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Abstract

The maximum skew spectral radius and the minimum skew energy among tourna-
ments of a fixed order are shown to be achieved uniquely, up to switching and labeling,
by the transitive tournament.
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1 Introduction

Let Gσ be an oriented graph of order n with underlying graph G and orientation σ. With
respect to a fixed vertex labeling {1, 2, . . . , n}, the skew adjacency matrix of Gσ is the n×n
matrix S(Gσ) = [sij] where sij = 1 = −sji if there is an arc in Gσ from vertex i to vertex
j, and sij = 0 = sji otherwise. The skew spectrum of Gσ is the spectrum of S(Gσ), and is
denoted by SpS(Gσ) = {λ1, . . . , λn} . Since S(Gσ) is a real skew symmetric matrix, SpS(Gσ)
consists of conjugate pairs of pure imaginary numbers. As noted in [7], this implies that the
characteristic polynomial of S(Gσ), called the skew polynomial of Gσ, has the form

pS(Gσ, x) = xn + a1x
n−1 + a2x

n−2 + · · ·+ an−1x+ an (1)

where ak = 0 for all odd k, and ak ≥ 0 for all even k.
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The skew energy of Gσ is

ES(Gσ) =
n∑
i=1

|λi|,

and the skew spectral radius of Gσ is

ρS(Gσ) = max
1≤i≤n

|λi|.

The study of skew energy was initiated by Adiga, Balakrishnan and So [1]. There are many
interesting problems related to skew energy, see the recent survey by Li and Lian [7]. One
(Problem 43 in [7]) is to determine the maximum and the minimum skew energy among all
oriented graphs with a given underlying graph. The difficulty of this problem depends on
the underlying graph. For example, if the underlying graph is a tree then the maximum and
the minimum skew energy are equal because all oriented trees with the same underlying tree
have the same skew energy [1]. However, if the underlying graph is a complete graph then
the problem is more challenging. A tournament Kσ

n of order n is an oriented graph whose

underlying graph is the complete graph Kn of order n. Since Kn has n(n−1)
2

edges and each

edge has two possible choices for its orientation, there are 2
n(n−1)

2 different tournaments of
order n. Tournaments with the maximum skew energy, called optimal tournaments, have
been extensively studied, and it is shown [7] that for many orders the existence of optimal
tournaments is equivalent to the existence of conference matrices and Hadamard matrices of
the same order. Therefore it seems very difficult to find all optimal tournaments.

In this paper, we find all tournaments achieving the minimum skew energy. Additionally,
we show that these are precisely the tournaments achieving the maximum skew spectral
radius.

The paper is organized as follows. Skew spectral properties of the transitive tournament
and general tournaments are studied in Section 2. In Section 3, we discuss the maximum
skew spectral radius of tournaments. In Section 4, we derive some lower bounds for the
skew energy of a general oriented graph, and then deduce the corresponding lower bounds
for the skew energy of a tournament. Moreover, we also discuss the minimum skew energy
of tournaments.

2 Transitive tournament

Among the tournaments of a fixed order n, there is a special one, denoted Kτ
n, which is

defined by its skew adjacency matrix:

S(Kτ
n) =


0 1 1 · · · 1
−1 0 1 · · · 1

...
. . . . . . . . .

...

−1 −1
. . . 0 1

−1 −1 · · · −1 0

 .
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Kτ
n is the unique tournament with the transitive property, or equivalently, it is the unique

tournament (up to labeling) with no directed cycles.

Theorem 2.1. For n ≥ 1, the skew polynomial, qn(x), of Kτ
n satisfies

qn(x) =
1

2
[(x+ 1)n + (x− 1)n] =

bn/2c∑
k=0

(
n

2k

)
xn−2k.

Proof. By definition, qn(x) = det(xI −Kτ
n). By direct computation, q1(x) = x and q2(x) =

x2 + 1. For n ≥ 3, subtracting row 2 of xI − Kτ
n from row 1 and then column 2 of the

resulting matrix from column 1 gives
2x −1− x 0 · · · 0

1− x x −1 · · · −1
0 1 x · · · −1
...

...
... · · · ...

0 1 1 · · · x

 ,
which has the same determinant as xI−Kτ

n. By Laplace expansion of the determinant along
the first row,

qn(x) = 2xqn−1(x) + (1− x2)qn−2(x). (2)

Note that the sequence of polynomials {qn(x) : n = 1, 2, . . .} is uniquely determined by
the initial conditions and the recursion (2). Now it is easy to check that the polyno-
mial 1

2
[(x+ 1)n + (x− 1)n] satisfies the initial conditions and the recursion (2). Hence

qn(x) = 1
2

[(x+ 1)n + (x− 1)n] for all n ≥ 1. The other result now follows from the bi-
nomial expansions of (x+ 1)n and (x− 1)n.

Corollary 2.2. For k ≥ 1, det(S(Kτ
2k)) = 1.

Proof. By definition, q2k(0) = det(−S(Kτ
2k)) = (−1)2k det(S(Kτ

2k)) = det(S(Kτ
2k)). By

Theorem 2.1, q2k(0) = 1. Consequently, we have det(S(Kτ
2k)) = 1.

Theorem 2.3. Let n be a positive integer. Then

(i) SpS(Kτ
n) =

{
i cot( (2k+1)π

2n
) : k = 0, 1, . . . , n− 1

}
where i =

√
−1;

(ii) ρS(Kτ
n) = cot( π

2n
); and

(iii) ES(Kτ
n) =

∑n−1
k=0 | cot( (2k+1)π

2n
)| = 2

∑bn
2
c−1

k=0 cot( (2k+1)π
2n

).

Proof. Let

Nn =


0 1 0 · · · 0
0 0 1 · · · 0
...

. . . . . . . . .
...

0 0 · · · 0 1
−1 0 · · · 0 0

 .
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Then the characteristic polynomial of Nn is xn + 1. Thus the spectrum of Nn is{
e

(2k+1)πi
n : k = 0, 1, . . . , n− 1

}
.

Note that S(Kτ
n) = Nn +N2

n + · · ·+Nn−1
n . Hence the spectrum of S(Kτ

n) is{
n−1∑
j=1

e
j(2k+1)πi

n : k = 0, . . . , n− 1

}
=

{
i cot

(
(2k + 1)π

2n

)
: k = 0, . . . , n− 1

}
.

This establishes (i).

Since
∣∣∣cot( (2k+1)π

2n
)
∣∣∣ ≤ cot( π

2n
) for all k, (ii) holds.

By definition, ES(Kτ
n) =

∑n−1
k=0 | cot( (2k+1)π

2n
)| = 2

∑bn
2
c−1

k=0 cot( (2k+1)π
2n

), and (iii) holds

Lemma 2.4. For any vector y with y∗y = 1,

|y∗ (−iS(Kτ
n))y| ≤ cot

π

2n
.

Equality holds if and only if yT = c
[

1 α α2 · · · αn−1
]

for some nonzero c with α = e
πi
n

or e
−πi
n .

Proof. Since S(Kτ
n) is real skew symmetric, −iS(Kτ

n) is Hermitian. By Theorem 2.3,

Sp(−iS(Kτ
n)) =

{
cot

(
(2k + 1)π

2n

)
: k = 0, 1, . . . , n− 1

}
.

Moreover, the maximum (respectively, minimum) eigenvalue is cot π
2n

(respectively, − cot π
2n

)
with corresponding eigenvector [

1 α α2 · · · αn−1
]T
,

where α = e
πi
n (respectively, α = e

−πi
n ). The inequality and the equality case follow from the

Rayleigh principle for Hermitian matrices (see, e.g. [4]).

Lemma 2.5. For any tournament Kσ
n of even order n, det(S(Kσ

n)) ≥ 1.

Proof. Since S(Kσ
n) ≡ S(Kτ

n) (mod 2), detS(Kσ
n) ≡ detS(Kτ

n) (mod 2). By Corollary 2.2,
detS(Kτ

n) = 1 because n is even. Hence detS(Kσ
n) ≡ 1 (mod 2), and so detS(Kσ

n) 6= 0. The
result follows since the determinant of an integer skew-symmetric matrix is a nonnegative
integer.

Lemma 2.6. Let
pS(x) = xn + a1x

n−1 + · · ·+ an−1x+ an.

be the skew characteristic polynomial of the tournament Kσ
n . Then ak = 0 if k is odd, and

ak ≥
(
n
k

)
if k is even.

4



Proof. For each k, ak is the sum of the principal minors of A of order k (see [4]). Since
S(Kσ

n) is skew-symmetric, each principal minor of A of odd order is 0. Since each principal
submatrix of S(Kσ

n) is the skew-adjacency matrix of a tournament, by Lemma 2.5, each
even order principal minor of A is at least 1. The result follows by noting that there are

(
n
k

)
principal submatrices of A of order k.

3 Maximum skew spectral radius

The following result is a consequence of a more general result about skew symmetric matices
in [3]. For the sake of completeness, we provide the proof in the context of skew adjacency
matrices below. We let arg(z) denote the argument of the complex number z, and take
arg(0) to be 0.

Theorem 3.1. For any oriented graph Gσ of order n,

ρS(Gσ) ≤ ρS(Kτ
n) = cot(

π

2n
). (3)

Equality holds if and only if S(Gσ) = QTS(Kτ
n)Q for some signed permutation matrix Q.

Proof. We first establish (3). Let λ be an eigenvalue of S = S(Gσ) such that |λ| = ρS(Gσ).
Then there exists an eigenvector x = [x1, . . . , xn]T such that Sx = λx and x∗x = 1.

Let D = [djk] be the diagonal matrix with djj = 1 if arg(xj) ∈ [0, π), and djj = −1
if arg(xj) ∈ [π, 2π). Hence arg(djjxj) ∈ [0, π). Choose a permutation matrix P such that
y = PDx has the property that arg(y1) ≤ arg(y2) ≤ · · · ≤ arg(yn). Hence y∗y = 1, and for
j < k, arg(yjyk) ∈ [0, π). Thus

1

i
(yjyk − yjyk) = 2 Im(yjyk) ≥ 0,

which implies that ∑
j<k

|yjyk − yjyk| =

∣∣∣∣∣∑
j<k

yjyk − yjyk

∣∣∣∣∣ .
Now consider T = (PD)S(PD)T . Then T = [tjk] is also a skew adjacency matrix, and
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Ty = λy. We have

ρS(Gσ) = |λ| (4)

= |y∗Ty| (5)

=

∣∣∣∣∣∑
j<k

tjk(yjyk − yjyk)

∣∣∣∣∣ (6)

≤
∑
j<k

|tjk||yjyk − yjyk| (7)

≤
∑
j<k

|yjyk − yjyk| (8)

=

∣∣∣∣∣∑
j<k

yjyk − yjyk

∣∣∣∣∣ (9)

= |y∗S(Kτ
n)y| (10)

= |y∗ (−iS(Kτ
n))y| (11)

≤ cot(
π

2n
) by Lemma 2.4. (12)

Hence, (3) holds.
We establish the claims about equality in (3). If S(Gσ) = QTS(Kτ

n)Q for some signed
permutation matrix Q, then Gσ and Kτ

n have the same skew spectrum, and equality holds
in (3).

Now assume that ρS(Gσ) = cot( π
2n

). Then equality holds throughout (4)-(12). Equality
in (12) and Lemma 2.4 imply that

yT = c
[

1 α α2 · · · αn−1
]T
,

where α = e
πi
2n or e

−πi
2n . Hence, for 1 ≤ j < k ≤ n,

yjyk − yjyk = ±2c2i sin
(k − j)π

2n
.

In particular, yjyk − yjyk 6= 0 for all j < k. Equality (8) shows that |tjk| = 1 for j < k
because yjyk − yjyk 6= 0 for j < k. Equality in (7) now implies that the tjk (j < k) are all
equal to +1 or all equal to −1. Consequently, T = S(Kτ

n) or T = −S(Kτ
n). In either case,

T = RS(Kτ
n)RT for some permutation matrix R. Hence S = QTWQ where Q = RPD is a

signed permutation matrix.

An immediate consequence of Theorem 3.1 is the following.

Corollary 3.2. For any tournament Kσ
n of order n,

ρS(Kσ
n) ≤ ρS(Kτ

n) = cot(
π

2n
).

Equality holds if and only if S(Kσ
n) = QTS(Kτ

n)Q for some signed permutation matrix Q.
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4 Minimum skew energy

Given two oriented graphs Gσ1
1 and Gσ2

2 of order n, by (1), their skew polynomials can be
written as:

pS(Gσ
1 , x) =

bn/2c∑
k=0

c(Gσ
1 , 2k)xn−2k

and

pS(Gσ
2 , x) =

bn/2c∑
k=0

c(Gσ
1 , 2k)xn−2k.

respectively. We define Gσ1
1 4 Gσ2

2 if

c(Gσ1
1 , 2k) ≤ c(Gσ2

2 , 2k)

for all k = 0, 1, 2, . . . , bn/2c. An important application of this quasi-order is the following
result from [7].

Theorem 4.1. If Gσ1
1 4 Gσ2

2 then ES(Gσ1
1 ) ≤ ES(Gσ2

2 ), and equality holds if and only if
pS(Gσ1

1 ) = pS(Gσ2
1 ).

We now use Theorem 4.1 and the results from Section 2 to determine the orientations of
a tournament with minimum energy.

Theorem 4.2. For any tournament Kσ
n of order n,

ES(Kσ
n) ≥ ES(Kτ

n).

Equality holds if and only if S(Kσ
n) = QTS(Kτ

n)Q for some signed permutation matrix Q.

Proof. By Theorem 2.1 and Lemma 2.6, Kτ
n 4 Kσ

n for each orientation σ of Kn. By Theorem
4.1, ES(Kσ

n) ≥ ES(Kτ
n). If equality holds, then by Theorem 4.1, Kσ

n and Kτ
n have S(Kσ

n) =
QTS(Kτ

n)Q for some signed permutation matrix Q. Conversely, if S(Kσ
n) = QTS(Kτ

n)Q for
some signed permutation matrix Q, then clearly, Kσ

n and Kτ
n have the same skew energy.

We now estimate ES(Kτ
n).

Corollary 4.3. For a tournament Kσ
n of order n,

ES(Kσ
n) ≥ 2n

π
log
(

csc
π

2n

)
.

Proof. Combining Theorem 4.2 and Theorem 2.3 (iii), we have

ES(Kσ
n) ≥ ES(Kτ

n) = 2

bn
2
c−1∑

k=0

cot(
(2k + 1)π

2n
).
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Using a Riemann sum on the interval [ π
2n
, π
2
] with the partition π

2n
< 3π

2n
< · · · < (2bn/2c−1)π

2n
,

we obtain

log(csc
π

2n
) =

∫ π
2

π
2n

cotx dx ≤ π

n

bn2 c−1∑
k=0

cot
(2k + 1)π

2n


Hence ES(Kτ

n) ≥ 2n
π

log(csc π
2n

).

We end by describing lower bounds on the skew-energy for arbitrary oriented graphs. Let
Gσ be an oriented graph of order n and size m (that is, G has n vertices and m edges).

The lower bound for skew energy

ES(Gσ) ≥
√

4m+ n(n− 2)| det(S(Gσ))|2/n

was established in [2] and improved another bound given in [1].
We provide a bound that takes into account the rank of the skew adjacency matrix.

Theorem 4.4. Let Gσ be an oriented graph of order n and size m. Then ES(Gσ) ≥√
4m+ h(h− 2)p2/h, where h is the rank of S(Gσ), and p is the absolute value of the product

of all nonzero skew eigenvalues of S(Gσ).

Proof. Since S(Gσ) is real and skew-symmetric, its nonzero eigenvalues appear in conjugate
pairs. Hence we may take the nonzero eigenvalues to be ±α1, . . . ,±αr where h = 2r, and
so m =

∑r
i=1 |αi|2 and p = |α1 · · ·αr|2. Using the arithmetic-geometric mean inequality, we

have

ES(Gσ)2 = (2
r∑
i=1

|αi|)2

= 4
r∑
i=1

|αi|2 + 4
∑

1≤i 6=j≤r

|αi||αj|

= 4m+ 4
∑

1≤i 6=j≤r

|αi||αj|

≥ 4m+ 4r(r − 1)|α1 · · ·αr|2/r

= 4m+ h(h− 2)|α1 · · ·αr|4/h

= 4m+ h(h− 2)p2/h.

For any tournament Kσ
n of order n and size m = n(n− 1)/2, by Lemma 2.6, h = n and

p ≥ 1 if n is even, and h = n− 1 and p ≥ n if n is odd. Hence the bounds given by Theorem
4.4 yield

ES(Kσ
n) ≥

{ √
n(3n− 4) if n is even√
2n(n− 1) + (n− 1)(n− 3)n2/(n−1) if n is odd.
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Both these bounds are O(n). The bound given in Corollary 4.3 is O(n lnn). So the bound
in Corollary 4.3 is significantly better than that given by the Theorem 4.4.
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of the Center for Combinatorics in Nankai University where the research in this paper was
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Added after submission. Just after the submission, the authors become aware of Ito’s
paper [6], which contains Theorem 4.2 with the same proof (though obtained independently).
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