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Abstract. In the study of determinant formulas for Schur functions, Hamel and Goulden
introduced a class of Giambelli-type matrices with respect to outside decompositions of
partition diagrams, which unify the Jacobi-Trudi matrices, the Giambelli matrices and the
Lascoux-Pragacz matrices. Stanley determined the Smith normal form of a specialized
Jacobi-Trudi matrix. Motivated by Stanley’s work, we obtain the Smith normal form of
a specialized Giambelli matrix and a specialized Lascoux-Pragacz matrix. Furthermore,
we show that, for a given partition, the Smith normal form of any specialized Giambelli-
type matrix can be obtained from that of the corresponding specialization of the classical
Giambelli matrix by a sequence of stabilization operations.
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1 Introduction

Recently, there is a rising interest in the study of the Smith normal form of combinatorially
defined matrices, see Stanley’s survey [9] and references therein. The main objective of
this paper is to evaluate the Smith normal form of some specializations of Giambelli-type
matrices [1, 4], which arose in the determinant formulas for Schur functions in the theory
of symmetric functions. In the following, we shall explain the background and motivation
of this work.

Let us first review some definitions and results on the Smith normal form. Let R be
a commutative ring with identity 1. Let A be an n× n matrix over R. We say that A is
invertible over R if its determinant detA is a unit in R. For an invertible n×n matrix M ,
the matrix MA (or AM) could be obtained from A by applying a sequence of elementary
row (resp. column) operations, namely multiplying a row (resp. column) by a unit in R,
or adding some multiple of a row (resp. column) to another row (resp. column). If A can
be transformed into a matrix B that vanishes off the main diagonal by elementary row
and column operations, then we call B a diagonal form of A. Suppose that A is of rank
r and the main diagonal of B is {d1, d2, . . . , dr, 0, . . . , 0}. If dk divides dk+1 in R for each
k : 1 ≤ k ≤ r − 1, then we call B a Smith normal form of A. Following Stanley [9], we

write A
snf→ (d1, d2, . . . , dn) to indicate that B is a Smith normal form of A.
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We would like to point out that we can study the Smith normal form in a more general
setting. Indeed, A is not necessarily a square matrix. For the purpose of this paper, it
would be enough to consider the Smith normal form of square matrices over a principal
ideal domain. It is well known that if R is a principal ideal domain then A always has
a Smith normal form, see [5, Theorem 17]. Moreover, the diagonal entries of the Smith
normal form are unique up to multiplication by units. The following result provides a
useful formula for the Smith normal form over a principal ideal domain, see [9, Theorem
2.4].

Theorem 1.1. Suppose that R is a principal ideal domain and A is an n × n matrix

over R. If A
snf→ (d1, d2, . . . , dn), then, for each k : 1 ≤ k ≤ n, the product d1d2 · · · dk is

equal to the greatest common divisor of all k× k minors of A. (By convention, we set the
greatest common divisor to be 0 if all k × k minors are 0.)

This paper is motivated by Stanley’s work on the Smith normal form of some special-
izations of the Jacobi-Trudi matrix [8, 9]. To state Stanley’s result, we shall first recall
some definitions on partitions. Let n be a nonnegative integer. By a partition of n we mean
a tuple λ = (λ1, λ2, . . . , λk) of nonnegative integers such that λ1 ≥ λ2 ≥ . . . ≥ λk ≥ 0 and∑k

i=1 λi = n. The nonzero entries λi are called the parts of λ, and the number of parts is
called the length of λ, denoted by `(λ). Each partition is associated to a left justified array
of cells, called the Ferrers or Young diagram of λ. Given two partitions λ, µ such that
λi ≥ µi for all i ≥ 1 (denoted by µ ⊆ λ), let λ/µ denote the skew partition corresponding
to the diagram of λ with the diagram of µ removed from its upper left-hand corner. Given
a partition λ = (λ1, λ2, . . . , λ`(λ)), the corresponding diagram has λi cells in the i-th row.
Here we number the rows from top to bottom and the columns from left to right. The
cell in the i-th row and j-th column is denoted by (i, j). The content of (i, j) is defined to
be j − i, denoted by c(i, j). The hook-length of (i, j), denoted by h(i, j), is defined to be
the number of cells directly to the right or directly below (i, j), counting (i, j) itself once.
We say that the rank of λ is r, denoted rank(λ), if (r, r) ∈ λ but (r + 1, r + 1) 6∈ λ. For
each 1 ≤ i ≤ rank(λ), let Di(λ) denote the i-th diagonal hook of λ. For the convenience,
we set Di(λ) = ∅ if i > rank(λ). From now on we shall abbreviate Di(λ) as Di if no
confusion will arise.

Given a partition λ, the Jacobi-Trudi matrix JTλ is defined by

JTλ = (hλi−i+j)
`(λ)
i,j=1,

where hi is the i-th complete symmetric function in the variables x1, x2, . . . , with the
convention that h0 = 1 and hi = 0 for i < 0. Let sλ denote the Schur function indexed
by λ. The well known Jacobi-Trudi identity states that

sλ = det JTλ.

For a symmetric function f , let ϕtf denote the specialization f(1t), that is, set x1 =
· · · = xt = 1 and all other xi = 0 in f . The hook-content formula [7, Corollary 7.21.4]
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tells us that

ϕt sλ =
∏

(i,j)∈λ

(t+ c(i, j))

h(i, j)
. (1)

In particular,

ϕt hi =

(
t+ i− 1

i

)
,

which is a polynomial in t of degree i with rational coefficients. Since Q[t] (the ring of
polynomials in t with rational coefficients) is a principal ideal domain, and ϕt sλ factors
well over Q[t], Stanley was motivated to study the Smith normal form of the specialized
Jacobi-Trudi matrix

ϕt JTλ = (ϕt hλi−i+j)
`(λ)
i,j=1

and obtained the following result.

Theorem 1.2 ([9, Theorem 5.3]). Suppose that ϕt JTλ
snf→ (d1, d2, . . . , d`(λ)) over Q[t].

Then, for 1 ≤ k ≤ `(λ), we can take

dk =
∏

(i,j)∈D`(λ)−k+1

(t+ c(i, j)).

There are also other determinant formulas for the Schur function sλ. It is natural to
study the Smith normal form of such matrices. The first candidate to come to mind is the
Giambelli matrix, since, as we see above, the diagonal hooks play an important role in the
Smith normal form of a specialized Jacobi-Trudi matrix. The Giambelli matrix can be
easily described by using the Frobenius notation of partitions. Suppose that λ is of rank
r. For 1 ≤ i ≤ r, let αi denote the number of cells directly to the right of (i, i), and let βi
denote the number of cells directly below (i, i). Then we can denote that partition λ by
(α|β) = (α1, . . . , αr|β1, . . . , βr), called the Frobenius notation of λ. A moment’s thought
shows that α1 > α2 · · · > αr ≥ 0 and β1 > β2 · · · > βr ≥ 0. Recall that the Giambelli
matrix Gλ is defined by

Gλ = (s(αi|βj))
r
i,j=1.

The Giambelli identity asserts that sλ = det Gλ, see [3]. Now consider the specialization
ϕt Gλ. Following Stanley’s proof of Theorem 1.2, we obtain the following result without
much difficulty by using Theorem 1.1.

Theorem 1.3. Suppose that ϕt Gλ
snf→ (d1, d2, . . . , dr) over Q[t], where r = rank(λ).

Then, for 1 ≤ k ≤ r, we can take

dk =
∏

(i,j)∈Dr−k+1

(t+ c(i, j)).
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As we see above, the Giambelli identity gives a determinantal expression for sλ in-
volving hook functions. Lascoux and Pragacz [6] showed that such a determinant det Gλ

can be transformed into a determinant of ribbon functions. Recall that a ribbon (or a
border strip) is a connected skew diagram with no 2 × 2 block of cells. We say that a
skew diagram is connected if it can be regarded as a union of an edgewise connected set
of cells, where two cells are said to be edgewise connected if they share a common edge.
The rim of a diagram is the maximal outer ribbon of the diagram. Given a partition λ
with rank r, we can peel its diagram off into successive rims θ1, θ2, . . . , θr beginning from
the outside. It is clear that each θi is cut by the diagonal into three disjoint parts: θ+i ,
2i and θ−i , which are respectively the cells of θi strictly above the diagonal, the diagonal
cell, and the cells strictly below the diagonal. Given two ribbons θi and θj, let θ+i &θ−j
denote the ribbon obtained by replacing the lower part θ−i in θi by θ−j . Let

LPλ = (sθ+i &θ−j
)ri,j=1,

where sθ+i &θ−j
denotes the skew Schur function corresponding to the ribbon θ+i &θ−j . Las-

coux and Pragacz [6] proved that sλ = det LPλ. For this reason, we call LPλ the Lascoux-
Pragacz matrix with respect to λ. Now consider the specialization ϕt LPλ and we get its
Smith normal form as follows.

Theorem 1.4. Suppose that ϕt LPλ
snf→ (d1, d2, . . . , dr) over Q[t], where r = rank(λ).

Then, for 1 ≤ k ≤ r, we can take

dk =
∏

(i,j)∈Dr−k+1

(t+ c(i, j)).

Looking at the diagonal entries of the Smith normal forms in Theorems 1.2, 1.3 and
1.4, we see some coincidence on non-trivial entries. Since the Jacobi-Trudi matrix, the
Giambelli matrix, and the Lascoux-Pragacz matrix can be considered as special cases of
Giambelli-type matrices introduced by Hamel and Goulden [4], we were inspired to study
the Smith normal form of any specialized Giambelli-type matrix. These Giambelli-type
matrices are associated with outside decompositions of the partition diagrams. Recall
that, for a given partition λ, an outside decomposition Π of λ is a partition of the cells
of λ into pairwise disjoint border strips such that the starting cell of each strip in the
decomposition is on the left or bottom perimeter and the ending cell is on the right or
top perimeter. Then for each outside decomposition Π of λ, Hamel and Goulden [4]
defined a matrix Mλ(Π) and showed that sλ = det Mλ(Π). The matrix Mλ(Π) is called
a Giambelli-type matrix. The construction of Mλ(Π) will be illustrated in Section 5. We
next consider the specialization of ϕt Mλ(Π), and obtain the following result.

Theorem 1.5. Suppose that Mλ(Π) is of order m and ϕt Mλ(Π)
snf→ (d1, d2, . . . , dm) over

Q[t]. Then, for 1 ≤ k ≤ m, we can take

dk =
∏

(i,j)∈Dm−k+1

(t+ c(i, j)).
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It is known that if all strips in Π are horizontal, then Mλ(Π) is JTλ; if all strips in Π
are hooks, then Mλ(Π) is just Gλ; and if Π is the rim ribbon decomposition of λ, then
Mλ(Π) becomes LPλ.

The rest of the paper is organized as follows. To be self-contained, we will provide a
detailed review of Stanley’s proof of Theorem 1.2 in Section 2. Following Stanley’s proof,
we will give a proof of Theorem 1.3 in Section 3, and give a proof of Theorem 1.4 in
Section 4. As will be shown later, we need not use the Littlewood-Richardson rule for the
evaluation of the Smith normal form of a specialized Giambelli matrix. However, for a
general outside decomposition Π of λ, it is difficult to give a proof of Theorem 1.5 along
the lines of Stanley’s proof of Theorem 1.2. In Section 5 we will instead prove Theorem
1.5 based on the stable equivalence of Giambelli-type matrices, which was established by
Chen and Yang [1] in answer to a question of Kuperberg [5]. Lastly, in Section 6, we will
follow Stanley to give two kinds of q-analogues of the Smith normal form of the specialized
Giambelli-type matrices.

2 The Jacobi-Trudi matrix

The aim of this section is to give an overview of Stanley’s proof of Theorem 1.2.

In order to use Theorem 1.1 to prove Theorem 1.2, we need to consider k × k minors
of ϕt JTλ for 1 ≤ k ≤ `(λ). Each minor is either zero or a skew Schur function (under the
specialization ϕt) for some skew partition ρ/σ by the following Jacobi-Trudi identity for
skew Schur functions, see [7, Theorem 7.16.1]:

sρ/σ = det(hρi−σj−i+j)
`(ρ)
i,j=1.

For the square submatrix Nk of ϕt JTλ with row indices 1 ≤ i1 < i2 < · · · < ik ≤ `(λ)
and column indices 1 ≤ j1 < j2 < · · · < jk ≤ `(λ), we may take

ρ1 = Ξ + λi1 − i1 − k + 1, ρ2 = Ξ + λi2 − i2 − k + 2, . . . , ρk = Ξ + λik − ik,

σ1 = Ξ− j1 − k + 1, σ2 = Ξ− j2 − k + 2, . . . , σk = Ξ− jk, (2)

where Ξ can be any positive integer such that all parts of ρ and σ are nonnegative. If
σ 6⊆ ρ, namely σl > ρl for some 1 ≤ l ≤ k, we set sρ/σ = 0 for the convenience though
ρ/σ is not a valid skew partition. Now we have ϕt sρ/σ = detNk in any case.

Let Mk denote the square submatrix consisting of the last k rows and first k columns
of ϕt JTλ. By (2), it is routine to verify that Mk is the specialized Jacobi-Trudi matrix
ϕt JTµ(k) , where

µ(k) = (λ`(λ)−k+1 − `(λ) + k, λ`(λ)−k+2 − `(λ) + k, . . . , λ`(λ) − `(λ) + k). (3)

Note that some components of µ(k) might be negative. Let µ(k,+) denote the partition
consisting of nonnegative parts of µ(k). If all parts of µ(k) are negative, define µ(k,+) to
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be the empty partition. With this convention, it is readily to see that µ(k,+) admits the
following hook decomposition

µ(k,+) =
k⋃
l=1

D`(λ)−l+1. (4)

Let 〈 , 〉 denote the scalar product on the ring of symmetric functions by requiring that
the Schur functions form an orthonormal basis. Stanley [8] noted the following property.

Lemma 2.1. Suppose that detNk 6= 0, and ρ/σ, µ(k,+) are defined as above. Then there
is a subdiagram ν (of an ordinary partition) of ρ/σ containing µ(k,+), and all other cells
of ρ/σ are to the left of ν. Furthermore, we have µ(k,+) ⊆ τ if 〈sρ/σ, sτ 〉 6= 0.

Proof. To prove the first part, it suffices to show that, for any 1 ≤ l ≤ `(µ(k,+)),

ρl − σ1 ≥ µ
(k,+)
l = µ

(k)
l ,

that is,
(Ξ + λil − il − k + l)− (Ξ− j1 − k + 1) ≥ λ`(λ)−k+l − `(λ) + k.

Equivalently, we only need to prove that

λil − il + l + (j1 − 1) ≥ λ`(λ)−k+l − `(λ) + k.

Since j1 ≥ 1 and il ≤ `(λ)− k + l (as Mk consists of the last k rows and first k columns
of ϕt JTλ), we obtain the desired result.

For the second part of the lemma, the statement that 〈sρ/σ, sτ 〉 6= 0 is equivalent
to cρστ 6= 0, where cρστ is a Littlewood-Richardson coefficient [7, (7.64)]. The celebrated
Littlewood-Richardson rule states that cρστ is equal to the number of semistandard Young
tableaux of shape ρ/σ and content τ whose reverse reading words are lattice permutations.

By the first part of the lemma, such a tableau must have the last µ
(k,+)
l entries in row l

equal to l for any 1 ≤ l ≤ `(µ(k,+)). Hence µ
(k,+)
l ≤ τl for any l, namely µ(k,+) ⊆ τ .

Stanley [8] further obtained the following results.

Proposition 2.2. (C1) The matrix ϕt JTλ has a k×k submatrix with determinant equal
to ϕt sµ(k,+).

(C2) Every k × k minor of ϕt JTλ is divisible by ϕt sµ(k,+) in the ring Q[t].

Proof. First we prove (C1). Suppose that detMk 6= 0, in which case µ(k,+) = µ(k). Now
Mk serves as a candidate since detMk = ϕt sµ(k) . If detMk = 0, then some components

of µ(k) in (3) must be negative. Let I be the smallest index i such that µ
(k)
i < 0. Note

that Mk, as a submatrix of ϕt JTλ, has row indices `(λ) − k + 1 < · · · < `(λ). Then, for
any `(λ)− k + I ≤ i ≤ `(λ), the i-th row of ϕt JTλ must be of the form

(0, . . . , 0, 1, ∗, . . . , ∗),
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where a ∗ denotes some nonzero element in Q[t]. Suppose that the column indices of the
1’s in these rows are jI , . . . , jk. Then we must have I − 1 < jI < · · · < jk, i.e., the 1’s
in these rows appear strictly from left-to-right as we move down ϕt JTλ. Now consider
the k × k submatrix N of ϕt JTλ with row indices `(λ)− k + 1 < · · · < `(λ) and column
indices 1 < · · · < I − 1 < jI < · · · < jk. It is easy to check that N is a block matrix of
the form (

ϕt JTµ(k,+) Q
O P

)
,

where O is a (k − I + 1)× (I − 1) zero matrix and P is upper unitriangular. Therefore,
detN = ϕt sµ(k,+) .

To prove (C2), we only need to consider every k × k submatrix Nk of ϕt JTλ with
nonzero determinant. Suppose that detNk = ϕtsρ/σ for some skew partition ρ/σ. By
Lemma 2.1, if 〈sρ/σ, sτ 〉 6= 0, then µ(k,+) ⊆ τ , and hence the contents of µ(k,+) form a
submultiset of the contents of τ . Therefore, ϕtsτ is divisible by ϕt sµ(k,+) , so is ϕtsρ/σ =
detNk.

We now have all the ingredients necessary for the proof of Theorem 1.2.

Proof of Theorem 1.2. From (4) it follows that

ϕt sµ(k,+) = ck

k∏
l=1

∏
(i,j)∈D`(λ)−l+1

(t+ c(i, j)), (5)

where ck is a nonzero rational number. By Proposition 2.2, the greatest common divisor
of the k × k minors is equal to ϕt sµ(k,+) . Combining Theorem 1.1 and equation (5) we
obtain the desired result.

3 The Giambelli matrix

The objective of this section is to give a proof of Theorem 1.3. Similar to the proof of
Theorem 1.2, we need to compute the greatest common divisor of k × k minors of ϕt Gλ

explicitly. However, the Littlewood-Richardson rule is not necessary for the proof here.

Given a partition λ = (α1, . . . , αr|β1, . . . , βr), it is easy to see that, for 1 ≤ k ≤ r,
the k-th diagonal hook of λ is Dk = (αk|βk). Let Mk be the square submatrix con-
sisting of the last k rows and last k columns of ϕt Gλ. Let µ(k) denote the partition
(αr−k+1, . . . , αr|βr−k+1, . . . , βr), which has the following hook decomposition

µ(k) =
k⋃
l=1

Dr−l+1. (6)

Thus Mk is the specialized Giambelli matrix for the partition µ(k), and hence

detMk = ϕt sµ(k) = ck

k∏
l=1

∏
(i,j)∈Dr−l+1

(t+ c(i, j)), (7)
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where ck is a nonzero rational number. We have the following result.

Proposition 3.1. Let Mk be the square submatrix of the last k rows and last k columns
of ϕt Gλ. Then every k × k minor of ϕt Gλ is divisible by detMk in the ring Q[t].

Proof. Consider a k × k square submatrix Nk of ϕt Gλ with row indices 1 ≤ i1 < · · · <
ik ≤ r and column indices 1 ≤ j1 < · · · < jk ≤ r. It is obvious that Nk is the specialized
Giambelli matrix for the partition ν(k) = (αi1 , . . . , αik |βj1 , . . . , βjk). Since Mk consists
of the last k rows and last k columns of ϕt Gλ, we have αil ≥ αr−k+l and βjl ≥ βr−k+l
for all 1 ≤ l ≤ k. Thus µ(k) ⊆ ν(k), and hence the contents of µ(k) form a submultiset
of the contents of ν(k). The desired result immediately follows from the hook-content
formula.

We proceed to finish the proof of Theorem 1.3.

Proof of Theorem 1.3. By Proposition 3.1, the determinant detMk is a greatest com-
mon divisor of k × k minors of ϕt Gλ. The proof then follows from Theorem 1.1 and
equation (7).

4 The Lascoux-Pragacz matrix

In this section we will give a proof of Theorem 1.4. As in the proofs of Theorems 1.2 and
1.3, we need to determine the greatest common divisor of k × k minors of ϕt LPλ.

First, we would like to point out that each minor of ϕt LPλ is equal to a skew Schur
function (under the specialization ϕt) by the following result due to Lascoux and Pragacz
[6].

Theorem 4.1 ([6, Corallary 4.7]). Let λ be a partition of rank r, its Frobenius notation
(α1, . . . , αr|β1, . . . , βr), and its rim decomposition θ1, . . . , θr. Further, let k be a nonneg-
ative integer ≤ r, S1 = {i1, . . . , ik}, S2 = {j1, . . . , jk} be two subsets of the set S =
{1, . . . , r}, and µ be the partition of Frobenius decomposition (αi1 , . . . , αik |βj1 , . . . , βkk).
Then

sλ/µ = det(sθ+i &θ−j
)i∈S1,j∈S2 ,

where Si is the relative complement of Si with respect to S.

Suppose that λ is a partition of rank r with Frobenius decomposition (α1, . . . , αr|β1, . . . , βr)
and rim decomposition θ1, . . . , θr. For 1 ≤ k ≤ r, let Mk be the square submatrix of the
last k rows and last k columns of ϕt LPλ. By Theorem 4.1, the determinant detMk is
equal to ϕt sλ/µ(k) , where µ(k) = (α1, . . . , αr−k|β1, . . . , βr−k). It is easy to see that λ/µ(k)

is an ordinary partition with Frobenius notation (αr−k+1, . . . , αr|βr−k+1, . . . , βr). Let Nk

be the k × k square submatrix of ϕt LPλ with row indices 1 ≤ i1 < · · · < ik ≤ r and
column indices 1 ≤ j1 < · · · < jk ≤ r. Let {i′1, . . . , i′r−k} be the relative complement
of {i1, . . . , ik} with respect to {1, . . . , r}, and {j′1, . . . , j′r−k} the relative complement of
{j1, . . . , jk}, ordered increasingly. Again by Theorem 4.1, the determinant detNk is equal
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to ϕt sλ/ν(k) , where ν(k) = (αi′1 , . . . , αi′r−k |βj′1 , . . . , βj′r−k). We have the following property,
which is similar to Lemma 2.1.

Lemma 4.2. Let µ(k) and ν(k) be defined as above. Then all other cells of λ/ν(k) are to
the left or above of λ/µ(k). Furthermore, we have λ/µ(k) ⊆ τ if 〈sλ/ν(k) , sτ 〉 > 0.

Proof. To prove the first part, it suffices to show that ν(k) ⊆ µ(k). This is clear since
αi′l ≤ αl and βj′l ≤ βl for any 1 ≤ l ≤ r − k. By the Littlewood-Richardson rule, the
statement that 〈sλ/ν(k) , sτ 〉 > 0 is equivalent to the existence of a semistandard Young

tableau (say T ) of shape λ/ν(k) and content τ whose reverse reading word is a lattice
permutation. For simplicity, let ν denote the ordinary partition (λ/µ(k)). We claim that,
for each 1 ≤ i ≤ `(ν), the number of occurrences of i in T is at least νi. For i = 1,
consider the first row of ν, which lies in the (r − k + 1)-th row of T . Suppose that this
row contains n1 1’s, n2 2’s, n3 3’s, etc. Since T satisfies a lattice permutation condition,
the first r− k+ 1 rows of T must contain at least (n1 +n2) 1’s, at least (n2 +n3) 2’s, etc.
Continuing in this way, there exist at least (n1 + n2 + n3 + · · · ) 1’s in the first r − k + 1
rows of T , and hence at least ν1 1’s in T . The same reasoning can be used to prove that
the tableau T has at least ν2 2’s, ν3 3’s, etc, keeping in mind that T is increasing along
the rows and strictly increasing down the columns. Therefore, for any 1 ≤ i ≤ `(ν), we
have νi ≤ τi, and hence ν ⊆ τ , as desired.

Based on the above result, we can determine the greatest common divisor of k × k
minors of ϕt LPλ.

Proposition 4.3. Let Mk be the square submatrix of the last k rows and last k columns
of ϕt LPλ. Then every k × k minor of ϕt LPλ is divisible by detMk in the ring Q[t].

Proof. Let Mk and Nk be chosen as above. By Lemma 4.2, if 〈sλ/ν(k) , sτ 〉 > 0, then

λ/µ(k) ⊆ τ , and hence the contents of λ/µ(k) form a submultiset of the contents of τ . By
the hook-content formula ϕtsτ is divisible by ϕt sλ/µ(k) = detMk, so is ϕtsλ/ν(k) = detNk.
This completes the proof.

Now, we are in position to prove Theorem 1.4.

Proof of Theorem 1.4. By Proposition 4.3, the determinant detMk = ϕt sλ/µ(k) is

a greatest common divisor of k × k minors of ϕt LPλ. Note that λ/µ(k) has Frobenius
decomposition (αr−k+1, . . . , αr|βr−k+1, . . . , βr). Thus,

detMk = ϕt sλ/µ(k) = ck

k∏
l=1

∏
(i,j)∈Dr−l+1

(t+ c(i, j)).

for some nonzero rational number ck. Then the application of Theorem 1.1 establishes
the desired result.
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5 The Giambelli-type matrix

The main objective of this section is to give a proof of Theorem 1.5. Let us first review
the construction of the Giambelli-type matrices introduced by Hamel and Goulden [4].
We will use the reformulation involving the notion of a cutting strip due to Chen, Yan
and Yang [2].

Suppose that λ/µ is a connected skew partition with d nonempty diagonals. Given
an outside decomposition Π = (θ1, θ2, . . . , θm) of λ/µ, cells in the same diagonal within
the skew diagram will either all go up or all go right with respect to Π. Figure 1 gives an
illustration of this nested property.

-6

6
-6

- -

6

6

6
- 6

-

Figure 1: An outside decomposition of (6, 6, 5, 3)/(2, 1, 1) with 3 strips

Let θ(Π) be the unique border strip of length d, which occupies the same nonempty
diagonals as λ/µ and the cells in a given diagonal goes up or right exactly as the cells
of λ/µ do with respect to Π. The ribbon θ(Π) is called the cutting strip of Π. (This
establishes a one-to-one correspondence between the set of outside decompositions of λ/µ
and the set of border strips with d cells.) Given any two contents p, q, we may define the
strip θ[p, q] as follows:

(1). If p ≤ q, then θ[p, q] is the segment of θ(Π) starting with the cell having content p
and ending with the cell having content q;

(2). If p = q + 1, then θ[p, q] is the empty strip ∅ with sθ[p,q] = 1;

(3). If p > q + 1, then θ[p, q] is undefined with sθ[p,q] = 0.

For any strip θi in Π, let p(θi) denote the content of the starting cell of θi, and q(θi) the
content of the ending cell of θi. Further let

Mλ/µ(Π) = (sθ[p(θi),q(θj)])
m
i,j=1.

This is the Giambelli-type matrix studied by Hamel and Goulden [4]. They obtained the
following result:

Theorem 5.1 ([4, Theorem 3.1]). For any connected λ/µ and any outside decomposition
Π, we have sλ/µ = det Mλ/µ(Π).

10



As we mentioned at the end of the introduction, it might be possible to give a proof
of Theorem 1.5 by explicitly computing the greatest common divisor of k × k minors of
Mλ(Π). Here we will prove Theorem 1.5 by using the stable equivalence of Giambelli-type
matrices, established by Chen and Yang [1].

The notion of stable equivalence of matrices was introduced by Kuperberg [5]. Let R
be a commutative ring with unit. Let M be an n × k matrix over R. We say that M ′

is stably equivalent to M if M ′ can be obtained from M under the following operations:
general row operations,

M � AM

where A is an n× n invertible matrix over R; general column operations,

M �MB

where B is a k × k invertible matrix over R; and stabilization

M �

(
1 0
0 M

)
and its inverse.

Kuperberg [5, Question 15] asked whether the Jacobi-Trudi matrix and the dual
Jacobi-Trudi matrix are stably equivalent for any skew partition over the ring of sym-
metric functions. Chen and Yang [1] proved the following stable equivalence property of
Giambelli-type matrices.

Theorem 5.2 ([1, Proposition 3.4]). Let Π and Π′ be two outside decompositions of the
edgewise connected skew diagram λ/µ. Then the Giambelli-type matrices Mλ/µ(Π) and
Mλ/µ(Π′) are stably equivalent over the ring of symmetric function.

Since for any symmetric function f of finite degree the specialization ϕt f is still a
polynomial in t, we immediately have the following result.

Corollary 5.3. Given any two outside decompositions Π and Π′ of λ/µ, the specialized
Giambelli-type matrices ϕt Mλ/µ(Π) and ϕt Mλ/µ(Π′) are stably equivalent over the poly-
nomial ring Q[t].

To prove Theorem 1.5, we also need the following result.

Lemma 5.4. Suppose that M is an n × n nonsingular matrix and M ′ is an m × m
nonsingular matrix over a principal ideal domain, where n ≤ m. If M is stably equivalent

to M ′ and M
snf→ (d1, d2, . . . , dn), then M ′ snf→ (1, . . . , 1, d1, d2, . . . , dn), where 1 occurs

(m− n) times before d1.

Proof. The proof is by definition.

Now we can prove Theorem 1.5.

11



Proof of Theorem 1.5. In Corollary 5.3, take Π′ to be the hook decomposition of λ,
and then ϕt Mλ(Π

′) is the specialized Giambelli matrix ϕt Gλ. Combining Lemma 5.4 and
Theorem 1.3, we obtain the desired result, by noting that, for 1 ≤ k ≤ m−r, the diagonal
Dm−k+1 is the empty partition and hence

dk =
∏

(i,j)∈Dm−k+1

(t+ c(i, j)) = 1.

We should mention that Theorem 1.5 tells that the Smith normal form of a specialized
Giambelli-type matrix can be obtained from that of the corresponding specialization of
the classical Giambelli matrix by a sequence of stabilization operations. Since the Jacobi-
Trudi matrix is a special Giambelli-type matrix, Theorem 1.2 can also be considered as
a corollary of Theorem 1.3 and Lemma 5.4. This provides another approach to Stanley’s
result on the Smith normal form of a specialized Jacobi-Trudi matrix.

6 A q-analogue

In [8, 9], Stanley gave a q-analogue of Theorem 1.2. In this section, we shall show that
Stanley’s approach also enables us to give a q-analogue of Theorems 1.3 and 1.4.

Let us first give an overview of Stanley’s q-analogue of Theorem 1.2. Letting t be a
fixed positive integer, a natural q-analogue ϕt(q) f of ϕt f is given by f(1, q, . . . , qt−1). It
is well known that

ϕt(q) sλ = q
∑

(k−1)λk
∏

(i,j)∈λ

1− qt+c(i,j)

1− qh(i,j)
. (8)

Then setting y = qt, the specialization ϕt(q) f for any symmetric function f becomes a

polynomial in y with coefficients in the field Q(q). Let ĴTλ denote the matrix obtained

from ϕt(q) JTλ by substituting qt = y. Stanley [8] studied the Smith normal form of ĴTλ

over the principal ideal domain Q(q)[y], and obtained the following result.

Theorem 6.1 ([8, Theorem 3.1]). Suppose that ĴTλ
snf→ (d1, d2, . . . , d`(λ)) over Q(q)[y].

Then, for 1 ≤ k ≤ `(λ), we can take

dk =
∏

(i,j)∈D`(λ)−k+1

(1− qc(i,j)y).

Stanley remarked that the proof of Theorem 1.2 given in Section 2 carries over to
Theorem 6.1. In the same manner, we can give a q-analogue of Theorem 1.3. The proof
of Theorem 1.3 given in Section 3 carries over to this q-version.
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Theorem 6.2. Let Ĝλ denote the matrix obtained from ϕt(q) Gλ by substituting qt = y.

Suppose that Ĝλ
snf→ (d1, d2, . . . , dr) over Q(q)[y], where r = rank(λ). Then, for 1 ≤ k ≤ r,

we can take

dk =
∏

(i,j)∈Dr−k+1

(1− qc(i,j)y).

We can also give a q-analogue of Theorem 1.4.

Theorem 6.3. Let L̂Pλ denote the matrix obtained from ϕt(q) LPλ by substituting qt = y.

Suppose that L̂Pλ
snf→ (d1, d2, . . . , dr) over Q(q)[y], where r = rank(λ). Then, for 1 ≤ k ≤

r, we can take

dk =
∏

(i,j)∈Dr−k+1

(1− qc(i,j)y).

Next we will give a q-analogue of Theorem 1.5. Given an outside decomposition Π of
λ, let M̂λ(Π) denote the matrix obtained from ϕt(q) Mλ(Π) by substituting qt = y. We
have the following result.

Theorem 6.4. Suppose that Mλ(Π) is of order m and M̂λ(Π)
snf→ (d1, d2, . . . , dm) over

Q(q)[y]. Then, for 1 ≤ k ≤ m, we can take

dk =
∏

(i,j)∈Dm−k+1

(1− qc(i,j)y).

Proof. The proof of Theorem 1.5 given in Section 5 carries over to this q-analogue. Given
any two outside decompositions Π and Π′ of λ/µ, Theorem 5.2 tells that the matrices
Mλ/µ(Π) and Mλ/µ(Π′) are stably equivalent over the ring of symmetric functions. This

implies that M̂λ/µ(Π) and M̂λ/µ(Π′) are stably equivalent over the polynomial ring Q(q)[y].

In particular, we obtain the stable equivalence of M̂λ(Π) and Ĝλ. The desired result
immediately follows from Lemma 5.4.

However, the above q-analogue seems unsatisfactory since one can not reduce to the
original matrices by substituting y = 1. Stanley [8] suggested another q-analogue of
Theorem 1.2 in the following way. For any symmetric function f , let ϕ∗ f denote the
substitution qt → 1

(1−q)y+1
after writing ϕt(q) f as a polynomial in q and qt. Under this

substitution, for any k ∈ Z there holds

1− qky → (1− q)(y + (k))

(1− q)y + 1
,

where (k) = 1−qk
1−q for any k ∈ Z. Thus, for any partition λ, we have

ϕ∗sλ = q
∑

(k−1)λk
∏

(i,j)∈λ

1− qc(i,j) · 1
(1−q)y+1

1− qh(i,j)
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=
q
∑

(k−1)λk

((1− q)y + 1)|λ|

∏
(i,j)∈λ

(y + c(i,j))

(h(i,j))
.

Then, we define a map ϕ� from the ring of symmetric functions Λ to Q(q)[y] by letting

ϕ�sλ = ((1− q)y + 1)|λ|ϕ∗sλ = qb(λ)
∏

(i,j)∈λ

(y + c(i,j))

(h(i,j))
(9)

and then extend linearly. It is easy to show that ϕ�(sλ ·sµ) = ϕ�sλ ·ϕ�sµ. Therefore, ϕ� is

well-defined, and it is a homomorphism from Λ to Q(q)[y]. Then J̃Tλ = ϕ� JTλ is just the
specialized Jacobi-Trudi matrix studied by Stanley [8], who obtained the following result.

Theorem 6.5 ([8, Theorem 3.2]). Suppose that J̃Tλ
snf→ (d1, d2, . . . , d`(λ)) over Q(q)[y].

Then, for 1 ≤ k ≤ `(λ), we can take

dk =
∏

(i,j)∈D`(λ)−k+1

(y + c(i,j)).

For the Giambelli matrix and the Lascoux-Pragacz matrix, let G̃λ = ϕ�Gλ and L̃Pλ =
ϕ� LPλ. Similar arguments enable us to get a natural q-analogue of Theorem 1.3 and
Theorem 1.4.

Theorem 6.6. Suppose that G̃λ
snf→ (d1, d2, . . . , dr) over Q(q)[y], where r = rank(λ).

Then, for 1 ≤ k ≤ r, we can take

dk =
∏

(i,j)∈Dr−k+1

(1− qc(i,j)y).

Theorem 6.7. Suppose that L̃Pλ
snf→ (d1, d2, . . . , dr) over Q(q)[y], where r = rank(λ).

Then, for 1 ≤ k ≤ r, we can take

dk =
∏

(i,j)∈Dr−k+1

(1− qc(i,j)y).

Theorem 1.5 also enjoys a q-analogue under the specialization ϕ�. Given an outside
decomposition Π of λ, let M̃λ(Π) = ϕ�Mλ(Π). Noting that ϕ� is a homomorphism from
Λ to Q(q)[y], the proof of Theorem 6.4 carries over directly to the following result.

Theorem 6.8. Suppose that Mλ(Π) is of order m and M̃λ(Π)
snf→ (d1, d2, . . . , dm) over

Q(q)[y]. Then, for 1 ≤ k ≤ m, we can take

dk =
∏

(i,j)∈Dm−k+1

(y + c(i,j)).
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