On zero-sum subsequence of length not exceeding a given number

Chunlin Wang ${ }^{1}$ and Kevin Zhao ${ }^{2}$
1,2 Center for Combinatorics, Nankai University, Tianjin 300071, P.R. China
${ }^{1}$ c-l.wang@outlook.com, ${ }^{2}$ zhkw-hebei@163.com

Abstract

Let G be an additive finite abelian group. For a positive integer k, let $s_{\leq k}(G)$ denote the smallest integer l such that each sequence of length l has a non-empty zero-sum subsequence of length at most k. Among other results, we determine $s_{\leq k}(G)$ for all finite abelian group of rank two.

Keywords: Davenport constant, zero-sum sequence, Abelian group.
2010 Mathematics Subject Classification: 11B75, 11R27.

1 Introduction

Let C_{n} denote the cyclic group of n elements. Let G be an additive finite abelian group. It is well known that $|G|=1$ or $G=C_{n_{1}} \oplus C_{n_{2}} \cdots \oplus C_{n_{r}}$ with $1<n_{1}\left|n_{2} \cdots\right| n_{r}$. Then, $r(G)=r$ is the rank of G and the $\operatorname{exponent} \exp (G)$ of G is n_{r}. Let

$$
S:=g_{1} \cdots g_{l}
$$

be a sequence with elements in G. We call S a zero-sum sequence if $g_{1}+\cdots+g_{l}=0$. The Davenport constant $D(G)$ is the minimal integer $l \in N$ such that every sequence S over G of length $|S| \geq l$ has a nonempty zero-sum subsequence. Set

$$
D^{*}(G):=1+\sum_{i=1}^{r}\left(n_{i}-1\right)
$$

Then $D(G) \geq D^{*}(G)$. Let $\eta(G)$ denote the smallest integer $l \in N$ such that every sequence S over G of length $|S| \geq l$ has a nonempty zero-sum subsequence T of length $|T| \leq \exp (G)$. In this paper, we investigate a following generalization of $D(G)$ and $\eta(G)$.

Definition 1.1. Denote by $s_{\leq k}(G)$ the smallest element $l \in N \cup\{+\infty\}$ such that each sequence of length l has a non-empty zero-sum subsequence of length at most $k(k \in N)$.

The constant $s_{\leq k}(G)$ was introduced by Delorme, Ordaz and Quiroz [2]. It is trivial to see that $s_{\leq k}(G)=D(G)$ if $k \geq D(G), s_{\leq k}(G)=\eta(G)$ if $k=\exp (G)$ and $s_{\leq k}(G)=$ ∞ if $1 \leq k<\exp (G)$. For general, the problem of determining $s_{\leq k}(G)$ is not at all
trivial. Recently, the exact number of $s_{\leq 3}\left(C_{2}^{r}\right)$ is known by the work of Freeze and Schmid [3], namely, $1+2^{r-1}$. Besides its own interesting, Cohen and Zemor [1] pointed out a connection between $s_{\leq k}\left(C_{2}^{r}\right)$ and coding theory. In this paper, we shall determine $s_{\leq k}(G)$ for some groups. Our main results are the followings:

Theorem 1.2. Let $G=C_{m} \oplus C_{n}$ with $m \mid n$ be an abelian group. Set $d:=D(G)$. Then for all $0 \leq k \leq m-1$, one has

$$
s_{\leq d-k}(G)=d+k
$$

Theorem 1.3. Let r be a positive integer. Then we have that $s_{\leq r-k}\left(C_{2}^{r}\right)=r+2$ for all positive integers $r-k \in\left[\left\lceil\frac{2 r+2}{3}\right\rceil, r\right]$.

2 Preliminaries

In this paper, our notations are coincident with [5] and we briefly present some key concepts. Let N denote the set of positive integers and $N_{0}=N \cup\{0\}$.

Let $\mathscr{F}(G)$ be the free abelian monoid, multiplicatively written, with basis G. The elements of $\mathscr{F}(G)$ are called sequences over G. Let

$$
S=g_{1} \cdots g_{l} \in \mathscr{F}(G)
$$

we denote $g_{1}+\cdots+g_{l}$ by $\sigma(S)$. Every map of abelian groups $\varphi: G \rightarrow H$ extends to a map from $\mathscr{F}(G)$ to $\mathscr{F}(H)$ by setting

$$
\varphi(S)=\varphi\left(g_{1}\right) \cdots \varphi\left(g_{l}\right)
$$

If φ is a homomorphism, then $\varphi(S)$ is a zero-sum sequence if and only if $\sigma(S) \in \operatorname{ker} \varphi$. Let $G=H \oplus K$ be a finite abelian group. And let $\varphi: G \rightarrow H$ be a homomorphism with $\operatorname{ker} \varphi=K$ and $\psi: G \rightarrow K$ be a homomorphism with $\operatorname{ker} \psi=H$. If $S \in \mathscr{F}(G)$ such that $\sigma(\varphi(S))=0$, then $\sigma(S)=\sigma(\psi(S))$.

We have the following lemmas:
Lemma 2.1 ([5]). For G be a p-group or $G=C_{m} \oplus C_{n}$ with $1 \leq m$ and $m \mid n$, we have

$$
D(G)=D^{*}(G)
$$

Lemma 2.2 ([5]). Let m and n be positive integers with $m \mid n$. Then

$$
\eta\left(C_{m} \oplus C_{n}\right)=2 m+n-2 .
$$

Definition 2.3. Let $S=g_{1} \cdots g_{l} \in \mathscr{F}(G)$ be a sequence of length $|S|=l \in N_{0}$ and let $g \in G$.

1. For every $k \in N_{0}$ let

$$
N_{g}^{k}(S):=\#\left\{I \subset[1, l]: \sum_{i \in I} g_{i}=g \text { and }|I|=k\right\}
$$

denote the number of subsequences T of S having sum $\sigma(T)=g$ and length $|T|=k$ (counted with the multiplicity of their appearance in S). When $g=0, N_{g}^{k}(S)$ is denoted by $N^{k}(S)$ for short.
2. We define

$$
N_{g}(S):=\sum_{k \geq 0} N_{g}^{k}(S), N_{g}^{+}(S):=\sum_{k \geq 0} N_{g}^{2 k}(S) \text { and } N_{g}^{-}(S):=\sum_{k \geq 0} N_{g}^{2 k+1}(S)
$$

Thus $N_{g}(S)$ denotes the number of subsequences T of S having sum $\sigma(T)=g$, $N_{g}^{+}(S)$ denotes the number of all such subsequences of even length, and $N_{g}^{-}(S)$ denotes the number of all such subsequences of odd length (each counted with the multiplicity of its appearance in S).

Lemma 2.4 ([5]). Let p be a prime, G be a p-group, $S=g_{1} \cdots g_{l} \in \mathscr{F}(G)$. If $l \geq D(G)$, then $N_{g}^{+}(S) \equiv N_{g}^{-}(S) \bmod p$ for all $g \in G$. In particular, $N_{0}^{+}(S) \equiv N_{0}^{-}(S) \bmod p$.

3 Proof of Theorem 1.2

In this section, we prove Theorem 1.2.
Proof. Suppose that $\left\{e_{1}, e_{2}\right\}$ is a basis of G. That is,

$$
C_{m} \oplus C_{n}=\left\langle e_{1}\right\rangle \oplus\left\langle e_{2}\right\rangle
$$

with $\operatorname{ord}\left(e_{1}\right)=m$ and $\operatorname{ord}\left(e_{2}\right)=n$. For a integer k with $1 \leq k \leq m-1$, let

$$
S:=e_{1}^{m-1} e_{2}^{n-1}\left(e_{1}+e_{2}\right)^{k-2}
$$

Then S is a sequence of length $d+k-1$. It is easy to see that S has no zero-sum subsequence of length in $[1, d-k]$. It follows that

$$
\begin{equation*}
s_{\leq d-k}(G) \geq d+k \tag{3.1}
\end{equation*}
$$

Then to prove Theorem 1.2, it suffices to show that

$$
\begin{equation*}
s_{\leq d-k}(G) \leq d+k \tag{3.2}
\end{equation*}
$$

holds, which will be done in the following.

Let p be a prime number. First we show that (3.2) is true for the case $m=n=p$. Suppose conversely that (3.2) is false. Then there exits a sequence S of length $|S|=d+k$ such that S has no zero-sum subsequence of length in $[1, d-k]$. Thus $N^{i}(S)=0$ for integers $i \in[1, d-k]$. It is easy to see that any zero-sum sequence of length i with $i \in[d+1,2 d-2 k+1]$ has a nonempty zero-sum subsequence of length at most $d-k$. Then we conclude that $N^{i}(S)=0$ for $d+1 \leq i \leq \min (|S|, 2 d-2 k+1)$.

Let $|S| \leq 2 d-2 k+1$. Then $0 \leq k \leq \frac{d+1}{3}=\frac{2 p}{3}$. Let T be a subsequence of S with $|T|=|S|-t$, where t is a integer such that $0 \leq t \leq k$. Obviously $0 \leq N^{i}(T) \leq N^{i}(S)=0$ holds for $1 \leq i \leq d+1$ and $d+1 \leq i \leq|T|$. Then by lemma 2.4, we have the following equation:

$$
1+(-1)^{d-k+1} N^{d-k+1}(T)+\cdots+(-1)^{d} N^{d}(T) \equiv 0(p)
$$

It follows that

$$
\sum_{T|S,|T|=|S|-t}\left(1+(-1)^{d-k+1} N^{d-k+1}(T)+\cdots+(-1)^{d} N^{d}(T)\right) \equiv 0(p) .
$$

Analysing the number of times each subsequence is counted, one obtains

$$
\begin{align*}
& \binom{|S|}{|T|}+(-1)^{d-k+1}\binom{|S|-(d-k+1)}{|T|-(d-k+1)} N^{d-k+1}(S)+\cdots+(-1)^{d}\binom{|S|-d}{|T|-d} N^{d}(S) \\
= & \binom{|S|}{t}+(-1)^{2 p-k}\binom{2 k-1}{t} N^{2 p-k}(S)+\cdots+(-1)^{2 p-1}\binom{k}{t} N^{2 p-1}(S) \equiv 0(p) . \tag{3.3}
\end{align*}
$$

Let $b:=\left(\binom{|S|}{0},\binom{|S|}{1}, \cdots,\binom{|S|}{k}\right)^{T}$ and

$$
A:=\left(\begin{array}{ccc}
\binom{2 k-1}{0} & \cdots & \binom{k}{0} \\
\binom{2 k-1}{1} & \cdots & \binom{k}{1} \\
\cdots & \cdots & \cdots \\
\binom{2 k-1}{k} & \cdots & \binom{k}{k}
\end{array}\right)
$$

On the one hand, it can be deduced from (3.3) that the following equation

$$
A X+b \equiv 0(p)
$$

has a solution

$$
X=\left((-1)^{2 p-k} N^{2 p-k}(S), \cdots,(-1)^{2 p-1} N^{2 p-1}(S)\right)^{T}
$$

Let (A, b) denote the augmented matrix. Then one can deduce that

$$
r((A, b))=r(A) \leq k
$$

On the other hand, since $k<p$, by Lucas Theorem we have

$$
\binom{|S|}{t} \equiv\binom{k-1}{t}(p) \text { for } 0 \leq t \leq k .
$$

It follows that

Thus $r((A, b))=k+1$, a contradiction.
Let $|S|>2 d-2 k+1$, that is $\frac{2 p}{3}<k \leq p-1$. If $d \leq|T| \leq 2(d-k)+1$, then we have that (3.3) holds. If $2(d-k+1) \leq|T| \leq|S|-1$, then we have

$$
\begin{aligned}
1 & +(-1)^{d-k+1} N^{d-k+1}(T)+\cdots+(-1)^{d} N^{d}(T) \\
& +(-1)^{2(d-k+1)} N^{2(d-k+1)}(T)+\cdots+(-1)^{|T|} N^{|T|}(T) \equiv 0(p)
\end{aligned}
$$

It follows that

$$
\begin{aligned}
& \sum_{T|S,|T|=|S|-t}\left(1+(-1)^{d-k+1} N^{d-k+1}(T)+\cdots+(-1)^{d} N^{d}(T)\right. \\
& \left.+(-1)^{2(d-k+1)} N^{2(d-k+1)}(T)+\cdots+(-1)^{|T|} N^{|T|}(T)\right) \equiv 0(p) .
\end{aligned}
$$

Analysing the number of times each subsequence is counted, one obtains

$$
\begin{aligned}
& \binom{|S|}{t}+(-1)^{2 p-k}\binom{2 k-1}{t} N^{2 p-k}(S)+\cdots+(-1)^{2 p-1}\binom{k}{t} N^{2 p-1}(S) \\
+ & (-1)^{2(2 p-k)}\binom{3 k-2 p-1}{t} N^{2(2 p-k)}(S)+\cdots+(-1)^{|S|}\binom{0}{t} N^{|S|}(S) \equiv 0(p)
\end{aligned}
$$

So we have the following equation:

$$
b+B Y \equiv 0(p)
$$

where $b:=\left(\binom{|S|}{0},\binom{|S|}{1}, \cdots,\binom{|S|}{k}\right)^{T}$,

$$
\begin{aligned}
Y:=\left((-1)^{2 p-k} N^{2 p-k}(S), \cdots,\right. & (-1)^{2 p-1} N^{2 p-1}(S), \\
& \left.(-1)^{2(2 p-k)} N^{2(2 p-k)}(S), \cdots,(-1)^{|S|} N^{|S|}(S)\right)^{T}
\end{aligned}
$$

and

$$
B=\left(\begin{array}{cccccc}
\binom{2 k-1}{0} & \cdots & \binom{k}{0} & \binom{3 k-2 p-1}{0} & \cdots & \binom{0}{0} \\
\left(\begin{array}{c}
0-1
\end{array}\right) & \cdots & \binom{k}{1} & \binom{3 k-2 p-1}{1} & \cdots & \binom{0}{1} \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
\binom{2 k-1}{k} & \cdots & \binom{k}{k} & \binom{3 k-2 p-1}{k} & \cdots & \binom{0}{k}
\end{array}\right) .
$$

Obviously (B, b) contains (A, b) as a sub-matrix. Hence

$$
r((B, b))=r((A, b))=k+1
$$

Since $k \leq 3 k-p-i \leq 2 k-1$ and

$$
\binom{3 k-2 p-i}{t} \equiv\binom{3 k-p-i}{t}(p)
$$

for $0 \leq t \leq k$ and $1 \leq i \leq 3 k-2 p$, it follows that

$$
r(B)=r(A) \leq k
$$

This derives a contradiction. So (3.2) is true for $G=C_{p} \oplus C_{p}$.
In the following, we show (3.2) is true for all positive integers m and n with $1<$ $m \mid n$. Equivalently, we show that for every sequence S of length $d+k$, it has a zero-sum subsequence of length less or equal to $d-k$. We proceed by induction on m and n. Suppose that (3.2) is true for all $C_{m^{\prime}} \oplus C_{n^{\prime}}$ with $m^{\prime}\left|m, n^{\prime}\right| n$ and $m^{\prime} \mid n^{\prime}$. We show in the following that (3.2) is true for $C_{m} \oplus C_{n}$. Let p is a prime number such that $m=p m_{1}$, $n=p n_{1}$. We consider the epimorphism

$$
\varphi: C_{m} \oplus C_{n} \rightarrow C_{p} \oplus C_{p}
$$

defined by $\varphi\left(g_{1}+g_{2}\right)=m_{1} g_{1}+n_{1} g_{2}$ with $g_{1} \in C_{m}, g_{2} \in C_{n}$. Then $\operatorname{ker}(\varphi) \cong C_{m_{1}} \oplus C_{n_{1}}$. Let S be a sequence with $|S|=d+k$. Set $d_{1}:=D\left(C_{m_{1}} \oplus C_{n_{1}}\right)$ and $k:=v p+p_{0}$ with $0 \leq p_{0} \leq p-1$. Let

$$
l:=\left\lfloor\frac{|S|-3 p+2}{p}\right\rfloor+1=d_{1}-1+v .
$$

Then l is the least integer such that $|S|-p l<3 p-2$. Since $\eta\left(C_{p} \oplus C_{p}\right)=3 p-2$, there is a decomposition

$$
S=\left(T_{1} \cdots T_{l}\right) T
$$

with $\sigma\left(\varphi\left(T_{i}\right)\right)=0,\left|T_{i}\right| \leq p$ for all $i \in[1, l]$ and $|T| \geq 2 p-1+p_{0}$. By using

$$
s_{\leq 2 p-1-p_{0}}\left(C_{p} \oplus C_{p}\right)=2 p-1+p_{0},
$$

which we showed earlier, there is a subsequence $T_{l+1} \mid T$ such that

$$
\sigma\left(\varphi\left(T_{l+1}\right)\right)=0 \text { and }\left|T_{l+1}\right| \leq 2 p-1-p_{0} .
$$

Since $\sigma\left(T_{i}\right) \in \operatorname{ker}(\varphi)$ for all $i \in[1, l+1]$, it follows that

$$
S_{1}=\sigma\left(T_{1}\right) \cdots \sigma\left(T_{l}\right) \sigma\left(T_{l+1}\right)
$$

is a sequence in $C_{m_{1}} \oplus C_{n_{1}}$ with $\left|S_{1}\right|=d_{1}+v$. By the induction assumption, one has

$$
s_{\leq d_{1}-v}\left(C_{m_{1}} \oplus C_{n_{1}}\right)=d_{1}+v
$$

It implies that there is a zero-sum subsequence $S_{1}^{\prime} \mid S_{1}$ with $\left|S_{1}^{\prime}\right| \leq d_{1}-v$. Let

$$
S^{\prime}=\prod_{\sigma\left(T_{i}\right) \mid S_{1}^{\prime}} T_{i} .
$$

Then S^{\prime} is a zero-sum subsequence of S. If $\sigma\left(T_{l+1}\right) \nmid S_{1}^{\prime}$, then

$$
\left|S^{\prime}\right| \leq\left(d_{1}-v\right) p \leq d-k
$$

If $\sigma\left(T_{l+1}\right) \mid S_{1}^{\prime}$, then

$$
\left|S^{\prime}\right| \leq\left(d_{1}-1-v\right) p+2 p-1-p_{0}=d-k .
$$

Hence there is a zero-sum subsequence $S^{\prime} \mid S$ with $\left|S^{\prime}\right| \leq d-k$. This shows that (3.2) holds for any $C_{m} \oplus C_{n}$ and ends the proof of Theorem 1.2.

4 Proof of Theorem 1.3

Before proving Theorem 1.3, we need a following lemma.
Lemma 4.1. If G is a finite abelian group with $r(G) \geq 2$. Then $s_{\leq D(G)-1}(G)=D(G)+1$.
Proof. By the definition of $D(G)$, there is a minimal zero-sum sequence S with $|S|=$ $D(G)$. Then S apparently has no zero-sum subsequence of length $\leq D(G)-1$. So,

$$
s_{\leq D(G)-1}(G) \geq D(G)+1
$$

It remainds to show that

$$
s_{\leq D(G)-1}(G) \leq D(G)+1
$$

Let T be any sequence of length $D(G)+1$. It is enough to show that T has a zero-sum subsequence of length not exceeding $D(G)-1$. Conversely, suppose that T has no zero-sum subsequence of length at most $D(G)-1$. Then the length of all zero-sum subsequences of T is $D(G)$. For any $g \mid T$, let $T^{\prime}=T-g$. Since $\left|T^{\prime}\right|=D(G), T^{\prime}$ has a zero-sum subsequence. On the other hand, any zero-sum subsequence of T is of length $D(G)$. Thus T^{\prime} itself is zero-sum. Hence we conclude that $g=\sigma(T)$ for any $g \mid T$. So $T=g^{D(G)+1}$, which implies that T has a minimal zero-sum subsequence $g^{\operatorname{ord}(g)}$. Since $r(G) \geq 2$, it follows that $\operatorname{ord}(g) \leq \exp (G)<D(G)$, a contrary. Thus $s_{\leq D(G)-1}(G)=D(G)+1$. The proof of Lemma 4.1 is complete.

In the following, we give the proof of Theorem 1.3.
Proof. We proceed by induction on k. Since $D\left(C_{2}^{r}\right)=r+1$, by Lemma 4.1, one has $s_{\leq r}\left(C_{2}^{r}\right)=r+2$. So, the theorem is true for $k=0$. Let k be a positive integer with $r-k \in\left[\left\lceil\frac{2 r+2}{3}\right\rceil, r\right]$, and assume $s_{\leq r-l}=r+2$ for $0 \leq l \leq k-1$, we show that $s_{\leq r-k}=r+2$. Since $s_{\leq r-k}\left(C_{2}^{r}\right) \geq s_{\leq r-k+1}\left(C_{2}^{r}\right)=r+2$, it suffices to show that

$$
s_{\leq r-k}\left(C_{2}^{r}\right) \leq r+2
$$

Suppose to the contrary that there is a sequence S of length $r+2$ without zero-sum subsequences of length in $[1, r-k]$. By the induction assumption, we have $s_{\leq r-k+1}\left(C_{2}^{r}\right)=$
$r+2$. Thus, there is a zero-sum subsequence $T \mid S$ with $|T|=r-k+1$ and T has to be a minimal zero-sum subsequence. Let $\left\{e_{1}, \ldots, e_{r}\right\}$ be a basis of C_{2}^{r}. Without loss of generality, one can suppose that

$$
T=\prod_{i=1}^{r-k} e_{i}\left(e_{1}+e_{2}+\cdots+e_{r-k}\right)
$$

Thus $S=T S_{1}$, where $S_{1}:=\prod_{j=1}^{k+1} a_{j}$.
Let $\varphi: C_{2}^{r} \rightarrow C_{2}^{k}$ with $\operatorname{ker}(\varphi)=<e_{1}, e_{2}, \cdots, e_{r-k}>$. Then $\varphi\left(S_{1}\right)=\prod_{j=1}^{k+1} \varphi\left(a_{j}\right)$ is a sequence of length $k+1$ in C_{2}^{k}. Since $D\left(C_{2}^{k}\right)=k+1$, there is a subsequence $T_{1} \mid S_{1}$ with $\left|T_{1}\right| \leq k+1$ and $\sigma\left(T_{1}\right) \in \operatorname{ker}(\varphi)$. Again without loss of generality, suppose that $\sigma\left(T_{1}\right)=e_{1}+e_{2}+\cdots+e_{s}$ with $s \leq r-k$. Then

$$
T_{1}^{\prime}=T_{1} \prod_{i=1}^{s} e_{i} \text { and } T_{2}^{\prime}=\prod_{i=s+1}^{r-k} e_{i} T_{1}\left(e_{1}+e_{2}+\cdots+e_{r-k-1}\right)
$$

are zero-sum subsequences of S. Since $r-k \in\left[\left\lceil\frac{2 r+2}{3}\right\rceil, r\right]$, we have $\min \left\{\left|T_{1}^{\prime}\right|,\left|T_{2}^{\prime}\right|\right\} \leq r-k$. Thus S has a zero-sum sequence of length $\leq r-k$. Hence we come to a contrary. Theorem 1.3 is proved.

Remark. By Similar discussion as in the proof of Theorem 1.3, we can show that $s_{\leq r-k}\left(C_{2}^{r}\right)=r+3$ holds for all $r-k \in\left[\left\lceil\frac{4 r+4}{7}\right\rceil,\left\lceil\frac{2 r+2}{3}\right\rceil-1\right]$ if $r \not \equiv 4(7)$ and for all $r-k \in\left[\left\lceil\frac{4 r+7}{7}\right\rceil,\left\lceil\frac{2 r+2}{3}\right\rceil-1\right]$ if $r \equiv 4(7)$.

References

[1] G. Cohen and G. Zemor, Subset sums and coding theory, Asterisque 258 (1999), 327-339.
[2] C. Delorme, O. Ordaz, and D. Quiroz, Some remarks on Davenport constant, Discrete Math., 237 (2001), 119-128.
[3] M. Freeze and W. Schmid, Remarks on a generalization of the Davenport constant, Discrete Math., 310 (2010), 3373-3389.
[4] W. Gao and A. Geroldinger, Zero-sum problems in finite abelian groups: a survey, Expo.Math., 24 (2006), 337-369.
[5] A.Geroldinger and F.Halter-Koch, Non-unique factorizations, Algebraic, Combinatorial and Analytic Theory, Chapman and Hall/CRC, 2006.

