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Quasi-homography Warps in Image Stitching
Nan Li, Yifang Xu, and Chao Wang

Abstract—The naturalness of warps is gaining extensive at-
tentions in image stitching. Recent warps such as SPHP and
AANAP, use global similarity warps to mitigate projective
distortion (which enlarges regions), however, they necessarily
bring in perspective distortion (which generates inconsistencies).
In this paper, we propose a novel quasi-homography warp,
which effectively balances the perspective distortion against the
projective distortion in the non-overlapping region to create a
more natural-looking panorama. Our approach formulates the
warp as the solution of a bivariate system, where perspective
distortion and projective distortion are characterized as slope
preservation and scale linearization respectively. Because our
proposed warp only relies on a global homography, thus it is
totally parameter-free. A comprehensive experiment shows that a
quasi-homography warp outperforms some state-of-the-art warps
in urban scenes, including homography, AutoStitch and SPHP. A
user study demonstrates that it wins most users’ favor, comparing
to homography and SPHP.

Index Terms—Image stitching, image warping, natural-
looking, projective distortion, perspective distortion.

I. INTRODUCTION

IMAGE stitching plays an important role in many multime-
dia applications, such like panoramic videos [1]–[3], virtual

reality [4]–[6]. Conventionally, image stitching is a process of
composing multiple images with overlapping fields of views,
to produce a wide-view panorama [7], where the first stage
is to determine a warp for each image and transform it into
a common coordinate system, then the warped images are
composed [8]–[12] and blended [13]–[15] into a final mosaic.
Evaluations of warping include the alignment quality in the
overlapping region and the naturalness quality in the non-
overlapping region.

Early warps focus on the alignment quality, which is mea-
sured in two different aspects:

• (global) the root mean squared error on the set of feature
correspondences,

• (local) the patch-based mean error along a stitching seam.
Global warps such as similarity or homography warps [16],
aim to minimize alignment errors between overlapping pix-
els via a uniform transformation. Homography is the most
frequently used warp, because it is the most flexible planar
transformation which preserves all straight lines. For a better
global alignment quality, recent spatially-varying warps [17]–
[20] use multiple local transformations instead of a single
global one to address the large parallax issue in the overlapping
region. Some seam-driven warps [21]–[23] address the same
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Fig. 1. A distortion comparison among different warps in the non-overlapping
region, which use the same homography alignment and the same seam-
cutting composition in the overlapping region. In the stitching results, we
use blue rectangles to highlight the comparison of projective distortion,
and red rectangles to highlight the comparison of perspective distortion. (a)
Homography. (b) SPHP. (c) Our warp. Homography is of global consistency
but suffers from projective distortion. SPHP is of local consistency but
suffers from perspective distortion. Our warp is partially of global and local
consistencies and balances projective and perspective distortion.

problem by pursuing a better local alignment quality in the
overlapping region, such that there exists a local region to be
seamlessly blended.

Recent warps concentrate more on the naturalness quality,
which is embodied in two consistency properties:

• (local) the region of any object should be consistent with
its appearance in the original,

• (global) the perspective relation of the same object should
be consistent between different images.

Violations of consistencies lead to two types of distortion:
• (projective) the region of an object is enlarged, compared

to its appearance in the original (see people and trees in
Fig. 1(a)),

• (perspective) the perspectives of an object in two images
are inconsistent with each other (see buildings and signs
in Fig. 1(b)).

Similarity warps automatically satisfy the local consistency,
since they purely involve translation, rotation and uniformly
scaling, but may suffer from perspective distortion. Homogra-
phy warps conventionally satisfy the global consistency, if a
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good alignment quality is guaranteed, but may suffer from
projective distortion. Warps such like the shape-preserving
half-projective (SPHP) warp [24] and the adaptive as-natural-
as-possible (AANAP) warp [25] use a spatial combination
of homography and similarity warps to mitigate projective
distortion in the non-overlapping region. Other warps address
the same problem via a joint optimization of alignment and
naturalness qualities, which either constrains the warp resem-
bles a similarity as a whole [26], or constrains the warp
preserves detected straight lines [27].

In this paper, we propose a quasi-homography warp, which
balances the projective distortion against the perspective dis-
tortion in the non-overlapping region, to create a more natural-
looking mosaic (see Fig. 1(c)). Our proposed warp only relies
on a global homography, thus it is totally parameter-free.
The rest of the paper is organized as follows. Section II
describes some recent works. Section III provides a naturalness
analysis of image warps, where Section III-A presents two
intuitive tools to demonstrate projective distortion and per-
spective distortion via mathematical derivations. Section III-B
and III-C employ such tools to analyze homography and SPHP
warps in aspects of local and global consistencies. Our quasi-
homography warp is defined as a solution of a bivariate system
in Section IV-B, which is based on a new formulation of ho-
mography in Section IV-A. Implementation details (including
two-image stitching and multiple-image stitching) and method
variations (including orientation rectification and partition re-
finement) are proposed in Section V. Section VI presents a
comparison experiment and a user study, which demonstrate
that the quasi-homography warp not only outperforms some
state-of-the-art warps in urban scenes, but also wins most
users’ favor. Finally, conclusions are drawn in Section VII
and some mathematical formulas are explained in Appendix.

II. RELATED WORK

In this section, we review some recent works of image warps
in aspects of alignment and naturalness qualities respectively.
For more fundamental concepts about image stitching, please
refer to a comprehensive survey [7] by Szeliski.

A. Warps for Better Alignment

Conventional stitching methods always employ global warps
such as similarity, affine and homography, to align images in
the overlapping region [16]. Global warps are robust but often
not flexible enough to provide accurate alignment. Gao et al.
[17] proposed a dual-homography warp to address scenes with
two dominant planes by a weighted sum of two homographies.
Lin et al. [18] proposed a smoothly varying affine (SVA) warp
to replace a global affine warp with a smoothly affine stitching
field, which is more flexible and maintains much of the motion
generalization properties of affine or homography. Zaragoza et
al. [19] proposed an as-projective-as-possible (APAP) warp in
a moving DLT framework, which is able to accurately register
images that differ by more than a pure rotation. Lou et al. [20]
proposed a piecewise alignment method, which approximates
regions of image with planes by incorporating piecewise local
geometric models.

Other methods combine image alignment with seam-cutting
approaches [28]–[31], to find a locally registered area which is
seamlessly blended instead of aligning the overlapping region
globally. Gao et al. [21] proposed a seam-driven framework,
which searches a homography with minimal seam costs instead
of minimal alignment errors on a set of feature correspon-
dences. Zhang and Liu [22] proposed a parallax-tolerant warp,
which combines homography and content-preserving warps to
locally register images. Lin et al. [23] proposed a seam-guided
local alignment warp, which iteratively improves the warp by
adaptive feature weighting according to the distance to current
seams.

B. Warps for Better Naturalness

Many efforts have been devoted to mitigate distortion in the
non-overlapping region for creating a natural-looking mosaic.
A pioneering work [32] uses spherical or cylindrical warps to
produce multi-perspective results to address this problem, but
it necessarily curves straight lines.

Recently, some methods take advantage of global similar-
ity (preserves the original perspective) to mitigate projective
distortion in the non-overlapping region. Chang et al. [24]
proposed a SPHP warp that spatially combines a homography
warp and a similarity warp, which makes the homography
maintain good alignment in the overlapping region while the
similarity keep the original perspective in the non-overlapping
region. Lin and Pankanti [25] proposed an AANAP warp,
which combines a linearized homography warp and a global
similarity warp with the smallest rotation angle to create
natural-looking mosaics.

Other methods model their warps as mesh deformations via
energy minimization, which address naturalness quality issues
by enforcing different constraints. Chen et al. [26] proposed a
global-similarity-prior (GSP) warp, which constrains the warp
resembles a similarity as a whole. Zhang et al. [27] proposed a
warp that produces an orthogonal projection of a wide-baseline
scene by constraining it preserves extracted straight lines, and
allows perspective corrections via scale preservation.

III. NATURALNESS ANALYSIS OF IMAGE WARPS

This section describes a naturalness analysis of image
warps. First, the global consistency is characterized as line-
preserving, where the perspective distortion is illustrated
through a mesh-to-mesh transformation, and the local con-
sistency is characterized as uniformly-scaling, where the pro-
jection distortion is demonstrated via the linearity of a scaling
function. Then, we analyze the naturalness of homography and
SPHP warps by these tools.

A. Mathematical Setup

Let I and I ′ denote the target image and the reference image
respectively. A warp H is a planar transformation [16], which
relates pixel coordinates (x, y) ∈ I to (x′, y′) ∈ I ′, where{

x′ = f(x, y)
y′ = g(x, y)

. (1)
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Fig. 2. Perspective distortion v.s. Slope preservation. (a) Mesh of the target image. (b) Warped mesh of homography. (c) Warped mesh of SPHP. (d) Warped
mesh of our result. The red line is the special horizontal line that remains horizontal under a homography. Note that homography preserves arbitrary straight
lines but incrementally increases areas of meshes along the red line, while SPHP maintains shapes of meshes by a uniform scaling factor but gradually changes
the slope of straight lines. Our warp relaxes arbitrary line-preserving to only preserving the slope of the mesh, while relaxes uniformly-scaling everywhere to
only uniforming the density of the mesh on the red line, to show a balance of perspective distortion and projective distortion in the non-overlapping region.
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Fig. 3. Projective distortion v.s. Scale linearization. It demonstrates scaling functions of different warps on the special horizontal line that remains horizontal
under a homography (marked red in Fig. 2), where x∗ corresponds to the closest vertical partition line that isolates O, and u1, u2 correspond to two partition
lines that divide R

2 into three regions in (13). Note that the scaling function is a rational one in homography (11), while it is a piece-wise function in SPHP
which consists of a rational one as same as homography, a quadratic one and a linear one. The scaling function in our warp consists of a rational one as same
as homography and a linear one.

If H is of global consistency, then it must be line-preserving,
i.e., a straight line l = {(x+ z, y+ kz)|z ∈ R} ∈ I should be
mapped to a straight line l′ = {(x′+z′, y′+k′z′)|z′ ∈ R} ∈ I ′.
Actually, the calculation of the slope k′ provides a criterion to
validate line-preserving, i.e., H is line-preserving, if and only
if

k′ =
g(x+ z, y + kz)− g(x, y)

f(x+ z, y + kz)− f(x, y)
(2)

is independent of z. Its proof is easy. Given a point (x, y) ∈ I
and a slope k, then they define a straight line l = {(x+z, y+
kz)|z ∈ R} ∈ I . If k′ calculated by (2) is a constant, then l is
mapped to a straight line l′ = {(x′+z′, y′+k′z′)|z′ ∈ R} ∈ I ′,
which is defined by (x′, y′) ∈ I ′ and k′. Since k′ only depends
on (x, y) and k, we denote it by slope(x, y, k).

Suppose H is line-preserving and C1 continuous, then

slope(x, y, k) = lim
z→0

g(x+ z, y + kz)− g(x, y)

f(x+ z, y + kz)− f(x, y)

=
gx(x, y) + kgy(x, y)

fx(x, y) + kfy(x, y)
, (3)

where fx, fy, gx, gy denote the partial derivatives of f and g. In
fact, there exists a mesh-to-mesh transformation that maps all
horizontal lines and vertical lines to straight lines with slopes

slope(x, y, 0) =
gx(x, y)

fx(x, y)
, (4)

slope(x, y,∞) =
gy(x, y)

fy(x, y)
, (5)

which are independent of x and y respectively. Consequently,
any point (x, y) ∈ I can be expressed as the intersection point
of a horizontal line and a vertical line, which is corresponding
to the point (x′, y′) ∈ I ′ as the intersection point of two lines
with slopes slope(x, y, 0) and slope(x, y,∞). In the rest of the
paper, we constantly employ this mesh-to-mesh transformation
to demonstrate perspective distortion comparisons among dif-
ferent warps (see Fig. 2).

On the other side, if H is of local consistency, then it
must be uniformly-scaling. Actually, the local consistency
automatically holds for similarity warps, because they purely
involve translation, rotation and uniformly scaling. Suppose H
is not only line-preserving but also uniformly-scaling, then a
line segment s = {(x + z, y + kz)|z ∈ [z1, z2]} ∈ I should
be mapped to a line segment s′ = {(x′ + z′, y′ + k′z′)|z′ ∈
[z′1, z

′
2]} ∈ I ′ with a uniform scaling factor. Conversely, the

linearity of a scaling function on arbitrary line is a necessary
condition of the local consistency.

By assuming cameras are oriented and motions are horizon-
tal, there should exist a horizontal line lx = {(x, y∗)|x ∈ R} ∈
I which remains a horizontal line l′x = {(x′, y′∗)|x′ ∈ R} ∈ I ′,
if a good alignment is guaranteed. In fact, lx is roughly located
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in the horizontal plane of cameras, and y∗ satisfies

slope(x, y∗, 0) =
gx(x, y∗)
fx(x, y∗)

= 0. (6)

Given a point (x∗, y∗) ∈ lx, then for ∀(x, y∗) ∈ lx, |f(x, y∗)−
f(x∗, y∗)| should equal to a uniform scaling factor times |x−
x∗|. In other words, f(x, y∗) should be linear in x. In the rest
of the paper, we constantly employ the linearity to demonstrate
projective distortion comparisons among different warps (see
Fig. 3).

Some other notations are stated as follows. Let O denote the
overlapping region and ly = {(x∗, y) | y ∈ R} denote a vertical
line which divides R

2 into half spaces RO = {(x, y)|x ≤ x∗}
and RQ = {(x, y)|x∗ < x}, such that O ⊂ RO. Our proposed
warp H† is a spatial combination of a homography warp H0

within RO and a squeezed homography warp H∗ within RQ,
where R′

O and R′
Q are respective half spaces after warping.

B. Naturalness Analysis of Homography

A homography warp H0 is the most flexible warp for better
alignment, which is normally defined as

f0(x, y) =
h1x+ h2y + h3

h7x+ h8y + 1
, (7)

g0(x, y) =
h4x+ h5y + h6

h7x+ h8y + 1
, (8)

where h1-h8 are eight parameters. It is easy to certify that H0

is line-preserving, since the slope k′ in (2) is independent of
z. To illustrate the property more intuitively, we draw a mesh-
to-mesh transformation (see Fig. 2(b)), where horizontal lines
and vertical lines are mapped to straight lines with slopes

slope(x, y, 0) =
(h4h8 − h5h7)y + (h4 − h6h7)

(h1h8 − h2h7)y + (h1 − h3h7)
, (9)

slope(x, y,∞) =
(h4h8 − h5h7)x+ (h6h8 − h5)

(h1h8 − h2h7)x+ (h3h8 − h2)
. (10)

Under the assumption that cameras are oriented and motions
are horizontal, for lx = {(x, y∗)|x ∈ R} ∈ I , we derive

y∗ =
h6h7 − h4

h4h8 − h5h7
, (11)

by solving the equation (6). For ∀(x, y∗) ∈ lx,

f0(x, y∗) =
h1x+ h2y∗ + h3

h7x+ h8y∗ + 1
, (12)

is non-linear in x when h7 �= 0 (see Fig. 3(b)), which indicates
the invalidation of uniformly-scaling.

In summary, homography warps conventionally satisfy the
global consistency if a good alignment is guaranteed, however
they usually suffer from projective distortion in the non-
overlapping region (see Table I). For example, the people and
the tree are enlarged in Fig. 1(a) comparing to the original.

C. Naturalness Analysis of SPHP

To overcome such drawbacks of homography warps, Chang
et al. [24] proposed a shape-preserving half-projective (SPHP)
warp, which is a spatial combination of a homography warp

and a similarity warp, to create a natural-looking multi-
perspective panorama.

Specifically, after adopting the change of coordinates, SPHP
divides R2 into three regions. 1. RH = {(u, v)|u ≤ u1}, where
a homography warp is applied to achieve a good alignment. 2.
RS = {(u, v) |u2 ≤ u}, where a similarity warp is applied to
mitigate projective distortion. 3. RT = {(u, v) |u1 < u < u2},
a buffer region where a warp is applied to gradually change a
homography warp to a similarity warp. Consequently, a SPHP
warp W is defined as

w(u, v) =

⎧⎨
⎩

H(u, v), if (u, v) ∈ RH

T (u, v), if (u, v) ∈ RT

S(u, v), if (u, v) ∈ RS

, (13)

where u1 and u2 are parameters, such that W can approach a
similarity warp as much as possible. Note that, the change of
coordinates plays an important role in SPHP, since a similarity
simply combines a homography via a single partition line.

Both homography and similarity are line-preserving, thus W
is certainly of global consistency in RH and RS respectively.
However, W may suffer from line-bending within RT , because
of its non-linearity. Moreover, perspectives of RH and RS may
contradict each other. For example, parallels remain parallels
in RS , while they do not in RH (see Fig. 2(c)). W is certainly
of local consistency in RS , because a similarity warp is applied
(see Fig. 3(c)).

In summary, SPHP warps achieve the alignment quality as
good as homography warps in RH , and the local consistency
as good as similarity warps in RS . However, SPHP warps
may suffer from line-bending in RT and perspective distortion
between RH and RS (see Table I). Note that, the non-linearity
of T (u, v) in RT merely blends certain lines in theory, but it
is still possible to preserve visible straight lines in practice.
Many results in [24] justify that SPHP is capable of doing
so. Unfortunately, it will get worse for urban scenes, which
are filled with visible lines and visible parallels (see the sign
in Fig. 1(b)). It is also worth noting that, SPHP creates a
multi-perspective panorama, thus different perspectives may
contradict each other (see buildings in Fig. 1(b)).

These naturalness analysis of homography and SPHP warps
motivate us to construct a warp, which achieves a good balance
between the perspective distortion and the projective distortion
in the non-overlapping region, via relaxing the local and global
consistencies such that they are both partially satisfied.

TABLE I
NATURALNESS ANALYSIS OF DIFFERENT WARPS.

Methods Naturalness quality
Local consistency Global consistency

Homography invalid perfect
SPHP [24] perfect invalid

Quasi-homography partial partial

IV. PROPOSED WARPS

This section presents how to construct a warp for balancing
perspective distortion against projective distortion in the non-
overlapping region. First, we propose a different formulation
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Fig. 4. Quasi-homography v.s. Homography. (a) Target image. (b) Reformulation of homography. (c) Derivation of quasi-homography. In the target image, any
point (x, y) can be expressed as the intersection point of a horizontal line and a vertical line, which is corresponding to a point (x′, y′) under a homography
as the intersection point of two lines with slopes slope(x, y, 0) and slope(x, y,∞). The location of (x′, y′) can be controlled by the density on a horizontal
line (marked in red) and a vertical line (marked in blue). Note that quasi-homography linearizes the density on the red line but without changing the density
on the blue line, such that it combines the homography by a single partition line and squeezes the meshes of homography without varying the shape.

of the homography warp to characterize the global consistency
as slope preservation while the local consistency as scale
linearization respectively. Then, we describe how to adopt
this formulation to present a quasi-homography warp, which
squeezes the mesh of the corresponding homography warp but
without varying its shape.

A. Review of Homography

Given eight parameters h1-h8, we formulate a homography
warp H0 in another way, as the solution of a bivariate system

y′ − g0(x∗, y)
x′ − f0(x∗, y)

= slope(x, y, 0), (14)

y′ − g0(x, y∗)
x′ − f0(x, y∗)

= slope(x, y,∞), (15)

where (x∗, y) and (x, y∗) are projections of a point (x, y) onto
ly = {(x∗, y) | y ∈ R} and lx = {(x, y∗) |x ∈ R} respectively
(see Fig. 4(a)). Besides, equations of f0, g0 and slope(x, y, 0),
slope(x, y,∞) are given in (7,8,9,10).

Our formulation (14,15) is equivalent to (7,8). In fact, it is
easy to check that (7,8) is a solution of (14,15). Furthermore,
it is the unique solution, because the Jacobian is invertible if
and only if slope(x, y, 0) �= slope(x, y,∞). Then, comparing
with (7,8), our formulation (14,15) characterizes the global
consistency as slope preservation while the local consistency
as scale linearization respectively. Intuitively, slope(x, y, 0)
and slope(x, y,∞) formulate the shape of the mesh, while
f0(x, y∗) and g0(x∗, y) formulate the density of the mesh (see
Fig. 4(b)). It should be noticed that we made no assumptions
on x∗ or y∗ in the above analysis. In the next subsection, we
will assume that ly isolates the overlapping region O and lx
remains horizontal under H0, for stitching multiple images
captured by oriented cameras via horizontal motions.

B. Quasi-homography

Our proposed warp makes use of the formulation (14,15) to
balance perspective distortion against projective distortion in
the non-overlapping region. First, we divide R

2 by the vertical

line ly = {(x∗, y) | y ∈ R} into half spaces RO = {(x, y)|x ≤
x∗} and RQ = {(x, y)|x∗ < x}, where the overlapping region
O ⊂ RO. Then, we formulate our warp H† as the solution of
a bivariate system

y′ − g0(x∗, y)
x′ − f0(x∗, y)

= slope(x, y, 0), (16)

y′ − g0(x, y∗)
x′ − f†(x, y∗)

= slope(x, y,∞), (17)

where y∗ satisfies (11) and f†(x, y∗) is defined as

f†(x, y∗) =

{
f0(x, y∗), if (x, y∗) ∈ RO,

f∗(x, y∗), if (x, y∗) ∈ RQ,
(18)

f∗(x, y∗) = f0(x∗, y∗) + f ′
0(x∗, y∗)(x− x∗), (19)

on the horizontal line lx = {(x, y∗) |x ∈ R}. In fact, f∗(x, y∗)
is the first-order truncation of the Taylor’s series for f0(x, y∗)
at x = x∗, which successfully makes f†(x, y∗) piece-wise C1

continuous and linear in x within RQ.
Because the Jacobian of (16,17) is invertible, it possesses a

unique solution H† as

H† =
{ H0, if (x, y) ∈ RO

H∗, if (x, y) ∈ RQ
, (20)

where

x′ = f†(x, y) =

{
f0(x, y), if (x, y) ∈ RO,

f∗(x, y), if (x, y) ∈ RQ,
(21)

y′ = g†(x, y) =

{
g0(x, y), if (x, y) ∈ RO,

g∗(x, y), if (x, y) ∈ RQ,
(22)

where f∗(x, y) and g∗(x, y) are rational functions in variables
x and y, whose coefficients are polynomial functions in h1-h8

and x∗. The detailed derivations are presented in Appendix. In
fact, the warp H† just squeezes the meshes of homography in
the horizontal direction but without varying its shape (see Fig.
4(c)). In this sense, we call H† a quasi-homography warp that
corresponds to a homography warp H0. A quasi-homography
warp maintains good alignment in RO as a homography warp,
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and it mitigates perspective distortion and projective distortion
simultaneously via slope preservation and scale linearization
in RQ. Intuitively, H† relaxes arbitrary line-preserving to only
preserving the shape of the mesh (see Fig. 2(d)), while relaxes
uniformly-scaling everywhere to only uniforming the density
of the mesh on lx in RQ (see Fig. 3(d)).

On the other hand, since H† just squeezes the mesh of H0

but without varying its shape, H† is an injection if H0 is an
injection. Given (x′, y′) ∈ R′

O, then (x, y) ∈ RO is determined
by H−1

0 . Given (x′, y′) ∈ R′
Q, then (x, y) ∈ RQ is determined

by solving (16,17) (regard x, y as unknowns)

x = RootOf(m1x
2 +m2x+m3), (23)

y =
(h6h7 − h4)x

′ + (h1 − h3h7)y
′ + (h3h4 − h1h6)

(h4h8 − h5h7)x′ + (h2h7 − h1h8)y′ + (h1h5 − h2h4)
,

(24)

where m1-m3 are polynomial functions in x′, y′, x∗, and h1-
h8. The detailed derivations are presented in Appendix.

Note that, though both SPHP and quasi-homography warps
adopt a spatial combination of a homography warp and
another warp to create more natural-looking mosaics, their
motivations and frameworks are different. SPHP focuses on the
local consistency, to create a natural-looking multi-perspective
panorama. Quasi-homography concentrates on balancing glob-
al and local consistencies, to generate a natural-looking single-
perspective panorama. SPHP introduces a change of coordi-
nates such that a similarity combines a homography via a
single partition line, and a buffer region such that a homog-
raphy gradually changes into a similarity. Quasi-homography
reorganizes homography’s point correspondences via solving
the bivariate system (16,17), where the shape is preserved and
the size is squeezed.

It is worth noting that the construction of quasi-homography
makes no assumptions on the special horizontal line lx and the
vertical partition line ly . For stitching multiple images captured
by oriented cameras via horizontal motions, the horizontal line
that remains horizontal best measures the projective distortion.
Therefore, quasi-homography can preserve horizontal lines or
nearly-horizontal lines better than SPHP (see result compar-
isons in Section VI-A), and ordinary users prefer such stitching
results in urban scenes (see user study in Section VI-B).

In summary, quasi-homography warps achieve a good align-
ment quality as homography warps in RO, while partially
possess the local consistency and the global consistency in RQ,
such that perspective distortion and projective distortion are
balanced (see Table I). Note that the warp may still suffer from
diagonal line-bending and vertical region-enlarging within RQ,
because line-preserving and uniformly-scaling are relaxed to
partially valid. Please see more details in Section VI-C.

V. IMPLEMENTATION

In this section, we first present more implementation details
of our quasi-homography in two-image stitching and multiple-
image stitching, then we propose two variations of the method
including orientation rectification and partition refinement.
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Fig. 5. A sketch for stitching multiple images.

A. Two-image Stitching

Given a pair of two images, which are captured by oriented
cameras via horizontal motions, if a homography warp H0 can
be estimated with a good alignment quality in the overlapping
region, then a quasi-homography warp H† can be calculated,
which smoothly extrapolates from H0 in RO into H∗ in RQ.
A brief algorithm is given in Algorithm 1.

Algorithm 1 Two-image stitching using quasi-homography.
Input: two images taken by oriented cameras via horizontal
motions.
Output: one horizontally stitched image.

1) Use SIFT [33] to extract and match features;
2) Use RANSAC [34] to estimate a global homography H0;
3) Calculate a quasi-homography warp:

a) Calculate a forward map H† (21,22) to get the canvas;
b) Calculate a backward map H−1

† (23,24) for filling the
canvas by bilinear interpolations;

4) Use seam-cutting [28] to blend the overlapping region.

B. Multiple-image Stitching

Given a sequence of multiple images, which are captured by
oriented cameras via horizontal motions, our warping method
consists of three stages. In the first stage, we pick a reference
image as a standard perspective, such that other images should
be consistent with it. Then we estimate a homography warp for
each image and transform them in the coordinate system of the
reference image via bundle adjustment as in [35] and calculate
pairwise quasi-homography warps of adjacent images. Finally,
we concatenate other images to the reference one by a chained
composite map of pairwise quasi-homgraphy warps.

Fig. 5 illustrates an example of the concatenation procedure
for stitching five images. First we select I3 as the reference one
such that perspectives of other four images should agree with
it. Then we estimate homography warps H1→3

0 , H2→3
0 , H4→3

0 ,
H5→3

0 via bundle adjustment [35] and calculate pairwise quasi-
homography warps H1→2

† , H2→3
† , H4→3

† , H5→4
† . Finally, we

concatenate I1 and I5 to I3 by{
H1→3

† = H2→3
† ◦ H1→2

† ,

H5→3
† = H4→3

† ◦ H5→4
† .

(25)

Therefore, the concatenation warp for every image is a chained
composite map of pairwise quasi-homography warps.
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Fig. 6. An example of orientation rectification.

C. Orientation Rectification

In urban scenes, users accustom to taking pictures by
oriented cameras via horizontal motions, hence any vertical
line in the target image is expected to be transformed to
a vertical line in the warped result. However, it inevitably
sacrifices the alignment quality in the overlapping region.

In order to achieve orientation rectification, we incorporate
an extra constraint in the homography estimation, which
constrains that the external vertical boundary of the target
image preserves vertical in the warped result. Then for a
homography warp H0 as (7,8), it should satisfy

f0(w, 0) = f0(w, h) ⇔ h8 =
h2(h7w + h9)

h1w + h3
, (26)

where w and h are the width and the height of I respectively.
A global homography is then estimated by solving

min

N∑
i=1

‖aih‖2 s.t. ‖h‖ = 1, h8 =
h2(h7w + h9)

h1w + h3
. (27)

Because the quasi-homography warp just squeezes the mesh of
a homography warp but without varying its shape, the external
vertical boundary still preserves vertical (see Fig. 6).

D. Partition Refinement

In our analysis of quasi-homography warps in Section IV-B,
the uniform scaling factor on the special horizontal line lx in
RQ depends on the linearized scaling function (19). Moreover,
it depends on the determination of the partition point (x∗, y∗).
In fact, the factor is more accurate if (x∗, y∗) is better aligned.

Hence, we replace the partition line ly closest to the border
of the overlapping region and the non-overlapping region, by it
closest to the external border of the seam for further refinement
(see Fig. 7).

VI. EXPERIMENTS

We experimented our proposed method on a range of images
captured through both rear and front cameras in urban scenes.

Fig. 7. An example of partition refinement.

In our experiments, we employ SIFT [33] to extract and match
features, RANSAC [34] to estimate a global homography, and
seam-cutting [28] to blend the overlapping region. Codes are
implemented in OpenCV 2.4.9 and generally take 1s to 2s on
a desktop PC with Intel i5 3.0GHz CPU and 8GB memory to
stitching two images with 800× 600 resolution by Algorithm
1, where the calculation of the quasi-homography warp only
takes 0.1s (including the forward map and the backward map).
We used the codes of AutoStitch1 and SPHP2 from the authors’
homepage in the experiment.

A. Result Comparisons

We compared our quasi-homography warp to state-of-the-art
warps in urban scenes, including homography, AutoStitch and
SPHP. Because our method focuses on the naturalness quality
in the non-overlapping region, we only compare with methods
using global homography alignment in the overlapping region,
while not comparing to methods using spatially-varying warps.
Nevertheless, some urban scenes with repetitive structures still
cause alignment issues [36], which may limit the application of
our method. Therefore, we use a more robust feature matching
method RepMatch [37], and a more robust RANSAC solution
USAC [38] for estimating a global homography, to generalize
our proposed method in urban scenes. Non-planar scenes
may cause outlier removal issues [17], but fortunately, [39]
justifies that a simple RANSAC-driven homography still works
reasonably well even for such cases.

In order to highlight the comparison of the naturalness qual-
ity in the non-overlapping region, for homography, SPHP and
quasi-homography, we use the same homography alignment
and the same seam-cutting composition in the overlapping
region.

Fig. 8 illustrates a naturalness comparison for stitching two
and three images from data sets of DHW [17] and SPHP
[24]. Homography preserves straight lines, but it enlarges
the regions of cars and people. SPHP preserves respective
perspectives, but it causes contradictions in the ground and

1http://matthewalunbrown.com/autostitch/autostitch.html
2http://www.cmlab.csie.ntu.edu.tw/∼frank/
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wires. AutoStitch uses a spherical projection to produce a
multi-perspective stitching result. Quasi-homography uses a
planar projection to produce a single-perspective stitching re-
sult, which appears as oriented line-preserving and uniformly-
scaling. More results from other data sets including DHW
[17], SPHP [24], GSP [26] and APAP [35] are available in
the supplementary material.

Fig. 9 illustrates a naturalness comparison for stitching two
sequences of ten and nine images. Homography stretches cars,
trees and people. AutoStitch presents a nonlinear-view stitch-
ing result. Quasi-homography creates a natural-looking linear-
view stitching result. More results for stitching long sequences
of images are available in the supplementary material.

B. User Study

To investigate whether quasi-homography is more preferred
by users in urban scenes, we conduct a user study to compare
our results to homography and SPHP. We invite 17 participants
to rank 20 unannotated groups of stitching results, including 5
groups from the front cameras and 15 groups from rear ones.
For each group, we adopt the same homography alignment and
the same seam-cutting composition, and all parameters are set
to produce optimal final results. In our study, each participant
ranks three unannotated stitching results in each group, and a
score is recorded by assigning weights 4, 2 and 1 to Rank 1,
2 and 3. Twenty groups of stitching results are available in the
supplementary material.

Table II shows a summary of rank votes and total scores
for three warps, and the histogram of three scores is shown
in Fig. 10 in three aspects. This user study demonstrates that
stitching results of quasi-homography warps win most users’
favor in urban scenes.

TABLE II
SCORE RESULTS OF USER STUDY.

Methods Results
Rank 1 Rank 2 Rank 3 Total score

Homography 69 210 61 757
SPHP [24] 19 56 265 453

Quasi-homography 252 74 14 1170

Front Rear Total

Sc
o
re

Homography

SPHP

Quasi-homography

Fig. 10. Histogram of scores.

C. Failure Cases

Experiments show that quasi-homography warps usually ba-
lance the projective distortion against the perspective distortion
in the non-overlapping region, but there still exist some limi-
tations. For example, diagonal lines may not stay straight any-
more and regions of objects may suffer from vertical stretches
(especially for stitching images from different planes). Two of
failure examples are shown in Fig. 11.

VII. CONCLUSION

In this paper, we propose a quasi-homography warp, which
balances the perspective distortion against the projective dis-
tortion in the non-overlapping region, to create natural-looking
single-perspective panoramas. Experiments show that stitching
results of quasi-homography outperform some state-of-the-art
warps under urban scenes, including homography, AutoStitch
and SPHP. A user study demonstrates that quasi-homography

Fig. 11. Failure examples. (a) Diagonal lines are bent. (b) People are vertically
stretched.

wins most users’ favor as well, comparing to homography and
SPHP.

Future works include generalizing quasi-homography warps
into spatially-varying warping frameworks like in [26], [27] to
improve alignment qualities as well in the overlapping region,
and incorporating our method in SPHP to create more natural-
looking multi-perspective panoramas. Multimedia applications
that are relevant to image stitching could also be considered,
such as feature selection [40], video composition [41], cross-
media stitching [42] and action recognition [43].

APPENDIX

The forward map (21,22) and the backward map (23,24) of
a quasi-homography warp (16,17) are solved by the computer
algebra system Maple via commands

solve ({(16), (17)}, {x′, y′}) , (28)

where x′, y′ are unknowns and x, y, x∗, y∗, h1-h8 are param-
eters,

solve ({(16), (17)}, {x, y}) (29)

where x, y are unknowns and x′, y′, x∗, y∗, h1-h8 are param-
eters.

Because the analytic solutions of (28,29) contain over one t-
housand monomials, we omitted their complicated expressions
here. A maple worksheet is available to download at the page
http://cam.tju.edu.cn/%7enan/QH.html for readers to verify the
correctness. Actually, if the parameters h1-h8 and a pair of x, y
or x′, y′ are given, we plug their values into (21,22) or (23,24)
then solve the forward or the backward map directly, without
using these analytic solutions. A symbolic proof for the line-
preserving property of homography warps and the equivalence
of two homography formulations are included in the worksheet
as well.
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