-complementary (n — k)-hypergraphs of order n. The next result
is a direct consequence of Theorem 5.1.

Corollary 5.2. Let k and n be positive integers with 6 < 2k < n. Then there exists
a symmetric self-complementary k-hypergraph of order n if and only if k =3, n—1=
1 (mod 4) and n — 1 is a power of some odd prime.
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Let H be an edge-transitive self-complementary 3-hypergraph of order n. Then n >
5. Noting that the 5-cycle is a symmetric self-complementary 2-hypergraph, the next
corollary follows.

Corollary 5.3. There exists a symmetric self-complementary 3-hypergraph of order n >
5 if and only if either n =5, orn —1=1(mod 4) and n — 1 is a prime power.

We end this paper by the following remark on Theorem 5.1.

Remark 5.4. Let n, k and ¢ be positive integers with n > k > ¢.

(1) A k-hypergraph H = (V, E)) on n vertices is t-subset regular if there is a constant
A > 1 such that each t-subset of V' is contained in exactly A\ edges. Let F be one of the
factorisations in Theorem 5.1. Then the factors of F are t-subset regular k-hypergraphs
with ¢ and A listed in Table 2. The reader is referred to [10, 13, 23, 24| for more examples
and results on t-subset regular hypergraphs.

n |k s, N t| A Condition

32 |3 5 2| 6

32 |3 31 1] 15

33 |4 ) 3| 6

od |3 | @=L g 3 d>3
q+1|3 2 2| 1] g=1(mod 4)

TABLE 2. The parameters ¢t and .

(2) Recall that a large set of t-(n,k, \) designs of size N, denoted by LS[N](t, k,n),
is a partition of the set of all k-subsets of an m-set into block sets of N disjoint ¢-
(n,k, \) designs, where NA = (}~f). Let F be one of the factorisations in Theorem
5.1. Note that a t-subset regular k-hypergraph is a t-(n, k, \) design, where A is number
of edges containing a given t-subset. Then, using terminology from design theory, F
is an LS[N](¢,k,n) in which all designs are flag-transitive and admit a common point-
transitive group, where N, t, k and n are listed in Table 2.
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