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Abstract The generalized connectivity of a graph is a natural generalization
of the connectivity and can serve for measuring the capability of a networkG to
connect any k vertices inG. Given a graph G = (V,E) and a subset S ⊆ V of at
least two vertices, we denote by κG(S) the maximum number r of edge-disjoint
trees T1, T2, · · · , Tr in G such that V (Ti) ∩ V (Tj) = S for any pair of distinct
integers i, j, where 1 ≤ i, j ≤ r. For an integer k with 2 ≤ k ≤ n, the generalized
k-connectivity is defined as κk(G) = min{κG(S)|S ⊆ V (G) and |S| = k}. That
is, κk(G) is the minimum value of κG(S) over all k-subsets S of vertices.

The study of Cayley graphs has many applications in the field of design
and analysis of interconnection networks. Let Sym(n) be the group of all
permutations on {1, . . . , n} and T be a set of transpositions of Sym(n). Let
G(T ) be the graph on n vertices {1, 2, . . . , n} such that there is an edge ij
in G(T ) if and only if the transposition [ij] ∈ T . If G(T ) is a tree, we use
the notation Tn to denote the Cayley graph Cay(Sym(n), T ) on symmetric
groups generated by G(T ). If G(T ) is a cycle, we use the notation MBn to
denote the Cayley graph Cay(Sym(n), T ) on symmetric groups generated by
G(T ). In this paper, we investigate the generalized 3-connectivity of Tn and
MBn and show that κ3(Tn) = n− 2 and κ3(MBn) = n− 1.
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1 Introduction

The connectivity κ(G) of a graph G is one of the basic concepts of graph
theory: it asks for the minimum number of vertices that need to be removed to
disconnect the remaining vertices from each other. A graph G is k-connected if
κ(G) ≥ k. An equivalent definition of connectivity was given in [19]. For each
2-subset S = {u, v} of vertices of G, let κG(S) denote the maximum number of
internally vertex-disjoint paths from u to v in G. Then κ(G) =min{κG(S)|S ⊆
V and |S| = 2}.

The connectivity of a graph is an important measure of its robustness as
a network. The generalized k-connectivity was introduced in [4,5] in order to
measure the capability of a network G to connect any k vertices in G and not
just any two.

Given a graph G = (V,E) and a vertex subset S of size at least 2, an
S-Steiner tree is a subgraph T = (V ′, E′) of G that is a tree with S ⊆ V ′. Two
S-Steiner trees T and T ′ are said to be internally disjoint if E(T )∩E(T ′) = ∅
and V (T ) ∩ V (T ′) = S. For a vertex subset S of size at least 2, we denote
by κG(S) the maximum number of internally disjoint S-Steiner trees in G.
For any integer k ≥ 2, the generalized k-connectivity of G, denoted by κk(G),
is the minimum value of κG(S) when S runs over all k-subsets of V (G), i.e.,
κk(G) = min{κG(S)|S ⊆ V (G) and |S| = k}. Clearly, κ2(G) = κ(G). The
generalized k-connectivity has been studied, see [9–15] and a survey [16].

Due to the development of parallel and distributed computing, the design
and analysis of various interconnection networks have been a main topic of
research for the past decade. Interconnection networks are often modelled by
graphs (or digraphs). The vertices of the graph represent the nodes of the
network, that is, processing elements, memory modules or switches, and the
edges correspond to communication lines. Because Cayley graphs have a lot of
properties which are desirable in an interconnection network, such as vertex
transitivity, edge transitivity, hierarchical structure, high fault tolerance etc.,
a number of researchers have proposed Cayley graphs as models for intercon-
nection networks (see [6] for details).

Let X be a group and S be a subset of X. The Cayley digraph Cay(X,S)
is a digraph with vertex set X and arc set {(g, gs)|g ∈ X, s ∈ S}. Clearly, if
S = S−1, where S−1 = {s−1|s ∈ S}, then Cay(X,S) can be considered as an
undirected graph.

Now, we consider Cayley graphs Cay(X,S) when the group X is a permu-
tation group. Denote by Sym(n) the group of all permutations on {1, . . . , n}.
For convenience, we use (p1p2 . . . pn) to denote the permutation

(
1 2 ... n
p1 p2 ... pn

)
,

and [ij] to denote the permutation
( 1 ... i ... j ... n
1 ... j ... i ... n

)
, which is called a trans-

position. We define the composition σπ of two permutations σ and π as the
function that maps any element i to σ(π(i)). Thus (p1 . . . pi . . . pj . . . pn)[ij] =
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(p1 . . . pj . . . pi . . . pn), which swaps the objects at positions i and j (not swap-
ping element i and j). Let T be a set of transpositions and G(T ) be the graph
on n vertices {1, 2, . . . , n} such that there is an edge ij in G(T ) if and on-
ly if the transposition [ij] ∈ T . The graph G(T ) is called the transposition
generating graph of Cay(Sym(n), T ). It is well known that the Cayley graph
Cay(Sym(n), T ) is connected if and only if the transposition generating graph
G(T ) is connected (see [3]).

Moreover, if G(T ) is a tree, we call G(T ) a transposition tree and denote
Cay(Sym(n), T ) by Tn. Specially, if G(T ) ∼= K1,n−1, then Cay(Sym(n), T )
is called a star graph Sn; and Cay(Sym(n), T ) is called a bubble-sort graph
Bn if G(T ) ∼= Pn. If G(T ) is a unicyclic graph, Cay(Sym(n), T ) is denoted
by UGn. In particular, if G(T ) ∼= Cn, UGn is called a modified bubble-sort
graph MBn. Here, Cayley graphs generated by trees and cycles means that
the transposition generating graphs of the Cayley graphs are trees and cycles.

Recently, Li et al. [17] investigated the generalized 3-connectivity of Sn and
Bn, and showed that κ3(Sn) = n − 2 and κ3(Bn) = n − 2. In this paper, we
further study the generalized 3-connectivity of Tn and obtain a more general
result: κ3(Tn) = n−2. Moreover, we also study the generalized 3-connectivity
of the modified bubble-sort graph MBn, and show that κ3(MBn) = n − 1.
The results can be seen as a generalization of [2] and [20].

2 Preliminaries

We first introduce some notation and results about connectivity that will
be used throughout the paper.

In this paper, we consider finite, undirected and simple graphs G with
vertex set V (G) and edge set E(G). For v ∈ V (G), let NG(v) denote the set
of neighbors of v in G and dG(v) denote the degree of v in G. For a subset
of vertices U ⊆ V , let N(U) := (∪u∈UN(u)) \ U , and the subgraph induced
by U is denoted by G[U ]. For simplicity, we sometimes use a graph itself to
represent its vertex set; for instance, N(G1) means N(V (G1)), where G1 is a
subgraph of G.

Lemma 1 ([15]) Let G be a connected graph and δ be its minimum degree.
Then κ3(G) ≤ δ. Further, if there are two adjacent vertices of degree δ, then
κ3(G) ≤ δ − 1.

Lemma 2 ([15]) Let G be a connected graph with n vertices. If κ(G) = 4k+r,
where k and r are two integers with k ≥ 0 and r ∈ {0, 1, 2, 3}, then κ3(G) ≥
3k + d r2e. Moreover, the lower bound is sharp.

Lemma 3 ([1]-p.214) Let G be a k-connected graph, and let X and Y be
two vertex subsets of size at least k. Then there exists a family of k pairwise
disjoint (X,Y )-paths in G.

Lemma 4 (The Fan Lemma [1]-p.214) Let G = (V,E) be a k-connected
graph, x be a vertex of G, and Y ⊆ V \ {x} be a set with at least k vertices.
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Then there exists a k-fan in G from x to Y , that is, there exists a family of k
internally vertex-disjoint (x, Y )-paths whose terminal vertices are distinct in
Y .

3 κ3(Tn)

We first determine κ3(Tn). Recall that Tn = Cay(Sym(n), T ) represents
the Cayley graph generated by some transposition tree G(T ). Without loss of
generality, we assume that V (G(T )) = {1, 2, · · · , n} and n is a leaf of G(T )
with n− 1 being its only neighbor.

The Cayley graphs Tn are (n − 1)-regular bipartite graphs and have n!
vertices; see [7] for the details. More useful properties are given below, which
can be found in [2,17,18,20].

Lemma 5 ([2,20]) κ(Tn) = n− 1.

Property 1 [18] For Tn, the vertex set V (Tn) can be partitioned into n part-
s, say V (T1

n−1), V (T2
n−1), . . . , V (Tn

n−1), where Ti
n−1 is an induced subgraph

on vertex set {(p1p2 . . . pn−1i)|(p1 . . . pn−1) ranges over all permutations of
{1, . . . , n}\{i}}. Obviously, for each 1 ≤ i ≤ n, Ti

n−1 is isomorphic to Tn−1.
We let Tn = T1

n−1 ⊕ T2
n−1 ⊕ . . .⊕ Tn

n−1.

Property 2 [2] Consider the Cayley graphs Tn. Let n be a leaf of G(T ) with
n − 1 being its only neighbor. For any vertex u of Ti

n−1, u[(n − 1)n], the
unique neighbor of u outside of Ti

n−1, is called the out-neighbor of u, written
u′. We call the neighbors of u in Ti

n−1 the in-neighbors of u. Any two distinct
vertices of Ti

n−1 have different out-neighbors. Hence, there are exactly (n−2)!

independent edges between Ti
n−1 and Tj

n−1 if i 6= j, that is, |N(Ti
n−1) ∩

V (Tj
n−1)| = (n− 2)! if i 6= j.

Lemma 6 [17] For Tn, let n be a leaf of G(T ) with n − 1 being its only
neighbor and Tn = T1

n−1 ⊕ T2
n−1 ⊕ . . .⊕ Tn

n−1. For every i ∈ {1, 2, . . . , n}, let

Ti := Tn[V (Tn) \ V (Ti
n−1)]. If n ≥ 3, then for every i ∈ {1, 2, . . . , n},

κ(Ti) = n− 2.

Theorem 7 [17] Let Sn be a star graph and Bn be a bubble-sort graph. Then
κ3(Sn) = n− 2 and κ3(Bn) = n− 2.

Now, we give the first main result.

Theorem 8 κ3(Tn) = n− 2, for any integer n ≥ 3.

Proof. Since Tn is an (n− 1)-regular graph, by Lemma 1, κ3(Tn) ≤ δ − 1 =
n−2. Thus we just need to prove that κ3(Tn) ≥ n−2. We prove by induction
on n.

For n = 3, obviously Tn is connected, and hence κ3(Tn) ≥ 1 = n− 2.
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For n = 4, Tn is a star graph or a bubble-sort graph, so by Theorem 7,
κ3(Tn) = 2 = n− 2.

Suppose the claim is true for all integers 4 ≤ n′ < n. Now consider n. let n
be a leaf of G(T ) with n− 1 being its only neighbor and Tn = T1

n−1⊕T2
n−1⊕

. . .⊕Tn
n−1. Let v1, v2 and v3 be any three vertices of Tn, and H := {v1, v2, v3}.

We distinguish three cases:
Case 1: v1, v2 and v3 belong to the same part V (Ti

n−1).
Note that Ti

n−1
∼= Tn−1. By the inductive hypothesis, κ3(Ti

n−1) ≥ n − 3.
That is to say, there are at least n − 3 internally disjoint trees connecting H
in Ti

n−1.
Let v′1, v

′
2 and v′3 be the out-neighbors of v1, v2 and v3, respectively. By

Lemma 6, Tn[V (Tn) \ V (Ti
n−1)] is connected, and hence contains a tree T

connecting {v′1, v′2, v′3}. The tree T ′ obtained by adding three pendant edges
v1v
′
1, v2v

′
2, v3v

′
3 to T is a tree connecting H and V (T ′) ∩ V (Ti

n−1) = H.
Now, in this case there are at least n−2 internally disjoint trees connecting

H in Tn, and hence κTn
(H) ≥ n− 2.

Case 2: v1, v2 and v3 belong to two parts.
Without loss of generality, suppose that v1, v2 ∈ V (T1

n−1) and v3 ∈ V (T2
n−1).

By Lemma 5, κ(T1
n−1) = n − 2, and hence there are n − 2 internally vertex-

disjoint (v1, v2)-paths P1, P2, . . . , Pn−2 in T1
n−1. Choose n− 2 distinct vertices

x1, x2, . . . , xn−2 from P1, P2, . . . , Pn−2 such that xi ∈ V (Pi), for 1 ≤ i ≤ n−2.
Note that at most one of these paths, say P1, has length 1; if so, we can
choose x1 = v1. Let x′i be the out-neighbor of xi, for all i ∈ {1, . . . , n− 2}. By
Property 2, any two distinct vertices of T1

n−1 have different out-neighbors. So
X ′ = {x′1, x′2, . . . , x′n−2} is a set of size n− 2.

By Lemma 6 and Lemma 4, κ(T1) = n− 2 and there exist n− 2 internally
disjoint (v3, X

′)-paths P ′1, P
′
2, . . . , P

′
n−2 in Tn[V (Tn)\V (T1

n−1)] whose terminal
vertices are distinct in X ′. Note that if v3 ∈ X ′, then there is a (v3, X

′)-
path that contains exactly one vertex v3. Now, T1 = P1 ∪ x1x′1 ∪ P ′1, . . . ,
Tn−2 = Pn−2 ∪ xn−2x′n−2 ∪P ′n−2 are n− 2 internally disjoint trees connecting
H, and hence κTn

(H) ≥ n− 2.
Case 3: v1, v2 and v3 belong to three different parts, respectively.
Without loss of generality, suppose that v1 ∈ V (T1

n−1), v2 ∈ V (T2
n−1) and

v3 ∈ V (T3
n−1).

Let G(T ) be a rooted tree with root n. For 1 ≤ i ≤ n − 1, the level of i,
denoted by l(i), is the length of the path from n to i in G(T ). We renumber
the vertices of G(T ) such that if l(i) > l(j), then i < j. Recall that n − 1 is
the only vertex whose level is 1. For example, there is a rooted tree G(T ) with
6 vertices in Figure 1.

We denote by Pi the unique path from i to n−1 in the tree G(T ). Consider
the path P1 = 1x1x2 . . . xt(n−1) and the vertex v1. Then 1 < x1 < x2 < . . . <
xt < (n− 1). Let v1 := (i1i2i3i4 · · · in−11). Then,

v1[1x1] = (i1i2i3i4 · · · in−11)[1x1] = (ix1i2 · · · ix1−1i1ix1+1 · · · in−11) := w1,
v1[1x1][x1x2] = (ix1i2 · · · ix1−1ix2ix1+1 · · · ix2−1i1ix2+1 · · · in−11) := w2,

...



6 Shasha Li et al.

s 6

s 5

s4 s 3

s2 s 1

Fig. 1 An example of G(T ).

v1[1x1][x1x2] · · · [xtn− 1] = (ix1
i2 · · · ix1−1ix2

ix1+1 · · · ix2−1ix3
ix2+1 · · · i11) :=

wt.

Thus we obtain a path P 1
2 = v1w1w2 · · ·wt in T1

n−1 starting at v1 and
ending at wt. In the same way, according to P2, P3, · · · , Pn−1, we can obtain
another n − 2 paths P 1

3 , P 1
4 , · · · , P 1

n in T1
n−1 starting at v1. Note that P 1

n

contains only one vertex v1.
LetX1 := {w1

i |w1
i is the terminal vertex of the path P 1

i for i ∈ {2, · · · , n}}.
Since {i1, · · · , in−1} = {2, · · · , n}, it is easy to see that the out-neighbors of
the vertices of X1 are in T2

n−1, T3
n−1, . . . , Tn

n−1, respectively.
Fact 1: For every k, l ∈ {2, 3, . . . , n} and k 6= l, V (P 1

k ) ∩ V (P 1
l ) = {v1};

Proof. W.l.o.g., suppose that k < l. Consider the path Pk := ky1 · · · ys(n− 1)
from k to n−1 in G(T ). As noted above, we have k < y1 < · · · < ys < (n−1).
For every vertex u ∈ V (P 1

k ) \ {v1}, the element at position k of u is iy1
.

However, because k < l, the element at position k of any vertex u′ ∈ V (P 1
l )

always is ik. Thus, the fact indeed holds.
Now, in T1

n−1 there are n−1 internally vertex-disjoint paths P 1
2 , P 1

3 , · · · , P 1
n

starting at v1 and ending at w1
2, w1

3, · · · , w1
n respectively. Furthermore, we can

assume that the out-neighbor (w1
i )′ of w1

i is in Ti
n−1 for every i ∈ {2, 3, · · · , n},

otherwise we have to reorder these paths accordingly.
Similarly, in T2

n−1 there are n− 1 internally vertex-disjoint paths P 2
1 , P 2

3 ,
· · · , P 2

n starting at v2 and ending at w2
1, w2

3, · · · , w2
n respectively. For every

i ∈ {1, 3, 4, · · · , n}, the terminal vertex of P 2
i is w2

i , and the out-neighbor (w2
i )′

of w2
i is in Ti

n−1.
In T3

n−1 there are n − 1 internally vertex-disjoint paths P 3
1 , P 3

2 , P 3
4 , · · · ,

P 3
n starting at v3 and ending at w3

1, w3
2, w3

4, · · · , w3
n respectively. For every

i ∈ {1, 2, 4, 5, · · · , n}, the terminal vertex of P 3
i is w3

i , and the out-neighbor
(w3

i )′ of w3
i is in Ti

n−1.
Recall that (w3

1)′ is the out-neighbor of w3
1 and is in T1

n−1. There is a

((w3
1)′, v1)-path P̃ in T1

n−1. Let t1 be the first vertex of the path P̃ which is in
∪i∈{2,...,n}V (P 1

i ).

Likewise, there is a ((w3
2)′, v2)-path P̃ ′ in T2

n−1. Let t2 be the first vertex

of the path P̃ ′ which is in ∪i∈{1,3,...,n}V (P 2
i ).
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Now, we distinguish two subcases.
Subcase 3.1: t1 ∈ ∪i∈{2,3}V (P 1

i ) and t2 ∈ ∪i∈{1,3}V (P 2
i ).

In this subcase, the induced subgraph of Tn on V (P 3
1 ) ∪ V (P̃ [(w3

1)′, t1]) ∪
V (P 1

2 ) ∪ V (P 1
3 ) contains a (v3, v1)-path, where P̃ [(w3

1)′, t1] is the subpath of

the path P̃ starting at (w3
1)′ and ending at t1.

Likewise, the induced subgraph of Tn on V (P 3
2 )∪V (P̃ ′[(w3

2)′, t2])∪V (P 2
1 )∪

V (P 2
3 ) contains a (v3, v2)-path, where P̃ ′[(w3

2)′, t2] is the subpath of the path

P̃ ′ starting at (w3
2)′ and ending at t2.

The union of the (v3, v1)-path and (v3, v2)-path forms a tree connecting H.
On the other hand, for every j ∈ {4, . . . , n}, there exists a tree connecting

V (P 1
j ) ∪ V (P 2

j ) ∪ V (P 3
j ) ∪ V (Tj

n−1).
Hence in this subcase we conclude that there are n− 2 internally disjoint

trees connecting H in Tn, that is, κTn
(H) ≥ n− 2.

Subcase 3.2: t1 ∈ ∪i∈{4,5,...,n}V (P 1
i ) \ {v1} or t2 ∈ ∪i∈{4,5,...,n}V (P 2

i ) \
{v2}.

W.l.o.g., suppose that t1 ∈ V (P 1
4 ) \ {v1}. Recall that v1 = (i1i2 . . . in−11).

Since the out-neighbor of the terminal vertex w1
4 of P 1

4 is in T4
n−1, in−1 6= 4

(otherwise, V (P 1
4 ) = {v1}). Moreover, at least one of in−1 6= 2 and in−1 6= 3

must hold. W.l.o.g., we assume that in−1 6= 2.
Consider the path P 1

2 . Recall that w1
2 is the terminal vertex of P 1

2 and
we can assume that w1

2 = (j1j2 · · · jn−221). Suppose that jl = 4 and Pl =
lx1x2 . . . xt(n− 1) is the path from l to n− 1 in the tree G(T ). Then,

w1
2[lx1] = (j1 · · · jl−1jx1

jl+1 · · · jx1−14jx1+1 · · · 21) := u1,
w1

2[lx1][x1x2] = (j1 · · · jl−1jx1
jl+1 · · · jx1−1jx2

jx1+1 · · · 4 · · · 21) := u2,
...,

w1
2[lx1][x1x2] · · · [xt−1xt] = (j1 · · · jl−1jx1jl+1 · · · jxt−14jxt+1 · · · 21) := ut,

w1
2[lx1][x1x2] · · · [xt(n− 1)] = (j1 · · · jl−1jx1jl+1 · · · jxt−12jxt+1 · · · 41) := ut+1.

Consider the vertex ut+1. If ut+1 = w1
4, where w1

4 is the terminal vertex of the
path P 1

4 , then choose an edge kh of G(T ) such that {k, h} ∩ {xt, n − 1} = ∅,
and let u′t := ut[kh], u′t+1 = u′t[xt(n− 1)]. Now, u′t+1 6= w1

4.

If ut+1 6= w1
4, we denote by P 1

2 a path w1
2u1 · · ·ut+1 starting at w1

2 and

ending at ut+1 in T1
n−1, otherwise, we denote by P 1

2 a path w1
2u1 · · ·utu′tu′t+1

starting at w1
2 and ending at u′t+1 in T1

n−1.

Obviously, the terminal vertex of P 1
2 is not w1

4 and the out-neighbor of the

terminal vertex of the path P 1
2 is in T4

n−1. Let P̂ 1
2 := P 1

2w
1
2P

1
2 be an extended

path starting at v1 and ending at ut+1 or u′t+1. Next we prove the following
fact.

Fact 2: V (P̂ 1
2 ) ∩ V (P 1

i ) = {v1}, for any i ∈ {3, 4, . . . , n}.
Proof. Proof by contradiction. Suppose that there exists an integer k ∈
{3, 4, . . . , n} such that |V (P̂ 1

2 ) ∩ V (P 1
k )| ≥ 2.

We assume that w ∈ V (P̂ 1
2 ) ∩ V (P 1

k ) and w 6= v1. By Fact 1, w ∈ V (P 1
2 ).

If w is not the terminal vertex of P 1
2 , then the element at position n− 1 of w

is 2. However, the element at position n − 1 of each vertex in V (P 1
k ) is in−1
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or k, a contradiction. If w is the terminal vertex of P 1
2 , then the element at

position n− 1 of w is 4. Thus in−1 = 4 or w = w1
4, a contradiction.

The proof of the claim is complete.
Similarly, if t2 ∈ V (P 2

l ) for some l ∈ {4, 5, · · · , n}, we can extend the path
P 2
1 or the path P 2

3 to obtain an extended path such that the out-neighbor
of the terminal vertex of the extended path is in Tl

n−1 and there is only one
common vertex v2 between the extended path and the other paths.

Now, if V (P̃ [(w3
1)′, t1]) ∩ V (P 1

2 ) = ∅, then the induced subgraph of Tn on

V (P 3
1 ) ∪ V (P̃ [(w3

1)′, t1]) ∪ V (P 1
4 ) contains a (v3, v1)-path, which is internally

disjoint from P̂ 1
2 and P 1

5 . . . , P
1
n . Moreover, the out-neighbor of the terminal

vertex of P̂ 1
2 is in T4

n−1. Otherwise, V (P̃ [(w3
1)′, t1]) ∩ V (P 1

2 ) 6= ∅ and let t′1
be the first vertex of the path P̃ which is in ∪i∈{2,...,n}V (P 1

i ) ∪ V (P 1
2 ). Then

t′1 ∈ V (P 1
2 ) and the induced subgraph of Tn on V (P 3

1 )∪V (P̃ [(w3
1)′, t′1])∪V (P̂ 1

2 )
contains a (v3, v1)-path, which is internally disjoint from P 1

4 . . . , P
1
n . Similarly,

we can obtain a (v3, v2)-path. The union of the (v3, v1)-path and (v3, v2)-path
forms a tree connecting H. At the same time, for every j ∈ {4, 5, . . . , n}, there
exists a tree connecting H ∪ V (Tj

n−1). The most important thing is that we
can guarantee that these n− 2 trees connecting H are internally disjoint from
the previous discussions.

In conclusion, κTn(H) ≥ n− 2, and hence κ3(Tn) = n− 2.
The proof is complete.

4 κ3(MBn)

In this section, we consider the modified bubble-sort graphs MBn, where
the transposition generating graph G(T ) is a cycle. W.l.o.g., we assume that
T = {12, 23, . . . , (n−1)n, 1n}. It is easy to see that MBn are n-regular graphs.

Property 3 [21] For MBn, the vertex set V (MBn) can be partitioned into n
parts, say V (B1

n−1), V (B2
n−1), . . ., V (Bn

n−1), where Bi
n−1 is an induced sub-

graph on vertex set {(p1p2 . . . pn−1i)|(p1 . . . pn−1) ranges over all permutations
of {1, . . . , n}\{i}}. Obviously, for each 1 ≤ i ≤ n, Bi

n−1 is isomorphic to Bn−1.
We let MBn = B1

n−1 ⊗B2
n−1 ⊗ . . .⊗Bn

n−1.
Moreover, for any i ∈ {1, 2, . . . , n}, each vertex u of Bi

n−1 has two neighbors
u′ = u[1n] and u′′ = u[(n − 1)n] outside of Bi

n−1. Vertices u′ and u′′ are
called the out-neighbors of u. We call the neighbors of u in Bi

n−1 the in-
neighbors of u. Any vertex u of Bi

n−1 has its two out-neighbors in different
parts. Any two distinct vertices of Bi

n−1 have different out-neighbors. There

are exactly 2(n− 2)! independent edges between Bi
n−1 and Bj

n−1 if i 6= j, that

is, |N(Bi
n−1) ∩ V (Bj

n−1)| = 2(n− 2)! if i 6= j.

First, we give some lemmas.

Lemma 9 [17] Let MBn = B1
n−1⊗B2

n−1⊗· · ·⊗Bn
n−1. For every i ∈ {1, 2, · · · , n},

κ(Bi
n−1) = n− 2. If n ≥ 3, then

κ(Bi
n−1 ⊗B

j
n−1) ≥ n− 2,
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for any two distinct integers i, j ∈ {1, · · · , n}, where Bi
n−1 ⊗ Bj

n−1 is the

induced subgraph of MBn on V (Bi
n−1) ∪ V (Bj

n−1).

Lemma 10 Let MBn = B1
n−1⊗B2

n−1⊗· · ·⊗Bn
n−1 and G′ = Bi1

n−1⊗B
i2
n−1⊗

· · · ⊗ Bit
n−1 be the induced subgraph of MBn on V (Bi1

n−1) ∪ V (Bi2
n−1) ∪ · · · ∪

V (Bit
n−1), where 1 ≤ i1 < i2 < · · · < it ≤ n and t ≥ 2. Given a vertex

x ∈ V (G′), if dG′(x) = k and Y ⊆ V (G′) \ {x} is a set of k vertices of G′

such that |Y ∩ Bij
n−1| ≤ n − 2 for each j ∈ {1, 2, . . . , t}, then there exists a

k-fan in G′ from x to Y , that is, there exists a family of k internally disjoint
(x, Y )-paths whose terminal vertices are distinct in Y .

Proof. Obviously, n− 2 ≤ k ≤ n.
We distinguish three cases:
Case 1: k = n− 2.
By Lemmas 9 and 4, κ(Bi1

n−1 ⊗ Bi2
n−1 ⊗ · · · ⊗ Bit

n−1) ≥ n − 2 and the
conclusion clearly holds for k = n− 2.

Case 2: k = n, that is, V (G′) contains the two out-neighbors of x .
W.l.o.g., suppose that x ∈ Bi1

n−1 and the two out-neighbors x′ and x′′ of x

belong to Bi2
n−1 and Bi3

n−1, respectively.

Now let Y ∩Bij
n−1 = Aj and |Aj | = aj , for 1 ≤ j ≤ t. Clearly 0 ≤ aj ≤ n−2

and
∑t

j=1 aj = n.
Subcase 2.1: a2 ≥ 1 and a3 ≥ 1.
Let a′j := aj−1 for j = 2, 3 and a′j := aj for j 6= 2, 3. Then

∑t
j=1 a

′
j = n−2.

Select t− 1 disjoint vertex sets M2,M3, . . . ,Mt in V (Bi1
n−1) such that

(1) Mj consists of a′j vertices,
(2) for each vertex in Mj , one of the two out-neighbors of it belongs to

B
ij
n−1,

(3) and Mj ∩ (A1 ∪ {x}) = ∅, for each j ∈ {2, 3, · · · , t}.
This can be done because 2(n − 2)! ≥ (n − 1). Let M1 := A1 and M :=
M1 ∪M2 ∪ · · · ∪Mt. By Lemma 4 and the facts that |M | = n− 2, x /∈M and
κ(Bi1

n−1) = n−2, there exist t fans F1, F2, · · · Ft in Bi1
n−1 from x to M , where

for each j ∈ {1, · · · , t}, Fj is a family of a′j internally disjoint (x,Mj)-paths
whose terminal vertices are distinct in Mj .

For 2 ≤ j ≤ t, let M ′j := {y′ |y′ is an out-neighbor of y such that y′ ∈
B

ij
n−1 for each y ∈ Mj}, and Ej := {yy′ ∈ E(MBn) |y ∈ Mj and y′ ∈ M ′j}.

Then add x′ and x′′ to M ′2 and M ′3 respectively, that is, M ′2 := M ′2 ∪{x′} and
M ′3 := M ′3∪{x′′}. Now |M ′j | = aj = |Aj |, for each j ∈ {2, 3, . . . , t}. By Lemma

3, for each j ∈ {2, 3, · · · , t}, since κ(B
ij
n−1) = n− 2 ≥ aj , and M ′j , Aj are two

subsets of B
ij
n−1 of cardinality aj , there exists a family of aj pairwise disjoint

(M ′j , Aj)-paths F ′j in B
ij
n−1.

Finally, it is not hard to see that combining the t fans F1, · · · , Ft, the edge
sets E2, · · · , Et, the edges xx′, xx′′ and the sets of paths F ′2, · · · , F ′t , we can
obtain an n-fan in G′ from x to Y .

Subcase 2.2: a2 = 0 or a3 = 0.
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W.l.o.g, a2 = 0.
If a2 = 0 and a3 ≥ 2, then find a (x′, w)-path P ′ in Bi2

n−1 such that one of

the two out-neighbors of w, denoted by w′, is in Bi3
n−1 and w′ /∈ {x′′} ∪M ′3.

Next, Let a′j := aj − 2 for j = 3 and a′j := aj for j 6= 3. The proof is similar
except that add {w′, x′′} to M ′3 instead of adding x′ and x′′ to M ′2 and M ′3.
Now M2, M ′2 and E2 are empty sets, F2 and F ′2 do not exist.

Combining the t − 1 fans F1, F3, · · · , Ft, the edge sets E3, · · · , Et, the
edges xx′, xx′′, ww′, the path P ′ and the sets of paths F ′3, · · · , F ′t , we can
obtain an n-fan in G′ from x to Y .

If a2 = 0 and a3 = 1, since a1 ≤ n − 2, there exists a part V (Bik
n−1) such

that ak ≥ 1 and k 6= 1, 3. Find a (x′, w)-path P ′ in Bi2
n−1 such that one of

the two out-neighbors of w, denoted by w′, is in Bik
n−1 and w′ /∈M ′k. Next, let

a′j := aj − 1 for j ∈ {3, k} and a′j := aj for j 6= 3, k. The proof is similar to
the previous proof and we can obtain an n-fan in G′ from x to Y .

If a2 = a3 = 0, then there exists a part V (Bik
n−1) such that ak ≥ 2 and

k ∈ {4, · · · , t}, or there exist two parts V (Bih
n−1) and V (Bir

n−1) such that
ah, ar ≥ 1 and h, r ∈ {4, · · · , t}. Similarly, we can obtain an n-fan in G′ from
x to Y .

Hence, for k = n the conclusion holds.
Case 3: k = n−1, that is, V (G′) contains only one of the two out-neighbors

of x .
This case can be handled similarly to Case 2 and more simply. So we omit

the proof.
In conclusion, in any case, there always exists a k-fan in G′ from x to Y .
The proof is complete.

Lemma 11 Let G′ = Bi1
n−1 ⊗ B

i2
n−1 ⊗ . . . ⊗ B

it
n−1 be the induced subgraph of

MBn on V (Bi1
n−1)∪V (Bi2

n−1)∪ . . .∪V (Bit
n−1), where t ≥ 2. Then for any two

vertices x and y of G′, κG′(x, y) = min{dG′(x), dG′(y)}, that is, there exist
min{dG′(x), dG′(y)} internally vertex-disjoint (x, y)-paths in G′.

Proof. W.l.o.g., assume that min{dG′(x), dG′(y)} = dG′(x) = k. Then dG′(y) ≥
k, n− 2 ≤ k ≤ n and κG′(x, y) ≤ k.

If dG′(y) > k or x and y are not adjacent, then we can always find a subset

Y of NG′(y) such that |Y | = k and x /∈ Y . Clearly, |NG′(y) ∩ Bij
n−1| ≤ n − 2

and |Y ∩Bij
n−1| ≤ n− 2, for each j ∈ {1, 2, . . . , t}. By Lemma 10, there exists

a k-fan in G′ from x to Y . Combining the edges from y to Y , we can obtain k
internally disjoint (x, y)-paths in G′, that is, κG′(x, y) ≥ k.

If dG′(y) = k and x and y are adjacent, let Y := (NG′(y) ∪ {y}) \ {x}.
Then |Y | = k and x /∈ Y . If |Y ∩ Bij

n−1| ≤ n − 2 for each j ∈ {1, 2, . . . , t}, by
Lemma 10, there exists a k-fan in G′ from x to Y . Similarly, combining the
edges from y to Y \{y}, we can obtain k internally disjoint (x, y)-paths in G′.

If |Y ∩ Bij
n−1| ≥ n − 1 for some j ∈ {1, 2, . . . , t}, then B

ij
n−1 contains y and

the n− 2 in-neighbors of y and x is one of the two out-neighbors of y. Choose
one in-neighbor z of y such that one out-neighbor z′ of z belongs to V (G′).
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Let Y ′ := Y \{z} ∪ {z′}. It is easy to see that |Y ′ ∩ Bij
n−1| ≤ n − 2 for each

j ∈ {1, 2, . . . , t}. By Lemma 10, there exists a k-fan F in G′ from x to Y ′.
Combining the fan F , the edges from y to Y and the edge zz′, we can obtain
k internally disjoint (x, y)-paths in G′.

Now we can conclude that κG′(x, y) = k. The proof is complete.
The following result can be obtained immediately by letting G′ = MBn in

Lemma 11.

Lemma 12 κ(MBn) = n.

Now, we give the generalized 3-connectivity of the modified bubble-sort
graph MBn.

Theorem 13 κ3(MBn) = n− 1, for any integer n ≥ 3.

Proof. By Lemma 1, κ3(MBn) ≤ δ(MBn)− 1 = n− 1. Thus we just need to
prove that κ3(MBn) ≥ n− 1.

For n = 3, 4, 5, by Lemmas 12 and 2, it is easy to check that κ3(MBn) ≥
n− 1.

Now suppose that n ≥ 6. Let MBn = B1
n−1⊗B2

n−1⊗· · ·⊗Bn
n−1. Let v1, v2

and v3 be any three vertices of MBn, and H := {v1, v2, v3}.
We distinguish three cases:
Case 1: v1, v2 and v3 belong to the same part.
W.l.o.g., assume that v1, v2, v3 ∈ V (B1

n−1). By Theorem 8, κ3(B1
n−1) =

κ3(Bn−1) = n− 3, and hence there are at least n− 3 internally disjoint trees
T1, T2, . . . , Tn−3 connecting H in B1

n−1. Note that by property 3, for every 1 ≤
i ≤ 3, vi has two out-neighbors v′i, v

′′
i in different parts, and any two distinct

vertices ofB1
n−1 have different out-neighbors. HenceN = {v′1, v′′1 , v′2, v′′2 , v′3, v′′3}

is a set of size 6 and each part contains at most three vertices of N .
Subcase 1.1: there exists a part which contains three vertices of N .
W.l.o.g., suppose that v′1, v

′
2, v
′
3 ∈ V (B2

n−1). Then there is a tree Tn−2
connecting H ∪ {v′1, v′2, v′3} in the induced subgraph on V (B2

n−1) ∪H. On the
other hand, there is a tree Tn−1 connecting H ∪ {v′′1 , v′′2 , v′′3} in the induced
subgraph on (∪ni=3V (Bi

n−1)) ∪H.
Now, we obtain n − 1 internally disjoint H-Steiner trees T1, T2, · · · , Tn−1

in MBn.
Subcase 1.2: there exists a part which contains two vertices of N and all

other parts contain at most two vertices of N .
W.l.o.g., suppose that v′1, v

′
2 ∈ V (B2

n−1).
If there is a part V (Bk

n−1)(k 6= 1, 2) such that V (Bk
n−1)∩N = {v′3} or {v′′3}

(w.l.o.g., ={v′3}), then MBn[V (B2
n−1) ∪ V (Bk

n−1) ∪ H] contains a tree Tn−2
connecting H ∪ {v′1, v′2, v′3}, and MBn[(∪i∈{1,··· ,n} and i6=1,2,kV (Bi

n−1)) ∪ H]
contains a tree Tn−1 connecting H ∪ {v′′1 , v′′2 , v′′3}.

Otherwise, there must exist another two parts such that both of them con-
tain two vertices of N . W.l.o.g., suppose that v′3, v

′′
1 ∈ V (B3

n−1) and v′′3 , v
′′
2 ∈

V (B4
n−1). Since v′3 = v3[1n], one of the two out-neighbors of v′3 is v3 ∈ B1

n−1.
let x = v′3[(n− 1)n] be the other out-neighbor of v′3.
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If x /∈ V (B4
n−1), then MBn[∪i∈{1,··· ,n} and i 6=1,3,4V (Bi

n−1)∪H ∪{v′3}] con-
tains an H-Steiner tree Tn−2 connecting H ∪ {v′1, v′2, v′3, x}. By Lemma 9,
κ(B3

n−1⊗B4
n−1) ≥ n−2 and MBn[(V (B3

n−1)∪V (B4
n−1)∪H)\{v′3}] contains

an H-Steiner tree Tn−1 connecting H ∪ {v′′1 , v′′2 , v′′3}.
Otherwise, x ∈ V (B4

n−1). Let y := v′3[(n− 2)(n− 1)] be an in-neighbor of
v′3. Clearly, y[1n], an out-neighbor of y, belongs to B1

n−1. Let z := y[(n− 1)n]
be the other out-neighbor of y. It is easy to see that z /∈ B4

n−1. Hence
MBn[∪i∈{1,··· ,n} and i 6=1,3,4V (Bi

n−1) ∪H ∪ {v′3, y}] contains an H-Steiner tree
Tn−2 connecting H ∪ {v′1, v′2, v′3, z, y}. On the other hand, MBn[(V (B3

n−1) ∪
V (B4

n−1) ∪ H) \ {v′3, y}] contains an H-Steiner tree Tn−1 connecting H ∪
{v′′1 , v′′2 , v′′3}.

Now, we can always obtain n− 1 internally disjoint trees connecting H in
MBn.

Subcase 1.3: each part contains at most one vertex of N .
W.l.o.g., suppose that B2

n−1, B
3
n−1, B

4
n−1 contain v′1, v

′
2, v
′
3, respectively,

and B5
n−1, B

6
n−1, B

7
n−1 contain v′′1 , v

′′
2 , v
′′
3 , respectively. Then the induced sub-

graph of MBn on V (B2
n−1) ∪ V (B3

n−1) ∪ V (B4
n−1) ∪H contains an H-Steiner

tree Tn−2 connecting H ∪ {v′1, v′2, v′3}, and the induced subgraph of MBn on
V (B5

n−1)∪V (B6
n−1)∪V (B7

n−1)∪H contains an H-Steiner tree Tn−1 connect-
ing H ∪ {v′′1 , v′′2 , v′′3}. Thus we obtain n− 1 internally disjoint H-Steiner trees
in MBn.

Thus, in this case, κMBn
(H) ≥ n− 1.

Case 2: v1, v2 and v3 belong to two parts.
W.l.o.g., assume that v1, v2 ∈ V (B1

n−1) and v3 ∈ V (B2
n−1). By Lemma

5, κ(B1
n−1) = n − 2, and hence there are n − 2 internally disjoint (v1, v2)-

paths P1, P2, . . . , Pn−2 in B1
n−1. Let G′ := B2

n−1 ⊗ B3
n−1 ⊗ . . .⊗ Bn

n−1. Then,
v3 ∈ V (G′).

Subcase 2.1: neither of the two out-neighbours of v3 belongs to B1
n−1,

that is, dG′(v3) = n.
Choose n− 2 distinct vertices x1, x2, . . . , xn−2 from P1, P2, . . . , Pn−2 such

that xi ∈ V (Pi), for 1 ≤ i ≤ n− 2. Note that at most one of these paths, say
P1, has length 1. If so, we can let x1 := v1 and make sure that xi 6= v2 for any
i ∈ {2, · · · , n− 2}. Let Y := {x1, · · · , xn−2} ∪ {v1, v2}. If x1 6= v1, we let

Y ′ := {x′|x′ is an out-neighbor of x and x ∈ Y };

otherwise,

Y ′ := {x′|x′ is an out-neighbor of x and x ∈ Y } ∪ {v′′1};

where v′1, v
′′
1 are the two out-neighbors of v1. Clearly, |Y | ≥ n−1, and |Y ′| = n.

On the other hand, we can make sure that |Y ′ ∩ Bj
n−1| ≤ n − 2 for each

j ∈ {2, 3 . . . , n}, otherwise we choose the other out-neighbor of x for some
x ∈ Y .

By Lemma 10 and the fact that dG′(v3) = n, there exist n internally
disjoint (v3, Y

′)-paths R1, R2, · · · , Rn in G′ such that the terminal vertex of
Ri is x′i for each i ∈ {1, . . . , n − 2}, the terminal vertex of Rn−1 is v′1 or v′′1 ,
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and the terminal vertex of Rn is v′2. Now, T1 = P1 ∪ R1 ∪ x1x′1, · · · , Tn−2 =
Pn−2∪Rn−2∪xn−2x′n−2 and Tn−1 = Rn−1∪Rn∪{v2v′2}∪{v1v′1}( or {v1v′′1})
are n− 1 internally disjoint trees connecting H, and hence κMBn

(H) ≥ n− 1.

Subcase 2.2: one of the two out-neighbours of v3 belongs to B1
n−1, that

is, dG′(v3) = n− 1.

Assume that the out-neighbour v′3 of v3 belongs to B1
n−1. Since B1

n−1 is

connected, there is a (v′3, v1)-path P̃ in B1
n−1. Let t be the first vertex of the

path P̃ which is in ∪k∈{1,2,...,n−2}V (Pk). W.l.o.g., suppose that t ∈ V (Pn−2).

Clearly, Pn−2 ∪ P̃ [v′3, t] ∪ {v3v′3} contains a tree connecting H, denoted by
Tn−1.

Now, choose n− 3 distinct vertices x1, x2, . . . , xn−3 from P1, P2, . . . , Pn−3
such that xi ∈ V (Pi), for 1 ≤ i ≤ n− 3. Similarly, by Lemma 10 and the fact
that dG′(v3) = n−1, there exist n−1 internally disjoint pathsR1, R2, · · · , Rn−1
starting at v3 in G′ such that the terminal vertex of Ri is x′i for each i ∈
{1, . . . , n−3}, the terminal vertex of Rn−2 is v′1 or v′′1 , and the terminal vertex
of Rn−1 is v′2. Now, T1 = P1∪R1∪x1x′1, · · · , Tn−3 = Pn−3∪Rn−3∪xn−3x′n−3,
Tn−2 = Rn−2∪Rn−1∪{v2v′2}∪{v1v′1}( or {v1v′′1}) and Tn−1 are n−1 internally
disjoint trees connecting H, and hence κMBn

(H) ≥ n− 1.

Thus, in this case, κMBn
(H) ≥ n− 1.

Case 3: v1, v2 and v3 belong to different parts, respectively.

W.l.o.g., suppose that v1 ∈ V (B1
n−1), v2 ∈ V (B2

n−1) and v3 ∈ V (B3
n−1).

Let W := {v′1, v′′1 , v′2, v′′2 , v′3, v′′3}, where v′i and v′′i are the two out-neighbors
of vi for i ∈ {1, 2, 3}. We distinguish two subcases.

Subcase 3.1: W ⊆ V (B1
n−1) ∪ V (B2

n−1) ∪ V (B3
n−1).

Let Ĝ = B1
n−1 ⊗ B2

n−1. Since one of the two out-neighbors of v1 belongs
to B2

n−1 and one of the two out-neighbors of v2 belongs to B1
n−1, dĜ(v1) =

n − 1 and dĜ(v2) = n − 1. Therefore, by Lemma 11, we have κĜ(v1, v2) =
min{dĜ(v1), dĜ(v2)} = n−1. Hence, there are n−1 internally disjoint (v1, v2)-

paths P1, P2, . . . , Pn−1 in Ĝ.

Let v′3 be an out-neighbour of v3. Then we have v′3 ∈ V (Ĝ). Since Ĝ is

connected, there is a (v′3, v1)-path P̃ in Ĝ. Let t be the first vertex of the

path P̃ which is in ∪k∈{1,2,...,n−1}V (Pk). W.l.o.g., suppose that t ∈ V (Pn−1).

Clearly, Pn−1 ∪ P̃ [v′3, t] ∪ {v3v′3} contains a tree connecting H, denoted by
Tn−1.

Now, let xi be a neighbour of v1 such that xi ∈ V (Pi), for 1 ≤ i ≤ n − 2.
Note that at most one of these vertices, say x1, is an out-neighbour of v1. If
so, we can let x1 := v1. Then {x1, x2, . . . , xn−2} ⊆ B1

n−1. Let G′ = B3
n−1 ⊗

B4
n−1 ⊗ . . .⊗Bn

n−1 and let x′i be one of the two out-neighbors of xi such that
x′i ∈ V (G′) for all i ∈ {1, . . . , n − 2}. Clearly, Y = {x′1, x′2, . . . , x′n−2} is a set
of size n− 2. Moreover, since dG′(v3) = n− 2, by Lemma 10, there exist n− 2
internally disjoint (v3, Y )-paths R1, R2, · · · , Rn−2 in G′ such that the terminal
vertex of Ri is x′i for each i ∈ {1, . . . , n− 2}. Now, T1 = P1 ∪ R1 ∪ x1x′1, · · · ,
Tn−2 = Pn−2 ∪Rn−2 ∪ xn−2x′n−2 and Tn−1 are n− 1 internally disjoint trees
connecting H, and hence κMBn

(H) ≥ n− 1.
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Subcase 3.2: W.l.o.g., at least one out-neighbour of v3 does not belong
to V (B1

n−1) ∪ V (B2
n−1).

Let G′ = B3
n−1 ⊗ B4

n−1 ⊗ . . . ⊗ Bn
n−1. This subcase is similar to Case 2,

since dG′(v3) ≥ n− 1.

Select n − 2 vertices x1, x2, . . . , xn−2 in B1
n−1 \ {v1} such that for every

vertex xi (1 ≤ i ≤ n− 2), xi = ((i+ 2) · · · 21), that is, the element at position
1 is i+ 2 and the element at position n− 1 is 2. Further, we request that for
any i ∈ {1, 2, · · · , n − 2}, xi and v2 have different out-neighbors, and v2 is
not the out-neighbor of xi. This can be done because (n − 3)! ≥ 2 for n ≥ 6.
Let S := {x1, x2, . . . , xn−2}. Moreover, let x′i := xi[(n− 1)n] and x′′i := xi[1n]
(1 ≤ i ≤ n − 2) and let S′ := {x′1, x′2, . . . , x′n−2}. Obviously, S′ ⊆ V (B2

n−1).
Since κ(B1

n−1) = κ(B2
n−1) = n − 2, by Lemma 4, there exist n − 2 internally

disjoint (v1, S)-paths P1, P2, · · · , Pn−2 in B1
n−1 such that the terminal vertex of

Pi is xi, and there exist n−2 internally disjoint (v2, S
′)-paths P ′1, P

′
2, · · · , P ′n−2

in B2
n−1 such that the terminal vertex of P ′i is x′i, for every i ∈ {1, 2, . . . , n−2}.

Then, we can obtain n − 2 internally disjoint (v1, v2)-paths in B1
n−1 ⊗ B2

n−1:
v1P1x1x

′
1P
′
1v2, v1P2x2x

′
2P
′
2v2, . . . , v1Pn−2xn−2x

′
n−2P

′
n−2v2.

Now, let x′′n−1 be one of the two out-neighbors of v1 such that x′′n−1 ∈ V (G′)
and x′′n be one of the two out-neighbors of v2 such that x′′n ∈ V (G′). Let
Y := {x′′1 , x′′2 , . . . , x′′n−2, x′′n−1, x′′n}. Obviously, Y ⊆ V (G′) and |Y | = n.

If neither of the two out-neighbour of v3 belongs to V (B1
n−1) ∪ V (B2

n−1),
that is, dG′(v3) = n, the proof is similar to the proof of Subcase 2.1.

If one of the two out-neighbour of v3 belongs to V (B1
n−1)∪ V (B2

n−1), that
is, dG′(v3) = n− 1, the proof is similar to the proof of Subcase 2.2.

In conclusion, κMBn
(H) ≥ n− 1. The proof is complete.

5 Conclusion

The generalized k-connectivity is a natural generalization of the connectiv-
ity and can serve for measuring the capability of a network G to connect any k
vertices in G. In this paper, we restrict our attention to two classes of Cayley
graphs, the Cayley graphs generated by trees Tn and the modified bubble-sort
graphs MBn (i.e., the Cayley graphs generated by cycles). We investigate the
generalized 3-connectivity of Tn and MBn, and show that κ3(Tn) = n − 2
and κ3(MBn) = n − 1. For future work, it would be interesting to study the
generalized connectivity of some other classes of Cayley graphs and some other
network graphs.
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