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Abstract

Let G be a mixed graph with n vertices, H(G) the Hermitian adjacency matrix
of G, and A\ (G), A2(G),..., A\ (G) the eigenvalues of H(G). The Hermitian energy
of G is defined as £ (G) = Y., |Ai(G)|. In this paper we characterize the limiting
spectral distribution of the Hermitian adjacency matrices of random mixed graphs,
and as an application, we give an estimation of the Hermitian energy for almost all

mixed graphs.
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1 Introduction

Let {M,,}>2 be a sequence of n x n random Hermitian matrices. Suppose that A; (1),
Ao(My), ..., \p(M,) are the eigenvalues of M,,. The empirical spectral distribution (ESD)
of M, is defined by

Yo () = )N (My) < 7,0 = 1,2, ),

where #{-} is the cardinality of the set. The distribution to which the ESD of M,, converges
as n — oo is called the limiting spectral distribution (LSD) of {My,}22 .
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The ESD of a random Hermitian matrix has a very complicated form when the order
of the matrix is large. In particular, it seems more difficult to characterize the LSD of an
arbitrary given sequence of random Hermitian matrices. A pioneer work on the spectral
distribution of random Hermitian matrices [5, 26] was owed to Wigner, which is called the
Wigner’s semicircle law [29, 30]. Wigner’s semicircle law characterizes the LSD of a sort
of random Hermitian matrices. This sort of random Hermitian matrices are usually called
the Wigner matrices, denoted by X,,, satisfying that

e X, is an n X n random Hermitian matrix;

e the upper-triangular entries x;;, 1 <14 < j < n, are i.i.d. complex random variables
with mean zero and unit variance;

e the diagonal entries x;, 1 < i < n, are i.i.d. real random variances, independent of
the upper-triangular entries, with mean zero; and

o for each positive integer k, max {E(|z11|*), E(|z12/*)} < oo.

We state the Wigner’s semicircle law as follows.

Theorem 1. ([30]) Let {X,}5°, be a sequence of Wigner matrices. Then the ESD of
n~Y2X,, converges to the standard semicircle distribution whose density is given by
%\/4—302, for x| <2,

0,  for|x|>2.

p(x) =

Wigner’s semicircle law has been greatly generalized to more general random matrices
by lots of researchers, including Arnold [1, 2], Grenander [20], Bai and Yin [3, 4, 5, 6, 7, 31],
Geman [16], Girko [17, 18, 19], Loeve [25] and so on. More interestingly, it was generalized
to random graphs in recent years: Ding et al. [11] considered the spectral distributions
of adjacency and Laplacian matrices of random graphs; Du et al. [12, 13] considered the
spectral distributions of adjacency and Laplacian matrices of Erdos-Rényi model and the
spectral distribution of adjacency matrices of random multipartite graphs; and Chen et
al. [9] considered the spectral distribution of skew adjacency matrices of random oriented
graphs and the spectral distribution of adjacency matrices of random regular oriented
graphs .

The purpose of our paper is to study the spectral distribution of random mixed graphs.
A graph is called a mized graph if it contains both directed and undirected edges. We
usually use G = (V, E, A) to denote a mixed graph with a set V' of vertices, a set E of
undirected edges, and a set A of directed edges (or arcs). If we regard each undirected

edge uv € E in G = (V, E, A) as two directed edges (u,v) and (v,u), then G is indeed



a directed graph. Throughout this paper, we regard mixed graphs as directed graphs by
keeping this thought in mind.
In [24], the Hermitian adjacency matriz of a mixed graph G of order n was defined to

be the n x n matrix H(G) = (Hyuy)nxn, Where

1, ifuv € E;

, if (u,v) € A and (v,u) ¢ A4;
, if (u,v) ¢ A and (v,u) € A;

o

—e

0, otherwise,

and i = /—1. This matrix was also introduced independently by Guo and Mohar in [21].

Let K, be a complete graph on n vertices. A complete directed graph DK, is the
graph obtained from K, by replacing each edge of K, with two opposite directed edges.
Let p = p(n) be a function of n such that 0 < p < 1. The random mixed graph model
Gn (p) consists of all random mixed graphs G (p) in which the directed edges are chosen
randomly and independently, with probability p from the set of the directed edges of DK,,.
Then the Hermitian adjacency matriz of Gy (p), denoted by H(Gn(p)) = (H,;) (or H,y,
for brevity), satisfies that:

e M, is a random Hermitian matrix, particularly, H; = 0 for 1 < i < n;

e the upper-triangular entries H;;, 1 < i < j < n are independently identically dis-
tributed (i.i.d.) copies of a random variable ¢ which takes value 1 with probability p?, i
with probability p(1 — p), —i with probability p(1 — p), and 0 with probability (1 — p)?.

In this paper, we characterize the LSD of the Hermitian adjacency matrices of random

mixed graphs. Our main result is stated as follows.

Theorem 2. Let {H,}°, be a sequence of Hermitian adjacency matrices of random

mized graphs {@n(p) oo L with p=p(n), 0 < p < 1. Define o = \/2p — p?> — p*. Then the

ESD of ﬁHn converges to the standard semicircle distribution whose density is given by
=VAa—22  for|z| <2,

0, forlx|>2.

p(x) =

Let A1 (G), A2(G), ..., A\ (G) be eigenvalues of the Hermitian adjacency matrix of a
mixed graph G. The Hermitian energy of G was first defined by Liu et al. [24] in 2015 as

En(G) = Y- NG

which can be regarded as a variant similar to graph energy [12, 23]. Up until now, various

variants on graph energy of random graphs have been studied, such as Laplacian energy



[13, 22], signless Laplacian energy [14], incidence energy [14], distance energy [14], etc. In
[9], Chen et al. estimated the skew energy of random oriented graphs. Their results were
obtained depending on the LSD of random complex Hermitian matrices.

As an application of Theorem 2, we estimate the Hermitian energy of a random mixed
graph. The result is stated as follows.

~

Theorem 3. Let p = p(n), 0 < p < 1. Then the Hermitian energy Eg(G,(p)) of the

random mized graph @n(p) enjoys almost surely (a.s.) the following equation:

En(Gn(p)) = n®?(2p — p? — p*)1/? (;; + o(1)> :

that is, with probability 1, EH(@n(p)) enjoys the above equation as n — oco.

We postpone the proofs of Theorems 2 and 3 to the next sections.

2 Proof of Theorem 2

Before proceeding, we collect some results that will be used in the sequel of the paper.

Lemma 1 (See [5]). In a directed graph, the number of the closed walks of length 2s which
satisfy that each directed edge and its inverse directed edge in the closed walk both appear
1

once s m(is).

Lemma 2 (See [5]). Let p(z) be as in Theorem 2. Then, for s =0,1,2,3,..., we have

/2 0, fork=2s+1,

—2 L(ZS), for k = 2s.

s+1\s

Lemma 3 (Cauchy-Schwarz’s Inequality). Let £ and n be two complex random variables.

Then
E(Em)? <E(E7) - E(n[?).

Proof. For any t € C, we have

0 < E(t&—n)(tE—n)
= E(t& —n)(t —7)
= tE(&E) — tE(¢7) — tE(En) + E(nm).

Let

39)

W



Then

Hence

This completes the proof. O

Lemma 4 (Chebyshev’s Inequality). Let X be a random variable. Then for any € > 0,

we have

Pr(|X —E(X)| > ¢) < Vang).

Lemma 5 (Borel-Cantelli Lemma). If > >°, Pr(E,) < oo and the events {E,}>2, are

independent, then Pr(limsup,,_, . E,) = 0.

Lemma 6 (Rank Inequality (See [4])). Let A and B be two n x n Hermitian matrices.
Then
1
| FA — FB ||< —rank(A — B),
n

where || f(x) ||:= sup, | f(x)| for a function f(z), and F* means the ESD of A.

Lemma 7 (Chernoff Bounds (See [10])). Let X1, ..., X, be independent random variables
with
Pr(X;=1)=p;, and Pr(X;=0)=1-p,.
Consider the sum X = Y"1 | X; with expectation E(X) =>"" | p;. Then
(i) Lower tail: Pr(X <E(X)—A) <exp (—ﬁ%) ;
. . 2
(ii) Upper tail: Pr(X > E(X) 4+ \) < exp (—m) .

Recall that H, is a random Hermitian matrix whose upper-triangular entries are i.i.d.
copies of a random variable £ and diagonal entries are 0. Recall also that £ takes value 1
with probability p?, i with probability p(1 —p) , —i with probability p(1 — p), and 0 with
probability (1 — p)2. Then

E(¢) =p?, Var(§) =E[(€ —E(€))(€ —E()] =2p —p* —p".



Let f(z) = 23 +2 —2. Then f'(z) = 32%>+1> 0. So, =2 = f(0) < f(p) < f(1) = 0. Thus
Var(¢) = 2p — p* — p* = p(2—p—p*) > 0.

Let 0 = \/W = \/m, and define

My = ~[Hy ~ (= L)) = (1),

where J, is the all-ones matrix of order n and I, is the identity matrix of order n. It can
be easily verified that

e M, is a Hermitian matrix;

e the diagonal entries 7; = 0 and the upper-triangular entries 7;;, 1 < i < j < n are
i.i.d. copies of random variable 1 which takes value # with probability p?, # with

probability p(1 — p) , _i;pQ with probability p(1 — p), and _Tp2 with probability (1 — p)2.

We denote the distribution function of n by &.

Notice that the random variable n of M,, has mean 0 and variance 1, that is,
E(n) =0 and Var(n) = 1.

Note also that the expectation

(1=p»*-p* +2(1 +p*)? - p(1 —p) +p* - (1 - p)®
(2p — p* — p*)*/? ‘

It is easy to find that 2p — p? — p* — 0 as p(n) — 0 or p(n) — 1. So, if lim, ;. p(n) = 0,

E(|nl*) =

then

2p
(2p)*/?
1

E(lnl*) —

This implies that if p = o(1), then M, is not a Wigner matrix. Thus the LSD of M,
cannot be directly derived by the Wigner’s semicircle law. In the following, we will use

the moment method to prove that the ESD of ﬁMn converges to the standard semicircle

distribution.

Definition 1 (See [5]). Let A, be an n x n Hermitian matrix, and Aq,..., A, be the

eigenvalues of A,,. Then, for any real-valued function f,
1 n
[ H@aPA @) = 23" ruAw)
i=1

is called a linear spectral statistics (LSS) of A,,.



Theorem 4. Let 0 = /2p — p? — p*, and M,, = L[H, — p*(J,, — I,,)]. Then the ESD of

[

n~Y2M, converges to the standard semicircle distribution whose density is given by

% 4 — 22, for x| <2,
p(x) =

0,  for|x|>2.

To prove that the ESD of W,, converges in distribution to the standard semicircle distri-

Proof. Let

bution, it suffices to show that the moments of the ESD converge almost surely to the
corresponding moments of the semicircle distribution.
For a positive integer k, by Definition 1, the kth moment of the ESD of the matrix W,

is

)

My, = /wdeW”(:U)
= > W)
i=1

1
= —trace(WF)
n

() .

1
= —— trace(MF)

1 +h/2
1
= W Z MivioNizis ** " Migivs
1<i1,oig<n
where W := iyiy...ix 11311 corresponds to a closed directed walk of length %k in the

complete directed graph of order n. For each directed edge (i,5) € W, let g;; be the
number of occurrence of the directed edge (,7) in the walk W. Note that all directed
edges of a mixed graph are mutually independent. Then we rewrite (2.1) as
1 ij  Qji
Mg =~ > [ Lo nji (2.2)
W i<y
Then
1 Gij dji
EMin) = 7 > 1IE (%‘jnﬁ ) : (2:3)

W oi<j
Here the summation is taken over all directed closed walks of length k.

To show that F"»(x) converges to the standard semicircle distribution whose density

is p(x), by the Moment Convergence Theorem (MCT), it suffices to prove

2
lim My, = / Fp(x)de, k=1,2,.... (2.4)

n—00 _9



Define M,, = (mi;), where

, mig, Af il <V,
0, if ny| = v/n.

Let

Wn - 7Mn = - 5
7= ()

and My, be the kth moment of the ESD of the matrix W,. Similar to (2.1), (2.2) and
(2.3), we have

1 1 P
! / / / q; 4dji
My, = k2 Z Mivioiniz * " Migiy = l+k/2 Z Hn@'jjnjij ) (2.5)
1<it, . ip<n W i<y
and
1 1 1qi5 1qji
1<i1,ix<n W i<y

Then (2.4) can be easily verified by combining Facts 1-3. This completes the proof of
Theorem 4. O

Fact 1. Let p(x) be as in Theorem 2, and let My, be as in Eq. (2.5). Then

2 0, for k=2s+1,
lim E(Mj,,) :/ ¥ p(z)de = (2.7)

e -2 5_%1 (255), for k = 2s.

Fact 2. Let M; , be as in Eq. (2.5). Then
nlggoM,;’n = JggoE(M]/“’") a.s. (2.8)
Fact 3. Let My, ,, and Mj, , be as in Egs. (2.2) and (2.5), respectively. Then

lim My, = nh_)rgo M, a.s. (2.9)

n—oo
In the following, we prove Facts 1-3.
Proof of Fact 1. The second equality of (2.7) follows from Lemma 2 straightforwardly.
Next, we prove the first equality of (2.7).

Define the underlying graph of a directed graph G, denoted I'(G), to be the graph with
vertex set V(G) and edge set

E((G)) = {zyl(z,y) € A(G) or (y, ) € A(G)}.



We decompose E(M ) into parts Ep, i ,,m = 1,2,..., k, containing the m-fold sums,

Mkn ZEmkm (2.10)
where
1 1qi5  1qji
Em,k’n = W Z HE( l]] ]z] ) , (211)
{WHETW))[=m} i<j
and |E(I'(W))| = m means the cardinality of the edge set of I'(W) is m. Here the

|
summation in (2.11) is taken over all closed directed walks W of length k.

Recall that E(n) = 0, and recall also that ¢;; denotes the number of occurrence of the
directed edge (i,7) in the closed walk W. So, if ¢;; + ¢j; = 1, that is, ¢;; = 1,¢;; = 0
or gij = 0,q;; = 1, then J[, ;E (nffnjf) = 0and [[, ;E ( :(J]”nﬁﬂ> = 0. On the other
hand, if m > 5 and ¢;; + qj; > 2, then E,;, ., = 0. So, in the following, we only consider
the case of m < % and g;; + qj; > 2.

Case 1. k is odd. Then m < |£|. Note that |E(I'(W))| = m, i.e., there are m edges
in I'(W). Then there are at most m + 1 vertices in I'(W). This shows that the number of
such closed walks of length k is at most n™*! - (m + 1)*¥. Then

n™m m+l m—l—l g5 1qiq (m+1 /qi5 1953
Emgn < n1+k/2 HE( Mij” My ) T opk/2-m HE( iy Mji )
1<J

Note that En = 0. Then
E(nm) = Eln|* = E[(n — E(n))(n — E(n)] = Var(y) = 1.
Recall that the distribution function of n is denoted by @. Then
Ejyf2 = / 22dP = 1 < oo.

Thus, for any r > 3,

n(2-7)/2 / |z|"d® = o(1), (2.12)
|z|<vn
which follows from the fact (See [1, 2]) that for any distribution function ¥,
/\x|td\I! < 00 = n(tr)/Q/ |z|"dW¥ = o(1) (for any r >t + 1).
|z[<v/n

Note that Qij + a5 = 2 implies that QGij = 1, qji = 1or Gij = 2, qji = 0 or Qij = 0, qji = 2.
Then, we consider the following cases.

If gij > 1,qj > 1, then we set

FE| = {Z] S F(W)\qij > 17(]ji > 1},



Ey={ij eT(W

By = {ij e I(W

Let m; =

|E;|, for i = 1,2,3. Clearly,

Jai; > 1,q5 =1or g =1,q5 > 1},

Naij =1, ¢ = 1}.

E1UFEsU FE3 and mq + mo +mg =m

ETW)) =

Then, by (2.12) and Lemma 3, we have

m+1
nk/Z m

/qU /Qﬂ
z] ]z

H\( )| <

m+1
nk/2 m

/qji

n;i P

HﬁWWE
T /=iy oo - B o

1<J

m+1
nk/2 m

(m + 1)k

“pk/2—m H \/E’néquij ‘E’”I];.i|2qji

£

H \/]E|nl{j|2%'j .E‘n}i|2jS
Es

H\/E|ngj|QQij Eln,; |2
E3

(m + 1)F o(1) [ o(1)

nk/2 m H\/ (2— 2qu /2 n(Q 2q:5)/2 lE:[ n(2—24;)/2
2

(m+ 1)k [ o(1)

nk/Q m H 2 qZ] qji H 1 Qz]

(m+1)% | o(1)

nk/2—m n2m—=k

(m+1)* - o(1)

— 0, as n — oo.

If ¢;j > 2,q;; = 0, then we set

Ey= {Z] S F(W

Es = {’L] S F(W

Let m; = |E;|, for i = 4,5. Then E(I'(W))

m—|—1
k/2 m

’q7,]
1]

’(I]i
i

I

1<j

)

=0},

Naij = 2,q5 = 0}.

MNai; > 2, q;i

= FE4 U FE5 and myg + ms

mmHH%

z<]

= m. So, we have

nk/2 m HE| Mg

1<J

(m+ 1 g
= HE!n 1 ) T Bl %
Es
_ (m+ 1) o(1)
T pk/2em 11 MR

Ey

10



(m + 1)F o(1)
nk/2=m  (2m—k)/2

= (m+1)* o(1)

— 0, as n — 0.

If ¢;j = 0,q;; > 2, by a similar discussion as above, we have

195 1q5i
k/2m H’E(m ﬂ>’ — 0, as n — oo.

Thus, by (2.10), we have

lim E(Mj,,,) =0 for k is odd.

n—o0

Case 2. k=2s (s =1,2,...) is even. Recall that m < g = s and ¢;; + qj;i > 2.

Case 2.1. m < s = £ Note that |[E(I'(W))| = m, i.e., there are m edges in T'(W).
Then there are at most m+1 vertices in I'(W). This shows that the number of such closed
walks of length k is at most n™*1 - (m 4 1)¥. Then

nmtl .

k
195 1953\ _ (m+1) 19:5 1qji
Em,k,n < n1+k/2 H]E( 1]7 J7«] ) = nk/2—m HE (U’U ]anJ ) .
1<J

1<j

Notice that ¢;; + qj; > 2. Then ¢;; > 1,95 > 1 or ¢;; > 2,q;; = 0 or ¢;; = 0,qj > 2. By

similar discussions to Case 1, it can be verified that

Qi CIJz
nk/2 - 1_[‘]}3(ZJ Nji )‘ — 0, asn — oo.

Then for m < s, we have

lim E,, , =0, for k£ = 2s.

n—00
Case 2.2. m = s. In this case, ¢;; + ¢;; > 2 implies that ¢;; = 1,¢j; = 1 (each edge
in the closed walk appears only once, and so does its inverse edge) or ¢;; = 2,¢;; = 0 or
gij = 0,¢qj; = 2. Consider the following cases.
If ¢;; = 1,qj; = 1, then by Lemma 1, the number of the closed walks of length k = 2s

satisfying ¢;; = 1,¢;; = 1 is SJ%I( ) Recall that E(n7) = Var(n) = 1. Then

n(n—l)---(n—s)-ﬁ(%)

1
B = n1tk/2 > HE(n;]n;z)
1<J

n' (14 0(n 1Y) 2 ( 25
_ +1
- n1+s : H]E 7]1]77]1

)

1 <2s>
— , as n — oo.
s+1

— (1+0(n

11



If ¢;j = 2,q5 = 0, then there are s vertices in I'(IW). It is clear that the number of

such closed walks of length k is at most n® - s*. Then

k
19:5 1q5i\ i /qi5 1954
B < 1+k/2H (w ﬂ>_nl[E Mij i ) -

1<j 1<j
In addition,
k
SR Gier)| < ST
nzg ji = n
i<j 1<j
k
S
—- q
- nHE(’nz]|l]
1<)
gk
N n

Hence,
Emngn — 0, asn— oco.
If ¢;; = 0,q;; = 2, by a similar discussion as above, it can be verified that
Sk Qi 1454
;H (nw Nji ) — 0, asn — 0.
1<J

Then for m = s, we have

1 2s
nh—>noloEmkn_3+1<s>’ for k = 2s.

Thus, by (2.10), we have

1 [2s
7L11_>I£10E(Mkn)— s+1<s>’ for k = 2s.

Therefore, the first equality of (2.7) is proved. This completes the proof of Fact 1. O

Proof of Fact 2. Note that [M , — IE(M,’M)]4 is a random variable. Suppose that {a}}

is the set of all values that [Mj , — IE(M/,'CH)]4 takes. Then, for any € > 0, we have

B[ M;,,, —E(M; )] = Y afPr(|M, —E(M;,)|* = af)
)
> Y af Pr(|Mj, —E(M; )" = af)
a;>e€
> Y Pr(IM;, —E(M,)|* = af)
a;>e€

= 64 Pr(‘Mllf,n - E<Ml/f,n)’4 > 64)

= Pr(|M, - E(M],)| > o).

12



Then

Pr(|My.,, — E(Mj,,)| > €) < e B[ My, — E(Mj,,)[). (2.13)

Recall that
M. = 1 / / / L 1 "W
kn = TR2 Z Mivinhigis ™" Migiy "= nltk/2 ZTI (W),
1<iy,onyip<n w
where W := iyis...9,_1i41 corresponds to a closed directed walk of length k in the
complete directed graph of order n. Note (See Bai [4, p.620]) that
4
1 i i
E[| My, — E(Mi)|Y) = —p > E {HW(W ) —E(y'(W ))]} , (2.14)
wi, . ws =1
where W' (i = 1,...,4) corresponds to a closed directed walk of length k in the complete
directed graph of order n.

Set ig € {1,2,3,4}. If T(W%) has no common edge with F(W\Wio), where W =
WIUW?2UW?3uUWH?, that is, W is independent to /W?\Wio, then (2.14) is equal to zero
since
E {H[n'(Wl) - E(??'(WZ))]} =ES [[ (W) —E@' (W))] p Ely (Wo)=E(y (W*))] =0,

1=1 iZ:ilo
due to the independence.

If there is a directed edge (ig,jo) whose number of occurrence in W=wuw?uy
W3uUW*4is 1 and (jo, i) ¢ W, without loss of generality, we assume that (i0, jo) € W,
and (ig,jo) ¢ W' for i € {2,3,4}. Since E(r) = E(n) = 0, we have E(n/(W?!)) =
B, ;) (W\{(io, jo)})] = 0. Then

4 . . 4 . .
E {H[n'(WZ) - E(n'(WZ))]} = E {U'(Wl) [T ow?) - E(n'(WZ))]}
=1 1=2
4 . .
= E(n;,)E {n’(Wl\{(io,jo)}) [T ow?) - E(n’(W’))]}
= 0,

which implies that (2.14) is also equal to zero.

Next, we consider the case when (2.14) may be non-zero. So, by the cases we discussed
above, we know that, in such a case, there exist no directed edge that the total number
of occurrence of this directed edge and its inverse edge in W is just 1. Recall that the
underlying graph of a directed graph G, denoted I'(G), is defined to be the graph with
vertex set V(G) and edge set

ET(G)) = {zyl(z,y) € A(G) or (y,z) € A(G)}.

13



For e; € E(I'(G)), define vl# to be the total number of occurrence of the directed edges

(z,y) and (y,z) in G such that (z,y) and (y,z) correspond to the edge e; in I'(G),

called the multiplicity of e;. Assume that I'(IW) has edges e, ea,..., e with multiplic-
ities v#,v#,...,vl#. Clearly, vl# > 2fori=1,...,1, and vfﬁ —vaE + - +Ul# = 4k.
Then

4
[I0' W) —EG/ (W)
i=1

4

E[J(a' (Wl + B (W)
i=1
4

E T (' (W) +Ely' (W)
1=1
4

E [ (0" W]+ 1/ (W)

=1

4
= 16E]] W (W)

=1
l
#

= 16 [JEW[*

7=1

! #
= 16]] / 2|7 d

j=1 lz|<v/n

l
< 16 H(\/ﬁ)vf2/ |z|>d®
j=1 lz|<y/n

4
E {H[n’(W") —E@' (W) H < E

=1

IN

IN

IN

#_9

l
< 16]J(vm
j=1

—

Note that there are at most two pieces of connected subgraphs in I'(W'). Then, there
are at most [ 4 2 vertices in F(/W) This shows that the number of such W is at most

nit2. Ci.k, where Cp 1, is a constant depending on [ and k. Then

1
T D

1 ) . nit2. l
E {HW(WZ) - E(n’(WZ))]H 0 | (D

wt.. . w4 =1 j=1
142
— 16” Clvk 2k—1
nA+2k
= 16Cp;-n"?

By (2.14), we have

E[|My,,, —E(M;,)['] =0(n7?), k=1,2,....

14



Then

SCE(M, —E(M,)[] =3 0 < oo, k=1.2,....
n=1

n=1

By (2.13), we have
[e.e]
> Pr(|Mj,, —E(Mj,)| =€) <oo, k=1,2,....
n=1

Note that the events {|M; , —E(My )| > e};2; are independent. Then, by Lemma 5,

we have
Pr(| My, — E(Mj,,)| = €) =0,
ie.,
. / _ . !
nh_{EOMk,n = nh_?goE(Mk,n) a.s.
This completes the proof of Fact 2. O

Proof of Fact 3. Note that
My = / aFdF"r (z) = / R Fn M ()

and
My, = / APV (2) = / dEdF M ()

By Lemma 6, we have
—_— - /0 1 —
| EWn B =] M M < S pamle(M, — M),
n

Notice that rank(M,, — ]\A4;) < the number of nonzero entries in (M,, — M\;), which is

bounded by >~ Ity > /m}, Where

I i >f -
{Injk|>v/n} 1, if sl > /7.
Then
T 1
| P = Y I< =S Lz vy
ik
Let

pjk = Pr(Inx] = v/n).

Since E(n7) = E|n|?> = 1, we have

|
>_pik = Prllnjsl = V) < =3 Elnje* Iy, > my = O(n).
Jk Jk Jk

15



Consider the n(n —1)/2 independent terms of Iy, > /my, (1 <j <k < n), which are

independent random variables, with

Pr(liy, >ym = 1) =pjk,  Prilyn, >ym = 0) =1 - pjr,

and the sum of the n(n —1)/2 independent terms of I, > /my,

E Y Lpuisvay| = Dk =) Pr(lnl = vn). (2.15)

j<k j<k j<k

For any € > 0, applying Lemma 7 to (2.15), we have

Z' k;I ik|=vn
Pr( PR 2] = P Sl zen

n "
i<k

= Pr| > Iy, >vm —E

j<k

Zf{lnjklz\/ﬁ}] >en—Y ik

i<k i<k
(en — Zj<kpjk)2
en—y . . Dj
2( % pan + T )

~ exp _3(6n_2j<kpjk)2
2en +5% 1 Pjk

= exp(—bn),

IA

exp | —

for some positive constant b. Then, by Lemma 5, we have

2 i<k insil> vy

n

-0 as. (n— o)
Notice that with probability 1, the truncation does not affect the LSD of M,. So

-1/25p, -1/237, 1
I - 1< = Tinulzvmy = 0-
ik

Then we have

lim Mg, = lim M, a.s.
n—oo n—o0 ’

This completes the proof of Fact 3. (]
Proof of Theorem 2. Recall that

1
W, =n2M, = ——[(H,, + p*I,) — p>J,
n a\/ﬁ[( +p°1n) — p* Tl

and set

1
W* = ——(H, + p°I,,).
o in ¥ 70n)

16



Then

W* — W, = 27,

1

J\/ﬁ.p

rank L 27,0 =1
o/n P Jn | = L.

I EY () — F"(2) ||<

Note that

By Lemma 6, we have

1 1

— 1=,

n n

This implies that the LSDs of W*, W,, are the same. By Theorem 4, we have

T
lim FV (z) = lim FV»(z) = F(z) := / p(x)dz. (2.16)
n—00 n—00 oo
Consider the matrices W** = ﬁHn and W* = T\I/E(H” +p2In). Note that
1
W* — W** = — szn = AnIna

ov/n
and

p> = 0(n = c0).
n

oV

Note also that A is an eigenvalue of W** if and only if A + A,, is an eigenvalue of W*.

Then

A, =

FVW7x) = FV (z + A,).
On the other hand, A,, — 0 (n — o0) implies that for any € > 0, there exists an N such
that |A,| < e for all n > N. Since F" () is an increasing function for all n > N, we
have
FV'(@—e) <FV (z+A,) <FV (z+e).

Then

Flx—e) = lim FV (z—¢)

n—oo

lim FV (2 4+ A,)

n—oo

lim FV (z+¢)

n—oo

F(x+e¢€) a.s.

IN A

Note (2.16) that the density of F(z) is smooth. Then F(z) is continuous. By choosing

€ > 0 as small as possible, we conclude that

lim FV7 (z) = lim FV (z + A,) = F(z) a.s.

n—oo n—o0
ie.,
. P i1
lim Fove'"(z) = F(x) a.s.
n—oo
This completes the proof. O

17



3 Proof of Theorem 3

In this section we give an estimation of the Hermitian energy for almost all mixed graphs.

First, we need the following results.

Lemma 8 (See [8]). Let u be a measure. Suppose that functions an, by, fn converges

almost everywhere to functions a, b, f, respectively, and that a, < f, < b, almost every-

where. If [a,dp — [adp and [ b,dp — [bdp, then [ fodp — [ fdu.

Theorem 5. Define o = /2p — p?2 — p*. Let H, be an Hermitian adjacency matriz of a
random mixed graph @n(p) with p =p(n), 0 < p < 1. Let p(x) be as in Theorem 2, and
F(x)= [*__ p(xz)dz. Then

lim /\a:|dF<r$ﬁH"(x):/\x|dF(m):/\a¢|p(a¢)dx a.s.

n—oo

1 1
Proof. Note that Fova'™"(z) = I povi™(2)dz and F(z) = J* . p(z)dz. Note also
that

. 4
lim Fova™"(z) = F(x).

n—o0

Then

1
lim p7va " (z) = p(a).

n—o0

Let I be the interval [—2,2], and I¢ the set R\I. Since p(z) is bounded on I, it follows
1
that with probability 1, z2 pmH" (x) is bounded almost everywhere on I. By the Bounded

Convergence Theorem (See [28]), we have

1
lim xQdFmH”(x) :/xzdF(m) a.s.

n—oo I I
Then
n—o0 Ic n—oo I
= lim xQdFﬁH"(m) — lim x%FﬁH’L(x)
n—oo n—o0 Jr
= /deF(x) —/x2dF(3:) a.s.
T
= / 22dF(z) a.s. (3.1)
IC
Set

an(7) = 0, by(z) = 22p7va ™ (z), and fo(z) = |z|p7ve " (z).

Notice that

lz| <a2?, if xzelIC.

18



Then

an(z) < folz) < bn(z), if zeIC.

By Lemma 8 and (3.1), we have

lim ]a:\pffxl/ﬁH"(x)dx:/ |z|p(x)dz a.s.,
JC

n—oo Ic
ie.,
1
lim [ |z|dFovE () = / z|dF(z) a.s. (3.2)
n—oo IC Ic

1
Note that with probability 1, |z|pev® Hn (z) is bounded almost everywhere on I, since

p(x) is bounded on I. Again, by the Bounded Convergence Theorem (See [28]), we have

lim /|xdeo wHn /|x|dF 0s. (3.3)
n—oo

By (3.2) and (3.3), we have

1y
lim /w|dFUﬁ /]:U|dF /]:U|p )dz a.s.
n—oo

This completes the proof. O

Proof of Theorem 3. Recall that 0 = \/2p — p? — p%, and H,, denotes the Hermitian
adjacency matrix of G, (p). Suppose that Ai, Ag,..., Ay, and M|, ), ..., ), are the eigen-
values of H,, and an, respectively. By Theorem 4, the ESD of n=1/2M,, converges to

the standard semicircle distribution whose density is given by

=V4—22  for |z <2,

p(r) =
0, for |z| > 2.
By Theorem 5, we have
&n G P -
( ng( ) _ -3
onz onz2 i

17’L
:”ZZ:

—=Ai
o\v/n



This completes the proof. O
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