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Abstract

Shannon entropies for networks have been widely introduced. Several

graph invariants have been used for defining graph entropy measures.

Using majorization theory, we obtain some lower and upper bounds on

graph entropy measures. Moreover we prove more extremal properties

for entropies of graphs.

1 Introduction

The study of entropy measures for exploring network-based systems emerged in the

late fifties based on the seminal work due to Shannon. Entropy of networks or graphs

was introduced by Rashevsky [34] and Mowshowitz [32] when studying mathematical

properties of the information measures. As most of the measures are quite generic, it

seems to be straightforward that graph entropy measures have been used successfully

in various disciplines, e.g., in pattern recognition, biology, chemistry, and computer

science, see [1,4,8,16,25,29,30,33,37,38]. Another example is the Körner entropy [28,36]

introduced from an information theory-specific point of view when he studied some

problem in coding theory.

∗The corresponding author.



Several graph invariants have been used for defining graph entropy measures, such

as the number of vertices, vertex degree sequences, extended degree sequences (i.e., the

second neighbor, third neighbor, etc.), eigenvalues and other roots of graph polynomials

[9,11,14,20,21,23]. Distance-based graph entropies [11,14] have also been studied. In

[7], Cao et al. studied properties of graph entropies based on an information functional

by using degree powers of graphs and now this entropy measure has been further

studied and explored [5, 12, 13]. Note that Dehmer et al. [17] and Emmert-Streib et

al. [24] used graph entropies for applications when it comes to define graph distance

or similarity measures. In [10,27], the authors studied the entropy of weighted graphs.

Very recently, Cao et al. [6] introduced a new graph entropy based on the number

of independent sets and matchings of graphs. Highlights of the recent developments

regarding graph entropy can be found in [15].

In this paper, we study more properties of entropies of graphs. Throughout this

paper, we are concerned with simple connected graphs. Let G = (V, E) be a simple

graph with vertex set V (G) = {v1, v2, . . . , vn} and edge set E(G), where |V (G)| = n

and |E(G)| = m. Let di be the degree of vertex vi for i = 1, 2, . . . , n. The maximum

and minimum vertex degrees are denoted by ∆ and δ, respectively. The distance

between two vertices vi, vj ∈ V (G), denoted by dG(vi, vj), is defined as the length of

a shortest path between vi and vj in G. For vi ∈ V (G), let eG(vi) be the eccentricity

of the vertex vi in G, which is defined as eG(vi) = max{dG(vi, vj) : vj ∈ V (G)}.

Moreover, r ≤ eG(vi) ≤ d (1 ≤ i ≤ n), where r and d are the radius and diameter of

graph G, respectively.

As usual, Kn, K1, n−1 and Pn are respectively, complete graph, star graph and path

graph on n vertices. Denote by DSp, q (p+q+2 = n), a double star obtained by adding

an edge between two centers of K1, p and K1, q. Denoted by Cn,2 = DSn−3,1.

The rest of the paper is structured as follows. In Section 2, we state definitions and

related theorems from theory of majorization, needed for the subsequent considerations.

In Section 3, we present more properties of entropies of graphs. In Section 4, for trees,

we prove an extremal result of the entropy based on degree powers.



2 Preliminaries

Throughout the paper all logarithms have base 2. In the following, we introduce entropy

measures studied in this paper and state some preliminaries [14, 19]. All measures

examined in this paper are based on Shannon’s entropy.

Definition 2.1 Let p = (p1, p2, . . . , pn) be a probability vector, namely, 0 ≤ pi ≤ 1

and
n∑

i=1

pi = 1. The Shannon’s entropy of p is defined as

I(p) = −
n∑

i=1

pi log pi.

To define information-theoretic graph measures, we often consider a tuple (λ1, λ2, . . . , λn)

of non-negative integers λi ∈ N [14]. This tuple forms a probability distribution

p = (p1, p2, . . . , pn), where

pi =
λi

n∑
j=1

λj

, i = 1, 2, . . . , n.

Therefore, the entropy of tuple (λ1, λ2, . . . , λn) is given by

I(λ1, λ2, . . . , λn) = −
n∑

i=1

pi log pi = log

(
n∑

i=1

λi

)
−

n∑
i=1

λi
n∑

j=1

λj

log λi.

In the literature, there are various ways to obtain the tuple (λ1, λ2, . . . , λn), like the

so-called magnitude-based information measures introduced by Bonchev and Trinajstić

[2], or partition-independent graph entropies, introduced by Dehmer [14,22], which are

based on information functionals.

We now introduce two definitions and one theorem from the theory of majorization.

Throughout this paper, we consider nonincreasing arrangement of each vector in Rn,

that is, for any x = (x1, . . . , xn) ∈ Rn, we consider x1 ≥ x2 ≥ · · · ≥ xn. With

considering this arrangement on vectors x and y ∈ Rn, the following definitions are

given in [31].



Definition 2.2 [31] For x, y ∈ Rn, x ≺ y if
k∑

i=1

xi ≤
k∑

i=1

yi, k = 1, 2, . . . , n− 1,

n∑
i=1

xi =
n∑

i=1

yi.

When x ≺ y, x is said to be majorized by y (y majorizes x).

Definition 2.3 [31] For x, y ∈ Rn, x ≺
W

y if

k∑
i=1

xi ≤
k∑

i=1

yi, k = 1, 2, . . . , n,

and x ≺W
y if

k∑
i=1

xn+1−i ≥
k∑

i=1

yn+1−i, k = 1, 2, . . . , n.

In either case, x is said to be weakly majorized by y (y weakly majorizes x). More

specifically, x is said to be weakly submajorized by y if x ≺
W

y and x is said to be

weakly supermajorized by y if x ≺W
y. Alternatively, we say weakly majorized from

below or weakly majorized from above, respectively.

The following theorem is given in (p. 165, [31]).

Theorem 2.4 [31] For all convex functions g,

x ≺ y ⇒ (g(x1), . . . , g(xn)) ≺W
(g(y1), . . . , g(yn)); (2.1)

and for all concave functions g,

x ≺ y ⇒ (g(x1), . . . , g(xn)) ≺
W

(g(y1), . . . , g(yn)). (2.2)

3 Some results on entropy of graphs

In this section we label the vertices in graph G such that eG(v1) ≥ eG(v2) ≥ · · · ≥

eG(vn), where eG(vi) is the eccentricity of vi in G. We define pi =
eG(vi)

n∑
j=1

eG(vj)
. Therefore,



the entropy is given by

I(G) = −
n∑

i=1

eG(vi)
n∑

j=1

eG(vj)
log

 eG(vi)
n∑

j=1

eG(vj)

 .

Denote by

eG =

 eG(v1)
n∑

j=1

eG(vj)
,

eG(v2)
n∑

j=1

eG(vj)
, . . . ,

eG(vn)
n∑

j=1

eG(vj)

 .

We now give a theorem related to majorization.

Theorem 3.1 Let H and G be two non-isomorphic graphs of order n such that eH ≺

eG. Then I(G) ≤ I(H).

Proof: Let us consider a function g(x) = −x log x. Then we have g′′(x) = − 1
x ln 2

< 0

for any x > 0. Therefore g(xi) is a concave function for xi > 0. Now,

I(G) = −
n∑

i=1

xi log xi,

where xi = eG(vi)
n∑

j=1
eG(vj)

> 0. Since eH ≺ eG, by Theorem 2.4 with the above entropy

definition, we have

I(G) = −
n∑

i=1

eG(vi)
n∑

j=1

eG(vj)
log

eG(vi)
n∑

j=1

eG(vj)
≤ −

n∑
i=1

eH(vi)
n∑

j=1

eH(vj)
log

eH(vi)
n∑

j=1

eH(vj)
= I(H).

Example 3.2 The two non-isomorphic trees H1 and H2 have been shown in Fig. 1.

We have

eH1 =

(
6

53
,
6

53
,
6

53
,
6

53
,
5

53
,
5

53
,
4

53
,
4

53
,
4

53
,
4

53
,
3

53

)
and

eH2 =

(
6

53
,
6

53
,
5

53
,
5

53
,
5

53
,
5

53
,
5

53
,
5

53
,
4

53
,
4

53
,
3

53

)
.



Then, we have
n∑

j=1

eH1(vj) =
n∑

j=1

eH2(vj) = 1.

One can easily see that eH2 ≺ eH1. Moreover, I(H1) < I(H2) by direct checking. By

the above theorem, we have I(H1) ≤ I(H2).

H1 H2

Fig. 1. Trees H1 and H2.

Remark 3.3 Dehmer et al. [18] mentioned that I(Cn, 2) > I(K1, n−1). We have eCn, 2 =( 3

3n− 2
, . . . ,

3

3n− 2︸ ︷︷ ︸
n−2

,
2

3n− 2
,

2

3n− 2

)
and eK1,n−1 =

( 2

2n− 1
, . . . ,

2

2n− 1︸ ︷︷ ︸
n−1

,
1

2n− 1

)
.

Since
eCn, 2(v1)

n∑
j=1

eCn, 2(vj)
=

3

3n− 2
>

2

2n− 1
=

eK1,n−1(v1)
n∑

j=1

eK1,n−1(vj)

and
n−1∑
i=1

eCn, 2(vi)
n∑

j=1

eCn, 2(vj)
=

3n− 4

3n− 2
<

2(n− 1)

2n− 1
=

n−1∑
i=1

eK1,n−1(vi)
n∑

j=1

eK1,n−1(vj)
,

we have that eCn, 2 ⊀ eK1,n−1 and eK1,n−1 ⊀ eCn, 2. But we have I(Cn, 2) > I(K1, n−1).

Remark 3.4 Again in [18], Dehmer et al. conjectured that the comet Cn,2 has maximal

entropy among all trees of order n. Since several other trees have the same value of

entropy as Cn,2, the above statement is not correct. We have eDSp, q = eCn, 2. Then the

conjecture should be the following: the double star DSp, q has maximal entropy among

all trees of order n or I(T ) ≤ I(Cn,2) = I(DSp, q) with equality holding if and only if

T ∼= DSp, q (p+ q + 2 = n).

Theorem 3.5 Let T be a tree of order n. Then

eT (vn)
n∑

j=1

eT (vj)
≥ 1

2n− 1
(3.1)



with equality holding if and only if T ∼= K1, n−1.

Proof: If T ∼= K1, n−1, then the equality holds in (3.1). Otherwise, T � K1, n−1. Since

d = eT (v1) ≥ eT (v2) ≥ · · · ≥ eT (vn) = r and d ≤ 2r, we have eT (vk) − eT (vn) ≤ r =

eT (vn), k = 1, 2, . . . , n. Then

n−1∑
k=1

(eT (vk)− eT (vn)) ≤ (n− 1) eT (vn), that is,
n∑

k=1

eT (vk) ≤ (2n− 1) eT (vn).

The first part of the proof is done.

Let vn be the center of the tree T such that eT (vn) = r. Since T � K1, n−1, then r ≥ 2.

Then there exists a non-pendant vertex vj in T such that vnvj ∈ E(T ). Therefore

eT (vj)− eT (vn) ≤ 1 < r and hence the inequality in (3.1) is strict.

The center C(G) of a graph G is the set of vertices with minimum eccentricity.

A graph G is self-centered (SC) if all its vertices lie in the center C(G). For more

results on self-centered graphs, we refer to [3]. Thus, the eccentric set of a self-centered

graph contains only one element, that is, all the vertices have the same eccentricity.

Equivalently, a self-centered graph is a graph whose diameter equals its radius.

Theorem 3.6 Let G be a self-centered graph of order n. Then we have I(G) = log n ≥

I(K1, n−1).

Proof: For a self-centered graph G, eG(v1) = eG(v2) = · · · = eG(vn). Then we have

I(G) = −
n∑

i=1

1

n
log

(
1

n

)
= log n.

Since I(K1, n−1) = log (2n− 1)− 2(n−1)
2n−1

, we have to prove that

log n ≥ log (2n− 1)− 2(n− 1)

2n− 1
, that is, 1− 1

2n− 1
≥ log

(
2− 1

n

)
.

Let f(x) = 1− 1
2x−1

− log
(
2− 1

x

)
. By some elementary calculations, we have

f ′(x) =
1

2x− 1

(
2

2x− 1
− 1

x ln 2

)
.



Since 2
2x−1

< 1
x ln 2

for x ≥ 2, we have f ′(x) < 0 for x ≥ 2, which implies that f(n) is a

decreasing function on n ≥ 2. Since when n → ∞,

1

2
>

(
1− 1

2n

)2n
2n

2n− 1
, that is, 2−

1
2n−1 > 1− 1

2n
,

we have f(+∞) > 0. Therefore, we have f(n) ≥ f(+∞) > 0. The proof is thus

complete.

Lemma 3.7 Let G be a graph of order n. Then

eG(v1)
n∑

j=1

eG(vj)
≥ 1

n
and

eG(vn)
n∑

j=1

eG(vj)
≤ 1

n
(3.2)

with both equalities hold if and only if G ∼= SC.

Proof: Since

eG(v1) ≥ eG(v2) ≥ · · · ≥ eG(vn) and
n∑

i=1

eG(vi)
n∑

j=1

eG(vj)
= 1,

we get the required result in (3.2). Moreover, both equalities hold if and only if eG(v1) =

eG(v2) = · · · = eG(vn), that is, G ∼= SC.

In [9], Chen et al. studied the maximal and minimal entropy for dendrimers. Here we

obtain the following result for any graph G.

Theorem 3.8 Let G be a graph of order n. Then I(G) ≤ I(SC).

Proof: First we have to prove that

k∑
i=1

eG(vi)
n∑

j=1

eG(vj)
≥ k

n
. (3.3)



By (3.2), the result in (3.3) holds for k = 1 and k = n− 1. For k = n, the equality

holds in (3.3). By contradiction we have to prove that the result in (3.3) holds for any

k, 2 ≤ k ≤ n − 2. For this we assume that there exists a smallest positive integer p

(p ≤ n− 2) such that
p∑

i=1

eG(vi)
n∑

j=1

eG(vj)
<

p

n
. (3.4)

Since

eG(v1) ≥ eG(v2) ≥ · · · ≥ eG(vn),

from the above, we must have

eG(vn) ≤ eG(vn−1) ≤ · · · ≤ eG(vp) <
1

n
.

Using the above result, we get

1 =
n∑

i=1

eG(vi)
n∑

j=1

eG(vj)
=

p∑
i=1

eG(vi)
n∑

j=1

eG(vj)
+

n∑
i=p+1

eG(vi)
n∑

j=1

eG(vj)
<

p

n
+

n− p

n
= 1,

a contradiction. Hence we get the inequality in (3.3) for any k, 1 ≤ k ≤ n.

Therefore eG ≻ eSC and hence I(G) ≤ I(SC), by Theorem 3.1.

4 More on a conjecture of graph entropy

In this section we can assume that d1 ≥ d2 ≥ · · · ≥ dn and denote by

eG =

 dk1
n∑

j=1

dkj

,
dk2

n∑
j=1

dkj

, . . . ,
dkn

n∑
j=1

dkj

 .

Cao et al. [7] introduced the following special graph entropy.

I(G) = −
n∑

i=1

dki
n∑

j=1

dkj

log

 dki
n∑

j=1

dkj

 , (4.1)



where di is the degree of the vertex vi in G. According to [20], we see that λi = dki .

A graph G is said to be r-regular if all of its vertices have the same degree r. For an

r-regular graph G,

I(G) = log n.

Lemma 4.1 Let G be a graph of order n. Then

dk1
n∑

j=1

dkj

≥ 1

n
and

dkn
n∑

j=1

dkj

≤ 1

n
(4.2)

with both equalities hold if and only if G is a regular graph.

Proof: Since

d1 ≥ d2 ≥ · · · ≥ dn and
n∑

i=1

dki
n∑

j=1

dkj

= 1 =
n∑

i=1

1

n
,

we get the required result in (4.2). Moreover, both equalities hold if and only if d1 =

d2 = · · · = dn, that is, G is a regular graph.

We now give a theorem related to majorization.

Theorem 4.2 Let H and G be two non-isomorphic graphs of order n such that eH ≺

eG. Then I(G) ≤ I(H).

Proof: The proof is very similar to Theorem 3.1.

We now give an upper bound on I(G) of any graph G.

Theorem 4.3 Let G be a graph of order n. Then I(G) ≤ I(H) = log n, where H is

a regular graph of order n.

Proof: Same proof as in Theorem 3.8.



The following conjecture was proposed in [7] and the upper bound was proved in [13].

Recently, Ilić proved the following conjecture fully [26].

Conjecture 4.4 Let T be a tree with n vertices and k > 0. Then we have I(T ) ≤

I(Pn), the equality holds if and only if T ∼= Pn; I(T ) ≥ I(Sn), the equality holds if and

only if T ∼= Sn.

Here we give the following result:

Theorem 4.5 Let T (� K1, n−1) be a tree of order n. Then I(T ) ≥ I(Cn, 2).

Proof: We have

eCn, 2 =

(
(n− 2)k

(n− 2)k + 2k + n− 2
,

2k

(n− 2)k + 2k + n− 2
,

1

(n− 2)k + 2k + n− 2
, . . . ,

1

(n− 2)k + 2k + n− 2︸ ︷︷ ︸
n−2

)
.(4.3)

We denote by

Mk(G) =
n∑

i=1

dki (k ≥ 1).

Claim 1. Let T (� K1, n−1) be a tree of order n. Then Mk(T ) ≤ Mk(Cn, 2) <

Mk(K1, n−1) (k ≥ 1 is a positive integer), that is,

Mk(T ) ≤ (n− 2)k + 2k + n− 2 < (n− 1)k + n− 1. (4.4)

Proof of Claim 1: For T ∼= Cn, 2, the equality holds in (4.4). Otherwise, T �

K1, n−1, Cn, 2, that is, ∆ ≤ n−3. Let v1 be the maximum degree vertex in T . Also let vk

be a pendent vertex adjacent to vertex vj (j ̸= 1). We use the following transformation:

T + v1vk − vjvk → T 1.

Now,

Mk(T
1)−Mk(T ) = (d1 + 1)k − dk1 − dkj + (dj − 1)k .



Let us consider a function f(x) = (x + 1)k − xk, x ≥ 1. Then f(x) is an increasing

function on x, we have f(x+1) ≥ f(x), that is, Mk(T
1) ≥ Mk(T ). We apply the above

transformation several times, finally we obtain the tree Cn, 2. This proves Claim 1.

Since T � K1, n−1 (∆ ≤ n− 2), one can easily see that

dki
n∑

i=1

dki

≤ (n− 2)k

(n− 2)k + 2k + n− 2
<

(n− 1)k

(n− 1)k + n− 1
. (4.5)

Since T is a tree, we have
n∑

i=3

dki ≥ n− 2. By Claim 1, we get

n∑
i=1

dki ≤ (n− 2)k + 2k + n− 2 ≤
[
(n− 2)k−1 +

2k

n− 2
+ 1

] n∑
i=3

dki ,

that is,
n∑

i=3

dki

n∑
i=1

dki

≥ n− 2

(n− 2)k + 2k + n− 2
,

that is,
dk1 + dk2

n∑
i=1

dki

≤ (n− 2)k + 2k

(n− 2)k + 2k + n− 2
. (4.6)

Again since T � K1, n−1, by Claim 1, we have

dki
n∑

j=1

dkj

≥ 1

(n− 2)k + 2k + n− 2
for i = 1, 2, . . . , n. (4.7)

Since
n∑

i=1

dki
n∑

j=1

dkj

= 1

with (4.6), (4.7) and (4.3), one can easily see that

p∑
i=1

dki
n∑

j=1

dkj

≤ (n− 2)k + 2k + p− 2

(n− 2)k + 2k + n− 2
, 3 ≤ p ≤ n.

From the above result with (4.5) and (4.6), we conclude that eT ≺ eCn, 2 and hence

I(T ) ≥ I(Cn, 2), by Theorem 4.2.



5 Conclusion

As reported by Dehmer and Kraus [18], it turned out that determining extremal values

of graph entropies for some given classes of graphs is intricate because there is a lack

of analytical methods to tackle this particular problem. In this paper, we continue to

prove some extremal properties for some entropies of graphs, especially for trees. We

believe that our methods can be used to prove some general cases. As a future work,

we will try to apply our method to more classes of general graphs.
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