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Abstract. Let G be an additive finite abelian group. For a positive integer k, let s≤k(G)
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1 Introduction

Let Cn denote the cyclic group of n elements. Let G be an additive finite abelian group.
It is well known that |G| = 1 or G = Cn1 ⊕ Cn2 · · · ⊕ Cnr with 1 < n1|n2 · · · |nr. Then,
r(G) = r is the rank of G and the exponent exp(G) of G is nr. Let

S := g1 · · · gl

be a sequence with elements in G. We call S a zero-sum sequence if g1 + · · · + gl = 0.
The Davenport constant D(G) is the minimal integer l ∈ N such that every sequence S
over G of length |S| ≥ l has a nonempty zero-sum subsequence. Set

D∗(G) := 1 +
r∑
i=1

(ni − 1).

Then D(G) ≥ D∗(G). Let η(G) denote the smallest integer l ∈ N such that every
sequence S over G of length |S| ≥ l has a nonempty zero-sum subsequence T of length
|T | ≤ exp(G). In this paper, we investigate a following generalization of D(G) and η(G).

Definition 1.1. Denote by s≤k(G) the smallest element l ∈ N ∪ {+∞} such that each
sequence of length l has a non-empty zero-sum subsequence of length at most k (k ∈ N).

The constant s≤k(G) was introduced by Delorme, Ordaz and Quiroz [2]. It is trivial
to see that s≤k(G) = D(G) if k ≥ D(G), s≤k(G) = η(G) if k = exp(G) and s≤k(G) =
∞ if 1 ≤ k < exp(G). For general, the problem of determining s≤k(G) is not at all
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trivial. Recently, the exact number of s≤3(C
r
2) is known by the work of Freeze and

Schmid [3], namely, 1 + 2r−1. Besides its own interesting, Cohen and Zemor [1] pointed
out a connection between s≤k(C

r
2) and coding theory. In this paper, we shall determine

s≤k(G) for some groups. Our main results are the followings:

Theorem 1.2. Let G = Cm ⊕ Cn with m|n be an abelian group. Set d := D(G). Then
for all 0 ≤ k ≤ m− 1, one has

s≤d−k(G) = d+ k.

Theorem 1.3. Let r be a positive integer. Then we have that s≤r−k(C
r
2) = r + 2 for all

positive integers r − k ∈ [d2r+2
3
e, r].

2 Preliminaries

In this paper, our notations are coincident with [5] and we briefly present some key
concepts. Let N denote the set of positive integers and N0 = N ∪ {0}.

Let F (G) be the free abelian monoid, multiplicatively written, with basis G. The
elements of F (G) are called sequences over G. Let

S = g1 · · · gl ∈ F (G),

we denote g1 + · · · + gl by σ(S). Every map of abelian groups ϕ : G → H extends to a
map from F (G) to F (H) by setting

ϕ(S) = ϕ(g1) · · ·ϕ(gl).

If ϕ is a homomorphism, then ϕ(S) is a zero-sum sequence if and only if σ(S) ∈ kerϕ.
Let G = H ⊕K be a finite abelian group. And let ϕ : G→ H be a homomorphism with
kerϕ = K and ψ : G→ K be a homomorphism with kerψ = H. If S ∈ F (G) such that
σ(ϕ(S)) = 0, then σ(S) = σ(ψ(S)).

We have the following lemmas:

Lemma 2.1 ( [5]). For G be a p-group or G = Cm ⊕ Cn with 1 ≤ m and m|n, we have

D(G) = D∗(G).

Lemma 2.2 ( [5]). Let m and n be positive integers with m | n. Then

η(Cm ⊕ Cn) = 2m+ n− 2.

Definition 2.3. Let S = g1 · · · gl ∈ F (G) be a sequence of length |S| = l ∈ N0 and let
g ∈ G.
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1. For every k ∈ N0 let

Nk
g (S) := #

{
I ⊂ [1, l] :

∑
i∈I

gi = g and |I| = k
}
.

denote the number of subsequences T of S having sum σ(T ) = g and length |T | = k
(counted with the multiplicity of their appearance in S). When g = 0, Nk

g (S) is
denoted by Nk(S) for short.

2. We define

Ng(S) :=
∑
k≥0

Nk
g (S), N+

g (S) :=
∑
k≥0

N2k
g (S) and N−g (S) :=

∑
k≥0

N2k+1
g (S)

Thus Ng(S) denotes the number of subsequences T of S having sum σ(T ) = g,
N+
g (S) denotes the number of all such subsequences of even length, and N−g (S)

denotes the number of all such subsequences of odd length (each counted with the
multiplicity of its appearance in S).

Lemma 2.4 ( [5]). Let p be a prime, G be a p-group, S = g1 · · · gl ∈ F (G). If l ≥ D(G),
then N+

g (S) ≡ N−g (S) mod p for all g ∈ G. In particular, N+
0 (S) ≡ N−0 (S) mod p.

3 Proof of Theorem 1.2

In this section, we prove Theorem 1.2.

Proof. Suppose that {e1, e2} is a basis of G. That is,

Cm ⊕ Cn = 〈e1〉 ⊕ 〈e2〉

with ord(e1) = m and ord(e2) = n. For a integer k with 1 ≤ k ≤ m− 1, let

S := em−11 en−12 (e1 + e2)
k−2.

Then S is a sequence of length d + k − 1. It is easy to see that S has no zero-sum
subsequence of length in [1, d− k]. It follows that

s≤d−k(G) ≥ d+ k. (3.1)

Then to prove Theorem 1.2, it suffices to show that

s≤d−k(G) ≤ d+ k, (3.2)

holds, which will be done in the following.
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Let p be a prime number. First we show that (3.2) is true for the case m = n = p.
Suppose conversely that (3.2) is false. Then there exits a sequence S of length |S| = d+k
such that S has no zero-sum subsequence of length in [1, d − k]. Thus N i(S) = 0 for
integers i ∈ [1, d − k]. It is easy to see that any zero-sum sequence of length i with
i ∈ [d + 1, 2d − 2k + 1] has a nonempty zero-sum subsequence of length at most d − k.
Then we conclude that N i(S) = 0 for d+ 1 ≤ i ≤ min(|S|, 2d− 2k + 1).

Let |S| ≤ 2d − 2k + 1. Then 0 ≤ k ≤ d+1
3

= 2p
3

. Let T be a subsequence of S with
|T | = |S|− t, where t is a integer such that 0 ≤ t ≤ k. Obviously 0 ≤ N i(T ) ≤ N i(S) = 0
holds for 1 ≤ i ≤ d + 1 and d + 1 ≤ i ≤ |T |. Then by lemma 2.4, we have the following
equation:

1 + (−1)d−k+1Nd−k+1(T ) + · · ·+ (−1)dNd(T ) ≡ 0 (p).

It follows that∑
T |S, |T |=|S|−t

(
1 + (−1)d−k+1Nd−k+1(T ) + · · ·+ (−1)dNd(T )

)
≡ 0 (p).

Analysing the number of times each subsequence is counted, one obtains(
|S|
|T |

)
+ (−1)d−k+1

(
|S| − (d− k + 1)

|T | − (d− k + 1)

)
Nd−k+1(S) + · · ·+ (−1)d

(
|S| − d
|T | − d

)
Nd(S)

=

(
|S|
t

)
+ (−1)2p−k

(
2k − 1

t

)
N2p−k(S) + · · ·+ (−1)2p−1

(
k

t

)
N2p−1(S) ≡ 0 (p). (3.3)

Let b := (
(|S|

0

)
,
(|S|

1

)
, · · · ,

(|S|
k

)
)T and

A :=


(
2k−1
0

)
· · ·

(
k
0

)(
2k−1
1

)
· · ·

(
k
1

)
· · · · · · · · ·(
2k−1
k

)
· · ·

(
k
k

)


On the one hand, it can be deduced from (3.3) that the following equation

AX + b ≡ 0 (p)

has a solution
X = ((−1)2p−kN2p−k(S), · · · , (−1)2p−1N2p−1(S))T .

Let (A,b) denote the augmented matrix. Then one can deduce that

r((A, b)) = r(A) ≤ k.

On the other hand, since k < p, by Lucas Theorem we have(
|S|
t

)
≡
(
k − 1

t

)
(p) for 0 ≤ t ≤ k.
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It follows that

| det((A, b))| ≡

∣∣∣∣∣∣∣∣
(
k−1
0

) (
k
0

)
· · ·

(
2k−1
0

)(
k−1
1

) (
k
1

)
· · ·

(
2k−1
1

)
· · · · · · · · · · · ·(
k−1
k

) (
k
k

)
· · ·

(
2k−1
k

)
∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
(
k−1
0

)
0 · · · 0(

k−1
1

) (
k−1
0

)
· · ·

(
2k−2
0

)
· · · · · · · · · · · ·(
k−1
k

) (
k−1
k−1

)
· · ·

(
2k−2
k−1

)
∣∣∣∣∣∣∣∣ = 1 6≡ 0 (p).

Thus r((A, b)) = k + 1, a contradiction.

Let |S| > 2d− 2k + 1, that is 2p
3
< k ≤ p− 1. If d ≤ |T | ≤ 2(d− k) + 1, then we have

that (3.3) holds. If 2(d− k + 1) ≤ |T | ≤ |S| − 1, then we have

1 + (−1)d−k+1Nd−k+1(T ) + · · ·+ (−1)dNd(T )

+ (−1)2(d−k+1)N2(d−k+1)(T ) + · · ·+ (−1)|T |N |T |(T ) ≡ 0 (p).

It follows that ∑
T |S, |T |=|S|−t

(
1 + (−1)d−k+1Nd−k+1(T ) + · · ·+ (−1)dNd(T )

+ (−1)2(d−k+1)N2(d−k+1)(T ) + · · ·+ (−1)|T |N |T |(T )
)
≡ 0 (p).

Analysing the number of times each subsequence is counted, one obtains(
|S|
t

)
+ (−1)2p−k

(
2k − 1

t

)
N2p−k(S) + · · ·+ (−1)2p−1

(
k

t

)
N2p−1(S)

+(−1)2(2p−k)
(

3k − 2p− 1

t

)
N2(2p−k)(S) + · · ·+ (−1)|S|

(
0

t

)
N |S|(S) ≡ 0 (p).

So we have the following equation:

b+BY ≡ 0 (p)

where b := (
(|S|

0

)
,
(|S|

1

)
, · · · ,

(|S|
k

)
)T ,

Y := ((−1)2p−kN2p−k(S), · · · ,(−1)2p−1N2p−1(S),

(−1)2(2p−k)N2(2p−k)(S), · · · , (−1)|S|N |S|(S))T

and

B =


(
2k−1
0

)
· · ·

(
k
0

) (
3k−2p−1

0

)
· · ·

(
0
0

)(
2k−1
1

)
· · ·

(
k
1

) (
3k−2p−1

1

)
· · ·

(
0
1

)
· · · · · · · · · · · · · · · · · ·(
2k−1
k

)
· · ·

(
k
k

) (
3k−2p−1

k

)
· · ·

(
0
k

)
 .

Obviously (B, b) contains (A, b) as a sub-matrix. Hence

r((B, b)) = r((A, b)) = k + 1.

5



Since k ≤ 3k − p− i ≤ 2k − 1 and(
3k − 2p− i

t

)
≡
(

3k − p− i
t

)
(p)

for 0 ≤ t ≤ k and 1 ≤ i ≤ 3k − 2p, it follows that

r(B) = r(A) ≤ k.

This derives a contradiction. So (3.2) is true for G = Cp ⊕ Cp.

In the following, we show (3.2) is true for all positive integers m and n with 1 <
m|n. Equivalently, we show that for every sequence S of length d + k, it has a zero-sum
subsequence of length less or equal to d − k. We proceed by induction on m and n.
Suppose that (3.2) is true for all Cm′ ⊕ Cn′ with m′|m,n′|n and m′|n′. We show in the
following that (3.2) is true for Cm ⊕ Cn. Let p is a prime number such that m = pm1,
n = pn1. We consider the epimorphism

ϕ : Cm ⊕ Cn → Cp ⊕ Cp,

defined by ϕ(g1 + g2) = m1g1 + n1g2 with g1 ∈ Cm, g2 ∈ Cn. Then ker(ϕ) ∼= Cm1 ⊕ Cn1 .
Let S be a sequence with |S| = d + k. Set d1 := D(Cm1 ⊕ Cn1) and k := vp + p0 with
0 ≤ p0 ≤ p− 1. Let

l :=
⌊ |S| − 3p+ 2

p

⌋
+ 1 = d1 − 1 + v.

Then l is the least integer such that |S| − pl < 3p− 2. Since η(Cp ⊕ Cp) = 3p− 2, there
is a decomposition

S = (T1 · · ·Tl)T
with σ(ϕ(Ti)) = 0, |Ti| ≤ p for all i ∈ [1, l] and |T | ≥ 2p− 1 + p0. By using

s≤2p−1−p0(Cp ⊕ Cp) = 2p− 1 + p0,

which we showed earlier, there is a subsequence Tl+1|T such that

σ(ϕ(Tl+1)) = 0 and |Tl+1| ≤ 2p− 1− p0.

Since σ(Ti) ∈ ker(ϕ) for all i ∈ [1, l + 1], it follows that

S1 = σ(T1) · · ·σ(Tl)σ(Tl+1)

is a sequence in Cm1 ⊕ Cn1 with |S1| = d1 + v. By the induction assumption, one has

s≤d1−v(Cm1 ⊕ Cn1) = d1 + v.

It implies that there is a zero-sum subsequence S ′1|S1 with |S ′1| ≤ d1 − v. Let

S ′ =
∏

σ(Ti)|S′
1

Ti.
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Then S ′ is a zero-sum subsequence of S. If σ(Tl+1) - S ′1, then

|S ′| ≤ (d1 − v)p ≤ d− k.

If σ(Tl+1) | S ′1, then

|S ′| ≤ (d1 − 1− v)p+ 2p− 1− p0 = d− k.

Hence there is a zero-sum subsequence S ′|S with |S ′| ≤ d−k. This shows that (3.2) holds
for any Cm ⊕ Cn and ends the proof of Theorem 1.2.

4 Proof of Theorem 1.3

Before proving Theorem 1.3, we need a following lemma.

Lemma 4.1. If G is a finite abelian group with r(G) ≥ 2. Then s≤D(G)−1(G) = D(G)+1.

Proof. By the definition of D(G), there is a minimal zero-sum sequence S with |S| =
D(G). Then S apparently has no zero-sum subsequence of length ≤ D(G)− 1. So,

s≤D(G)−1(G) ≥ D(G) + 1.

It remainds to show that
s≤D(G)−1(G) ≤ D(G) + 1.

Let T be any sequence of length D(G) + 1. It is enough to show that T has a zero-sum
subsequence of length not exceedingD(G)−1. Conversely, suppose that T has no zero-sum
subsequence of length at most D(G) − 1. Then the length of all zero-sum subsequences
of T is D(G). For any g|T , let T ′ = T − g. Since |T ′| = D(G), T ′ has a zero-sum
subsequence. On the other hand, any zero-sum subsequence of T is of length D(G). Thus
T ′ itself is zero-sum. Hence we conclude that g = σ(T ) for any g|T . So T = gD(G)+1,
which implies that T has a minimal zero-sum subsequence gord(g). Since r(G) ≥ 2, it
follows that ord(g) ≤ exp(G) < D(G), a contrary. Thus s≤D(G)−1(G) = D(G) + 1. The
proof of Lemma 4.1 is complete.

In the following, we give the proof of Theorem 1.3.

Proof. We proceed by induction on k. Since D(Cr
2) = r + 1, by Lemma 4.1, one has

s≤r(C
r
2) = r + 2. So, the theorem is true for k = 0. Let k be a positive integer with

r−k ∈ [d2r+2
3
e, r], and assume s≤r−l = r+2 for 0 ≤ l ≤ k−1, we show that s≤r−k = r+2.

Since s≤r−k(C
r
2) ≥ s≤r−k+1(C

r
2) = r + 2, it suffices to show that

s≤r−k(C
r
2) ≤ r + 2.

Suppose to the contrary that there is a sequence S of length r + 2 without zero-sum
subsequences of length in [1, r−k]. By the induction assumption, we have s≤r−k+1(C

r
2) =
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r + 2. Thus, there is a zero-sum subsequence T |S with |T | = r − k + 1 and T has to
be a minimal zero-sum subsequence. Let {e1, ..., er} be a basis of Cr

2 . Without loss of
generality, one can suppose that

T =
r−k∏
i=1

ei(e1 + e2 + · · ·+ er−k).

Thus S = TS1, where S1 :=
k+1∏
j=1

aj.

Let ϕ : Cr
2 → Ck

2 with ker(ϕ) =< e1, e2, · · · , er−k >. Then ϕ(S1) =
k+1∏
j=1

ϕ(aj) is

a sequence of length k + 1 in Ck
2 . Since D(Ck

2 ) = k + 1, there is a subsequence T1|S1

with |T1| ≤ k + 1 and σ(T1) ∈ ker(ϕ). Again without loss of generality, suppose that
σ(T1) = e1 + e2 + · · ·+ es with s ≤ r − k. Then

T ′1 = T1

s∏
i=1

ei and T ′2 =
r−k∏
i=s+1

eiT1(e1 + e2 + · · ·+ er−k−1)

are zero-sum subsequences of S. Since r−k ∈ [d2r+2
3
e, r], we have min{|T ′1|, |T ′2|} ≤ r−k.

Thus S has a zero-sum sequence of length ≤ r−k. Hence we come to a contrary. Theorem
1.3 is proved.

Remark. By Similar discussion as in the proof of Theorem 1.3, we can show that
s≤r−k(C

r
2) = r + 3 holds for all r − k ∈ [d4r+4

7
e, d2r+2

3
e − 1] if r 6≡ 4 (7) and for all

r − k ∈ [d4r+7
7
e, d2r+2

3
e − 1] if r ≡ 4 (7).
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