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Abstract

A total-coloring of a graph G is a coloring of both the edge set E(G) and the
vertex set V (G) of G. A path in a total-colored graph is called total-rainbow if
its edges and internal vertices have distinct colors. For a positive integer k, a
total-colored graph is called total-rainbow k-connected if for every two vertices
of G there are k internally disjoint total-rainbow paths in G connecting them.
For an ℓ-connected graph G and an integer k with 1 ≤ k ≤ ℓ, the total-rainbow

k-connection number of G, denoted by trck(G), is the minimum number of colors
needed in a total-coloring of G to make G total-rainbow k-connected. In this pa-
per, we study the computational complexity of total-rainbow k-connection num-
ber of graphs. We show that it is NP-complete to decide whether trck(G) = 3
for any fixed positive integer k.

Keywords: total-rainbow k-connection number, computational complexity, NP-
complete.
AMS subject classification 2010: 05C15, 05C40, 68Q17, 68Q25, 68R10.

1 Introduction

Information security may be the most fundamental subject in the communication of

information between agencies of government. We can assign information transfer paths

between agencies which may have other agencies as intermediaries while requiring a
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large enough number of passwords and firewalls to prevent intruders. An immediate

question arises: What is the minimum number of passwords or firewalls needed that

allow one or more secure paths between every two agencies so that the passwords or

firewalls along each path are distinct?

This question can be modeled by graph-theoretic model. All graphs considered in

this paper are simple, finite, undirected and connected. We follow the terminology

and notation of Bondy and Murty [1] for those not defined here. A set of internally

vertex-disjoint paths are called disjoint. Let G be a nontrivial connected graph with

an edge-coloring c : E(G) → {0, 1, . . . , t}, t ∈ N, where adjacent edges may be colored

with one same color. A path in G is called a rainbow path if no two edges of the path

are colored with one same color. The graph G is called rainbow connected if for every

two vertices of G, there is a rainbow path connecting them. The rainbow connection

number of G, denoted by rc(G), is defined as the minimum number of colors that are

needed to make G rainbow connected. A rainbow coloring using rc(G) colors is called a

minimum rainbow coloring. So the question mentioned above can be modeled by means

of computing the value of rainbow connection number. If G is an ℓ-connected graph

with ℓ ≥ 1, then for any integer 1 ≤ k ≤ ℓ, the graph G is called rainbow k-connected

if every two vertices of G are connected by k disjoint rainbow paths. The rainbow

k-connection number of G, denoted by rck(G), is the minimum number of colors that

are needed to make G rainbow k-connected. The concepts of rainbow connection and

rainbow k-connection of graphs were introduced by Chartrand et al. [4, 3], and they

have been well-studied since then. For further details, we refer the reader to a survey

paper [8] and the book [9].

LetG be a nontrivial connected graph with a vertex-coloring c : V (G) → {0, 1, . . . , t},

t ∈ N, where adjacent vertices may be colored with one same color. A path in G is

called a vertex-rainbow path if no interval vertices of the path are colored with one same

color. The graph G is rainbow vertex-connected if for every two vertices of G, there is

a vertex-rainbow path connecting them. The rainbow vertex-connection number of G,
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denoted by rvc(G), is the minimum number of colors needed in a vertex-coloring of G

to make G rainbow vertex-connected. If G is an ℓ-connected graph with ℓ ≥ 1, then

for any integer k with 1 ≤ k ≤ ℓ, the graph G is rainbow vertex k-connected if every

two vertices of G are connected by k disjoint vertex-rainbow paths. For a graph G, the

rainbow vertex k-connection number of G, denoted by rvck(G), is the minimum number

of colors that are needed to make G rainbow vertex k-connected. These concepts of

rainbow vertex connection and rainbow vertex k-connection of graphs were proposed

by Krivelevich and Yuster [7] and Liu et al. [10], respectively.

Liu et al. [11] introduced the analogous concepts of total-rainbow k-connection of

graphs. Let G be a nontrivial ℓ-connected graph with a total-coloring c : E(G) ∪

V (G) → {0, 1, . . . , t}, t ∈ N, where ℓ ≥ 1. A path in G is called a total-rainbow

path if its edges and interval vertices have distinct colors. For any integer k with

1 ≤ k ≤ ℓ, the graph G is called total-rainbow k-connected if every two vertices of

G are connected by k disjoint total-rainbow paths. The total-rainbow k-connection

number of G, denoted by trck(G), is the minimum number of colors that are needed

to make G total-rainbow k-connected. When k = 1, we simply write trc(G), just like

rc(G) and rvc(G). From Liu et al. [11], we have that trc(G) = 1 if and only if G is

a complete graph, and trc(G) ≥ 3 if G is not complete. If G is an ℓ-connected graph

with ℓ ≥ 1, then trck(G) ≥ 3 if 2 ≤ k ≤ ℓ, and trck(G) ≥ 2diam(G)− 1 for 1 ≤ k ≤ ℓ,

where diam(G) denotes the diameter of G. In relation to rck(G) and rvck(G), Liu et

al. have trck(G) ≥ max(rck(G), rvck(G)). Also, if rck(G) = 2, then trck(G) = 3. If

rvck(G) ≥ 2, then trck(G) ≥ 5.

The computational complexity of rainbow connectivity and rainbow vertex-connectivity

has attracted much attention. In [2], Chakraborty et al. proved that deciding whether

rc(G) = 2 is NP-complete. Their proof idea has been used by different authors for

proving hardness results for various rainbow coloring problems. Indeed, our proof fol-

lows a frame similar to that in [2]. A key point of our proof is the application of

Lemma 2.2 in the reduction from Problem 2 to Problem 1. Analogously, Chen et al.
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[6] showed that it is NP-complete to decide whether rvc(G) = 2. Motivated by these

results in [2, 6], we will consider the computational complexity of computing the total-

rainbow k-connection number trck(G) of a graph G. For k = 1, Chen et al. [5] gave

reductions to prove that it is NP-complete to decide whether trc(G) = 3. In this paper,

we will prove that for any fixed k ≥ 1 it is NP-complete to decide whether trck(G) = 3.

The reductions used in our proofs are different from those in [5].

2 Main results

Our main result is as follows.

Theorem 2.1. Given a graph G, deciding whether trck(G) = 3 is NP-complete for

any fixed k ≥ 1.

Throughout this paper, we assume the input graph G is ℓ-connected and k is a

fixed integer with 1 ≤ k ≤ ℓ in the problems to follow. Now, we define the following

three problems.

Problem 1. The problem of 3-total-rainbow k-connection:

Given: A graph G = (V,E).

Question: Is there a total-coloring of G with 3 colors such that all the pairs {u, v} ∈

(V × V ) are total-rainbow k-connected ?

Problem 2. The problem of 3-subset total-rainbow k-connection:

Given: A graph G = (V,E) and a set of pairs P ⊆ (V × V ), where P contains pairs of

nonadjacent vertices.

Question: Is there a total-coloring of G with 3 colors such that all the pairs {u, v} ∈ P

are total-rainbow k-connected ?

Problem 3. The problem of extending to 3-total-rainbow k-connection:

Given: A graph G = (V,E) with a set of pairs Q ⊆ V × V where Q contains pairs of
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nonadjacent vertices, and a partial 2-edge-coloring χ̂ for Ê ⊂ E.

Question: Can χ̂ be extended to a 3-total-coloring χ of G that makes all the pairs in

Q total-rainbow k-connected and χ(e) /∈ {χ(u), χ(v)} for all e = uv ∈ Ê ?

In the following, we first reduce Problem 2 to Problem 1, and then reduce Problem

3 to Problem 2. Finally, Theorem 2.1 is proved by reducing 3-SAT to Problem 3.

Before proving Theorem 2.1, we need a useful result shown in [4].

Lemma 2.2. [4] For every k ≥ 2, rck(K(k+1)2) = 2.

We need more details of the above theorem, so we demonstrate the following 2-edge-

coloring, which is from [4], with colors 0 and 1 that makes G = K(k+1)2 rainbow k-

connected. Let G1, G2, . . . , Gk+1 be mutually vertex-disjoint graphs, where V (Gi) = Vi,

such that Gi = Kk+1 for 1 ≤ i ≤ k + 1. Let Vi = {vi,1, vi,2, . . . , vi,k+1} for 1 ≤ i ≤

k + 1. Let G be the join of the graphs G1, G2, . . . , Gk+1. Thus G = K(k+1)2 and

V (G) = ∪k+1
i=1 Vi. We assign the edge uv of G the color 0 if either uv ∈ E(Gi) for some

i(1 ≤ i ≤ k + 1) or if uv = vi,lvj,l for some i, j, l with 1 ≤ i, j, l ≤ k + 1 and i 6= j. All

other edges of G are assigned the color 1.

For k = 1, since rc1(K(k+1)2)=1, the above coloring surely makes G rainbow 1-

connected. Note that from the above coloring, for every vertex v ∈ V (G), we have

d(v) = k2 + 2k, with 2k of the edges incident with v colored with 0, and the other k2

edges colored with 1.

Lemma 2.3. The problem of 3-subset total-rainbow k-connection is polynomially re-

ducible to the problem of 3-total-rainbow k-connection.

Proof. Given a graph G = (V,E) and a set of pairs P ⊆ V × V where P contains

pairs of nonadjacent vertices, we construct a graph G′ = (V ′, E ′) as follows. For

every vertex v ∈ V , we introduce a new vertex set Vv = {x(v,1), x(v,2), . . . , x(v,(k+1)2)},

and for every pair {u, v} ∈ (V × V ) \ P , we introduce a new vertex set V(u,v) =
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u v

G′[V ′\V ]

G

G
′[Vu] G

′[Vv]G
′[Vuv]

the edge is colored with 1
the edge is colored with 0

A B the join of A and B

{u, v} ∈ (V × V ) \ P

Fig 1: The illustration of Lemma 2.3.

{x(u,v,1), x(u,v,2), . . . , x(u,v,(k+1)2)}. We set

V ′ = V ∪ {Vv : v ∈ V } ∪
{

V(u,v) : {u, v} ∈ (V × V ) \ P
}

and

E ′ = E ∪ {vx(v,i) : v ∈ V, x(v,i) ∈ Vv}

∪
{

{ux(u,v,i), vx(u,v,i)} : {u, v} ∈ (V × V ) \ P, x(u,v,i) ∈ V(u,v)

}

∪ {xx′ : x, x′ ∈ V ′ \ V }.

The construction is illustrated in Fig 1. It remains to be verified that G′ is 3-total-

rainbow k-connected if and only if there is a total-coloring of G with 3 colors such that

all the pairs {u, v} ∈ P are total-rainbow k-connected. In one direction, suppose that

G′ is 3-total-rainbow k-connected. Notice that when G is considered as a subgraph of

G′, no pair of vertices of G that appear in P has a path of length two in G′ that is not

fully contained in G. Then with this coloring, all the pairs {u, v} ∈ P are total-rainbow

k-connected in G.

In the other direction, suppose that χ : V ∪ E → {0, 1, 2} is a total-coloring

of G that makes all the pairs in P total-rainbow k-connected. We now extend it
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to a total-rainbow k-connection coloring χ′ : V ′ ∪ E ′ → {0, 1, 2}. We set χ′(x) =

2 for all x ∈ V ′ \ V ; χ′(vx(v,i)) = 1 for all v ∈ V and x(v,i) ∈ Vv; χ′(ux(u,v,i)) =

0, χ′(vx(u,v,i)) = 1 for all {u, v} ∈ (V × V ) \ P and all x(u,v,i) ∈ V(u,v). The edges

in G′[Vv] or G′[V(u,v)] are colored with a color from {0, 1} as in the construction for

Lemma 2.2 for all v ∈ V and all {u, v} ∈ (V ×V )\P . Finally, the remaining uncolored

edges are colored with 0. Now we show that G′ is total-rainbow k-connected under

this coloring. For {u, v} ∈ P , the k disjoint total-rainbow paths in G connecting

u and v are also k disjoint total-rainbow paths in G′. For {u, v} ∈ (V × V ) \ P ,

{ux(u,v,1)v, ux(u,v,2)v, . . . , ux(u,v,k)v} are k disjoint total-rainbow paths. For u ∈ V, v ∈

V ′ \ V , if v /∈ Vu, then {ux(u,1)v, ux(u,2)v, . . . , ux(u,k)v} are k disjoint total-rainbow

paths; if v ∈ Vu, from Lemma 2.2, we have 2k > k edges incident with v which are

colored with 0 in G′[Vu]. Suppose that {v1, v2, . . . , vk} are k vertices adjacent to v

by these edges colored with 0, then {uv1v, uv2v, . . . , uvkv} are k disjoint total-rainbow

paths. For {x, x′} ∈ (Vu × Vu) or (V(u,v) × V(u,v)), by Lemma 2.2, there are k disjoint

total-rainbow paths in G′[Vu] or G′[V(u,v)] connecting u and v. For the remaining

pairs {x, x′}, suppose w.l.o.g that x ∈ Vu and x′ ∈ Vv(u 6= v). By Lemma 2.2, we

have k2 > k edges incident with x′ which are colored with 1 in G′[Vv]. Suppose that

{v′1, v
′

2, . . . , v
′

k} are k vertices adjacent with x′ by these edges colored with 1, then

{xv′1x
′, xv′2x

′, . . . , xv′kx
′} are k disjoint total-rainbow paths. Hence, χ′ is indeed a valid

3-total-rainbow k-connection coloring of G′.

Lemma 2.4. The problem of extending to 3-total-rainbow k-connection is polynomially

reducible to the problem of 3-subset total-rainbow k-connection.

Proof. Since the identity of the colors does not matter, it is more convenient that

instead of a partial 2-edge-coloring χ̂ we consider the corresponding partition πχ̂ =

(Ê1, Ê2). For the sake of convenience, let e = e1e2 for e ∈ (Ê1 ∪ Ê2). Note that the

ends of e may be labeled by different signs for e ∈ (Ê1 ∪ Ê2). Given a partial 2-edge-

coloring χ̂ of the graph G and a set of pairs Q ⊆ (V × V ) where Q contains pairs of

nonadjacent vertices, now we construct a new graph G′ = (V ′, E ′) and define a set of
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pairs P ⊆ (V ′ × V ′) as follows. We first add the vertices

{c, b1, b2} ∪
{

{cje, d
j
e, f

j
e} : j ∈ {1, 2}, e ∈ (Ê1 ∪ Ê2)

}

and add the edges

{

b1c, b2c
}

∪
{

ccje : j ∈ {1, 2}, e ∈ (Ê1 ∪ Ê2)
}

∪
{

{cjef
j
e , c

j
ee

j , djee
j} : e ∈ (Ê1 ∪ Ê2)

}

.

Now we define the set of pairs P as follows:

P =Q ∪ {b1, b2} ∪
{

{bi, c
j
e} : e ∈ Êi, i, j ∈ {1, 2}

}

∪
{

{f j
e , c}, {f

j
e , e

j}, {dje, c
j
e}, {d

j
e, e

(3−j)} : j ∈ {1, 2}, e ∈ (Ê1 ∪ Ê2)
}

.

Then, we add the new vertices

{

{g(u,v,2), g(u,v,3), . . . , g(u,v,k)} : {u, v} ∈ P \Q
}

and add the new edges

{

{ug(u,v,2)v, ug(u,v,3)v, . . . , ug(u,v,k)v} : {u, v} ∈ P \Q
}

.

On one hand, if there is a 3-total-coloring χ of G that makes all the pairs in Q total-

rainbow k-connected which extends πχ̂ = (Ê1, Ê2) and χ(e) /∈ {χ(e1), χ(e2)} for all

e = e1e2 ∈ Ê, then we give a total-coloring χ′ of G′ as follows. Suppose w.l.o.g

that elements of Ê1 are colored with 0, and elements of Ê2 are colored with 1. Set

χ′(v) = χ(v), and χ′(e) = χ(e) for all v ∈ V, e ∈ E; χ′(v) = 2 for all v ∈ V ′ \ V ;

χ′(b1c) = 1, and χ′(b2c) = 0; χ′(cjee
j) = χ′(cjec) = 0, χ′(f j

e c
j
e) = 1 and χ′(djee

j) =

{1, 2} \ χ(ej) for all e ∈ Ê1; χ′(cjee
j) = χ′(cjec) = 1, χ′(f j

e c
j
e) = 0 and χ′(djee

j) =

{0, 2} \ χ(ej) for all e ∈ Ê2; χ
′(ug(u,v,t)) = 0, and χ′(g(u,v,t)v) = 1 for all 2 ≤ t ≤ k

and all {u, v} ∈ P \ Q. Now we verify that this coloring indeed makes all the pairs in

P total-rainbow k-connected. First of all, for {u, v} ∈ Q, the k disjoint total-rainbow

paths in G connecting u and v are also k disjoint total-rainbow paths in G′. Then for

{u, v} ∈ P \ Q, {ug(u,v,2)v, ug(u,v,3)v, . . . , ug(u,v,k)v} obviously are k − 1 disjoint total-

rainbow paths, thus, we only need to find one more total-rainbow path, disjoint from
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the above k−1 paths, connecting u and v. The k-th path is easy to find. For instance,

the k-th path for {b1, b2} is b1cb2. Thus we omit further details.

On the other hand, any 3-total-coloring of G′ that makes all the pairs in P total-

rainbow k-connected indeed makes all the pairs in Q total-rainbow k-connected in G,

because G′ contains no path of length 2 between any pair in Q that is not contained

in G. Note that there exist exactly k disjoint total-rainbow paths between any pair

in P \ Q. For any e ∈ Êi, i ∈ {1, 2}, from the set of pairs
{

{b1, b2}, {bi, c
j
e}, {f

j
e , c},

{f j
e , e

j}, {dje, c
j
e}, {d

j
e, e

(3−j)}: j ∈ {1, 2}
}

, we have χ′(b1c) 6= χ′(b2c), χ
′(e) = χ′(cjee

j) =

χ′(cjec) = χ′(b(3−i)c) and χ′(e) /∈ {χ′(e1), χ′(e2)} for j ∈ {1, 2}. Hence, the coloring χ′

of G′ not only provides a 3-total-coloring χ of G that makes all the pairs in Q total-

rainbow k-connected, but it also makes sure that χ extends the original partial coloring

πχ̂ = (Ê1, Ê2) and χ(e) /∈ {χ(e1), χ(e2)} for all e = e1e2 ∈ Ê.

Lemma 2.5. The problem of 3-SAT is polynomially reducible to the problem of ex-

tending to 3-total-rainbow k-connection.

Proof. Given a 3CNF formula φ =
∧m

i=1 ci over variables {x1, x2, . . . , xn}, we construct

a graph G = (V,E), and define a partial 2-edge-coloring χ̂ : Ê → {0, 1}, and a set of

pairs Q ⊆ (V × V ) where Q contains pairs of nonadjacent vertices, as follows. We set

V (G) = {cjt , t ∈ [m], 1 ≤ j ≤ k} ∪ {xi : i ∈ [n]} ∪ {s}

and

E(G) = {c1txi : xi ∈ ct or xi ∈ ct} ∪ {sxi : i ∈ [n]} ∪
{

{scjt , c
j
tc

1
t} : t ∈ [m], 2 ≤ j ≤ k

}

.

Now we define the set of pairs Q =
{

{s, c1t} : t ∈ [m]
}

.

Finally, we define Ê = {c1txi : xi ∈ ct or xi ∈ ct} and the partial 2-edge-coloring χ̂

of Ê as follows:

χ̂(c1txi) =

{

0 if xi ∈ ct,

1 if xi ∈ ct.
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Next, we show there is an extension χ of χ̂, which is a 3-total-coloring of G, that

makes all the pairs in Q total-rainbow k-connected and χ(e) /∈ {χ(u), χ(v)} for all

e = uv ∈ Ê if and only if φ is satisfiable. On one hand, for a truth assignment of φ

over {x1, x2, . . . , xn}, we extend χ̂ to χ as follows: χ(v) = 2 for all v ∈ V ; χ(scjt ) = 0,

and χ(cjtc
1
t ) = 1 for all t ∈ [m] and all 2 ≤ j ≤ k; χ(sxi) = xi for all i ∈ [n]. From

above, for all e = uv ∈ Ê, obviously χ(e) /∈ {χ(u), χ(v)}. Now we verify that χ indeed

makes all the pairs in Q total-rainbow k-connected. Since φ is satisfiable, for each ct,

there exists a xi or xi making ct true, that is, xi ∈ ct and xi = 1, or xi ∈ ct and

xi = 0. Then the path sxic
1
t total-rainbow connects s and c1t in either case. Together

with {sc2t c
1
t , sc

3
t c

1
t , . . . , sc

k
t c

1
t}, we find k disjoint total-rainbow paths connecting s and

c1t . Thus χ is as desired.

On the other hand, suppose that there is an extension χ of χ̂, which is a 3-total-

coloring of G, that makes all the pairs in Q total-rainbow k-connected and χ(e) /∈

{χ(u), χ(v)} for all e = uv ∈ Ê. Let X = {xi : i ∈ [n]} and X0 = {xi ∈ X|

there exists a total-rainbow path sxic
1
t for some c1t}. For the above total-rainbow

path sxic
1
t , since c1txi ∈ Ê, then we have χ(c1txi) = χ̂(c1txi) ∈ {0, 1}. Thus, we have

|{χ(sxi), χ(xi)} ∩ {0, 1}| = 1. For xi ∈ X0, we set the value of xi be the only element

in {χ(sxi), χ(xi)} ∩ {0, 1}; for xi ∈ X\X0, we set xi = 0 or 1 arbitrarily. Now we get

an assignment of φ over {x1, x2, . . . , xn} according to χ. For each c1t , since there are at

most k − 1 total-rainbow paths connecting s and c1t by {cjt : 2 ≤ j ≤ k}, there must

exist a total-rainbow path sxic
1
t by some vertex xi ∈ X0. If xi ∈ ct, then χ(c1txi) = 0.

So the value of xi is 1, which makes ct true. If xi ∈ ct, then χ(c1txi) = 1. So the value

of xi is 0, which also makes ct true. Thus φ is satisfiable.
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