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Abstract

Let G be a mixed graph with n vertices, H(G) the Hermitian adjacency matrix

of G, and λ1(G), λ2(G), . . . , λn(G) the eigenvalues of H(G). The Hermitian energy

of G is defined as EH(G) =
∑n

i=1 |λi(G)|. In this paper we characterize the limiting

spectral distribution of the Hermitian adjacency matrices of random mixed graphs,

and as an application, we give an estimation of the Hermitian energy for almost all

mixed graphs.
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1 Introduction

Let {Mn}∞n=1 be a sequence of n× n random Hermitian matrices. Suppose that λ1(Mn),

λ2(Mn), . . . , λn(Mn) are the eigenvalues of Mn. The empirical spectral distribution (ESD)

of Mn is defined by

FMn(x) =
1

n
#{λi(Mn)|λi(Mn) ≤ x, i = 1, 2, . . . , n},

where #{·} is the cardinality of the set. The distribution to which the ESD ofMn converges

as n→∞ is called the limiting spectral distribution (LSD) of {Mn}∞n=1.
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The ESD of a random Hermitian matrix has a very complicated form when the order

of the matrix is large. In particular, it seems more difficult to characterize the LSD of an

arbitrary given sequence of random Hermitian matrices. A pioneer work on the spectral

distribution of random Hermitian matrices [5, 26] was owed to Wigner, which is called the

Wigner’s semicircle law [29, 30]. Wigner’s semicircle law characterizes the LSD of a sort

of random Hermitian matrices. This sort of random Hermitian matrices are usually called

the Wigner matrices, denoted by Xn, satisfying that

• Xn is an n× n random Hermitian matrix;

• the upper-triangular entries xij , 1 ≤ i < j ≤ n, are i.i.d. complex random variables

with mean zero and unit variance;

• the diagonal entries xii, 1 ≤ i ≤ n, are i.i.d. real random variances, independent of

the upper-triangular entries, with mean zero; and

• for each positive integer k, max
{
E(|x11|k),E(|x12|k)

}
<∞.

We state the Wigner’s semicircle law as follows.

Theorem 1. ([30]) Let {Xn}∞n=1 be a sequence of Wigner matrices. Then the ESD of

n−1/2Xn converges to the standard semicircle distribution whose density is given by

ρ(x) :=


1

2π

√
4− x2, for |x| ≤ 2,

0, for |x| > 2.

Wigner’s semicircle law has been greatly generalized to more general random matrices

by lots of researchers, including Arnold [1, 2], Grenander [20], Bai and Yin [3, 4, 5, 6, 7, 31],

Geman [16], Girko [17, 18, 19], Loève [25] and so on. More interestingly, it was generalized

to random graphs in recent years: Ding et al. [11] considered the spectral distributions

of adjacency and Laplacian matrices of random graphs; Du et al. [12, 13] considered the

spectral distributions of adjacency and Laplacian matrices of Erdős-Rényi model and the

spectral distribution of adjacency matrices of random multipartite graphs; and Chen et

al. [9] considered the spectral distribution of skew adjacency matrices of random oriented

graphs and the spectral distribution of adjacency matrices of random regular oriented

graphs .

The purpose of our paper is to study the spectral distribution of random mixed graphs.

A graph is called a mixed graph if it contains both directed and undirected edges. We

usually use G = (V,E,A) to denote a mixed graph with a set V of vertices, a set E of

undirected edges, and a set A of directed edges (or arcs). If we regard each undirected

edge uv ∈ E in G = (V,E,A) as two directed edges (u, v) and (v, u), then G is indeed
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a directed graph. Throughout this paper, we regard mixed graphs as directed graphs by

keeping this thought in mind.

In [24], the Hermitian adjacency matrix of a mixed graph G of order n was defined to

be the n× n matrix H(G) = (Huv)n×n, where

Huv =



1, if uv ∈ E;

i, if (u, v) ∈ A and (v, u) /∈ A;

−i, if (u, v) /∈ A and (v, u) ∈ A;

0, otherwise,

and i =
√
−1. This matrix was also introduced independently by Guo and Mohar in [21].

Let Kn be a complete graph on n vertices. A complete directed graph DKn is the

graph obtained from Kn by replacing each edge of Kn with two opposite directed edges.

Let p = p(n) be a function of n such that 0 < p < 1. The random mixed graph model

Ĝn(p) consists of all random mixed graphs Ĝn(p) in which the directed edges are chosen

randomly and independently, with probability p from the set of the directed edges of DKn.

Then the Hermitian adjacency matrix of Ĝn(p), denoted by H(Ĝn(p)) = (Hij) (or Hn,

for brevity), satisfies that:

• Hn is a random Hermitian matrix, particularly, Hii = 0 for 1 ≤ i ≤ n;

• the upper-triangular entries Hij , 1 ≤ i < j ≤ n are independently identically dis-

tributed (i.i.d.) copies of a random variable ξ which takes value 1 with probability p2, i

with probability p(1− p), −i with probability p(1− p), and 0 with probability (1− p)2.

In this paper, we characterize the LSD of the Hermitian adjacency matrices of random

mixed graphs. Our main result is stated as follows.

Theorem 2. Let {Hn}∞n=1 be a sequence of Hermitian adjacency matrices of random

mixed graphs {Ĝn(p)}∞n=1 with p = p(n), 0 < p < 1. Define σ =
√

2p− p2 − p4. Then the

ESD of 1
σ
√
n
Hn converges to the standard semicircle distribution whose density is given by

ρ(x) :=


1

2π

√
4− x2, for |x| ≤ 2,

0, for |x| > 2.

Let λ1(G), λ2(G), . . . , λn(G) be eigenvalues of the Hermitian adjacency matrix of a

mixed graph G. The Hermitian energy of G was first defined by Liu et al. [24] in 2015 as

EH(G) =
n∑
i=1

|λi(G)|,

which can be regarded as a variant similar to graph energy [12, 23]. Up until now, various

variants on graph energy of random graphs have been studied, such as Laplacian energy
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[13, 22], signless Laplacian energy [14], incidence energy [14], distance energy [14], etc. In

[9], Chen et al. estimated the skew energy of random oriented graphs. Their results were

obtained depending on the LSD of random complex Hermitian matrices.

As an application of Theorem 2, we estimate the Hermitian energy of a random mixed

graph. The result is stated as follows.

Theorem 3. Let p = p(n), 0 < p < 1. Then the Hermitian energy EH(Ĝn(p)) of the

random mixed graph Ĝn(p) enjoys almost surely (a.s.) the following equation:

EH(Ĝn(p)) = n3/2(2p− p2 − p4)1/2

(
8

3π
+ o(1)

)
,

that is, with probability 1, EH(Ĝn(p)) enjoys the above equation as n→∞.

We postpone the proofs of Theorems 2 and 3 to the next sections.

2 Proof of Theorem 2

Before proceeding, we collect some results that will be used in the sequel of the paper.

Lemma 1 (See [5]). In a directed graph, the number of the closed walks of length 2s which

satisfy that each directed edge and its inverse directed edge in the closed walk both appear

once is 1
s+1

(
2s
s

)
.

Lemma 2 (See [5]). Let ρ(x) be as in Theorem 2. Then, for s = 0, 1, 2, 3, . . ., we have

∫ 2

−2
xkρ(x)dx =

 0, for k = 2s+ 1,

1
s+1

(
2s
s

)
, for k = 2s.

Lemma 3 (Cauchy-Schwarz’s Inequality). Let ξ and η be two complex random variables.

Then

|E(ξη)|2 ≤ E(|ξ|2) · E(|η|2).

Proof. For any t ∈ C, we have

0 ≤ E(tξ − η)(tξ − η)

= E(tξ − η)(tξ − η)

= ttE(ξξ)− tE(ξη)− tE(ξη) + E(ηη).

Let

t =
E(ξη)

E(ξξ)
.
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Then

0 ≤ −E(ξη)E(ξη)

E(ξξ)
+ E(ηη)

= −E(ξη)E(ξη)

E(|ξ|2)
+ E(|η|2)

= −|E(ξη)|2

E(|ξ|2)
+ E(|η|2).

Hence

|E(ξη)|2 ≤ E(|ξ|2) · E(|η|2).

This completes the proof. �

Lemma 4 (Chebyshev’s Inequality). Let X be a random variable. Then for any ε > 0,

we have

Pr (|X − E(X)| ≥ ε) ≤ Var(X)

ε2
.

Lemma 5 (Borel-Cantelli Lemma). If
∑∞

n=1 Pr(En) < ∞ and the events {En}∞n=1 are

independent, then Pr(lim supn→∞En) = 0.

Lemma 6 (Rank Inequality (See [4])). Let A and B be two n × n Hermitian matrices.

Then

‖ FA − FB ‖≤ 1

n
rank(A−B),

where ‖ f(x) ‖:= supx |f(x)| for a function f(x), and FA means the ESD of A.

Lemma 7 (Chernoff Bounds (See [10])). Let X1, . . . , Xn be independent random variables

with

Pr(Xi = 1) = pi and Pr(Xi = 0) = 1− pi.

Consider the sum X =
∑n

i=1Xi with expectation E(X) =
∑n

i=1 pi. Then

(i) Lower tail: Pr(X ≤ E(X)− λ) ≤ exp
(
− λ2

2E(X)

)
;

(ii) Upper tail: Pr(X ≥ E(X) + λ) ≤ exp
(
− λ2

2(E(X)+λ/3)

)
.

Recall that Hn is a random Hermitian matrix whose upper-triangular entries are i.i.d.

copies of a random variable ξ and diagonal entries are 0. Recall also that ξ takes value 1

with probability p2, i with probability p(1− p) , −i with probability p(1− p), and 0 with

probability (1− p)2. Then

E(ξ) = p2, Var(ξ) = E[(ξ − E(ξ))(ξ − E(ξ))] = 2p− p2 − p4.
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Let f(x) = x3 +x−2. Then f ′(x) = 3x2 + 1 > 0. So, −2 = f(0) < f(p) < f(1) = 0. Thus

Var(ξ) = 2p− p2 − p4 = p(2− p− p3) > 0.

Let σ =
√

Var(ξ) =
√

2p− p2 − p4, and define

Mn =
1

σ
[Hn − p2(Jn − In)] = (ηij),

where Jn is the all-ones matrix of order n and In is the identity matrix of order n. It can

be easily verified that

• Mn is a Hermitian matrix;

• the diagonal entries ηii = 0 and the upper-triangular entries ηij , 1 ≤ i < j ≤ n are

i.i.d. copies of random variable η which takes value 1−p2
σ with probability p2, i−p2

σ with

probability p(1− p) , −i−p2
σ with probability p(1− p), and −p

2

σ with probability (1− p)2.

We denote the distribution function of η by Φ.

Notice that the random variable η of Mn has mean 0 and variance 1, that is,

E(η) = 0 and Var(η) = 1.

Note also that the expectation

E(|η|s) =
(1− p2)s · p2 + 2(1 + p4)s/2 · p(1− p) + p2s · (1− p)2

(2p− p2 − p4)s/2
.

It is easy to find that 2p− p2 − p4 → 0 as p(n)→ 0 or p(n)→ 1. So, if limn→∞ p(n) = 0,

then

E(|η|s) → 2p

(2p)s/2

=
1

(2p)s/2−1
.

This implies that if p = o(1), then Mn is not a Wigner matrix. Thus the LSD of Mn

cannot be directly derived by the Wigner’s semicircle law. In the following, we will use

the moment method to prove that the ESD of 1√
n
Mn converges to the standard semicircle

distribution.

Definition 1 (See [5]). Let An be an n × n Hermitian matrix, and λ1, . . . , λn be the

eigenvalues of An. Then, for any real-valued function f ,∫
f(x)dFAn(x) =

1

n

n∑
i=1

f(λi(An))

is called a linear spectral statistics (LSS) of An.
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Theorem 4. Let σ =
√

2p− p2 − p4, and Mn = 1
σ [Hn − p2(Jn − In)]. Then the ESD of

n−1/2Mn converges to the standard semicircle distribution whose density is given by

ρ(x) :=


1

2π

√
4− x2, for |x| ≤ 2,

0, for |x| > 2.

Proof. Let

Wn :=
1√
n
Mn =

(
ηij√
n

)
.

To prove that the ESD of Wn converges in distribution to the standard semicircle distri-

bution, it suffices to show that the moments of the ESD converge almost surely to the

corresponding moments of the semicircle distribution.

For a positive integer k, by Definition 1, the kth moment of the ESD of the matrix Wn

is

Mk,n =

∫
xkdFWn(x)

=
1

n

n∑
i=1

(λi(Wn))k

=
1

n
trace(W k

n )

=
1

n
trace

((
1√
n
Mn

)k)
=

1

n1+k/2
trace(Mk

n)

=
1

n1+k/2

∑
1≤i1,...,ik≤n

ηi1i2ηi2i3 · · · ηiki1 ,

(2.1)

where W := i1i2 . . . ik−1iki1 corresponds to a closed directed walk of length k in the

complete directed graph of order n. For each directed edge (i, j) ∈ W , let qij be the

number of occurrence of the directed edge (i, j) in the walk W . Note that all directed

edges of a mixed graph are mutually independent. Then we rewrite (2.1) as

Mk,n =
1

n1+k/2

∑
W

∏
i<j

η
qij
ij η

qji
ji . (2.2)

Then

E(Mk,n) =
1

n1+k/2

∑
W

∏
i<j

E
(
η
qij
ij η

qji
ji

)
. (2.3)

Here the summation is taken over all directed closed walks of length k.

To show that FWn(x) converges to the standard semicircle distribution whose density

is ρ(x), by the Moment Convergence Theorem (MCT), it suffices to prove

lim
n→∞

Mk,n =

∫ 2

−2
xkρ(x)dx, k = 1, 2, . . . . (2.4)
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Define M̃n = (η′ij), where

η′ij =

 ηij , if |ηij | <
√
n,

0, if |ηij | ≥
√
n.

Let

W̃n =
1√
n
M̃n =

(
η′ij√
n

)
,

and M ′k,n be the kth moment of the ESD of the matrix W̃n. Similar to (2.1), (2.2) and

(2.3), we have

M ′k,n =
1

n1+k/2

∑
1≤i1,...,ik≤n

η′i1i2η
′
i2i3 · · · η

′
iki1

=
1

n1+k/2

∑
W

∏
i<j

η
′qij
ij η

′qji
ji , (2.5)

and

E(M ′k,n) =
1

n1+k/2

∑
1≤i1,...,ik≤n

E(η′i1i2η
′
i2i3 · · · η

′
iki1

) =
1

n1+k/2

∑
W

∏
i<j

E
(
η
′qij
ij η

′qji
ji

)
. (2.6)

Then (2.4) can be easily verified by combining Facts 1–3. This completes the proof of

Theorem 4. �

Fact 1. Let ρ(x) be as in Theorem 2, and let M ′k,n be as in Eq. (2.5). Then

lim
n→∞

E(M ′k,n) =

∫ 2

−2
xkρ(x)dx =

 0, for k = 2s+ 1,

1
s+1

(
2s
s

)
, for k = 2s.

(2.7)

Fact 2. Let M ′k,n be as in Eq. (2.5). Then

lim
n→∞

M ′k,n = lim
n→∞

E(M ′k,n) a.s. (2.8)

Fact 3. Let Mk,n and M ′k,n be as in Eqs. (2.2) and (2.5), respectively. Then

lim
n→∞

Mk,n = lim
n→∞

M ′k,n a.s. (2.9)

In the following, we prove Facts 1–3.

Proof of Fact 1. The second equality of (2.7) follows from Lemma 2 straightforwardly.

Next, we prove the first equality of (2.7).

Define the underlying graph of a directed graph G, denoted Γ(G), to be the graph with

vertex set V (G) and edge set

E(Γ(G)) = {xy|(x, y) ∈ A(G) or (y, x) ∈ A(G)}.

8



We decompose E(M ′k,n) into parts Em,k,n,m = 1, 2, . . . , k, containing the m-fold sums,

E(M ′k,n) =
k∑

m=1

Em,k,n, (2.10)

where

Em,k,n =
1

n1+k/2

∑
{W :|E(Γ(W ))|=m}

∏
i<j

E
(
η
′qij
ij η

′qji
ji

)
, (2.11)

and |E(Γ(W ))| = m means the cardinality of the edge set of Γ(W ) is m. Here the

summation in (2.11) is taken over all closed directed walks W of length k.

Recall that E(η) = 0, and recall also that qij denotes the number of occurrence of the

directed edge (i, j) in the closed walk W . So, if qij + qji = 1, that is, qij = 1, qji = 0

or qij = 0, qji = 1, then
∏
i<j E

(
η
qij
ij η

qji
ji

)
= 0 and

∏
i<j E

(
η
′qij
ij η

′qji
ji

)
= 0. On the other

hand, if m > k
2 and qij + qji ≥ 2, then Em,k,n = 0. So, in the following, we only consider

the case of m ≤ k
2 and qij + qji ≥ 2.

Case 1. k is odd. Then m ≤
⌊
k
2

⌋
. Note that |E(Γ(W ))| = m, i.e., there are m edges

in Γ(W ). Then there are at most m+ 1 vertices in Γ(W ). This shows that the number of

such closed walks of length k is at most nm+1 · (m+ 1)k. Then

Em,k,n ≤
nm+1 · (m+ 1)k

n1+k/2

∏
i<j

E
(
η
′qij
ij η

′qji
ji

)
=

(m+ 1)k

nk/2−m

∏
i<j

E
(
η
′qij
ij η

′qji
ji

)
.

Note that Eη = 0. Then

E(ηη) = E|η|2 = E[(η − E(η))(η − E(η)] = Var(η) = 1.

Recall that the distribution function of η is denoted by Φ. Then

E|η|2 =

∫
|x|2dΦ = 1 <∞.

Thus, for any r ≥ 3,

n(2−r)/2
∫
|x|<
√
n
|x|rdΦ = o(1), (2.12)

which follows from the fact (See [1, 2]) that for any distribution function Ψ,∫
|x|tdΨ <∞ =⇒ n(t−r)/2

∫
|x|<
√
n
|x|rdΨ = o(1) (for any r ≥ t+ 1).

Note that qij +qji ≥ 2 implies that qij ≥ 1, qji ≥ 1 or qij ≥ 2, qji = 0 or qij = 0, qji ≥ 2.

Then, we consider the following cases.

If qij ≥ 1, qji ≥ 1, then we set

E1 = {ij ∈ Γ(W )|qij > 1, qji > 1},
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E2 = {ij ∈ Γ(W )|qij > 1, qji = 1 or qij = 1, qji > 1},

E3 = {ij ∈ Γ(W )|qij = 1, qji = 1}.

Let mi = |Ei|, for i = 1, 2, 3. Clearly, E(Γ(W )) = E1 ∪ E2 ∪ E3 and m1 +m2 +m3 = m.

Then, by (2.12) and Lemma 3, we have

(m+ 1)k

nk/2−m

∏
i<j

∣∣∣E(η′qijij η
′qji
ji

)∣∣∣ ≤ (m+ 1)k

nk/2−m

∏
i<j

√
E|η′qijij |2 · E|η

′qji
ji |2

=
(m+ 1)k

nk/2−m

∏
i<j

√
E|η′ij |2qij · E|η′ji|2qji

=
(m+ 1)k

nk/2−m

∏
E1

√
E|η′ij |2qij · E|η′ji|2qji


·

∏
E2

√
E|η′ij |2qij · E|η′ji|2qji

∏
E3

√
E|η′ij |2qij · E|η′ji|2qji


=

(m+ 1)k

nk/2−m

∏
E1

√
o(1)

n(2−2qij)/2
· o(1)

n(2−2qij)/2

∏
E2

√
o(1)

n(2−2qij)/2

 · 1
=

(m+ 1)k

nk/2−m

∏
E1

√
o(1)

n2−qij−qji

∏
E2

√
o(1)

n1−qij


=

(m+ 1)k

nk/2−m

√
o(1)

n2m−k

= (m+ 1)k · o(1)

→ 0, as n→∞.

If qij ≥ 2, qji = 0, then we set

E4 = {ij ∈ Γ(W )|qij > 2, qji = 0},

E5 = {ij ∈ Γ(W )|qij = 2, qji = 0}.

Let mi = |Ei|, for i = 4, 5. Then E(Γ(W )) = E4 ∪ E5 and m4 +m5 = m. So, we have

(m+ 1)k

nk/2−m

∏
i<j

∣∣∣E(η′qijij η
′qji
ji

)∣∣∣ ≤ (m+ 1)k

nk/2−m

∏
i<j

E|η′qijij |

=
(m+ 1)k

nk/2−m

∏
i<j

E|η′ij |qij

=
(m+ 1)k

nk/2−m

∏
E4

E|η′ij |qij

∏
E5

E|η′ij |qij


=

(m+ 1)k

nk/2−m

∏
E4

o(1)

n(2−qij)/2
· 1
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=
(m+ 1)k

nk/2−m
· o(1)

n(2m−k)/2

= (m+ 1)k · o(1)

→ 0, as n→∞.

If qij = 0, qji ≥ 2, by a similar discussion as above, we have

(m+ 1)k

nk/2−m

∏
i<j

∣∣∣E(η′qijij η
′qji
ji

)∣∣∣ → 0, as n→∞.

Thus, by (2.10), we have

lim
n→∞

E(M ′k,n) = 0 for k is odd.

Case 2. k = 2s (s = 1, 2, . . .) is even. Recall that m ≤ k
2 = s and qij + qji ≥ 2.

Case 2.1. m < s = k
2 . Note that |E(Γ(W ))| = m, i.e., there are m edges in Γ(W ).

Then there are at most m+1 vertices in Γ(W ). This shows that the number of such closed

walks of length k is at most nm+1 · (m+ 1)k. Then

Em,k,n ≤
nm+1 · (m+ 1)k

n1+k/2

∏
i<j

E
(
η
′qij
ij η

′qji
ji

)
=

(m+ 1)k

nk/2−m

∏
i<j

E
(
η
′qij
ij η

′qji
ji

)
.

Notice that qij + qji ≥ 2. Then qij ≥ 1, qji ≥ 1 or qij ≥ 2, qji = 0 or qij = 0, qji ≥ 2. By

similar discussions to Case 1, it can be verified that

(m+ 1)k

nk/2−m

∏
i<j

∣∣∣E(η′qijij η
′qji
ji

)∣∣∣ → 0, as n→∞.

Then for m < s, we have

lim
n→∞

Em,k,n = 0, for k = 2s.

Case 2.2. m = s. In this case, qij + qji ≥ 2 implies that qij = 1, qji = 1 (each edge

in the closed walk appears only once, and so does its inverse edge) or qij = 2, qji = 0 or

qij = 0, qji = 2. Consider the following cases.

If qij = 1, qji = 1, then by Lemma 1, the number of the closed walks of length k = 2s

satisfying qij = 1, qji = 1 is 1
s+1

(
2s
s

)
. Recall that E(ηη) = Var(η) = 1. Then

Em,k,n =
n(n− 1) · · · (n− s) · 1

s+1

(
2s
s

)
n1+k/2

∏
i<j

E(η′ijη
′
ji)

=
n1+s(1 +O(n−1)) · 1

s+1

(
2s
s

)
n1+s

∏
i<j

E(η′ijη
′
ji)

= (1 +O(n−1)) · 1

s+ 1

(
2s

s

)
· 1

→ 1

s+ 1

(
2s

s

)
, as n→∞.

11



If qij = 2, qji = 0, then there are s vertices in Γ(W ). It is clear that the number of

such closed walks of length k is at most ns · sk. Then

Em,k,n ≤
ns · sk

n1+k/2

∏
i<j

E
(
η
′qij
ij η

′qji
ji

)
=
sk

n

∏
i<j

E
(
η
′qij
ij η

′qji
ji

)
.

In addition,

sk

n

∏
i<j

∣∣∣E(η′qijij η
′qji
ji

)∣∣∣ ≤ sk

n

∏
i<j

E|η′qijij |

=
sk

n

∏
i<j

E(|η′ij |qij )

=
sk

n

→ 0, as n→∞.

Hence,

Em,k,n → 0, as n→∞.

If qij = 0, qji = 2, by a similar discussion as above, it can be verified that

sk

n

∏
i<j

∣∣∣E(η′qijij η
′qji
ji

)∣∣∣→ 0, as n→∞.

Then for m = s, we have

lim
n→∞

Em,k,n =
1

s+ 1

(
2s

s

)
, for k = 2s.

Thus, by (2.10), we have

lim
n→∞

E(M ′k,n) =
1

s+ 1

(
2s

s

)
, for k = 2s.

Therefore, the first equality of (2.7) is proved. This completes the proof of Fact 1. �

Proof of Fact 2. Note that |M ′k,n − E(M ′k,n)|4 is a random variable. Suppose that {a4
i }

is the set of all values that |M ′k,n − E(M ′k,n)|4 takes. Then, for any ε > 0, we have

E[|M ′k,n − E(M ′k,n)|4] =
∑
i

a4
i Pr(|M ′k,n − E(M ′k,n)|4 = a4

i )

≥
∑
ai≥ε

a4
i Pr(|M ′k,n − E(M ′k,n)|4 = a4

i )

≥ ε4
∑
ai≥ε

Pr(|M ′k,n − E(M ′k,n)|4 = a4
i )

= ε4 Pr(|M ′k,n − E(M ′k,n)|4 ≥ ε4)

= ε4 Pr(|M ′k,n − E(M ′k,n)| ≥ ε).

12



Then

Pr(|M ′k,n − E(M ′k,n)| ≥ ε) ≤ ε−4E[|M ′k,n − E(M ′k,n)|4]. (2.13)

Recall that

M ′k,n =
1

n1+k/2

∑
1≤i1,...,ik≤n

η′i1i2η
′
i2i3 · · · η

′
iki1

:=
1

n1+k/2

∑
W

η′(W ),

where W := i1i2 . . . ik−1iki1 corresponds to a closed directed walk of length k in the

complete directed graph of order n. Note (See Bai [4, p.620]) that

E[|M ′k,n − E(M ′k,n)|4] =
1

n4+2k

∑
W 1,...,W 4

E

{
4∏
i=1

[η′(W i)− E(η′(W i))]

}
, (2.14)

where W i (i = 1, . . . , 4) corresponds to a closed directed walk of length k in the complete

directed graph of order n.

Set i0 ∈ {1, 2, 3, 4}. If Γ(W i0) has no common edge with Γ(Ŵ\W i0), where Ŵ =

W 1 ∪W 2 ∪W 3 ∪W 4, that is, W i0 is independent to Ŵ\W i0 , then (2.14) is equal to zero

since

E

{
4∏
i=1

[η′(W i)− E(η′(W i))]

}
= E


4∏
i=1
i 6=i0

[η′(W i)− E(η′(W i))]

E[η′(W i0)−E(η′(W i0))] = 0,

due to the independence.

If there is a directed edge (i0, j0) whose number of occurrence in Ŵ = W 1 ∪W 2 ∪

W 3 ∪W 4 is 1 and (j0, i0) /∈ Ŵ , without loss of generality, we assume that (i0, j0) ∈ W 1,

and (i0, j0) /∈ W i for i ∈ {2, 3, 4}. Since E(η′) = E(η) = 0, we have E(η′(W 1)) =

E(η′i0j0)E[η′(W 1\{(i0, j0)})] = 0. Then

E

{
4∏
i=1

[η′(W i)− E(η′(W i))]

}
= E

{
η′(W 1)

4∏
i=2

[η′(W i)− E(η′(W i))]

}

= E(η′i0j0)E

{
η′(W 1\{(i0, j0)})

4∏
i=2

[η′(W i)− E(η′(W i))]

}
= 0,

which implies that (2.14) is also equal to zero.

Next, we consider the case when (2.14) may be non-zero. So, by the cases we discussed

above, we know that, in such a case, there exist no directed edge that the total number

of occurrence of this directed edge and its inverse edge in Ŵ is just 1. Recall that the

underlying graph of a directed graph G, denoted Γ(G), is defined to be the graph with

vertex set V (G) and edge set

E(Γ(G)) = {xy|(x, y) ∈ A(G) or (y, x) ∈ A(G)}.
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For ei ∈ E(Γ(G)), define v#
i to be the total number of occurrence of the directed edges

(x, y) and (y, x) in G such that (x, y) and (y, x) correspond to the edge ei in Γ(G),

called the multiplicity of ei. Assume that Γ(Ŵ ) has edges e1, e2, . . . , el with multiplic-

ities υ#
1 , υ

#
2 , . . . , υ

#
l . Clearly, υ#

i ≥ 2 for i = 1, . . . , l, and υ#
1 + υ#

2 + · · · + υ#
l = 4k.

Then ∣∣∣∣∣E
{

4∏
i=1

[η′(W i)− E(η′(W i))]

}∣∣∣∣∣ ≤ E

∣∣∣∣∣
4∏
i=1

[η′(W i)− E(η′(W i))]

∣∣∣∣∣
≤ E

4∏
i=1

(|η′(W i)|+ |E(η′(W i))|)

≤ E
4∏
i=1

(|η′(W i)|+ E|η′(W i)|)

≤ E
4∏
i=1

(|η′(W i)|+ |η′(W i)|)

= 16E
4∏
i=1

|η′(W i)|

= 16

l∏
j=1

E|η′|υ
#
j

= 16

l∏
j=1

∫
|x|<
√
n
|x|υ

#
j dΦ

< 16

l∏
j=1

(
√
n)υ

#
j −2

∫
|x|<
√
n
|x|2dΦ

≤ 16

l∏
j=1

(
√
n)υ

#
j −2.

Note that there are at most two pieces of connected subgraphs in Γ(Ŵ ). Then, there

are at most l + 2 vertices in Γ(Ŵ ). This shows that the number of such Ŵ is at most

nl+2 · Cl,k, where Cl,k is a constant depending on l and k. Then

1

n4+2k

∑
W 1,...,W 4

∣∣∣∣∣E
{

4∏
i=1

[η′(W i)− E(η′(W i))]

}∣∣∣∣∣ <
nl+2 · Cl,k
n4+2k

· 16

l∏
j=1

(
√
n)υ

#
j −2

= 16
nl+2 · Cl,k
n4+2k

· n2k−l

= 16Cl,k · n−2.

By (2.14), we have

E[|M ′k,n − E(M ′k,n)|4] = O(n−2), k = 1, 2, . . . .
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Then
∞∑
n=1

E[|M ′k,n − E(M ′k,n)|4] =
∞∑
n=1

O(n−2) <∞, k = 1, 2, . . . .

By (2.13), we have

∞∑
n=1

Pr(|M ′k,n − E(M ′k,n)| ≥ ε) <∞, k = 1, 2, . . . .

Note that the events {|M ′k,n−E(M ′k,n)| ≥ ε}∞n=1 are independent. Then, by Lemma 5,

we have

Pr(|M ′k,n − E(M ′k,n)| ≥ ε) = 0,

i.e.,

lim
n→∞

M ′k,n = lim
n→∞

E(M ′k,n) a.s.

This completes the proof of Fact 2. �

Proof of Fact 3. Note that

Mk,n =

∫
xkdFWn(x) =

∫
xkdFn

−1/2Mn(x)

and

M ′k,n =

∫
xkdF W̃n(x) =

∫
xkdFn

−1/2M̃n(x)

By Lemma 6, we have

‖ FWn − F W̃n ‖=‖ Fn−1/2Mn − Fn−1/2M̃n ‖≤ 1

n
rank(Mn − M̃n).

Notice that rank(Mn − M̃n) ≤ the number of nonzero entries in (Mn − M̃n), which is

bounded by
∑

jk I{|ηjk|≥
√
n}, where

I{|ηjk|≥
√
n} =

 0, if |ηjk| <
√
n,

1, if |ηjk| ≥
√
n.

Then

‖ FWn − F W̃n ‖≤ 1

n

∑
jk

I{|ηjk|≥
√
n}.

Let

pjk = Pr(|ηjk| ≥
√
n).

Since E(ηη) = E|η|2 = 1, we have

∑
jk

pjk =
∑
jk

Pr(|ηjk| ≥
√
n) ≤ 1

n

∑
jk

E|ηjk|2I{|ηjk|≥√n} = O(n).
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Consider the n(n− 1)/2 independent terms of I{|ηjk|≥
√
n}, (1 ≤ j < k ≤ n), which are

independent random variables, with

Pr(I{|ηjk|≥
√
n} = 1) = pjk, Pr(I{|ηjk|≥

√
n} = 0) = 1− pjk,

and the sum of the n(n− 1)/2 independent terms of I{|ηjk|≥
√
n},

E

∑
j<k

I{|ηjk|≥
√
n}

 =
∑
j<k

pjk =
∑
j<k

Pr(|ηjk| ≥
√
n). (2.15)

For any ε > 0, applying Lemma 7 to (2.15), we have

Pr

(∑
j<k I{|ηjk|≥

√
n}

n
≥ ε

)
= Pr

∑
j<k

I{|ηjk|≥
√
n} ≥ εn


= Pr

∑
j<k

I{|ηjk|≥
√
n} − E

[∑
j<k

I{|ηjk|≥
√
n}

]
≥ εn−

∑
j<k

pjk


≤ exp

− (εn−
∑

j<k pjk)
2

2
(∑

j<k pjk +
εn−

∑
j<k pjk
3

)


= exp

(
−

3(εn−
∑

j<k pjk)
2

2εn+ 5
∑

j<k pjk

)
= exp(−bn),

for some positive constant b. Then, by Lemma 5, we have∑
j<k I{|ηjk|≥

√
n}

n
→ 0 a.s. (n→∞)

Notice that with probability 1, the truncation does not affect the LSD of Mn. So

‖ Fn−1/2Mn − Fn−1/2M̃n ‖≤ 1

n

∑
jk

I{|ηjk|≥
√
n} → 0.

Then we have

lim
n→∞

Mk,n = lim
n→∞

M ′k,n a.s.

This completes the proof of Fact 3. �

Proof of Theorem 2. Recall that

Wn = n−1/2Mn =
1

σ
√
n

[(Hn + p2In)− p2Jn],

and set

W ∗ =
1

σ
√
n

(Hn + p2In).
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Then

W ∗ −Wn =
1

σ
√
n
· p2Jn.

Note that

rank

(
1

σ
√
n
· p2Jn

)
= 1.

By Lemma 6, we have

‖ FW ∗(x)− FWn(x) ‖≤ 1

n
· 1 =

1

n
.

This implies that the LSDs of W ∗, Wn are the same. By Theorem 4, we have

lim
n→∞

FW
∗
(x) = lim

n→∞
FWn(x) = F (x) :=

∫ x

−∞
ρ(x)dx. (2.16)

Consider the matrices W ∗∗ = 1
σ
√
n
Hn and W ∗ = 1

σ
√
n

(Hn + p2In). Note that

W ∗ −W ∗∗ =
1

σ
√
n
· p2In := ∆nIn,

and

∆n =
1

σ
√
n
p2 → 0 (n→∞).

Note also that λ is an eigenvalue of W ∗∗ if and only if λ + ∆n is an eigenvalue of W ∗.

Then

FW
∗∗

(x) = FW
∗
(x+ ∆n).

On the other hand, ∆n → 0 (n → ∞) implies that for any ε > 0, there exists an N such

that |∆n| < ε for all n > N . Since FW
∗
(x) is an increasing function for all n > N , we

have

FW
∗
(x− ε) ≤ FW ∗(x+ ∆n) ≤ FW ∗(x+ ε).

Then

F (x− ε) = lim
n→∞

FW
∗
(x− ε)

≤ lim
n→∞

FW
∗
(x+ ∆n)

≤ lim
n→∞

FW
∗
(x+ ε)

= F (x+ ε) a.s.

Note (2.16) that the density of F (x) is smooth. Then F (x) is continuous. By choosing

ε > 0 as small as possible, we conclude that

lim
n→∞

FW
∗∗

(x) = lim
n→∞

FW
∗
(x+ ∆n) = F (x) a.s.

i.e.,

lim
n→∞

F
1

σ
√
n
Hn(x) = F (x) a.s.

This completes the proof. �
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3 Proof of Theorem 3

In this section we give an estimation of the Hermitian energy for almost all mixed graphs.

First, we need the following results.

Lemma 8 (See [8]). Let µ be a measure. Suppose that functions an, bn, fn converges

almost everywhere to functions a, b, f , respectively, and that an ≤ fn ≤ bn almost every-

where. If
∫
andµ→

∫
adµ and

∫
bndµ→

∫
bdµ, then

∫
fndµ→

∫
fdµ.

Theorem 5. Define σ =
√

2p− p2 − p4. Let Hn be an Hermitian adjacency matrix of a

random mixed graph Ĝn(p) with p = p(n), 0 < p < 1. Let ρ(x) be as in Theorem 2, and

F (x) =
∫ x
−∞ ρ(x)dx. Then

lim
n→∞

∫
|x|dF

1
σ
√
n
Hn(x) =

∫
|x|dF (x) =

∫
|x|ρ(x)dx a.s.

Proof. Note that F
1

σ
√
n
Hn(x) =

∫ x
−∞ ρ

1
σ
√
n
Hn(x)dx and F (x) =

∫ x
−∞ ρ(x)dx. Note also

that

lim
n→∞

F
1

σ
√
n
Hn(x) = F (x).

Then

lim
n→∞

ρ
1

σ
√
n
Hn(x) = ρ(x).

Let I be the interval [−2, 2], and IC the set R\I. Since ρ(x) is bounded on I, it follows

that with probability 1, x2ρ
1

σ
√
n
Hn(x) is bounded almost everywhere on I. By the Bounded

Convergence Theorem (See [28]), we have

lim
n→∞

∫
I
x2dF

1
σ
√
n
Hn(x) =

∫
I
x2dF (x) a.s.

Then

lim
n→∞

∫
IC
x2dF

1
σ
√
n
Hn(x) = lim

n→∞

(∫
x2dF

1
σ
√
n
Hn(x)−

∫
I
x2dF

1
σ
√
n
Hn(x)

)
= lim

n→∞

∫
x2dF

1
σ
√
n
Hn(x)− lim

n→∞

∫
I
x2dF

1
σ
√
n
Hn(x)

=

∫
x2dF (x)−

∫
I
x2dF (x) a.s.

=

∫
IC
x2dF (x) a.s. (3.1)

Set

an(x) = 0, bn(x) = x2ρ
1

σ
√
n
Hn(x), and fn(x) = |x|ρ

1
σ
√
n
Hn(x).

Notice that

|x| ≤ x2, if x ∈ IC .
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Then

an(x) ≤ fn(x) ≤ bn(x), if x ∈ IC .

By Lemma 8 and (3.1), we have

lim
n→∞

∫
IC
|x|ρ

1
σ
√
n
Hn(x)dx =

∫
IC
|x|ρ(x)dx a.s.,

i.e.,

lim
n→∞

∫
IC
|x|dF

1
σ
√
n
Hn(x) =

∫
IC
|x|dF (x) a.s. (3.2)

Note that with probability 1, |x|ρ
1

σ
√
n
Hn(x) is bounded almost everywhere on I, since

ρ(x) is bounded on I. Again, by the Bounded Convergence Theorem (See [28]), we have

lim
n→∞

∫
I
|x|dF

1
σ
√
n
Hn(x) =

∫
I
|x|dF (x) a.s. (3.3)

By (3.2) and (3.3), we have

lim
n→∞

∫
|x|dF

1
σ
√
n
Hn(x) =

∫
|x|dF (x) =

∫
|x|ρ(x)dx a.s.

This completes the proof. �

Proof of Theorem 3. Recall that σ =
√

2p− p2 − p4, and Hn denotes the Hermitian

adjacency matrix of Ĝn(p). Suppose that λ1, λ2, . . . , λn and λ′1, λ
′
2, . . . , λ

′
n are the eigen-

values of Hn and 1
σ
√
n
Hn, respectively. By Theorem 4, the ESD of n−1/2Mn converges to

the standard semicircle distribution whose density is given by

ρ(x) =

 1
2π

√
4− x2, for |x| ≤ 2,

0, for |x| > 2.

By Theorem 5, we have

EH(Ĝn(p))

σn
3
2

=
1

σn
3
2

n∑
i=1

|λi|

=
1

n

n∑
i=1

∣∣∣∣ 1

σ
√
n
λi

∣∣∣∣
=

1

n

n∑
i=1

|λ′i|

=

∫
|x|dF

1
σ
√
n
Hn(x)

→
∫
|x|dF (x) (n→∞)

=

∫
|x|ρ(x)dx

=
1

2π

∫ 2

−2
|x|
√

4− x2dx

19



=
8

3π
.

This completes the proof. �
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