The generalized 3-connectivity of Cayley graphs on symmetric groups generated by trees and cycles

Shasha Li • Yongtang Shi • Jianhua Tu

Received: date / Accepted: date

Abstract

The generalized connectivity of a graph is a natural generalization of the connectivity and can serve for measuring the capability of a network G to connect any k vertices in G. Given a graph $G=(V, E)$ and a subset $S \subseteq V$ of at least two vertices, we denote by $\kappa_{G}(S)$ the maximum number r of edge-disjoint trees $T_{1}, T_{2}, \cdots, T_{r}$ in G such that $V\left(T_{i}\right) \cap V\left(T_{j}\right)=S$ for any pair of distinct integers i, j, where $1 \leq i, j \leq r$. For an integer k with $2 \leq k \leq n$, the generalized k-connectivity is defined as $\kappa_{k}(G)=\min \left\{\kappa_{G}(S) \mid S \subseteq V(G)\right.$ and $\left.|S|=k\right\}$. That is, $\kappa_{k}(G)$ is the minimum value of $\kappa_{G}(S)$ over all k-subsets S of vertices.

The study of Cayley graphs has many applications in the field of design and analysis of interconnection networks. Let $\operatorname{Sym}(n)$ be the group of all permutations on $\{1, \ldots, n\}$ and \mathcal{T} be a set of transpositions of $\operatorname{Sym}(n)$. Let $G(\mathcal{T})$ be the graph on n vertices $\{1,2, \ldots, n\}$ such that there is an edge $i j$ in $G(\mathcal{T})$ if and only if the transposition $[i j] \in \mathcal{T}$. If $G(\mathcal{T})$ is a tree, we use the notation \mathbb{T}_{n} to denote the Cayley graph $\operatorname{Cay}(\operatorname{Sym}(n), \mathcal{T})$ on symmetric groups generated by $G(\mathcal{T})$. If $G(\mathcal{T})$ is a cycle, we use the notation $M B_{n}$ to denote the Cayley graph $\operatorname{Cay}(\operatorname{Sym}(n), \mathcal{T})$ on symmetric groups generated by $G(\mathcal{T})$. In this paper, we investigate the generalized 3-connectivity of \mathbb{T}_{n} and $M B_{n}$ and show that $\kappa_{3}\left(\mathbb{T}_{n}\right)=n-2$ and $\kappa_{3}\left(M B_{n}\right)=n-1$.

[^0]Keywords Generalized 3-connectivity • Cayley graphs • Transposition trees • Modified bubble-sort graphs

1 Introduction

The connectivity $\kappa(G)$ of a graph G is one of the basic concepts of graph theory: it asks for the minimum number of vertices that need to be removed to disconnect the remaining vertices from each other. A graph G is k-connected if $\kappa(G) \geq k$. An equivalent definition of connectivity was given in [19]. For each 2-subset $S=\{u, v\}$ of vertices of G, let $\kappa_{G}(S)$ denote the maximum number of internally vertex-disjoint paths from u to v in G. Then $\kappa(G)=\min \left\{\kappa_{G}(S) \mid S \subseteq\right.$ V and $|S|=2\}$.

The connectivity of a graph is an important measure of its robustness as a network. The generalized k-connectivity was introduced in $[4,5]$ in order to measure the capability of a network G to connect any k vertices in G and not just any two.

Given a graph $G=(V, E)$ and a vertex subset S of size at least 2, an S-Steiner tree is a subgraph $T=\left(V^{\prime}, E^{\prime}\right)$ of G that is a tree with $S \subseteq V^{\prime}$. Two S-Steiner trees T and T^{\prime} are said to be internally disjoint if $E(T) \cap E\left(T^{\prime}\right)=\emptyset$ and $V(T) \cap V\left(T^{\prime}\right)=S$. For a vertex subset S of size at least 2 , we denote by $\kappa_{G}(S)$ the maximum number of internally disjoint S-Steiner trees in G. For any integer $k \geq 2$, the generalized k-connectivity of G, denoted by $\kappa_{k}(G)$, is the minimum value of $\kappa_{G}(S)$ when S runs over all k-subsets of $V(G)$, i.e., $\kappa_{k}(G)=\min \left\{\kappa_{G}(S) \mid S \subseteq V(G)\right.$ and $\left.|S|=k\right\}$. Clearly, $\kappa_{2}(G)=\kappa(G)$. The generalized k-connectivity has been studied, see [9-15] and a survey [16].

Due to the development of parallel and distributed computing, the design and analysis of various interconnection networks have been a main topic of research for the past decade. Interconnection networks are often modelled by graphs (or digraphs). The vertices of the graph represent the nodes of the network, that is, processing elements, memory modules or switches, and the edges correspond to communication lines. Because Cayley graphs have a lot of properties which are desirable in an interconnection network, such as vertex transitivity, edge transitivity, hierarchical structure, high fault tolerance etc., a number of researchers have proposed Cayley graphs as models for interconnection networks (see [6] for details).

Let X be a group and S be a subset of X. The Cayley digraph $\operatorname{Cay}(X, S)$ is a digraph with vertex set X and arc set $\{(g, g s) \mid g \in X, s \in S\}$. Clearly, if $S=S^{-1}$, where $S^{-1}=\left\{s^{-1} \mid s \in S\right\}$, then $\operatorname{Cay}(X, S)$ can be considered as an undirected graph.

Now, we consider Cayley graphs $\operatorname{Cay}(X, S)$ when the group X is a permutation group. Denote by $\operatorname{Sym}(n)$ the group of all permutations on $\{1, \ldots, n\}$. For convenience, we use $\left(p_{1} p_{2} \ldots p_{n}\right)$ to denote the permutation $\left(\begin{array}{cccc}1 & 2 & \ldots & n \\ p_{1} & p_{2} & \ldots & p_{n}\end{array}\right)$, and $[i j]$ to denote the permutation $\left(\begin{array}{cccccc}1 & \ldots & i & \ldots & j & \ldots \\ 1 & \ldots & j & \ldots & i & \ldots\end{array}\right)$, which is called a transposition. We define the composition $\sigma \pi$ of two permutations σ and π as the function that maps any element i to $\sigma(\pi(i))$. Thus $\left(p_{1} \ldots p_{i} \ldots p_{j} \ldots p_{n}\right)[i j]=$
$\left(p_{1} \ldots p_{j} \ldots p_{i} \ldots p_{n}\right)$, which swaps the objects at positions i and j (not swapping element i and j). Let \mathcal{T} be a set of transpositions and $G(\mathcal{T})$ be the graph on n vertices $\{1,2, \ldots, n\}$ such that there is an edge $i j$ in $G(\mathcal{T})$ if and only if the transposition $[i j] \in \mathcal{T}$. The graph $G(\mathcal{T})$ is called the transposition generating graph of $\operatorname{Cay}(\operatorname{Sym}(n), \mathcal{T})$. It is well known that the Cayley graph $\operatorname{Cay}(\operatorname{Sym}(n), \mathcal{T})$ is connected if and only if the transposition generating graph $G(\mathcal{T})$ is connected (see [3]).

Moreover, if $G(\mathcal{T})$ is a tree, we call $G(\mathcal{T})$ a transposition tree and denote $\operatorname{Cay}(\operatorname{Sym}(n), \mathcal{T})$ by \mathbb{T}_{n}. Specially, if $G(\mathcal{T}) \cong K_{1, n-1}$, then $\operatorname{Cay}(\operatorname{Sym}(n), \mathcal{T})$ is called a star graph S_{n}; and $\operatorname{Cay}(\operatorname{Sym}(n), \mathcal{T})$ is called a bubble-sort graph B_{n} if $G(\mathcal{T}) \cong P_{n}$. If $G(\mathcal{T})$ is a unicyclic graph, $\operatorname{Cay}(\operatorname{Sym}(n), \mathcal{T})$ is denoted by $U G_{n}$. In particular, if $G(\mathcal{T}) \cong C_{n}, U G_{n}$ is called a modified bubble-sort graph $M B_{n}$. Here, Cayley graphs generated by trees and cycles means that the transposition generating graphs of the Cayley graphs are trees and cycles.

Recently, Li et al. [17] investigated the generalized 3-connectivity of S_{n} and B_{n}, and showed that $\kappa_{3}\left(S_{n}\right)=n-2$ and $\kappa_{3}\left(B_{n}\right)=n-2$. In this paper, we further study the generalized 3-connectivity of \mathbb{T}_{n} and obtain a more general result: $\kappa_{3}\left(\mathbb{T}_{n}\right)=n-2$. Moreover, we also study the generalized 3-connectivity of the modified bubble-sort graph $M B_{n}$, and show that $\kappa_{3}\left(M B_{n}\right)=n-1$. The results can be seen as a generalization of [2] and [20].

2 Preliminaries

We first introduce some notation and results about connectivity that will be used throughout the paper.

In this paper, we consider finite, undirected and simple graphs G with vertex set $V(G)$ and edge set $E(G)$. For $v \in V(G)$, let $N_{G}(v)$ denote the set of neighbors of v in G and $d_{G}(v)$ denote the degree of v in G. For a subset of vertices $U \subseteq V$, let $N(U):=\left(\cup_{u \in U} N(u)\right) \backslash U$, and the subgraph induced by U is denoted by $G[U]$. For simplicity, we sometimes use a graph itself to represent its vertex set; for instance, $N\left(G_{1}\right)$ means $N\left(V\left(G_{1}\right)\right)$, where G_{1} is a subgraph of G.

Lemma 1 ([15]) Let G be a connected graph and δ be its minimum degree. Then $\kappa_{3}(G) \leq \delta$. Further, if there are two adjacent vertices of degree δ, then $\kappa_{3}(G) \leq \delta-1$.

Lemma 2 ([15]) Let G be a connected graph with n vertices. If $\kappa(G)=4 k+r$, where k and r are two integers with $k \geq 0$ and $r \in\{0,1,2,3\}$, then $\kappa_{3}(G) \geq$ $3 k+\left\lceil\frac{r}{2}\right\rceil$. Moreover, the lower bound is sharp.

Lemma 3 ([1]-p.214) Let G be a k-connected graph, and let X and Y be two vertex subsets of size at least k. Then there exists a family of k pairwise disjoint (X, Y)-paths in G.

Lemma 4 (The Fan Lemma [1]-p.214) Let $G=(V, E)$ be a k-connected graph, x be a vertex of G, and $Y \subseteq V \backslash\{x\}$ be a set with at least k vertices.

Then there exists a k-fan in G from x to Y, that is, there exists a family of k internally vertex-disjoint (x, Y)-paths whose terminal vertices are distinct in Y.
$3 \kappa_{3}\left(\mathbb{T}_{n}\right)$
We first determine $\kappa_{3}\left(\mathbb{T}_{n}\right)$. Recall that $\mathbb{T}_{n}=\operatorname{Cay}(\operatorname{Sym}(n), \mathcal{T})$ represents the Cayley graph generated by some transposition tree $G(\mathcal{T})$. Without loss of generality, we assume that $V(G(\mathcal{T}))=\{1,2, \cdots, n\}$ and n is a leaf of $G(\mathcal{T})$ with $n-1$ being its only neighbor.

The Cayley graphs \mathbb{T}_{n} are $(n-1)$-regular bipartite graphs and have n ! vertices; see [7] for the details. More useful properties are given below, which can be found in $[2,17,18,20]$.

Lemma $5([2,20]) \kappa\left(\mathbb{T}_{n}\right)=n-1$.
Property 1 [18] For \mathbb{T}_{n}, the vertex set $V\left(\mathbb{T}_{n}\right)$ can be partitioned into n parts, say $V\left(\mathbb{T}_{n-1}^{1}\right), V\left(\mathbb{T}_{n-1}^{2}\right), \ldots, V\left(\mathbb{T}_{n-1}^{n}\right)$, where \mathbb{T}_{n-1}^{i} is an induced subgraph on vertex set $\left\{\left(p_{1} p_{2} \ldots p_{n-1} i\right) \mid\left(p_{1} \ldots p_{n-1}\right)\right.$ ranges over all permutations of $\{1, \ldots, n\} \backslash\{i\}\}$. Obviously, for each $1 \leq i \leq n, \mathbb{T}_{n-1}^{i}$ is isomorphic to \mathbb{T}_{n-1}. We let $\mathbb{T}_{n}=\mathbb{T}_{n-1}^{1} \oplus \mathbb{T}_{n-1}^{2} \oplus \ldots \oplus \mathbb{T}_{n-1}^{n}$.

Property 2 [2] Consider the Cayley graphs \mathbb{T}_{n}. Let n be a leaf of $G(\mathcal{T})$ with $n-1$ being its only neighbor. For any vertex u of $\mathbb{T}_{n-1}^{i}, u[(n-1) n]$, the unique neighbor of u outside of \mathbb{T}_{n-1}^{i}, is called the out-neighbor of u, written u^{\prime}. We call the neighbors of u in \mathbb{T}_{n-1}^{i} the in-neighbors of u. Any two distinct vertices of \mathbb{T}_{n-1}^{i} have different out-neighbors. Hence, there are exactly $(n-2)$! independent edges between \mathbb{T}_{n-1}^{i} and \mathbb{T}_{n-1}^{j} if $i \neq j$, that is, $\mid N\left(\mathbb{T}_{n-1}^{i}\right) \cap$ $V\left(\mathbb{T}_{n-1}^{j}\right) \mid=(n-2)$! if $i \neq j$.

Lemma 6 [17] For \mathbb{T}_{n}, let n be a leaf of $G(\mathcal{T})$ with $n-1$ being its only neighbor and $\mathbb{T}_{n}=\mathbb{T}_{n-1}^{1} \oplus \mathbb{T}_{n-1}^{2} \oplus \ldots \oplus \mathbb{T}_{n-1}^{n}$. For every $i \in\{1,2, \ldots, n\}$, let $\overline{\mathbb{T}_{i}}:=\mathbb{T}_{n}\left[V\left(\mathbb{T}_{n}\right) \backslash V\left(\mathbb{T}_{n-1}^{i}\right)\right]$. If $n \geq 3$, then for every $i \in\{1,2, \ldots, n\}$,

$$
\kappa\left(\overline{\mathbb{T}_{i}}\right)=n-2
$$

Theorem 7 [17] Let S_{n} be a star graph and B_{n} be a bubble-sort graph. Then $\kappa_{3}\left(S_{n}\right)=n-2$ and $\kappa_{3}\left(B_{n}\right)=n-2$.

Now, we give the first main result.
Theorem $8 \kappa_{3}\left(\mathbb{T}_{n}\right)=n-2$, for any integer $n \geq 3$.
Proof. Since \mathbb{T}_{n} is an $(n-1)$-regular graph, by Lemma $1, \kappa_{3}\left(\mathbb{T}_{n}\right) \leq \delta-1=$ $n-2$. Thus we just need to prove that $\kappa_{3}\left(\mathbb{T}_{n}\right) \geq n-2$. We prove by induction on n.

For $n=3$, obviously \mathbb{T}_{n} is connected, and hence $\kappa_{3}\left(\mathbb{T}_{n}\right) \geq 1=n-2$.

For $n=4, \mathbb{T}_{n}$ is a star graph or a bubble-sort graph, so by Theorem 7 , $\kappa_{3}\left(\mathbb{T}_{n}\right)=2=n-2$.

Suppose the claim is true for all integers $4 \leq n^{\prime}<n$. Now consider n. let n be a leaf of $G(\mathcal{T})$ with $n-1$ being its only neighbor and $\mathbb{T}_{n}=\mathbb{T}_{n-1}^{1} \oplus \mathbb{T}_{n-1}^{2} \oplus$ $\ldots \oplus \mathbb{T}_{n-1}^{n}$. Let v_{1}, v_{2} and v_{3} be any three vertices of \mathbb{T}_{n}, and $H:=\left\{v_{1}, v_{2}, v_{3}\right\}$.

We distinguish three cases:
Case 1: v_{1}, v_{2} and v_{3} belong to the same part $V\left(\mathbb{T}_{n-1}^{i}\right)$.
Note that $\mathbb{T}_{n-1}^{i} \cong \mathbb{T}_{n-1}$. By the inductive hypothesis, $\kappa_{3}\left(\mathbb{T}_{n-1}^{i}\right) \geq n-3$. That is to say, there are at least $n-3$ internally disjoint trees connecting H in \mathbb{T}_{n-1}^{i}.

Let $v_{1}^{\prime}, v_{2}^{\prime}$ and v_{3}^{\prime} be the out-neighbors of v_{1}, v_{2} and v_{3}, respectively. By Lemma 6, $\mathbb{T}_{n}\left[V\left(\mathbb{T}_{n}\right) \backslash V\left(\mathbb{T}_{n-1}^{i}\right)\right]$ is connected, and hence contains a tree T connecting $\left\{v_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime}\right\}$. The tree T^{\prime} obtained by adding three pendant edges $v_{1} v_{1}^{\prime}, v_{2} v_{2}^{\prime}, v_{3} v_{3}^{\prime}$ to T is a tree connecting H and $V\left(T^{\prime}\right) \cap V\left(\mathbb{T}_{n-1}^{i}\right)=H$.

Now, in this case there are at least $n-2$ internally disjoint trees connecting H in \mathbb{T}_{n}, and hence $\kappa_{\mathbb{T}_{n}}(H) \geq n-2$.

Case 2: v_{1}, v_{2} and v_{3} belong to two parts.
Without loss of generality, suppose that $v_{1}, v_{2} \in V\left(\mathbb{T}_{n-1}^{1}\right)$ and $v_{3} \in V\left(\mathbb{T}_{n-1}^{2}\right)$. By Lemma $5, \kappa\left(\mathbb{T}_{n-1}^{1}\right)=n-2$, and hence there are $n-2$ internally vertexdisjoint $\left(v_{1}, v_{2}\right)$-paths $P_{1}, P_{2}, \ldots, P_{n-2}$ in \mathbb{T}_{n-1}^{1}. Choose $n-2$ distinct vertices $x_{1}, x_{2}, \ldots, x_{n-2}$ from $P_{1}, P_{2}, \ldots, P_{n-2}$ such that $x_{i} \in V\left(P_{i}\right)$, for $1 \leq i \leq n-2$. Note that at most one of these paths, say P_{1}, has length 1 ; if so, we can choose $x_{1}=v_{1}$. Let x_{i}^{\prime} be the out-neighbor of x_{i}, for all $i \in\{1, \ldots, n-2\}$. By Property 2, any two distinct vertices of \mathbb{T}_{n-1}^{1} have different out-neighbors. So $X^{\prime}=\left\{x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{n-2}^{\prime}\right\}$ is a set of size $n-2$.

By Lemma 6 and Lemma $4, \kappa\left(\overline{\mathbb{T}_{1}}\right)=n-2$ and there exist $n-2$ internally disjoint $\left(v_{3}, X^{\prime}\right)$-paths $P_{1}^{\prime}, P_{2}^{\prime}, \ldots, P_{n-2}^{\prime}$ in $\mathbb{T}_{n}\left[V\left(\mathbb{T}_{n}\right) \backslash V\left(\mathbb{T}_{n-1}^{1}\right)\right]$ whose terminal vertices are distinct in X^{\prime}. Note that if $v_{3} \in X^{\prime}$, then there is a $\left(v_{3}, X^{\prime}\right)$ path that contains exactly one vertex v_{3}. Now, $T_{1}=P_{1} \cup x_{1} x_{1}^{\prime} \cup P_{1}^{\prime}, \ldots$, $T_{n-2}=P_{n-2} \cup x_{n-2} x_{n-2}^{\prime} \cup P_{n-2}^{\prime}$ are $n-2$ internally disjoint trees connecting H, and hence $\kappa_{\mathbb{T}_{n}}(H) \geq n-2$.

Case 3: v_{1}, v_{2} and v_{3} belong to three different parts, respectively.
Without loss of generality, suppose that $v_{1} \in V\left(\mathbb{T}_{n-1}^{1}\right), v_{2} \in V\left(\mathbb{T}_{n-1}^{2}\right)$ and $v_{3} \in V\left(\mathbb{T}_{n-1}^{3}\right)$.

Let $G(\mathcal{T})$ be a rooted tree with root n. For $1 \leq i \leq n-1$, the level of i, denoted by $l(i)$, is the length of the path from n to i in $G(\mathcal{T})$. We renumber the vertices of $G(\mathcal{T})$ such that if $l(i)>l(j)$, then $i<j$. Recall that $n-1$ is the only vertex whose level is 1 . For example, there is a rooted tree $G(\mathcal{T})$ with 6 vertices in Figure 1.

We denote by P_{i} the unique path from i to $n-1$ in the tree $G(\mathcal{T})$. Consider the path $P_{1}=1 x_{1} x_{2} \ldots x_{t}(n-1)$ and the vertex v_{1}. Then $1<x_{1}<x_{2}<\ldots<$ $x_{t}<(n-1)$. Let $v_{1}:=\left(i_{1} i_{2} i_{3} i_{4} \cdots i_{n-1} 1\right)$. Then,

$$
\begin{gathered}
v_{1}\left[1 x_{1}\right]=\left(i_{1} i_{2} i_{3} i_{4} \cdots i_{n-1} 1\right)\left[1 x_{1}\right]=\left(i_{x_{1}} i_{2} \cdots i_{x_{1}-1} i_{1} i_{x_{1}+1} \cdots i_{n-1} 1\right):=w_{1}, \\
v_{1}\left[1 x_{1}\right]\left[x_{1} x_{2}\right]=\left(i_{x_{1}} i_{2} \cdots i_{x_{1}-1} i_{x_{2}} i_{x_{1}+1} \cdots i_{x_{2}-1} \underline{i_{1}} i_{x_{2}+1} \cdots i_{n-1} 1\right):=w_{2},
\end{gathered}
$$

Fig. 1 An example of $G(\mathcal{T})$.
$v_{1}\left[1 x_{1}\right]\left[x_{1} x_{2}\right] \cdots\left[x_{t} n-1\right]=\left(i_{x_{1}} i_{2} \cdots i_{x_{1}-1} i_{x_{2}} i_{x_{1}+1} \cdots i_{x_{2}-1} i_{x_{3}} i_{x_{2}+1} \cdots \underline{i_{1}} 1\right):=$
w_{t}.
Thus we obtain a path $P_{2}^{1}=v_{1} w_{1} w_{2} \cdots w_{t}$ in \mathbb{T}_{n-1}^{1} starting at v_{1} and ending at w_{t}. In the same way, according to $P_{2}, P_{3}, \cdots, P_{n-1}$, we can obtain another $n-2$ paths $P_{3}^{1}, P_{4}^{1}, \cdots, P_{n}^{1}$ in \mathbb{T}_{n-1}^{1} starting at v_{1}. Note that P_{n}^{1} contains only one vertex v_{1}.

Let $X^{1}:=\left\{w_{i}^{1} \mid w_{i}^{1}\right.$ is the terminal vertex of the path P_{i}^{1} for $\left.i \in\{2, \cdots, n\}\right\}$. Since $\left\{i_{1}, \cdots, i_{n-1}\right\}=\{2, \cdots, n\}$, it is easy to see that the out-neighbors of the vertices of X^{1} are in $\mathbb{T}_{n-1}^{2}, \mathbb{T}_{n-1}^{3}, \ldots, \mathbb{T}_{n-1}^{n}$, respectively.

Fact 1: For every $k, l \in\{2,3, \ldots, n\}$ and $k \neq l, V\left(P_{k}^{1}\right) \cap V\left(P_{l}^{1}\right)=\left\{v_{1}\right\} ;$ Proof. W.l.o.g., suppose that $k<l$. Consider the path $P_{k}:=k y_{1} \cdots y_{s}(n-1)$ from k to $n-1$ in $G(\mathcal{T})$. As noted above, we have $k<y_{1}<\cdots<y_{s}<(n-1)$. For every vertex $u \in V\left(P_{k}^{1}\right) \backslash\left\{v_{1}\right\}$, the element at position k of u is $i_{y_{1}}$. However, because $k<l$, the element at position k of any vertex $u^{\prime} \in V\left(P_{l}^{1}\right)$ always is i_{k}. Thus, the fact indeed holds.

Now, in \mathbb{T}_{n-1}^{1} there are $n-1$ internally vertex-disjoint paths $P_{2}^{1}, P_{3}^{1}, \cdots, P_{n}^{1}$ starting at v_{1} and ending at $w_{2}^{1}, w_{3}^{1}, \cdots, w_{n}^{1}$ respectively. Furthermore, we can assume that the out-neighbor $\left(w_{i}^{1}\right)^{\prime}$ of w_{i}^{1} is in \mathbb{T}_{n-1}^{i} for every $i \in\{2,3, \cdots, n\}$, otherwise we have to reorder these paths accordingly.

Similarly, in \mathbb{T}_{n-1}^{2} there are $n-1$ internally vertex-disjoint paths P_{1}^{2}, P_{3}^{2}, \cdots, P_{n}^{2} starting at v_{2} and ending at $w_{1}^{2}, w_{3}^{2}, \cdots, w_{n}^{2}$ respectively. For every $i \in\{1,3,4, \cdots, n\}$, the terminal vertex of P_{i}^{2} is w_{i}^{2}, and the out-neighbor $\left(w_{i}^{2}\right)^{\prime}$ of w_{i}^{2} is in \mathbb{T}_{n-1}^{i}.

In \mathbb{T}_{n-1}^{3} there are $n-1$ internally vertex-disjoint paths $P_{1}^{3}, P_{2}^{3}, P_{4}^{3}, \cdots$, P_{n}^{3} starting at v_{3} and ending at $w_{1}^{3}, w_{2}^{3}, w_{4}^{3}, \cdots, w_{n}^{3}$ respectively. For every $i \in\{1,2,4,5, \cdots, n\}$, the terminal vertex of P_{i}^{3} is w_{i}^{3}, and the out-neighbor $\left(w_{i}^{3}\right)^{\prime}$ of w_{i}^{3} is in \mathbb{T}_{n-1}^{i}.

Recall that $\left(w_{1}^{3}\right)^{\prime}$ is the out-neighbor of w_{1}^{3} and is in \mathbb{T}_{n-1}^{1}. There is a $\left(\left(w_{1}^{3}\right)^{\prime}, v_{1}\right)$-path \widetilde{P} in \mathbb{T}_{n-1}^{1}. Let t_{1} be the first vertex of the path \widetilde{P} which is in $\cup_{i \in\{2, \ldots, n\}} V\left(P_{i}^{1}\right)$.

Likewise, there is a $\left(\left(w_{2}^{3}\right)^{\prime}, v_{2}\right)$-path $\widetilde{P^{\prime}}$ in \mathbb{T}_{n-1}^{2}. Let t_{2} be the first vertex of the path $\widetilde{P^{\prime}}$ which is in $\cup_{i \in\{1,3, \ldots, n\}} V\left(P_{i}^{2}\right)$.

Now, we distinguish two subcases.
Subcase 3.1: $t_{1} \in \cup_{i \in\{2,3\}} V\left(P_{i}^{1}\right)$ and $t_{2} \in \cup_{i \in\{1,3\}} V\left(P_{i}^{2}\right)$.
In this subcase, the induced subgraph of \mathbb{T}_{n} on $V\left(P_{1}^{3}\right) \cup V\left(\widetilde{P}\left[\left(w_{1}^{3}\right)^{\prime}, t_{1}\right]\right) \cup$ $V\left(P_{2}^{1}\right) \cup V\left(P_{3}^{1}\right)$ contains a $\left(v_{3}, v_{1}\right)$-path, where $\widetilde{P}\left[\left(w_{1}^{3}\right)^{\prime}, t_{1}\right]$ is the subpath of the path \widetilde{P} starting at $\left(w_{1}^{3}\right)^{\prime}$ and ending at t_{1}.

Likewise, the induced subgraph of \mathbb{T}_{n} on $V\left(P_{2}^{3}\right) \cup V\left(\widetilde{P^{\prime}}\left[\left(w_{2}^{3}\right)^{\prime}, t_{2}\right]\right) \cup V\left(P_{1}^{2}\right) \cup$ $V\left(P_{3}^{2}\right)$ contains a $\left(v_{3}, v_{2}\right)$-path, where $\widetilde{P^{\prime}}\left[\left(w_{2}^{3}\right)^{\prime}, t_{2}\right]$ is the subpath of the path $\widetilde{P^{\prime}}$ starting at $\left(w_{2}^{3}\right)^{\prime}$ and ending at t_{2}.

The union of the $\left(v_{3}, v_{1}\right)$-path and $\left(v_{3}, v_{2}\right)$-path forms a tree connecting H.
On the other hand, for every $j \in\{4, \ldots, n\}$, there exists a tree connecting $V\left(P_{j}^{1}\right) \cup V\left(P_{j}^{2}\right) \cup V\left(P_{j}^{3}\right) \cup V\left(\mathbb{T}_{n-1}^{j}\right)$.

Hence in this subcase we conclude that there are $n-2$ internally disjoint trees connecting H in \mathbb{T}_{n}, that is, $\kappa_{\mathbb{T}_{n}}(H) \geq n-2$.

Subcase 3.2: $t_{1} \in \cup_{i \in\{4,5, \ldots, n\}} V\left(P_{i}^{1}\right) \backslash\left\{v_{1}\right\}$ or $t_{2} \in \cup_{i \in\{4,5, \ldots, n\}} V\left(P_{i}^{2}\right) \backslash$ $\left\{v_{2}\right\}$.
W.l.o.g., suppose that $t_{1} \in V\left(P_{4}^{1}\right) \backslash\left\{v_{1}\right\}$. Recall that $v_{1}=\left(i_{1} i_{2} \ldots i_{n-1} 1\right)$. Since the out-neighbor of the terminal vertex w_{4}^{1} of P_{4}^{1} is in $\mathbb{T}_{n-1}^{4}, i_{n-1} \neq 4$ (otherwise, $V\left(P_{4}^{1}\right)=\left\{v_{1}\right\}$). Moreover, at least one of $i_{n-1} \neq 2$ and $i_{n-1} \neq 3$ must hold. W.l.o.g., we assume that $i_{n-1} \neq 2$.

Consider the path P_{2}^{1}. Recall that w_{2}^{1} is the terminal vertex of P_{2}^{1} and we can assume that $w_{2}^{1}=\left(j_{1} j_{2} \cdots j_{n-2} 21\right)$. Suppose that $j_{l}=4$ and $P_{l}=$ $l x_{1} x_{2} \ldots x_{t}(n-1)$ is the path from l to $n-1$ in the tree $G(\mathcal{T})$. Then,

$$
\begin{gathered}
w_{2}^{1}\left[l x_{1}\right]=\left(j_{1} \cdots j_{l-1} j_{x_{1}} j_{l+1} \cdots j_{x_{1}-1} \underline{4} j_{x_{1}+1} \cdots 21\right):=u_{1}, \\
w_{2}^{1}\left[l x_{1}\right]\left[x_{1} x_{2}\right]=\left(j_{1} \cdots j_{l-1} j_{x_{1}} j_{l+1} \cdots j_{x_{1}-1} j_{x_{2}} j_{x_{1}+1} \cdots \underline{4} \cdots 21\right):=u_{2} \\
\vdots, \\
w_{2}^{1}\left[l x_{1}\right]\left[x_{1} x_{2}\right] \cdots\left[x_{t-1} x_{t}\right]=\left(j_{1} \cdots j_{l-1} j_{x_{1}} j_{l+1} \cdots j_{x_{t}-1} \underline{4} j_{x_{t}+1} \cdots 21\right):=u_{t} \\
w_{2}^{1}\left[l x_{1}\right]\left[x_{1} x_{2}\right] \cdots\left[x_{t}(n-1)\right]=\left(j_{1} \cdots j_{l-1} j_{x_{1}} j_{l+1} \cdots j_{x_{t}-1} 2 j_{x_{t}+1} \cdots \underline{41}\right):=u_{t+1} .
\end{gathered}
$$

Consider the vertex u_{t+1}. If $u_{t+1}=w_{4}^{1}$, where w_{4}^{1} is the terminal vertex of the path P_{4}^{1}, then choose an edge $k h$ of $G(\mathcal{T})$ such that $\{k, h\} \cap\left\{x_{t}, n-1\right\}=\emptyset$, and let $u_{t}^{\prime}:=u_{t}[k h], u_{t+1}^{\prime}=u_{t}^{\prime}\left[x_{t}(n-1)\right]$. Now, $u_{t+1}^{\prime} \neq w_{4}^{1}$.

If $u_{t+1} \neq w_{4}^{1}$, we denote by $\overline{P_{2}^{1}}$ a path $w_{2}^{1} u_{1} \cdots u_{t+1}$ starting at w_{2}^{1} and ending at u_{t+1} in \mathbb{T}_{n-1}^{1}, otherwise, we denote by $\overline{P_{2}^{1}}$ a path $w_{2}^{1} u_{1} \cdots u_{t} u_{t}^{\prime} u_{t+1}^{\prime}$ starting at w_{2}^{1} and ending at u_{t+1}^{\prime} in \mathbb{T}_{n-1}^{1}.

Obviously, the terminal vertex of $\overline{P_{2}^{1}}$ is not w_{4}^{1} and the out-neighbor of the terminal vertex of the path $\overline{P_{2}^{1}}$ is in \mathbb{T}_{n-1}^{4}. Let $\widehat{P_{2}^{1}}:=P_{2}^{1} w_{2}^{1} \overline{P_{2}^{1}}$ be an extended path starting at v_{1} and ending at u_{t+1} or u_{t+1}^{\prime}. Next we prove the following fact.

Fact 2: $V\left(\widehat{P}_{2}^{1}\right) \cap V\left(P_{i}^{1}\right)=\left\{v_{1}\right\}$, for any $i \in\{3,4, \ldots, n\}$.
Proof. Proof by contradiction. Suppose that there exists an integer $k \in$ $\{3,4, \ldots, n\}$ such that $\left|V\left(\widehat{P}_{2}^{1}\right) \cap V\left(P_{k}^{1}\right)\right| \geq 2$.

We assume that $w \in V\left(\widehat{P}_{2}^{1}\right) \cap V\left(P_{k}^{1}\right)$ and $w \neq v_{1}$. By Fact $1, w \in V\left(\overline{P_{2}^{1}}\right)$. If w is not the terminal vertex of $\overline{P_{2}^{1}}$, then the element at position $n-1$ of w is 2 . However, the element at position $n-1$ of each vertex in $V\left(P_{k}^{1}\right)$ is i_{n-1}
or k, a contradiction. If w is the terminal vertex of $\overline{P_{2}^{1}}$, then the element at position $n-1$ of w is 4 . Thus $i_{n-1}=4$ or $w=w_{4}^{1}$, a contradiction.

The proof of the claim is complete.
Similarly, if $t_{2} \in V\left(P_{l}^{2}\right)$ for some $l \in\{4,5, \cdots, n\}$, we can extend the path P_{1}^{2} or the path P_{3}^{2} to obtain an extended path such that the out-neighbor of the terminal vertex of the extended path is in \mathbb{T}_{n-1}^{l} and there is only one common vertex v_{2} between the extended path and the other paths.

Now, if $V\left(\widetilde{P}\left[\left(w_{1}^{3}\right)^{\prime}, t_{1}\right]\right) \cap V\left(\overline{P_{2}^{1}}\right)=\emptyset$, then the induced subgraph of \mathbb{T}_{n} on $V\left(P_{1}^{3}\right) \cup V\left(\widetilde{P}\left[\left(w_{1}^{3}\right)^{\prime}, t_{1}\right]\right) \cup V\left(P_{4}^{1}\right)$ contains a $\left(v_{3}, v_{1}\right)$-path, which is internally disjoint from \widehat{P}_{2}^{1} and $P_{5}^{1} \ldots, P_{n}^{1}$. Moreover, the out-neighbor of the terminal vertex of \widehat{P}_{2}^{1} is in \mathbb{T}_{n-1}^{4}. Otherwise, $V\left(\widetilde{P}\left[\left(w_{1}^{3}\right)^{\prime}, t_{1}\right]\right) \cap V\left(\overline{P_{2}^{1}}\right) \neq \emptyset$ and let t_{1}^{\prime} be the first vertex of the path \widetilde{P} which is in $\cup_{i \in\{2, \ldots, n\}} V\left(P_{i}^{1}\right) \cup V\left(\overline{P_{2}^{1}}\right)$. Then $t_{1}^{\prime} \in V\left(\overline{P_{2}^{1}}\right)$ and the induced subgraph of \mathbb{T}_{n} on $V\left(P_{1}^{3}\right) \cup V\left(\widetilde{P}\left[\left(w_{1}^{3}\right)^{\prime}, t_{1}^{\prime}\right]\right) \cup V\left(\widehat{P}_{2}^{1}\right)$ contains a $\left(v_{3}, v_{1}\right)$-path, which is internally disjoint from $P_{4}^{1} \ldots, P_{n}^{1}$. Similarly, we can obtain a $\left(v_{3}, v_{2}\right)$-path. The union of the $\left(v_{3}, v_{1}\right)$-path and $\left(v_{3}, v_{2}\right)$-path forms a tree connecting H. At the same time, for every $j \in\{4,5, \ldots, n\}$, there exists a tree connecting $H \cup V\left(\mathbb{T}_{n-1}^{j}\right)$. The most important thing is that we can guarantee that these $n-2$ trees connecting H are internally disjoint from the previous discussions.

In conclusion, $\kappa_{\mathbb{T}_{n}}(H) \geq n-2$, and hence $\kappa_{3}\left(\mathbb{T}_{n}\right)=n-2$.
The proof is complete.

$4 \kappa_{3}\left(M B_{n}\right)$

In this section, we consider the modified bubble-sort graphs $M B_{n}$, where the transposition generating graph $G(\mathcal{T})$ is a cycle. W.l.o.g., we assume that $\mathcal{T}=\{12,23, \ldots,(n-1) n, 1 n\}$. It is easy to see that $M B_{n}$ are n-regular graphs.
Property 3 [21] For $M B_{n}$, the vertex set $V\left(M B_{n}\right)$ can be partitioned into n parts, say $V\left(B_{n-1}^{1}\right), V\left(B_{n-1}^{2}\right), \ldots, V\left(B_{n-1}^{n}\right)$, where B_{n-1}^{i} is an induced subgraph on vertex set $\left\{\left(p_{1} p_{2} \ldots p_{n-1} i\right) \mid\left(p_{1} \ldots p_{n-1}\right)\right.$ ranges over all permutations of $\{1, \ldots, n\} \backslash\{i\}\}$. Obviously, for each $1 \leq i \leq n, B_{n-1}^{i}$ is isomorphic to B_{n-1}. We let $M B_{n}=B_{n-1}^{1} \otimes B_{n-1}^{2} \otimes \ldots \otimes B_{n-1}^{n}$.

Moreover, for any $i \in\{1,2, \ldots, n\}$, each vertex u of B_{n-1}^{i} has two neighbors $u^{\prime}=u[1 n]$ and $u^{\prime \prime}=u[(n-1) n]$ outside of B_{n-1}^{i}. Vertices u^{\prime} and $u^{\prime \prime}$ are called the out-neighbors of u. We call the neighbors of u in B_{n-1}^{i} the inneighbors of u. Any vertex u of B_{n-1}^{i} has its two out-neighbors in different parts. Any two distinct vertices of B_{n-1}^{i} have different out-neighbors. There are exactly $2(n-2)$! independent edges between B_{n-1}^{i} and B_{n-1}^{j} if $i \neq j$, that is, $\left|N\left(B_{n-1}^{i}\right) \cap V\left(B_{n-1}^{j}\right)\right|=2(n-2)$! if $i \neq j$.

First, we give some lemmas.
Lemma 9 [17] Let $M B_{n}=B_{n-1}^{1} \otimes B_{n-1}^{2} \otimes \cdots \otimes B_{n-1}^{n}$. For every $i \in\{1,2, \cdots, n\}$, $\kappa\left(B_{n-1}^{i}\right)=n-2$. If $n \geq 3$, then

$$
\kappa\left(B_{n-1}^{i} \otimes B_{n-1}^{j}\right) \geq n-2,
$$

for any two distinct integers $i, j \in\{1, \cdots, n\}$, where $B_{n-1}^{i} \otimes B_{n-1}^{j}$ is the induced subgraph of $M B_{n}$ on $V\left(B_{n-1}^{i}\right) \cup V\left(B_{n-1}^{j}\right)$.

Lemma 10 Let $M B_{n}=B_{n-1}^{1} \otimes B_{n-1}^{2} \otimes \cdots \otimes B_{n-1}^{n}$ and $G^{\prime}=B_{n-1}^{i_{1}} \otimes B_{n-1}^{i_{2}} \otimes$ $\cdots \otimes B_{n-1}^{i_{t}}$ be the induced subgraph of $M B_{n}$ on $V\left(B_{n-1}^{i_{1}}\right) \cup V\left(B_{n-1}^{i_{2}}\right) \cup \cdots \cup$ $V\left(B_{n-1}^{i_{t}}\right)$, where $1 \leq i_{1}<i_{2}<\cdots<i_{t} \leq n$ and $t \geq 2$. Given a vertex $x \in V\left(G^{\prime}\right)$, if $d_{G^{\prime}}(x)=k$ and $Y \subseteq V\left(G^{\prime}\right) \backslash\{x\}$ is a set of k vertices of G^{\prime} such that $\left|Y \cap B_{n-1}^{i_{j}}\right| \leq n-2$ for each $j \in\{1,2, \ldots, t\}$, then there exists a k-fan in G^{\prime} from x to Y, that is, there exists a family of k internally disjoint (x, Y)-paths whose terminal vertices are distinct in Y.

Proof. Obviously, $n-2 \leq k \leq n$.
We distinguish three cases:
Case 1: $k=n-2$.
By Lemmas 9 and $4, \kappa\left(B_{n-1}^{i_{1}} \otimes B_{n-1}^{i_{2}} \otimes \cdots \otimes B_{n-1}^{i_{t}}\right) \geq n-2$ and the conclusion clearly holds for $k=n-2$.

Case 2: $k=n$, that is, $V\left(G^{\prime}\right)$ contains the two out-neighbors of x.
W.l.o.g., suppose that $x \in B_{n-1}^{i_{1}}$ and the two out-neighbors x^{\prime} and $x^{\prime \prime}$ of x belong to $B_{n-1}^{i_{2}}$ and $B_{n-1}^{i_{3}}$, respectively.

Now let $Y \cap B_{n-1}^{i_{j}}=A_{j}$ and $\left|A_{j}\right|=a_{j}$, for $1 \leq j \leq t$. Clearly $0 \leq a_{j} \leq n-2$ and $\sum_{j=1}^{t} a_{j}=n$.

Subcase 2.1: $a_{2} \geq 1$ and $a_{3} \geq 1$.
Let $a_{j}^{\prime}:=a_{j}-1$ for $j=2,3$ and $a_{j}^{\prime}:=a_{j}$ for $j \neq 2,3$. Then $\sum_{j=1}^{t} a_{j}^{\prime}=n-2$.
Select $t-1$ disjoint vertex sets $M_{2}, M_{3}, \ldots, M_{t}$ in $V\left(B_{n-1}^{i_{1}}\right)$ such that
(1) M_{j} consists of a_{j}^{\prime} vertices,
(2) for each vertex in M_{j}, one of the two out-neighbors of it belongs to $B_{n-1}^{\imath_{j}}$,
(3) and $M_{j} \cap\left(A_{1} \cup\{x\}\right)=\emptyset$, for each $j \in\{2,3, \cdots, t\}$.

This can be done because $2(n-2)!\geq(n-1)$. Let $M_{1}:=A_{1}$ and $M:=$ $M_{1} \cup M_{2} \cup \cdots \cup M_{t}$. By Lemma 4 and the facts that $|M|=n-2, x \notin M$ and $\kappa\left(B_{n-1}^{i_{1}}\right)=n-2$, there exist t fans $F_{1}, F_{2}, \cdots F_{t}$ in $B_{n-1}^{i_{1}}$ from x to M, where for each $j \in\{1, \cdots, t\}, F_{j}$ is a family of a_{j}^{\prime} internally disjoint $\left(x, M_{j}\right)$-paths whose terminal vertices are distinct in M_{j}.

For $2 \leq j \leq t$, let $M_{j}^{\prime}:=\left\{y^{\prime} \mid y^{\prime}\right.$ is an out-neighbor of y such that $y^{\prime} \in$ $B_{n-1}^{i_{j}}$ for each $\left.y \in M_{j}\right\}$, and $E_{j}:=\left\{y y^{\prime} \in E\left(M B_{n}\right) \mid y \in M_{j}\right.$ and $\left.y^{\prime} \in M_{j}^{\prime}\right\}$. Then add x^{\prime} and $x^{\prime \prime}$ to M_{2}^{\prime} and M_{3}^{\prime} respectively, that is, $M_{2}^{\prime}:=M_{2}^{\prime} \cup\left\{x^{\prime}\right\}$ and $M_{3}^{\prime}:=M_{3}^{\prime} \cup\left\{x^{\prime \prime}\right\}$. Now $\left|M_{j}^{\prime}\right|=a_{j}=\left|A_{j}\right|$, for each $j \in\{2,3, \ldots, t\}$. By Lemma 3 , for each $j \in\{2,3, \cdots, t\}$, since $\kappa\left(B_{n-1}^{i_{j}}\right)=n-2 \geq a_{j}$, and M_{j}^{\prime}, A_{j} are two subsets of $B_{n-1}^{i_{j}}$ of cardinality a_{j}, there exists a family of a_{j} pairwise disjoint $\left(M_{j}^{\prime}, A_{j}\right)$-paths F_{j}^{\prime} in $B_{n-1}^{i_{j}}$.

Finally, it is not hard to see that combining the t fans F_{1}, \cdots, F_{t}, the edge sets E_{2}, \cdots, E_{t}, the edges $x x^{\prime}, x x^{\prime \prime}$ and the sets of paths $F_{2}^{\prime}, \cdots, F_{t}^{\prime}$, we can obtain an n-fan in G^{\prime} from x to Y.

Subcase 2.2: $a_{2}=0$ or $a_{3}=0$.
W.l.o.g, $a_{2}=0$.

If $a_{2}=0$ and $a_{3} \geq 2$, then find a $\left(x^{\prime}, w\right)$-path P^{\prime} in $B_{n-1}^{i_{2}}$ such that one of the two out-neighbors of w, denoted by w^{\prime}, is in $B_{n-1}^{i_{3}}$ and $w^{\prime} \notin\left\{x^{\prime \prime}\right\} \cup M_{3}^{\prime}$. Next, Let $a_{j}^{\prime}:=a_{j}-2$ for $j=3$ and $a_{j}^{\prime}:=a_{j}$ for $j \neq 3$. The proof is similar except that add $\left\{w^{\prime}, x^{\prime \prime}\right\}$ to M_{3}^{\prime} instead of adding x^{\prime} and $x^{\prime \prime}$ to M_{2}^{\prime} and M_{3}^{\prime}. Now M_{2}, M_{2}^{\prime} and E_{2} are empty sets, F_{2} and F_{2}^{\prime} do not exist.

Combining the $t-1$ fans $F_{1}, F_{3}, \cdots, F_{t}$, the edge sets E_{3}, \cdots, E_{t}, the edges $x x^{\prime}, x x^{\prime \prime}, w w^{\prime}$, the path P^{\prime} and the sets of paths $F_{3}^{\prime}, \cdots, F_{t}^{\prime}$, we can obtain an n-fan in G^{\prime} from x to Y.

If $a_{2}=0$ and $a_{3}=1$, since $a_{1} \leq n-2$, there exists a part $V\left(B_{n-1}^{i_{k}}\right)$ such that $a_{k} \geq 1$ and $k \neq 1,3$. Find a $\left(x^{\prime}, w\right)$-path P^{\prime} in $B_{n-1}^{i_{2}}$ such that one of the two out-neighbors of w, denoted by w^{\prime}, is in $B_{n-1}^{i_{k}}$ and $w^{\prime} \notin M_{k}^{\prime}$. Next, let $a_{j}^{\prime}:=a_{j}-1$ for $j \in\{3, k\}$ and $a_{j}^{\prime}:=a_{j}$ for $j \neq 3, k$. The proof is similar to the previous proof and we can obtain an n-fan in G^{\prime} from x to Y.

If $a_{2}=a_{3}=0$, then there exists a part $V\left(B_{n-1}^{i_{k}}\right)$ such that $a_{k} \geq 2$ and $k \in\{4, \cdots, t\}$, or there exist two parts $V\left(B_{n-1}^{i_{h}}\right)$ and $V\left(B_{n-1}^{i_{r}}\right)$ such that $a_{h}, a_{r} \geq 1$ and $h, r \in\{4, \cdots, t\}$. Similarly, we can obtain an n-fan in G^{\prime} from x to Y.

Hence, for $k=n$ the conclusion holds.
Case 3: $k=n-1$, that is, $V\left(G^{\prime}\right)$ contains only one of the two out-neighbors of x.

This case can be handled similarly to Case 2 and more simply. So we omit the proof.

In conclusion, in any case, there always exists a k-fan in G^{\prime} from x to Y.
The proof is complete.
Lemma 11 Let $G^{\prime}=B_{n-1}^{i_{1}} \otimes B_{n-1}^{i_{2}} \otimes \ldots \otimes B_{n-1}^{i_{t}}$ be the induced subgraph of $M B_{n}$ on $V\left(B_{n-1}^{i_{1}}\right) \cup V\left(B_{n-1}^{i_{2}}\right) \cup \ldots \cup V\left(B_{n-1}^{i_{t}}\right)$, where $t \geq 2$. Then for any two vertices x and y of $G^{\prime}, \kappa_{G^{\prime}}(x, y)=\min \left\{d_{G^{\prime}}(x), d_{G^{\prime}}(y)\right\}$, that is, there exist $\min \left\{d_{G^{\prime}}(x), d_{G^{\prime}}(y)\right\}$ internally vertex-disjoint (x, y)-paths in G^{\prime}.

Proof. W.l.o.g., assume that $\min \left\{d_{G^{\prime}}(x), d_{G^{\prime}}(y)\right\}=d_{G^{\prime}}(x)=k$. Then $d_{G^{\prime}}(y) \geq$ $k, n-2 \leq k \leq n$ and $\kappa_{G^{\prime}}(x, y) \leq k$.

If $d_{G^{\prime}}(y)>k$ or x and y are not adjacent, then we can always find a subset Y of $N_{G^{\prime}}(y)$ such that $|Y|=k$ and $x \notin Y$. Clearly, $\left|N_{G^{\prime}}(y) \cap B_{n-1}^{i_{j}}\right| \leq n-2$ and $\left|Y \cap B_{n-1}^{i_{j}}\right| \leq n-2$, for each $j \in\{1,2, \ldots, t\}$. By Lemma 10, there exists a k-fan in G^{\prime} from x to Y. Combining the edges from y to Y, we can obtain k internally disjoint (x, y)-paths in G^{\prime}, that is, $\kappa_{G^{\prime}}(x, y) \geq k$.

If $d_{G^{\prime}}(y)=k$ and x and y are adjacent, let $Y:=\left(N_{G^{\prime}}(y) \cup\{y\}\right) \backslash\{x\}$. Then $|Y|=k$ and $x \notin Y$. If $\left|Y \cap B_{n-1}^{i_{j}}\right| \leq n-2$ for each $j \in\{1,2, \ldots, t\}$, by Lemma 10, there exists a k-fan in G^{\prime} from x to Y. Similarly, combining the edges from y to $Y \backslash\{y\}$, we can obtain k internally disjoint (x, y)-paths in G^{\prime}. If $\left|Y \cap B_{n-1}^{i_{j}}\right| \geq n-1$ for some $j \in\{1,2, \ldots, t\}$, then $B_{n-1}^{i_{j}}$ contains y and the $n-2$ in-neighbors of y and x is one of the two out-neighbors of y. Choose one in-neighbor z of y such that one out-neighbor z^{\prime} of z belongs to $V\left(G^{\prime}\right)$.

Let $Y^{\prime}:=Y \backslash\{z\} \cup\left\{z^{\prime}\right\}$. It is easy to see that $\left|Y^{\prime} \cap B_{n-1}^{i_{j}}\right| \leq n-2$ for each $j \in\{1,2, \ldots, t\}$. By Lemma 10, there exists a k-fan F in G^{\prime} from x to Y^{\prime}. Combining the fan F, the edges from y to Y and the edge $z z^{\prime}$, we can obtain k internally disjoint (x, y)-paths in G^{\prime}.

Now we can conclude that $\kappa_{G^{\prime}}(x, y)=k$. The proof is complete.
The following result can be obtained immediately by letting $G^{\prime}=M B_{n}$ in Lemma 11.

Lemma $12 \kappa\left(M B_{n}\right)=n$.
Now, we give the generalized 3-connectivity of the modified bubble-sort graph $M B_{n}$.

Theorem $13 \kappa_{3}\left(M B_{n}\right)=n-1$, for any integer $n \geq 3$.
Proof. By Lemma 1, $\kappa_{3}\left(M B_{n}\right) \leq \delta\left(M B_{n}\right)-1=n-1$. Thus we just need to prove that $\kappa_{3}\left(M B_{n}\right) \geq n-1$.

For $n=3,4,5$, by Lemmas 12 and 2 , it is easy to check that $\kappa_{3}\left(M B_{n}\right) \geq$ $n-1$.

Now suppose that $n \geq 6$. Let $M B_{n}=B_{n-1}^{1} \otimes B_{n-1}^{2} \otimes \cdots \otimes B_{n-1}^{n}$. Let v_{1}, v_{2} and v_{3} be any three vertices of $M B_{n}$, and $H:=\left\{v_{1}, v_{2}, v_{3}\right\}$.

We distinguish three cases:
Case 1: v_{1}, v_{2} and v_{3} belong to the same part.
W.l.o.g., assume that $v_{1}, v_{2}, v_{3} \in V\left(B_{n-1}^{1}\right)$. By Theorem $8, \kappa_{3}\left(B_{n-1}^{1}\right)=$ $\kappa_{3}\left(B_{n-1}\right)=n-3$, and hence there are at least $n-3$ internally disjoint trees $T_{1}, T_{2}, \ldots, T_{n-3}$ connecting H in B_{n-1}^{1}. Note that by property 3 , for every $1 \leq$ $i \leq 3, v_{i}$ has two out-neighbors $v_{i}^{\prime}, v_{i}^{\prime \prime}$ in different parts, and any two distinct vertices of B_{n-1}^{1} have different out-neighbors. Hence $N=\left\{v_{1}^{\prime}, v_{1}^{\prime \prime}, v_{2}^{\prime}, v_{2}^{\prime \prime}, v_{3}^{\prime}, v_{3}^{\prime \prime}\right\}$ is a set of size 6 and each part contains at most three vertices of N.

Subcase 1.1: there exists a part which contains three vertices of N.
W.l.o.g., suppose that $v_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime} \in V\left(B_{n-1}^{2}\right)$. Then there is a tree T_{n-2} connecting $H \cup\left\{v_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime}\right\}$ in the induced subgraph on $V\left(B_{n-1}^{2}\right) \cup H$. On the other hand, there is a tree T_{n-1} connecting $H \cup\left\{v_{1}^{\prime \prime}, v_{2}^{\prime \prime}, v_{3}^{\prime \prime}\right\}$ in the induced subgraph on $\left(\cup_{i=3}^{n} V\left(B_{n-1}^{i}\right)\right) \cup H$.

Now, we obtain $n-1$ internally disjoint H-Steiner trees $T_{1}, T_{2}, \cdots, T_{n-1}$ in $M B_{n}$.

Subcase 1.2: there exists a part which contains two vertices of N and all other parts contain at most two vertices of N.
W.l.o.g., suppose that $v_{1}^{\prime}, v_{2}^{\prime} \in V\left(B_{n-1}^{2}\right)$.

If there is a part $V\left(B_{n-1}^{k}\right)(k \neq 1,2)$ such that $V\left(B_{n-1}^{k}\right) \cap N=\left\{v_{3}^{\prime}\right\}$ or $\left\{v_{3}^{\prime \prime}\right\}$ (w.l.o.g., $=\left\{v_{3}^{\prime}\right\}$), then $M B_{n}\left[V\left(B_{n-1}^{2}\right) \cup V\left(B_{n-1}^{k}\right) \cup H\right]$ contains a tree T_{n-2} connecting $H \cup\left\{v_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime}\right\}$, and $M B_{n}\left[\left(\cup_{i \in\{1, \ldots, n\}}\right.\right.$ and $\left.\left.i \neq 1,2, k V\left(B_{n-1}^{i}\right)\right) \cup H\right]$ contains a tree T_{n-1} connecting $H \cup\left\{v_{1}^{\prime \prime}, v_{2}^{\prime \prime}, v_{3}^{\prime \prime}\right\}$.

Otherwise, there must exist another two parts such that both of them contain two vertices of N. W.l.o.g., suppose that $v_{3}^{\prime}, v_{1}^{\prime \prime} \in V\left(B_{n-1}^{3}\right)$ and $v_{3}^{\prime \prime}, v_{2}^{\prime \prime} \in$ $V\left(B_{n-1}^{4}\right)$. Since $v_{3}^{\prime}=v_{3}[1 n]$, one of the two out-neighbors of v_{3}^{\prime} is $v_{3} \in B_{n-1}^{1}$. let $x=v_{3}^{\prime}[(n-1) n]$ be the other out-neighbor of v_{3}^{\prime}.

If $x \notin V\left(B_{n-1}^{4}\right)$, then $M B_{n}\left[\cup_{i \in\{1, \cdots, n\}}\right.$ and $\left.i \neq 1,3,4, V\left(B_{n-1}^{i}\right) \cup H \cup\left\{v_{3}^{\prime}\right\}\right]$ contains an H-Steiner tree T_{n-2} connecting $H \cup\left\{v_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime}, x\right\}$. By Lemma 9, $\kappa\left(B_{n-1}^{3} \otimes B_{n-1}^{4}\right) \geq n-2$ and $M B_{n}\left[\left(V\left(B_{n-1}^{3}\right) \cup V\left(B_{n-1}^{4}\right) \cup H\right) \backslash\left\{v_{3}^{\prime}\right\}\right]$ contains an H-Steiner tree T_{n-1} connecting $H \cup\left\{v_{1}^{\prime \prime}, v_{2}^{\prime \prime}, v_{3}^{\prime \prime}\right\}$.

Otherwise, $x \in V\left(B_{n-1}^{4}\right)$. Let $y:=v_{3}^{\prime}[(n-2)(n-1)]$ be an in-neighbor of v_{3}^{\prime}. Clearly, $y[1 n]$, an out-neighbor of y, belongs to B_{n-1}^{1}. Let $z:=y[(n-1) n]$ be the other out-neighbor of y. It is easy to see that $z \notin B_{n-1}^{4}$. Hence $M B_{n}\left[\cup_{i \in\{1, \cdots, n\}}\right.$ and $\left.i \neq 1,3,4 V\left(B_{n-1}^{i}\right) \cup H \cup\left\{v_{3}^{\prime}, y\right\}\right]$ contains an H-Steiner tree T_{n-2} connecting $H \cup\left\{v_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime}, z, y\right\}$. On the other hand, $M B_{n}\left[\left(V\left(B_{n-1}^{3}\right) \cup\right.\right.$ $\left.\left.V\left(B_{n-1}^{4}\right) \cup H\right) \backslash\left\{v_{3}^{\prime}, y\right\}\right]$ contains an H-Steiner tree T_{n-1} connecting $H \cup$ $\left\{v_{1}^{\prime \prime}, v_{2}^{\prime \prime}, v_{3}^{\prime \prime}\right\}$.

Now, we can always obtain $n-1$ internally disjoint trees connecting H in $M B_{n}$.

Subcase 1.3: each part contains at most one vertex of N.
W.l.o.g., suppose that $B_{n-1}^{2}, B_{n-1}^{3}, B_{n-1}^{4}$ contain $v_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime}$, respectively, and $B_{n-1}^{5}, B_{n-1}^{6}, B_{n-1}^{7}$ contain $v_{1}^{\prime \prime}, v_{2}^{\prime \prime}, v_{3}^{\prime \prime}$, respectively. Then the induced subgraph of $M B_{n}$ on $V\left(B_{n-1}^{2}\right) \cup V\left(B_{n-1}^{3}\right) \cup V\left(B_{n-1}^{4}\right) \cup H$ contains an H-Steiner tree T_{n-2} connecting $H \cup\left\{v_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime}\right\}$, and the induced subgraph of $M B_{n}$ on $V\left(B_{n-1}^{5}\right) \cup V\left(B_{n-1}^{6}\right) \cup V\left(B_{n-1}^{7}\right) \cup H$ contains an H-Steiner tree T_{n-1} connecting $H \cup\left\{v_{1}^{\prime \prime}, v_{2}^{\prime \prime}, v_{3}^{\prime \prime}\right\}$. Thus we obtain $n-1$ internally disjoint H-Steiner trees in $M B_{n}$.

Thus, in this case, $\kappa_{M B_{n}}(H) \geq n-1$.
Case 2: v_{1}, v_{2} and v_{3} belong to two parts.
W.l.o.g., assume that $v_{1}, v_{2} \in V\left(B_{n-1}^{1}\right)$ and $v_{3} \in V\left(B_{n-1}^{2}\right)$. By Lemma $5, \kappa\left(B_{n-1}^{1}\right)=n-2$, and hence there are $n-2$ internally disjoint $\left(v_{1}, v_{2}\right)$ paths $P_{1}, P_{2}, \ldots, P_{n-2}$ in B_{n-1}^{1}. Let $G^{\prime}:=B_{n-1}^{2} \otimes B_{n-1}^{3} \otimes \ldots \otimes B_{n-1}^{n}$. Then, $v_{3} \in V\left(G^{\prime}\right)$.

Subcase 2.1: neither of the two out-neighbours of v_{3} belongs to B_{n-1}^{1}, that is, $d_{G^{\prime}}\left(v_{3}\right)=n$.

Choose $n-2$ distinct vertices $x_{1}, x_{2}, \ldots, x_{n-2}$ from $P_{1}, P_{2}, \ldots, P_{n-2}$ such that $x_{i} \in V\left(P_{i}\right)$, for $1 \leq i \leq n-2$. Note that at most one of these paths, say P_{1}, has length 1 . If so, we can let $x_{1}:=v_{1}$ and make sure that $x_{i} \neq v_{2}$ for any $i \in\{2, \cdots, n-2\}$. Let $Y:=\left\{x_{1}, \cdots, x_{n-2}\right\} \cup\left\{v_{1}, v_{2}\right\}$. If $x_{1} \neq v_{1}$, we let

$$
Y^{\prime}:=\left\{x^{\prime} \mid x^{\prime} \text { is an out-neighbor of } x \text { and } x \in Y\right\}
$$

otherwise,

$$
Y^{\prime}:=\left\{x^{\prime} \mid x^{\prime} \text { is an out-neighbor of } x \text { and } x \in Y\right\} \cup\left\{v_{1}^{\prime \prime}\right\} ;
$$

where $v_{1}^{\prime}, v_{1}^{\prime \prime}$ are the two out-neighbors of v_{1}. Clearly, $|Y| \geq n-1$, and $\left|Y^{\prime}\right|=n$. On the other hand, we can make sure that $\left|Y^{\prime} \cap B_{n-1}^{j}\right| \leq n-2$ for each $j \in\{2,3 \ldots, n\}$, otherwise we choose the other out-neighbor of x for some $x \in Y$.

By Lemma 10 and the fact that $d_{G^{\prime}}\left(v_{3}\right)=n$, there exist n internally disjoint $\left(v_{3}, Y^{\prime}\right)$-paths $R_{1}, R_{2}, \cdots, R_{n}$ in G^{\prime} such that the terminal vertex of R_{i} is x_{i}^{\prime} for each $i \in\{1, \ldots, n-2\}$, the terminal vertex of R_{n-1} is v_{1}^{\prime} or $v_{1}^{\prime \prime}$,
and the terminal vertex of R_{n} is v_{2}^{\prime}. Now, $T_{1}=P_{1} \cup R_{1} \cup x_{1} x_{1}^{\prime}, \cdots, T_{n-2}=$ $P_{n-2} \cup R_{n-2} \cup x_{n-2} x_{n-2}^{\prime}$ and $T_{n-1}=R_{n-1} \cup R_{n} \cup\left\{v_{2} v_{2}^{\prime}\right\} \cup\left\{v_{1} v_{1}^{\prime}\right\}\left(\right.$ or $\left.\left\{v_{1} v_{1}^{\prime \prime}\right\}\right)$ are $n-1$ internally disjoint trees connecting H, and hence $\kappa_{M B_{n}}(H) \geq n-1$.

Subcase 2.2: one of the two out-neighbours of v_{3} belongs to B_{n-1}^{1}, that is, $d_{G^{\prime}}\left(v_{3}\right)=n-1$.

Assume that the out-neighbour v_{3}^{\prime} of v_{3} belongs to B_{n-1}^{1}. Since B_{n-1}^{1} is connected, there is a $\left(v_{3}^{\prime}, v_{1}\right)$-path \widetilde{P} in B_{n-1}^{1}. Let t be the first vertex of the path \widetilde{P} which is in $\cup_{k \in\{1,2, \ldots, n-2\}} V\left(P_{k}\right)$. W.l.o.g., suppose that $t \in V\left(P_{n-2}\right)$. Clearly, $P_{n-2} \cup \widetilde{P}\left[v_{3}^{\prime}, t\right] \cup\left\{v_{3} v_{3}^{\prime}\right\}$ contains a tree connecting H, denoted by T_{n-1}.

Now, choose $n-3$ distinct vertices $x_{1}, x_{2}, \ldots, x_{n-3}$ from $P_{1}, P_{2}, \ldots, P_{n-3}$ such that $x_{i} \in V\left(P_{i}\right)$, for $1 \leq i \leq n-3$. Similarly, by Lemma 10 and the fact that $d_{G^{\prime}}\left(v_{3}\right)=n-1$, there exist $n-1$ internally disjoint paths $R_{1}, R_{2}, \cdots, R_{n-1}$ starting at v_{3} in G^{\prime} such that the terminal vertex of R_{i} is x_{i}^{\prime} for each $i \in$ $\{1, \ldots, n-3\}$, the terminal vertex of R_{n-2} is v_{1}^{\prime} or $v_{1}^{\prime \prime}$, and the terminal vertex of R_{n-1} is v_{2}^{\prime}. Now, $T_{1}=P_{1} \cup R_{1} \cup x_{1} x_{1}^{\prime}, \cdots, T_{n-3}=P_{n-3} \cup R_{n-3} \cup x_{n-3} x_{n-3}^{\prime}$, $T_{n-2}=R_{n-2} \cup R_{n-1} \cup\left\{v_{2} v_{2}^{\prime}\right\} \cup\left\{v_{1} v_{1}^{\prime}\right\}\left(\right.$ or $\left.\left\{v_{1} v_{1}^{\prime \prime}\right\}\right)$ and T_{n-1} are $n-1$ internally disjoint trees connecting H, and hence $\kappa_{M B_{n}}(H) \geq n-1$.

Thus, in this case, $\kappa_{M B_{n}}(H) \geq n-1$.
Case 3: v_{1}, v_{2} and v_{3} belong to different parts, respectively.
W.l.o.g., suppose that $v_{1} \in V\left(B_{n-1}^{1}\right), v_{2} \in V\left(B_{n-1}^{2}\right)$ and $v_{3} \in V\left(B_{n-1}^{3}\right)$.

Let $W:=\left\{v_{1}^{\prime}, v_{1}^{\prime \prime}, v_{2}^{\prime}, v_{2}^{\prime \prime}, v_{3}^{\prime}, v_{3}^{\prime \prime}\right\}$, where v_{i}^{\prime} and $v_{i}^{\prime \prime}$ are the two out-neighbors of v_{i} for $i \in\{1,2,3\}$. We distinguish two subcases.

Subcase 3.1: $W \subseteq V\left(B_{n-1}^{1}\right) \cup V\left(B_{n-1}^{2}\right) \cup V\left(B_{n-1}^{3}\right)$.
Let $\widehat{G}=B_{n-1}^{1} \otimes B_{n-1}^{2}$. Since one of the two out-neighbors of v_{1} belongs to B_{n-1}^{2} and one of the two out-neighbors of v_{2} belongs to $B_{n-1}^{1}, d_{\widehat{G}}\left(v_{1}\right)=$ $n-1$ and $d_{\widehat{G}}\left(v_{2}\right)=n-1$. Therefore, by Lemma 11, we have $\kappa_{\widehat{G}}\left(v_{1}, v_{2}\right)=$ $\min \left\{d_{\widehat{G}}\left(v_{1}\right), d_{\widehat{G}}\left(v_{2}\right)\right\}=n-1$. Hence, there are $n-1$ internally disjoint $\left(v_{1}, v_{2}\right)$ paths $P_{1}, P_{2}, \ldots, P_{n-1}$ in \widehat{G}.

Let v_{3}^{\prime} be an out-neighbour of v_{3}. Then we have $v_{3}^{\prime} \in V(\widehat{G})$. Since \widehat{G} is connected, there is a $\left(v_{3}^{\prime}, v_{1}\right)$-path \widetilde{P} in \widehat{G}. Let t be the first vertex of the path \widetilde{P} which is in $\cup_{k \in\{1,2, \ldots, n-1\}} V\left(P_{k}\right)$. W.l.o.g., suppose that $t \in V\left(P_{n-1}\right)$. Clearly, $P_{n-1} \cup \widetilde{P}\left[v_{3}^{\prime}, t\right] \cup\left\{v_{3} v_{3}^{\prime}\right\}$ contains a tree connecting H, denoted by T_{n-1}.

Now, let x_{i} be a neighbour of v_{1} such that $x_{i} \in V\left(P_{i}\right)$, for $1 \leq i \leq n-2$. Note that at most one of these vertices, say x_{1}, is an out-neighbour of v_{1}. If so, we can let $x_{1}:=v_{1}$. Then $\left\{x_{1}, x_{2}, \ldots, x_{n-2}\right\} \subseteq B_{n-1}^{1}$. Let $G^{\prime}=B_{n-1}^{3} \otimes$ $B_{n-1}^{4} \otimes \ldots \otimes B_{n-1}^{n}$ and let x_{i}^{\prime} be one of the two out-neighbors of x_{i} such that $x_{i}^{\prime} \in V\left(G^{\prime}\right)$ for all $i \in\{1, \ldots, n-2\}$. Clearly, $Y=\left\{x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{n-2}^{\prime}\right\}$ is a set of size $n-2$. Moreover, since $d_{G^{\prime}}\left(v_{3}\right)=n-2$, by Lemma 10, there exist $n-2$ internally disjoint (v_{3}, Y)-paths $R_{1}, R_{2}, \cdots, R_{n-2}$ in G^{\prime} such that the terminal vertex of R_{i} is x_{i}^{\prime} for each $i \in\{1, \ldots, n-2\}$. Now, $T_{1}=P_{1} \cup R_{1} \cup x_{1} x_{1}^{\prime}, \cdots$, $T_{n-2}=P_{n-2} \cup R_{n-2} \cup x_{n-2} x_{n-2}^{\prime}$ and T_{n-1} are $n-1$ internally disjoint trees connecting H, and hence $\kappa_{M B_{n}}(H) \geq n-1$.

Subcase 3.2: W.l.o.g., at least one out-neighbour of v_{3} does not belong to $V\left(B_{n-1}^{1}\right) \cup V\left(B_{n-1}^{2}\right)$.

Let $G^{\prime}=B_{n-1}^{3} \otimes B_{n-1}^{4} \otimes \ldots \otimes B_{n-1}^{n}$. This subcase is similar to Case 2, since $d_{G^{\prime}}\left(v_{3}\right) \geq n-1$.

Select $n-2$ vertices $x_{1}, x_{2}, \ldots, x_{n-2}$ in $B_{n-1}^{1} \backslash\left\{v_{1}\right\}$ such that for every vertex $x_{i}(1 \leq i \leq n-2), x_{i}=((i+2) \cdots 21)$, that is, the element at position 1 is $i+2$ and the element at position $n-1$ is 2 . Further, we request that for any $i \in\{1,2, \cdots, n-2\}, x_{i}$ and v_{2} have different out-neighbors, and v_{2} is not the out-neighbor of x_{i}. This can be done because $(n-3)!\geq 2$ for $n \geq 6$. Let $S:=\left\{x_{1}, x_{2}, \ldots, x_{n-2}\right\}$. Moreover, let $x_{i}^{\prime}:=x_{i}[(n-1) n]$ and $x_{i}^{\prime \prime}:=x_{i}[1 n]$ $(1 \leq i \leq n-2)$ and let $S^{\prime}:=\left\{x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{n-2}^{\prime}\right\}$. Obviously, $S^{\prime} \subseteq V\left(B_{n-1}^{2}\right)$. Since $\kappa\left(B_{n-1}^{1}\right)=\kappa\left(B_{n-1}^{2}\right)=n-2$, by Lemma 4, there exist $n-2$ internally disjoint $\left(v_{1}, S\right)$-paths $P_{1}, P_{2}, \cdots, P_{n-2}$ in B_{n-1}^{1} such that the terminal vertex of P_{i} is x_{i}, and there exist $n-2$ internally disjoint $\left(v_{2}, S^{\prime}\right)$-paths $P_{1}^{\prime}, P_{2}^{\prime}, \cdots, P_{n-2}^{\prime}$ in B_{n-1}^{2} such that the terminal vertex of P_{i}^{\prime} is x_{i}^{\prime}, for every $i \in\{1,2, \ldots, n-2\}$. Then, we can obtain $n-2$ internally disjoint $\left(v_{1}, v_{2}\right)$-paths in $B_{n-1}^{1} \otimes B_{n-1}^{2}$: $v_{1} P_{1} x_{1} x_{1}^{\prime} P_{1}^{\prime} v_{2}, v_{1} P_{2} x_{2} x_{2}^{\prime} P_{2}^{\prime} v_{2}, \ldots, v_{1} P_{n-2} x_{n-2} x_{n-2}^{\prime} P_{n-2}^{\prime} v_{2}$.

Now, let $x_{n-1}^{\prime \prime}$ be one of the two out-neighbors of v_{1} such that $x_{n-1}^{\prime \prime} \in V\left(G^{\prime}\right)$ and $x_{n}^{\prime \prime}$ be one of the two out-neighbors of v_{2} such that $x_{n}^{\prime \prime} \in V\left(G^{\prime}\right)$. Let $Y:=\left\{x_{1}^{\prime \prime}, x_{2}^{\prime \prime}, \ldots, x_{n-2}^{\prime \prime}, x_{n-1}^{\prime \prime}, x_{n}^{\prime \prime}\right\}$. Obviously, $Y \subseteq V\left(G^{\prime}\right)$ and $|Y|=n$.

If neither of the two out-neighbour of v_{3} belongs to $V\left(B_{n-1}^{1}\right) \cup V\left(B_{n-1}^{2}\right)$, that is, $d_{G^{\prime}}\left(v_{3}\right)=n$, the proof is similar to the proof of Subcase 2.1.

If one of the two out-neighbour of v_{3} belongs to $V\left(B_{n-1}^{1}\right) \cup V\left(B_{n-1}^{2}\right)$, that is, $d_{G^{\prime}}\left(v_{3}\right)=n-1$, the proof is similar to the proof of Subcase 2.2.

In conclusion, $\kappa_{M B_{n}}(H) \geq n-1$. The proof is complete.

5 Conclusion

The generalized k-connectivity is a natural generalization of the connectivity and can serve for measuring the capability of a network G to connect any k vertices in G. In this paper, we restrict our attention to two classes of Cayley graphs, the Cayley graphs generated by trees \mathbb{T}_{n} and the modified bubble-sort graphs $M B_{n}$ (i.e., the Cayley graphs generated by cycles). We investigate the generalized 3 -connectivity of \mathbb{T}_{n} and $M B_{n}$, and show that $\kappa_{3}\left(\mathbb{T}_{n}\right)=n-2$ and $\kappa_{3}\left(M B_{n}\right)=n-1$. For future work, it would be interesting to study the generalized connectivity of some other classes of Cayley graphs and some other network graphs.

Acknowledgements We thank the referees for their helpful comments and suggestions.
The first author's work was partially supported by National Natural Science Foundation of China (No. 11301480), the Natural Science Foundation of Ningbo, China (No.2017A610132), and Zhejiang Provincial Natural Science Foundation of China.

This research work of the second author was partially supported by the National Natural Science Foundation of China and Natural Science Foundation of Tianjin (No. 17JCQNJC00300).

The third author's work was supported by the National Natural Science Foundation of China (No. 11201021) and BUCT Fund for Disciplines Construction and Development (Project No. 1524).

References

1. Bondy J.A., Murty U.S.R.: Graph Theory, GTM 244, Springer (2008)
2. Cheng E., Liptácuteák L., Shawash N.: Orienting Cayley graphs generated by transposition trees. Comput. Math. Appl. 55, 2662-2672 (2008)
3. Godsil C., Royle G.F.: Algebraic Graph Theory. Springer, pp.52-54 (2001)
4. Hager M.: Pendant tree-connectivity. J. Combin. Theory 38, 179-189 (1985)
5. Hager M.: Path-connectivity in graphs. Discrete Math. 59, 53-59 (1986)
6. Heydemann M.: Cayley graphs and interconnection networks, in: G. Hahn, G. Sabidussi (Eds.), Graph Symmetry, Kluwer Academic Publishers, Netherlands, pp. 167-224 (1997)
7. Lakshmivarahan S., Jwo J., Dhall S.K.: Symmetry in interconnection networks based on Cayley graphs of permutation groups: a survey. Parallel Comput. 19, 361-407 (1993)
8. Li S., Li X., Shi Y.: Note on the complexity of deciding the rainbow (vertex)connectedness for bipartite graphs. Appl. Math. Comput. 258, 155-161 (2015)
9. Li S., Li X.: Note on the hardness of generalized connectivity. J. Comb. Optim. 24, 389-396 (2012)
10. Li S., Li W., Li X.: The generalized connectivity of complete bipartite graphs. Ars Combin. 104, 65-79 (2012)
11. Li S., Li W., Li X.: The generalized connectivity of complete equipartition 3-partite graphs. Bull. Malays. Math. Sci. Soc. 37 (1), 103-121 (2014)
12. Li H., Li X., Mao Y., Sun Y.: Note on the generalized connectivity. Ars Combin. 114, 193-202 (2014)
13. Li S., Li W., Shi Y., Sun H.: On minimally 2-connected graphs with generalized connectivity $\kappa_{3}=2$. J. Combin. Optimization 34 (1), 141-164 (2017)
14. Li H., Li X., Sun Y.: The generalized 3-connectivity of Cartesian product graphs. Discrete Math. Theor. Comput. 14 (1), 43-54 (2012)
15. Li S., Li X., Zhou W: Sharp bounds for the generalized connectivity $\kappa_{3}(G)$. Discrete Math. 310, 2147-2163 (2010)
16. Li X., Mao Y.: A survey on the generalized connectivity of graphs. arXiv:1207.1838v9.
17. Li S., Tu J., Yu C.: The generalized 3-connectivity of star graphs and bubble-sort graphs. Appl. Math. Comput. 274, 41-46 (2016)
18. Wan M., Zhang Z.: A kind of conditional vertex connectivity of star graphs. Appl. Math. Lett. 22 (2), 264-267 (2009)
19. Whitney H.: Congruent graphs and the connectivity of graphs and the connectivity of graphs. Amer. J. Math. 54, 150-168 (1932)
20. Yang W., Li H., Meng J.: Conditional connectivity of Cayley graphs generated by transposition trees. Inform. Process. Lett. 110, 1027-1030 (2010)
21. Yu X., Huang X., Zhang Z.: A kind of conditional connectivity of Cayley graphs generated by unicyclic graphs. Inform. Sci. 243, 86-94 (2013)

[^0]: S. Li

 Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China
 E-mail: lss@nit.zju.edu.cn
 Y. Shi

 Center for Combinatorics and LPMC, Nankai University, Tianjin 300071, China
 E-mail: shi@nankai.edu.cn
 J. Tu (区)

 School of Science, Beijing University of Chemical Technology, Beijing 100029, China
 E-mail: tujh81@163.com

