On alternatively connected edge-transitive graphs of square-free order

Guang $Li^1 \cdot Zai$ Ping Lu^1

Received: date / Accepted: date

Abstract An edge-transitive graph Γ is called alternatively connected if a subgroup G of the automorphism group of Γ has two orbits on the arc set of Γ , and there exists an alternative walk (with respect to a given G-orbit on arcs) between every pair of vertices of Γ . Employing the standard double covers of digraphs, we give some basic properties of alternatively connected edge-transitive graphs. The main result of this paper is a reduction result on alternatively connected edge-transitive graphs of square-free order. As an application of this result, we give a characterization for alternatively connected edge-transitive graphs of square-free order and valency 6. It is proved that such a graph is either a circulant or constructed from PSL(2, p).

Keywords edge-transitive graph \cdot half-transitive graph \cdot locally-primitive graph \cdot alternatively connected graph \cdot (almost) simple group.

1 Introduction

In this paper we consider only finite and simple graphs.

Let Γ be a graph. We use $V\Gamma$, $E\Gamma$ and Aut Γ to denote its vertex set, edge set and automorphism group, respectively. Recall that an *arc* in a graph is an ordered pair of adjacent vertices. We denote by $A\Gamma$ the arc set of Γ . For a vertex $u \in V\Gamma$, set $\Gamma(u) = \{v \mid (u, v) \in A\Gamma\}$. Then $\Gamma(u)$ is called the *neighborhood* of u in Γ , and the size $|\Gamma(u)|$ is called the *valency* of u. The

Supported by National Natural Science Foundation of China (11371204, 11731002).

Guang Li E-mail: 2120130003@mail.nankai.edu.cn Zai Ping Lu E-mail: lu@nankai.edu.cn

 $^1\mathrm{Center}$ for Combinatorics, LPMC, Nankai University, Tianjin 300071, China

graph Γ is said to be *regular* of valency k if all vertices have the same valency k.

Let Γ be a graph, and let G be a subgroup of Aut Γ . Then G acts on both $E\Gamma$ and $A\Gamma$ naturally by

$$\{u,v\}^g=\{u^g,v^g\} \ \text{ and } \ (u,v)^g=(u^g,v^g), \ g\in G, \ \{u,v\}\in E\varGamma,$$

respectively. The graph Γ is said to be *G*-vertex-transitive, *G*-edge-transitive or *G*-arc-transitive if *G* acting transitively on $V\Gamma$, $E\Gamma$ or $A\Gamma$, respectively. (Note that, for graphs without isolated vertices, the arc-transitivity yields the vertex-transitivity.) If Γ is *G*-edge-transitive but not *G*-arc-transitive, then *G* has two orbits on $A\Gamma$; in this case, Γ is said to be *G*-semisymmetric when Γ is regular and *G* is intransitive on $V\Gamma$, and Γ is said to be *G*-half-transitive when *G* is transitive on $V\Gamma$. For $u \in V\Gamma$, set

$$G_u = \{g \in G \mid u^g = u\},\$$

called the *vertex-stabilizer* of u in G. Then G_u fixes $\Gamma(u)$ setwise. The graph Γ is said to be *G-locally-primitive* if G_u acts primitively on $\Gamma(u)$ for every $u \in V\Gamma$.

This paper is devoted to characterizing edge-transitive graphs of square-free order. In the literature, vertex- or edge-transitive graphs of square-free order has been studied extensively, and many interesting results have appeared. See for example [1,3,4,18,19,21] for those graphs of order a prime or a product of two primes. Recently, several classification results were given about edge-transitive graphs of square-free order. For arc-transitive graphs of square-free order, Feng and Li [7] gave a classification of one-regular graphs and prime valency, and Li et al. [11–13,15] gave a classification of locally-primitive graphs of valency no more than 7. For half-transitive graphs of square-free order, one may deduce a classification of tetravalent graphs from [11,13]. For semisymmetric graphs of square-free order, Liu and Lu [16] gave a explicit list of such graphs of valency 3. Some of the mentioned results were in fact motivated by the observation in [14].

Let Γ be a connected *G*-edge-transitive regular graph of square-free order. Then Γ is *G*-arc-transitive, *G*-semisymmetric or *G*-half-transitive. In [14], the first two cases were considered under the 'locally-primitive' assumption, see [14, Theorems 4 and 30]. In the present paper, we shall deal with the halftransitive case under some restrictions. We first introduce several concepts.

Let Γ be a *G*-half-transitive graph. Then *G* has two orbits on $A\Gamma$, say Δ and $\Delta^* := \{(u, v) \mid (v, u) \in \Delta\}$. For $u, v \in V\Gamma$, a Δ -alternative walk between u and v means a sequence $u = v_0 v_1 \ldots v_{2l} = v$ of odd number of vertices such that $(v_{2i}, v_{2i+1}), (v_{2i+2}, v_{2i+1}) \in \Delta$ for $0 \leq i \leq l - 1$. The graph Γ is called $(\Delta$ -)alternatively connected if there exists a Δ -alternative walk between each pair of distinct vertices. For $u \in V\Gamma$, set

$$\Delta(u) = \{ v \mid (u, v) \in \Delta \} \text{ and } \Delta^*(u) = \{ v \mid (u, v) \in \Delta^* \}.$$

Then $\Gamma(u) = \Delta(u) \cup \Delta^*(u)$, and G_u fixes both $\Delta(u)$ and $\Delta^*(u)$ setwise. The graph Γ is called *G*-locally-biprimitive if for every $u \in V\Gamma$, the stabilizer G_u acts primitively on both $\Delta(u)$ and $\Delta^*(u)$.

We now outline the main results of this paper. The following reduction result is proved in Section 4.

Theorem 1 Let Γ be a *G*-half-transitive graph of square-free order and valency 2d, where d > 2. Let *M* be a maximal intransitive normal subgroup of *G*. Assume that Γ is alternatively connected and *G*-locally-biprimitive. Then *M* is semiregular on $V\Gamma$ and one of the following holds.

- (1) G has a regular normal cyclic subgroup $\langle a \rangle$, $|G| = d|V\Gamma|$, d is a prime and q-1 is divisible by d for each prime divisor q of $|V\Gamma|$. Setting $G_u = \langle b \rangle$ for $u \in V\Gamma$, we have $b^{-1}ab = a^r$ for some r with $r^d \equiv 1 \pmod{|V\Gamma|}$ and $(r-1, |V\Gamma|) = 1$.
- (2) G = M:X for some subgroup X of G, where X is almost simple with socle T isomorphic to one of the following simple groups:
 - $M_{11}, M_{12}, M_{22}, M_{23}, M_{24}, J_1; A_n \text{ with } n < 3d;$

PSL(2,p) for prime $p \ge 5$; $PSL(2,p^2)$ with p > 3 and d divisible by p+1; $PSL(2,p^f)$ with $f \ge 3$, $p^f > 9$ and d divisible by p^{f-1} ;

simple classical groups of dimension n over $GF(p^f)$ with $p \leq d, n \geq 3$ and $[\frac{n}{2}]f < d;$

simple exceptional groups $G_2(p^f)$, ${}^{3}D_4(p^f)$, $F_4(p^f)$, ${}^{2}E_6(p^f)$ and $E_7(p^f)$ with 2f < d and $p \leq d$.

Moreover, $MT = M \times T$ and Γ is T-half-transitive.

As an application of Theorem 1, we give in Section 5 a characterization of alternatively connected edge-transitive graphs of square-free order and valency 6.

Theorem 2 Let Γ be a *G*-half-transitive graph of square-free order and valency 6, let $u \in V\Gamma$. Assume that *G* is insoluble and Γ is alternatively connected. Then one of the following holds.

- (1) $G \cong PSL(2, p)$ and $G_u \cong D_{12}$, where p is a prime with $p^2 1$ not divisible by 32.
- (2) Either $G \cong PSL(2,p)$ and $G_u \cong S_3$, or $G \cong PGL(2,p)$ and $G_u \cong D_{12}$, where p is a prime with $p \equiv \pm 3 \pmod{8}$ and $p \pm 1$ not a power of 2.
- (3) $G \cong \mathbb{Z}_2 \times PSL(2,p)$, where p is a prime with $p \equiv \pm 11 \pmod{24}$ and $p \pm 1$ not a power of 2.

2 Alternative walks and standard double covers

In this section, we always assume that Δ is a simple digraph with vertex set $V\Delta$. By $(u, v) \in \Delta$ we mean that (u, v) is an arc (directed edge) of Δ . By Δ^* we denote the digraph on $V\Delta$ with arc set $\{(v, u) \mid (u, v) \in \Delta\}$.

For vertices $u, v \in V\Delta$, an alternative walk between u and v means a sequence $u = v_0 v_1 \dots v_{2l} = v$ of odd number of vertices such that

 $(v_{2i}, v_{2i+1}), (v_{2i+2}, v_{2i+1}) \in \Delta$ for $0 \le i \le l-1$. Define a relation '~' on $V\Delta$ as follows:

 $u \sim v \Leftrightarrow u = v$, or there is an alternative walk between u and v.

It is easily shown that this gives an equivalent relation among the elements of $V\Delta$. Every equivalent class is called an *alternative component* of Δ , and the number of alternative components is called the *alternative index* of Δ , denoted by $\operatorname{alt}(\Delta)$. The digraph Δ is called *alternative connected* if $\operatorname{alt}(\Delta) = 1$, that is, there exists an alternative walk between each pair of distinct vertices of Δ .

The standard double cover of Δ , denoted by $\Delta^{(2)}$, is the (undirected) graph defined on $V\Delta \times \{1,2\}$ such that $\{(u,1), (v,2)\}$ is an edge if and only if $(u,v) \in \Delta$. For $u \in V\Delta$, set $\Delta(u) = \{v \mid (u,v) \in \Delta\}$ and $\Delta^*(u) = \{v \mid (v,u) \in \Delta\}$. Then we have the following simple observation.

Lemma 1 If $|\Delta^*(u)| \ge 1$ holds for every $u \in V\Delta$, then $\operatorname{alt}(\Delta)$ is equal to the number of connected components of $\Delta^{(2)}$.

Let $\operatorname{Aut}\Delta$ be the automorphism group of Δ , and $G \leq \operatorname{Aut}\Delta$. Then Δ is called *G*-vertex-transitive or *G*-arc-transitive if *G* acts transitively on the vertices or the arcs of Δ , respectively. (If Δ has no isolated vertex, then the arc-transitivity yields the vertex-transitivity.) For each $g \in G$, we obtain an automorphism \hat{g} of $\Delta^{(2)}$ by $(u, i)^{\hat{g}} = (u^g, i)$. Set $\hat{G} = \{\hat{g} \mid g \in G\}$. Then \hat{G} is a subgroup of $\operatorname{Aut}\Delta^{(2)}$ and isomorphic to G, and

$$\widehat{G}_u = \widehat{G}_{(u,i)}$$

for $u \in V\Delta$ and i = 1, 2. Moreover, the following lemma is easily shown.

Lemma 2 Let Δ be a *G*-arc-transitive digraph without isolated vertices. Then (1) $\Delta^{(2)}$ is \widehat{G} -semisymmetric:

(1) Δ is G-semisymmetric;

(2) $\operatorname{alt}(\Delta) = |G: \langle G_u, G_v \rangle|$ for $(u, v) \in \Delta$;

(3) Δ is alternatively connected if and only if $G = \langle G_u, G_v \rangle$ for $(u, v) \in \Delta$; in particular, Δ is alternatively connected if G is primitive on $V\Delta$ unless Δ is a directed cycle of prime length.

Proof(1) is trivial.

Since $\Delta^{(2)}$ is \widehat{G} -edge-transitive, \widehat{G} acts transitively on the set of connected components of $\Delta^{(2)}$. Let $(u, v) \in \Delta$, and let Σ be the connected component which contains the vertices (u, 1) and (v, 2). Let H be the subgroup of G such that \widehat{H} preserves Σ invariantly. Then Σ is \widehat{H} -edge-transitive, and $|\widehat{G} : \widehat{H}|$ is the number of connected components of $\Delta^{(2)}$. Thus $\operatorname{alt}(\Delta) = |\widehat{G} : \widehat{H}|$ by Lemma 1. Since Σ is a connected bipartite graph, by [22], $\langle \widehat{H}_{(u,1)}, \widehat{H}_{(v,2)} \rangle$ acts transitively on $E\Sigma$. This implies that $\widehat{H} = \langle \widehat{H}_{(u,1)}, \widehat{H}_{(v,2)} \rangle$. Note that $\widehat{H}_u = \widehat{H}_{(u,1)} = \widehat{G}_{(u,1)} = \widehat{G}_u$ and $\widehat{H}_v = \widehat{H}_{(v,2)} = \widehat{G}_{(v,2)} = \widehat{G}_v$. Then $\operatorname{alt}(\Delta) =$ $|\widehat{G} : \widehat{H}| = |G : H| = |G : \langle G_u, G_v \rangle|$. Thus (2) holds, and then the first part of (3) follows. Assume that G is primitive on $V\Delta$. Then both G_u and G_v are maximal subgroups of G, and so either $G = \langle G_u, G_v \rangle$ or $G_u = G_v$. The former case says that Γ is alternatively connected. The latter case yields that $G_u = 1$ and G is a cyclic group of prime order, and then Δ is a directed cycle of length |G|. Thus (3) is proved.

Lemma 3 Let Δ be a *G*-arc-transitive digraph with $|\Delta(u)| = 2$ for all $u \in V\Delta$. If Δ is alternatively connected, then $|V\Delta|$ is odd and $(u, v) \in \Delta$ yields $(v, u) \in \Delta$.

Proof Assume that Δ is alternatively connected. Then $\Delta^{(2)}$ is a cycle of length 2n, where $n = |V\Delta|$. Thus $\operatorname{Aut}\Delta^{(2)} \cong D_{4n}$, the dihedral group of order 4n. Noting that $\Delta^{(2)}$ is \widehat{G} -semisymmetric, it implies that $\widehat{G} \cong D_{2n}$, and so $G \cong D_{2n}$. Set $G = \langle a, b \rangle$, where a has order n and b is an involution with $bab = a^{-1}$. Then $\langle a \rangle$ is a regular subgroup of G, and there is $u \in V\Delta$ with $G_u = \langle b \rangle$. Take $u^{a^i} \in \Delta(u)$. Then $G_{u^{a^i}} = G_u^{a^i} = \langle ba^{2^i} \rangle$. By Lemma 2, $G = \langle b, ba^{2^i} \rangle = \langle b, a^{2^i} \rangle$. Then $\langle a \rangle = \langle a^{2^i} \rangle$, it implies that n is odd. Note that $(u, u^{a^{i_b}}) \in \Delta$. We have $(u^{a^{i_b}}, u) = (u, u^{a^{i_b}})^{a^{i_b}} \in \Delta$. Then our result follows from the arc-transitivity of Δ .

For a subgroup G of Aut Δ , the digraph Δ is called G-locally-primitive if for every vertex u, neither $\Delta(u) = \emptyset$ nor $\Delta^*(u) = \emptyset$, and the stabilizer G_u acts primitively on both $\Delta(u)$ and $\Delta^*(u)$. It is easily shown that Δ is G-locallyprimitive if and only if $\Delta^{(2)}$ is \widehat{G} -locally-primitive.

Assume that Δ is *G*-locally-primitive and alternatively connected. Then $\Delta^{(2)}$ is a connected \widehat{G} -locally-primitive graph. (Note that a general analyzing about the class of locally-primitive graphs is given in [8].) It is easy to see that $\Delta^{(2)}$ is a regular bipartite graph. By edge-transitivity of $\Delta^{(2)}$, we know that Δ is *G*-arc-transitive.

Note that every normal subgroup of \widehat{G} is transitive on $V\Delta \times \{1\}$ if and only if it is transitive on $V\Delta \times \{2\}$. We have the following result.

Theorem 3 Let Δ be a *G*-locally-primitive digraph, and let *N* be an intransitive normal subgroup of *G*. Let \mathcal{B} be the set of *N*-orbits, and $G^{\mathcal{B}}$ the permutation group on \mathcal{B} induced by *G*. Assume that Δ is alternatively connected. Then Δ is *G*-arc-transitive; in particular, Δ is *G*-vertex-transitive. Assume further that $|\Delta(u)| > 2$ for some (and so for all) $u \in V\Delta$. Then $G^{\mathcal{B}} \cong G/N$, every *N*-orbit is an independent set of Δ , and *N* is regular on each of its orbits. Moreover, one the following statements hold.

- (1) For $B_1, B_2 \in \mathcal{B}$, the subdigraph $[B_1, B_2]$ of Δ induced by $B_1 \cup B_2$ is either empty or a directed matching. Define a digraph on \mathcal{B} , denoted by Δ_N , such that $(B_1, B_2) \in \Delta_N$ if and only if $(u_1, u_2) \in \Delta$ for some $u_1 \in B_1$ and $u_1 \in$ B_2 . Then Δ_N is $G^{\mathcal{B}}$ -locally-primitive, $G^{\mathcal{B}}$ -arc-transitive and alternatively connected.
- (2) For $B_1, B_2 \in \mathcal{B}$, the subdigraph $[B_1, B_2]$ is either empty or a union of disjoint directed cycles. Define a graph on \mathcal{B} , denoted by Δ_N , such that $\{B_1, B_2\} \in E\Delta_N$ if and only if $[B_1, B_2]$ has a directed cycle. Then Δ_N is $G^{\mathcal{B}}$ -locally-primitive, $G^{\mathcal{B}}$ -arc-transitive, non-bipartite and of valency $|\Delta(u)|$.

Proof By the argument above this theorem, we know that Δ is *G*-arc-transitive. Assume that $|\Delta(u)| > 2$ for $u \in V\Delta$. Then $\Delta^{(2)}$ is a connected \hat{G} -locallyprimitive graph of valency no less than 3. Note that for every $B \in \mathcal{B}$, both $B \times \{1\}$ and $B \times \{2\}$ are \hat{N} -orbits on $V\Delta \times \{1,2\}$. By [8, Lemma 5.1], \hat{N} is semiregular and has at least $|\Delta(u)|$ orbits on $V\Delta \times \{1,2\}$, and \hat{N} is the kernel of the action of \hat{G} on the \hat{N} -orbits. Thus N is semiregular on $V\Delta$, and $G^{\mathcal{B}} \cong G/N$.

Let $B \in \mathcal{B}$. Since Δ is *G*-arc-transitive, *G* is transitive on $V\Delta$, and so \mathcal{B} is a *G*-invariant partition of $V\Delta$. Then for each $g \in G$, either $B^g = B$ or $B \cap B^g = \emptyset$. Noting that Δ is connected, there is $(u, v) \in \Delta$ with $|\{u, v\} \cap B| = 1$. If $\{u^g, v^g\} \subseteq B$ for some $g \in G$, then $B \cap B^{g^{-1}} \neq \emptyset$, and so $B = B^{g^{-1}}$, yielding $\{u, v\} \subseteq B$, a contradiction. Thus, since Δ is *G*-arc-transitive, we know that *B* is an independent set of Δ . Then the first part of this theorem follows.

Let $B_1, B_2 \in \mathcal{B}$ such that $u_i \in B_i$ with $(u_1, u_2) \in \Delta$. Note that each $B_i \times \{j\}$ is an \hat{N} -orbit on $V\Delta \times \{1,2\}$. Consider the subgraphs Σ_1 and Σ_2 of $\Delta^{(2)}$ induced by $(B_1 \times \{1\}) \cup (B_2 \times \{2\})$ and $(B_2 \times \{1\}) \cup (B_1 \times \{2\})$, respectively. Since $\Delta^{(2)}$ is a connected \hat{G} -locally-primitive graph, by [8, Lemma 5.1], Σ_1 is a matching, and Σ_2 is either empty or a matching. If Σ_2 is empty then $[B_1, B_2]$ is a directed matching. If Σ_2 is a matching then $[B_1, B_2]$ is a union of disjoint directed cycles.

Since Δ is *G*-arc-transitive, there are no $B_1, B_2, B_3, B_4 \in \mathcal{B}$ such that $[B_1, B_2]$ is a directed matching and $[B_3, B_4]$ has a directed cycle. Thus Δ_N is well-defined in each of cases (1) and (2). Let $u \in B \in \mathcal{B}$. Then $G_B = NG_u$, and so $G_B^{\mathcal{B}} \cong G_B/N \cong G_u$. Define

$$\theta: \Delta(u) \cup \Delta^*(u) \to \Delta_N(B) \cup (\Delta_N)^*(B), v \mapsto v^N$$

Then θ gives a well-defined bijection between $\Delta(u)$ and $\Delta_N(B)$ and a welldefined bijection between $\Delta^*(u)$ and $(\Delta_N)^*(B)$. (Note that $\Delta_N(B) = (\Delta_N)^*(B)$ for case (2).) Moreover,

$$\theta(v^g) = (v^g)^N = v^{gNg^{-1}g} = (v^N)^g = \theta(v)^g$$

for $g \in G_u$ and $v \in \Delta(u) \cup \Delta^*(u)$. It follows that $G_u^{\Delta(u)}$ and $(G_B^{\mathcal{B}})^{\Delta_N(B)}$ are permutation isomorphic, and so do for $G_u^{\Delta^*(u)}$ and $(G_B^{\mathcal{B}})^{(\Delta_N)^*(B)}$. Thus Δ_N is $G^{\mathcal{B}}$ -locally-primitive.

Since Δ is alternatively connected, $G = \langle G_{u_1}, G_{u_2} \rangle$ for $(u_1, u_2) \in \Delta$. Set $B_i = u_i^N$ for i = 1, 2. Then $G = \langle G_{B_1}, G_{B_2} \rangle$, yielding $G^{\mathcal{B}} = \langle G_{B_1}^{\mathcal{B}}, G_{B_2}^{\mathcal{B}} \rangle$. If Δ_N is a digraph, then (B_1, B_2) is an arc of Δ_N , and so Δ_N is alternatively connected by Lemma 2. Thus (1) holds.

Assume that Δ_N is a graph. Then $\{B_1, B_2\}$ is an edge of Δ_N . Suppose that Δ_N is a bipartite graph. Then both $G_{B_1}^{\mathcal{B}}$ and $G_{B_2}^{\mathcal{B}}$ fix the bipartition of Δ_N . In particular, $\langle G_{B_1}^{\mathcal{B}}, G_{B_2}^{\mathcal{B}} \rangle$ is intransitive on the vertex set of Δ_N . Noting that Δ_N is $G^{\mathcal{B}}$ -vertex-transitive, we have $G^{\mathcal{B}} \neq \langle G_{B_1}^{\mathcal{B}}, G_{B_2}^{\mathcal{B}} \rangle$, a contradiction. Thus Δ_N is not bipartite, and hence (2) holds.

3 Alternatively connected edge-transitive graphs

In this section, we let Γ be a *G*-half-transitive graph of valency 2*d*. Then *G* has exactly two orbits on $A\Gamma$. Let Δ be the digraph on $V\Gamma$ with arc set being one of the *G*-orbits on $A\Gamma$. (Then Δ^* is the digraph on $V\Gamma$ with arc set being the other *G*-orbit on $A\Gamma$.) The *alternative index* $\operatorname{alt}(\Gamma)$ of Γ is defined as $\operatorname{alt}(\Delta)$. By Lemma 3, we have the following result.

Corollary 1 If Γ is a *G*-half-transitive graph of valency 4, then $\operatorname{alt}(\Gamma) > 1$.

Take an edge $\{u, v\} \in E\Gamma$. Since Γ is *G*-vertex-transitive $v = u^g$ for some $g \in G$. Consider the arc-stabilizers of (u, u^g) and $(u^{g^{-1}}, u)$, which are $G_u \cap G_u^g$ and $G_u \cap G_u^{g^{-1}}$ respectively. Suppose that $G_u \cap G_u^g$ and $G_u \cap G_u^{g^{-1}}$ are conjugate in G_u . Set $G_u \cap G_u^g = (G_u \cap G_u^{g^{-1}})^x$ for some $x \in G_u$. Then

$$G_u \cap G_u^g = G_u^x \cap G_u^{g^{-1}x} = G_u \cap G_u^{g^{-1}x} = (G_u^{(g^{-1}x)^{-1}} \cap G_u)^{g^{-1}x} = (G_u \cap G_u^g)^{g^{-1}x},$$

that is, $g^{-1}x$ lies in the normalizer $\mathbf{N}_G(G_u \cap G_u^g)$. Noting that $(u^{g^{-1}x}, u) \in A\Gamma$, since Γ is not G-arc-transitive, $(u^{g^{-1}x}, u)^{g^{-1}x} \neq (u, u^{g^{-1}x})$. This implies that $(g^{-1}x)^2 \notin G_u \cap G_u^g$. In particular, $\mathbf{N}_G(G_u \cap G_u^g)/(G_u \cap G_u^g)$ is not a 2-group. Then, by Lemma 2, we have the following lemma.

Lemma 4 Let Γ be a *G*-half-transitive graph of valency 2*d* with $\operatorname{alt}(\Gamma) = 1$, where d > 2. Let $\{u, u^g\} \in E\Gamma$. Suppose that $G_u \cap G_u^g$ and $G_u \cap G_u^{g^{-1}}$ are conjugate in G_u . Then $\mathbf{N}_G(G_u \cap G_u^g)/(G_u \cap G_u^g)$ is not a 2-group, and $\mathbf{N}_G(G_u \cap G_u^g)$ contains an element *h* such that $u^h \in \Gamma(u)$ and $G = \langle G_u, G_u^h \rangle$.

Take $(u, v) \in \Delta$. Since G is transitive on $V\Gamma$, G_u and G_v are conjugate in G, and so \widehat{G}_u and \widehat{G}_u are conjugate in \widehat{G} . Note that $\widehat{G}_{(u,1)} = \widehat{G}_u$ and $\widehat{G}_{(v,2)} = \widehat{G}_v$. Then $\widehat{G}_{(u,1)}$ and $\widehat{G}_{(v,2)}$ are conjugate in \widehat{G} . Let d = 3 and $\operatorname{alt}(\Gamma) = 1$. Note that $\Delta^{(2)}$ is a connected \widehat{G} -semisymmetric cubic graph. By [9], $G_u \cong \widehat{G}_u \cong \mathbb{Z}_3$, S_3 , D_{12} , S_4 or $\mathbb{Z}_2 \times S_4$. In this case, noting that $|G_u : (G_u \cap G_v)| = 3$, we know that $G_u \cap G_v$ is a Sylow 2-subgroup of G_u . Since all Sylow 2-subgroup of G_u are conjugate, by Lemma 4, we have the following result.

Lemma 5 Let Γ be a *G*-half-transitive graph of valency 6 with $alt(\Gamma) = 1$. Let $\{u, v\} \in E\Gamma$. Then

- (1) $G_u \cong \mathbb{Z}_3$, S_3 , D_{12} , S_4 or $\mathbb{Z}_2 \times S_4$;
- (2) $\mathbf{N}_G(G_u \cap G_v)$ is not a 2-group, and $\mathbf{N}_G(G_u \cap G_v)$ contains an element h such that $u^h \in \Gamma(u)$ and $G = \langle G_u, G_u^h \rangle$.

Recall that Γ is G-locally-biprimitive if Δ is G-locally-primitive. The following result give an undirected version of Theorem 3.

Theorem 4 Let Γ be a *G*-half-transitive graph of valency 2d with $\operatorname{alt}(\Gamma) = 1$, where d > 2. Assume that Γ is *G*-locally-biprimitive. Let *N* be an intransitive normal subgroup of *G*, and let \mathcal{B} be the set of *N*-orbits. Then $G^{\mathcal{B}} \cong G/N$, every N-orbit is an independent set of Γ , and N is regular on each of its orbits. Define a graph on \mathcal{B} , denoted by Γ_N , such that $\{B_1, B_2\} \in E\Gamma_N$ if and only if $\{u_1, u_2\} \in E\Gamma$ for some $u_1 \in B_1$ and $u_1 \in B_2$. Then either

- (1) Γ_N is $G^{\mathcal{B}}$ -locally-biprimitive, alternatively connected and of valency 2d; or (2) Γ_N is $G^{\mathcal{B}}$ -vertex-transitive, $G^{\mathcal{B}}$ -locally-primitive and of valency d; moreover, for $B_1, B_2 \in \mathcal{B}$, the subgraph $[B_1, B_2]$ is either empty or a union of disjoint cycles.

The next result is a direct consequence from Theorem 4.

Corollary 2 Let Γ be a G-half-transitive graph of valency 2d with $alt(\Gamma) =$ 1, where d > 2. Assume that Γ is G-locally-biprimitive. Let N be a normal subgroup of G. If N is not semiregular on $V\Gamma$, then Γ is N-half-transitive.

Proof Let N be a normal subgroup of G. Assume that N is not semiregular on $V\Gamma$. By [11, Lemma 3.1], for each $u \in V\Gamma$, the stabilizer N_u acts nontrivially on $\Gamma(u)$, and all N_u -orbits on $\Gamma(u)$ have the same length. Since N_u is normal in G_u and Γ is G-locally-biprimitive, N_u has two orbits on $\Gamma(u)$ which are the orbits of G_u . Moreover, by Theorem 4, N is transitive on $V\Gamma$. Thus Γ is N-half-transitive.

4 The graphs of square-free order

Let Γ be a G-half-transitive graph of square-free order and valency 2d, where d > 2. Assume that Γ is G-locally-biprimitive, and $\operatorname{alt}(\Gamma) = 1$.

Let M be a maximal intransitive normal subgroup of G, and let \mathcal{B} be the set of *M*-orbits. Then every nontrivial normal subgroup of $G^{\mathcal{B}}$ is transitive on \mathcal{B} . Then, by [14, Lemma 12], either $|\mathcal{B}| = p$ and $G^{\mathcal{B}} \cong \mathbb{Z}_p:\mathbb{Z}_l$ for an odd prime p and a divisor l of p-1, or $G^{\mathcal{B}}$ is almost simple. For the former case, by [13, Lemma 2.5], we conclude that l = d is an odd prime.

Lemma 6 Assume that $G^{\mathcal{B}} \cong \mathbb{Z}_p:\mathbb{Z}_d$. Then G has a regular normal cyclic subgroup $\langle a \rangle$, |G| is square-free and q-1 is divisible by d for each prime divisor q of $|V\Gamma|$. Moreover, setting $G_u = \langle b \rangle$ for $u \in V\Gamma$, we have $b^{-1}ab = a^r$ for some r with $r^d \equiv 1 \pmod{|V\Gamma|}$ and $(r-1, |V\Gamma|) = 1$.

Proof By Theorem 4, $G^{\mathcal{B}} \cong G/M$ and M is semiregular on $V\Gamma$. Since $|V\Gamma|$ is square-free, |M| is square-free and (|M|, p) = 1. Clearly, G has a normal regular subgroup R := M:P, where $P \cong \mathbb{Z}_p$. Let q be the smallest prime divisor of R. Then, since R has square-free order, R has a unique q'-Hall subgroup N. In particular, N is a characteristic subgroup of R, and hence N is normal in G. Note N is also a maximal intransitive normal subgroup of G. Then Ginduces a permutation group on the N-orbits, which is isomorphic to $\mathbb{Z}_q:\mathbb{Z}_d$ with q-1 divisible by d. Thus d is the smallest prime divisor of |G| = dp|M|. Without loss of generality, we let q = p. Note that G has square-free order. It is well-known and easily shown that $G = \langle c \rangle \times (\langle a \rangle; \langle b \rangle)$ for some a, b, $c \in G$, where $\langle c \rangle$ is the center of G. Note that an abelian transitive permutation group must be regular. Then G is not abelian, and so $a \neq 1$ and $b \neq 1$. Let a and b have orders m and n, respectively.

Take an edge $\{u, v\} \in E\Gamma$. Then $G = \langle G_u, G_v \rangle$ by Lemma 2. Note that for every prime divisor of $|\langle c \rangle \times \langle a \rangle|$, the group G has a unique subgroup of order r. It follows that both G_u and G_v are conjugate to a subgroup of $\langle b \rangle$. Without loss of generality, let $G_u \leq \langle b \rangle$. Note that G_u and G_v are conjugate in G, and that every element of G has the form of $c^k b^j a^i$. Then $G_v = G_u^{a^i}$ for some integer i. Set $G_u = \langle b^j \rangle$. Then $G = \langle G_u, G_v \rangle = \langle b^j, a^{-i}b^j a^i \rangle \leq \langle a^i, b^j \rangle = \langle a^i \rangle : \langle b^j \rangle$, yielding c = 1, (i, m) = 1 and (j, n) = 1, and so $G_u = \langle b \rangle$, n = d and $R = \langle a \rangle$. Thus, without loss of generality, we choose i = 1 and j = 1. Set $b^{-1}ab = a^r$. Then $r^d \equiv 1 \pmod{m}$, and $G = \langle b, a^{-1}ba \rangle = \langle b, ba^{1-r} \rangle = \langle a^{r-1}, b \rangle$, and hence (r-1, m) = 1.

Let q be an arbitrary prime divisor of m. Then the q'-Hall subgroup of $\langle a \rangle$ is a maximal intransitive normal subgroup of G. Thus q - 1 is divisible by d by the argument in the first paragraph. This completes the proof.

Remark 1 Let G be the group in Lemma 6. Noting that G has trivial center, it is easily shown that G is a Frobenius group with Frobenius kernel $\langle a \rangle$.

Lemma 7 Assume that G is almost simple. Then soc(G) is (isomorphic to) one of the following simple groups:

$$\begin{split} & \mathrm{M}_{11}, \mathrm{M}_{12}, \mathrm{M}_{22}, \mathrm{M}_{23}, \mathrm{M}_{24}, \mathrm{J}_1; \ A_n \ with \ n < 3d; \\ & \mathrm{PSL}(2,p) \ for \ prime \ p \geq 5; \ \mathrm{PSL}(2,p^2) \ with \ p > 3 \ and \ divisible \ by \ p + 1; \\ & \mathrm{PSL}(2,p^f) \ with \ f \geq 3, \ p^f > 9 \ and \ d \ divisible \ by \ p^{f-1}; \\ & simple \ classical \ groups \ of \ dimension \ n \ over \ \mathrm{GF}(p^f) \ with \ p \leq d, \ n \geq 3 \ and \\ & [\frac{n}{2}]f < d; \\ & simple \ exceptional \ groups \ \mathrm{G}_2(p^f), \ ^3\mathrm{D}_4(p^f), \ \mathrm{F}_4(p^f), \ ^2\mathrm{E}_6(p^f) \ and \ \mathrm{E}_7(p^f) \\ & with \ 2f < d \ and \ p \leq d. \end{split}$$

Proof Let T = soc(G). Since Γ has square-free order, by Corollary 2, Γ is T-half-transitive. It is easy to see that Γ and G satisfy the assumptions of [14, Theorem 1]. Then T is (isomorphic to) one of the following simple groups:

 $\begin{array}{l} \mathrm{M}_{11}, \mathrm{M}_{12}, \mathrm{M}_{22}, \mathrm{M}_{23}, \mathrm{M}_{24}, \mathrm{J}_1; \ \mathrm{A}_n \ \mathrm{with} \ n < 6d; \\ \mathrm{PSL}(2,p) \ \mathrm{for \ prime} \ p \geq 5; \ \mathrm{PSL}(2,p^2) \ \mathrm{with} \ p > 3 \ \mathrm{and} \ 2d \ \mathrm{divisible} \ \mathrm{by} \ p + 1; \\ \mathrm{PSL}(2,p^f) \ \mathrm{with} \ f \geq 3, \ p^f > 9 \ \mathrm{and} \ 2d \ \mathrm{divisible} \ \mathrm{by} \ p^{f-1}; \\ \mathrm{Sz}(2^f) \ \mathrm{with} \ \mathrm{odd} \ f \geq 3 \ \mathrm{and} \ 2d \ \mathrm{divisible} \ \mathrm{by} \ 2^{2f-1}; \end{array}$

simple classical groups of dimension n over $\operatorname{GF}(p^f)$ with $p \leq 2d, n \geq 3$ and $[\frac{n}{2}]f < 2d;$

simple exceptional groups $G_2(p^f)$, ${}^{3}D_4(p^f)$, $F_4(p^f)$, ${}^{2}E_6(p^f)$ and $E_7(p^f)$ with 2f < 2d and $p \leq 2d$.

Checking carefully the argument given in [14], we conclude that the restricted conditions n < 6d', $\lfloor \frac{n}{2} \rfloor f < 2d'$, 2f < 2d' and $p \leq 2d'$ are in fact derived from the facts that $|T:T_u|$ is square-free and each prime divisor of $|T_u|$ is no more than $|T_u:T_{uv}|$. The restricted conditions for PSL(2,p) and $PSL(2,p^f)$ that

2d is divisible by some special integers are from the fact that those special integers are divisors of $|T_u: T_{uv}|$. Given these facts, either T is one of the simple groups listed in this lemma, or $T = \text{Sz}(2^f)$ with odd $f \geq 3$ and d divisible by 2^{2f-1} .

Suppose that $T = \operatorname{Sz}(2^f)$. Let Δ be an orbit of G on $A\Gamma$. Then G_u induces a primitive permutation group $G_u^{\Delta(u)}$ on $\Delta(u)$. By Corollary 2, we conclude that $T_u^{\Delta(u)}$ is a transitive normal subgroup of $G_u^{\Delta(u)}$. Since $|T:T_u|$ is squarefree, inspecting the subgroups of T (see [20]), we get $T_u = Q:\mathbb{Z}_l$, where Q has order 2^{2f} or 2^{2f-1} , and l is a divisor of $2^f - 1$. It follows $\operatorname{soc}(G_u^{\Delta(u)}) \cong \mathbb{Z}_2^t$ for some integer $t \geq 1$, and $T_u^{\Delta(u)} \cong \mathbb{Z}_2^t:\mathbb{Z}_{l'}$, where l' is a divisor of l. Moreover, $d = 2^t$, and so t = 2f or 2f - 1.

Let P be a Sylow 2-subgroup of T with $P \ge Q$. Then P = Q or $Q.\mathbb{Z}_2$. Assume that $Q \ne P$. Then $|Q| = 2^{2f-1}$, and hence $Q \cong \mathbb{Z}_2^{2f-1}$. By [20], all involutions of P are contained in the center of P. It follows that P is abelian, which is impossible as $\operatorname{Sz}(2^f)$ has no abelian Sylow 2-subgroup. Thus P = Q. If t = 2f then $P \cong \mathbb{Z}_2^{2f}$, again a contradiction. Let t = 2f - 1. Then there is a normal subgroup K of P of order 2 such that $P/K \cong \mathbb{Z}_2^{2f-1}$. Consider the Frattini subgroup $\Phi(P)$ of P. By [10, III.3.14], we have $\mathbb{Z}_2 \cong K \ge \Phi(P) = \langle x^2 \mid x \in P \rangle$. In particular, $\Phi(P) = \langle x^2 \rangle$ for each element $x \in P$ of order 4. However, by [20], P contains two elements x and y of order 4 with $x^2 \ne y^2$, a contradiction. Then this lemma follows.

Lemma 8 Assume that $G^{\mathcal{B}}$ is almost simple. Then G = M:X for some subgroup X of G, where X is almost simple with socle isomorphic to $\operatorname{soc}(G^{\mathcal{B}})$ and centralizing M.

Proof By [14, Lemma 28], G = M:X for some subgroup X of G. Then $X \cong G/M \cong G^{\mathcal{B}}$, and so X is almost simple. Since |M| is square-free, M has soluble automorphism group $\operatorname{Aut}(M)$. Noting that $G/\mathbf{C}_G(M) = \mathbf{N}_G(M)/\mathbf{C}_G(M) \lesssim \operatorname{Aut}(M)$, it follows that $G/\mathbf{C}_G(M)$ is soluble. Thus $\operatorname{soc}(X) \leq \mathbf{C}_G(M)$, and the lemma follows.

Finally, Theorem 1 follows from Corollary 2 and Lemmas 6-8.

5 The graphs of valency 6

Let Γ be a *G*-half-transitive graph of square-free order and valency 6. Assume that *G* is insoluble and Γ is alternatively connected. By Theorem 1 and Lemma 8, we set G = M:X, where *M* is a maximal intransitive normal subgroup of *G*, and *X* is an almost simple group with socle *T*. Then Γ is *T*-half-transitive, where *T* normal in *G* and described as in Theorem 1.

5.1 The simple group T

Considering the restricted conditions for T, we know that either $T \cong PSL(2, p)$ for prime $p \ge 5$, or T is one of a finite number of simple groups. Let $u \in V\Gamma$.

Since T is nonabelian simple, |T| is divisible by 4, so T_u has even order as $|T:T_u|$ is square-free. By Lemma 5, T_u is isomorphic to one of S₃, D₁₂, S₄ and $\mathbb{Z}_2 \times S_4$. Since $|T:T_u|$ is square-free, |T| is not divisible by 2⁶ or 3³. Checking the orders of the finite number of candidates other than PSL(2, p) for T, up to isomorphism of groups, we may assume that T is listed in the following lemma.

Lemma 9 $T = A_5, A_6, A_7, M_{11}, J_1$ or PSL(2, p), where p > 5 is a prime.

Lemma 10 $T \notin \{A_5, A_6, A_7\}.$

Proof Assume that $T = A_5$. Then $|T_u| = 6$ or 12. Note that A_5 has no subgroup isomorphic to D_{12} , see the Atlas [5]. Then $T_u \cong S_3$, and so $T_u \cap T_v \cong \mathbb{Z}_2$, where $v \in \Gamma(u)$. In this case, $\mathbf{N}_T(T_u \cap T_v) \cong \mathbb{Z}_2^2$, which contradicts Lemma 5. The group A_6 is excluded by a similar argument.

Assume that $T = A_7$. Then $|T_u| = 12$ or 24, and so $T_u \cong D_{12}$ or S_4 . Suppose that $T_u \cong S_4$. Then $T_u \cap T_v \cong D_8$ for $v \in \Gamma(u)$. Checking the subgroups of A_7 , we get $\mathbf{N}_T(T_u \cap T_v) = (T_u \cap T_v)$, a contradiction. Thus $T_u \cong D_{12}$. Set $T_u = \langle a, b \rangle$, where a has order 6 and b is an involution. Since A_7 consists of even permutations on $\{1, 2, 3, 4, 5, 6, 7\}$, we may choose $a = (1\ 2)(3\ 4)(5\ 6\ 7)$ and $b = (3\ 4)(5\ 6)$, and let $T_u \cap T_v = \langle a^3, b \rangle$. Then $\mathbf{N}_T(T_u \cap T_v) = \langle a^3, b \rangle$: $\langle (1\ 3\ 6)(2\ 4\ 5), (3\ 6)(4\ 5) \rangle \cong S_4$. It is easily shown that, for each $x \in \mathbf{N}_T(T_u \cap T_v)$, the subgroup $\langle T_u, T_u^x \rangle$ fixes either $\{1, 2\}$ or $\{3, 4\}$ setwise. Thus $T \neq \langle T_u, T_u^x \rangle$ for any $x \in \mathbf{N}_T(T_u \cap T_v)$, which contradicts Lemma 5. This completes the proof.

Lemma 11 $T \neq M_{11}$.

Proof Assume that $T = M_{11}$. Then $|T_u| = 24$, and so $T_u \cong S_4$ and $T_u \cap T_v \cong D_8$, where $v \in \Gamma(u)$. Let P be a Sylow 2-subgroup of T with $P > T_u \cap T_v$. Then $P \leq \mathbf{N}_T(T_u \cap T_v)$, and so $\mathbf{N}_T(T_u \cap T_v)$ has odd index in T. Let H be a maximal subgroup of T with $H \geq \mathbf{N}_T(T_u \cap T_v)$. Then $\mathbf{N}_T(T_u \cap T_v) = \mathbf{N}_H(T_u \cap T_v)$. Noting that H has odd index in T, we have $H \cong M_{10}$ or 2.S₄ by the Atlas [5]. Checking the subgroups of H, we conclude that $\mathbf{N}_T(T_u \cap T_v) = \mathbf{N}_H(T_u \cap T_v) = P$, which contradicts Lemma 5. (This was also confirmed by GAP.)

Lemma 12 $T \neq J_1$.

Proof Assume that $T = J_1$. Then $|T_u| = 12$, and so $T_u \cong D_{12}$ and $T_u \cap T_v \cong \mathbb{Z}_2^2$, where $v \in \Gamma(u)$. It follows from the information given in the Atlas [5] that all subgroups of T isomorphic to D_{12} are conjugate. Thus we may choose a maximal subgroup M of T with $\mathbb{Z}_2 \times A_5 \cong M > T_u$. Then $\mathbf{N}_M(T_u \cap T_v) \cong \mathbb{Z}_2 \times A_4$.

By a similar argument as in the proof of Lemma 11, $\mathbf{N}_T(T_u \cap T_v) = \mathbf{N}_H(T_u \cap T_v)$, where H is a maximal subgroup of T of odd index. By the Atlas [5], $H \cong \mathbb{Z}_2 \times A_5$ or $\mathbb{Z}_2^3:(\mathbb{Z}_7:\mathbb{Z}_3)$. It follows that $\mathbf{N}_T(T_u \cap T_v) = \mathbf{N}_H(T_u \cap T_v) \cong \mathbb{Z}_2 \times A_4$. Then $\mathbf{N}_T(T_u \cap T_v) = \mathbf{N}_H(T_u \cap T_v) \cong \mathbf{N}_M(T_u \cap T_v)$, and so $\mathbf{N}_T(T_u \cap T_v) = \mathbf{N}_M(T_u \cap T_v)$. Recalling that $M > T_u$, we have $\langle T_u, T_u^x \rangle \leq M \neq T$ for any $x \in \mathbf{N}_T(T_u \cap T_v)$, which contradicts Lemma 5.

5.2 The proof of Theorem 2

By the foregoing argument, we may let T = PSL(2, p), where p is a prime and $p \ge 7$.

Let $\{u, v\}$ be an edge of Γ . Checking the subgroups of PSL(2, p) (see [10, II.8.27]), we conclude that T_u , T_v and $T_u \cap T_v$ are listed (up to isomorphism) as follows:

$$\frac{T_u, T_v | \mathbf{S}_3 | \mathbf{D}_{12} | \mathbf{S}_4}{T_u \cap T_v | \mathbf{Z}_2 | \mathbf{Z}_2^2 | \mathbf{D}_8}$$

If $T_u \cong S_4$ then we have $|\mathbf{N}_T(T_u \cap T_v)| = 8$ or 16 by checking the subgroups of PSL(2, p), which contradicts Lemma 5. Thus we assume next that $T_u \cong S_3$ or D_{12} .

Let \mathcal{B} be the set of M-orbits, and let $u \in B \in \mathcal{B}$. Since T is transitive on $V\Gamma$, the setwise stabilizer T_B of B in T is transitive on B. Noting that M centralizes T_B and M is regular on B, it follows that T_B induces a regular permutation group on B, see [6, Theorem 4.2A] for example. Then T_u is normal in T_B , and $|T_B:T_u| = |M|$.

Consider the graph Γ_M . Noting that $G^{\mathcal{B}} \cong G/M \cong X$, we identify X with a subgroup of Aut Γ_M . By Theorem 4, Γ_M has valency 6 or 3.

Suppose that Γ_M is a cubic graph. Then $M \neq 1$ and Γ_M is X-arc-transitive. It is easily shown that Γ_M is also T-arc-transitive, and so $T_B \cong \mathbb{Z}_3$, S_3 , D_{12} , S_4 or $\mathbb{Z}_2 \times S_4$ (see [2, 18C]). Recalling that T_B has a normal subgroup $T_u \cong S_3$ or D_{12} , we conclude that $T_B \cong D_{12}$ and $T_u \cong S_3$. Thus $|M| = |T_B : T_u| = 2$. Then Γ_M has odd order $\frac{|V\Gamma|}{2}$, which is impossible as Γ_M is a cubic graph.

By Theorem 4, we assume next that Γ_M is an X-half-transitive alternatively connected graph of order $\frac{|V\Gamma|}{|M|}$ and valency 6. Then the foregoing argument in this subsection works for the pair of Γ_M and T. It follows that $T_B \cong S_3$, D_{12} or S_4 . Recalling T_B has a normal subgroup of index |M|, we conclude that either M = 1, or $M \cong \mathbb{Z}_2$, $T_u \cong S_3$ and $T_B \cong D_{12}$.

Let $T_u \cong D_{12}$. Then M = 1, and so G = PSL(2, p) or PGL(2, p). Noting that $T_u \leq G_u$ and $|G: G_u| = |T: T_u| = |V\Gamma|$, we have $|G_u: T_u| = |G: T|$. If G = PGL(2, p) then G_u has order 24, and so $G_u \cong S_4$; however, S_4 has no subgroup isomorphic to D_{12} . Thus G = T = PSL(2, p). Since $|G: G_u|$ is square-free, $p^2 - 1$ is not divisible by 32. Then part (1) of Theorem 2 follows.

Let $T_u \cong S_3$. Then $T_u \cap T_v \cong \mathbb{Z}_2$, and $\mathbf{N}_T(T_u \cap T_v) \cong \mathbf{D}_{p+\epsilon}$, where $\epsilon = \pm 1$ such that $p + \epsilon$ is divisible by 4. By Lemma 5, $p + \epsilon$ is not a power of 2; in particular $p \neq 7$. Since T has order divisible by 4, $|V\Gamma| = |T:T_u|$ is even and square-free. This implies that $p + \epsilon$ is not divisible by 8. Then $p \equiv \pm 3 \pmod{8}$.

Recall that |M| = 1 or 2. If M = 1 then we get part (2) of Theorem 2. Assume that |M| = 2. Then $T_B \cong D_{12}$ for an *M*-orbit *B* with $u \in B$. Consider the pair Γ_N and *X*. By a similar argument as in the case for $T_u \cong D_{12}$, we know that X = T = PSL(2, p), and so $G = M \times T$. Note that *T* has a subgroup isomorphic to D_{12} . It follows that $p + \epsilon$ is divisible by 12, that is $p \equiv \pm 11 \pmod{24}$. Then part (3) of Theorem 2 occurs.

References

- B. Alspach, M. Y. Xu: ¹/₂-transitive graphs of order 3p. J. Algebraic Combin. 3, 347-355 (1994)
- 2. N.L. Biggs: Algebraic graph theory, Second Edition. Cambridge University Press, Cambridge (1986)
- 3. C. Y. Chao: On the classification of symmetric graphs with a prime number of vertices. Trans. Amer. Math. Soc. 158, 247–256 (1971)
- 4. Y. Cheng, J. Oxley: On weakly symmetric graphs of order twice a prime. J. Combin. Theory Ser. B. 42, 196–211 (1987)
- 5. J. H. Conway, R. T. Curtis, S. P. Noton, R. A. Parker, R. A. Wilson: Atlas of Finite Groups. Clarendon Press, Oxford (1985)
- 6. J. D. Dixon, B. Mortimer: Permutation groups. Springer, New York (1996)
- 7. Y. Q. Feng, Y. T. Li: One-regular graphs of square-free order of prime valency. European J. Combin. **3**2, 165-175 (2011)
- M. Giudici, C. H. Li, C. E. Praeger: Analysing finite locally s-arc transitive graphs. Trans. Amer. Math. Soc. 356, 291-317 (2004)
- 9. D. M. Goldschmidt: Automorphisms of trivalent graphs. Ann. of Math. (2). 111 (2) 377-406 (1980)
- 10. B. Huppert: Endliche Gruppen I Springer-Verlag, (1967)
- C. H. Li, Z. Liu, Z. P. Lu: Tetravalent edge-transitive Cayley graphs of square free order. Discrete Math. 312, 1952-1967 (2012)
- 12. C. H. Li, Z. P. Lu, G. X. Wang: Vertex-transitive cubic graphs of square-free order. J. Graph Theory. **75**, 1-19 (2014)
- 13. C. H. Li, Z. P. Lu, G. X. Wang: The vertex-transitive and edge-transitive tetravalent graphs of square-free order. J. Algebraic Combin. DOI 10.1007/s10801-014-0572-z
- C.H. Li, Z.P. Lu, G.X. Wang: On edge-transitive graphs of square-free order. The Electronic J. combin. 22, #P3.25 (2015)
- C. H. Li, Z. P. Lu, G. X. Wang: Arc-transitive graphs of square-free order and small valency. Discrete Math. 339, 2907-2918 (2016)
- G. X. Liu, Z. P. Lu: On edge-transitive cubic graphs of square-free order. European J. Combin. 45, 41-46 (2015)
- 17. C.E. Praeger: An O'Nan-Scott theorem for finite quasiprimitive permutation groups and an application to 2-arc transitive graphs. J. London Math. Soc. 47, 227–239 (1992)
- C. E. Praeger, R. J. Wang, M. Y. Xu: Symmetric graphs of order a product of two distinct primes. J. Combin. Theory Ser. B. 58, 299-318 (1993)
- C. E. Praeger, M. Y. Xu: Vertex-primitive graphs of order a product of two distinct primes. J. Combin. Theory Ser. B. 59, 245-266 (1993)
- 20. M. Suzuki: On a class of doubly transitive groups. Ann. Math.(2). **7**5, 105-145 (1962)
- 21. R. J. Wang: Half-transitive graphs of order a product of two distinct primes. Comm. Alg. 22, 915-927 (1994)
- 22. R. Weiss: Elations of graphs. Acta Math. Acad. Sci. Hungar. 34, 101-103 (1979)