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Abstract An edge-transitive graph I" is called alternatively connected if a
subgroup G of the automorphism group of I' has two orbits on the arc set
of I'; and there exists an alternative walk (with respect to a given G-orbit
on arcs) between every pair of vertices of I'. Employing the standard double
covers of digraphs, we give some basic properties of alternatively connected
edge-transitive graphs. The main result of this paper is a reduction result
on alternatively connected edge-transitive graphs of square-free order. As an
application of this result, we give a characterization for alternatively connected
edge-transitive graphs of square-free order and valency 6. It is proved that such
a graph is either a circulant or constructed from PSL(2, p).

Keywords edge-transitive graph - half-transitive graph - locally-primitive
graph - alternatively connected graph - (almost) simple group.

1 Introduction

In this paper we consider only finite and simple graphs.

Let I be a graph. We use VI', EI' and Autl’ to denote its vertex set,
edge set and automorphism group, respectively. Recall that an arc in a graph
is an ordered pair of adjacent vertices. We denote by AI' the arc set of I'.
For a vertex u € VI', set I'(u) = {v | (u,v) € AT'}. Then I'(u) is called the
neighborhood of w in I'; and the size |I'(u)| is called the wvalency of u. The
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graph I is said to be regular of valency k if all vertices have the same valency
k.

Let I' be a graph, and let G be a subgroup of Aut!’. Then G acts on both
ET and AT naturally by

{u,v}9 = {w?,v9} and (u,v)? = (u9,v9), g € G, {u,v} € ET,

respectively. The graph I is said to be G-vertez-transitive, G-edge-transitive
or G-arc-transitive if G acting transitively on VI', EI' or AI', respectively.
(Note that, for graphs without isolated vertices, the arc-transitivity yields the
vertex-transitivity.) If I" is G-edge-transitive but not G-arc-transitive, then G
has two orbits on AI'; in this case, I" is said to be G-semisymmetric when I’
is regular and G is intransitive on V' I', and I is said to be G-half-transitive
when G is transitive on VI'. For u € VI, set

G, ={g9€G|u =u},

called the vertez-stabilizer of u in G. Then G,, fixes I'(u) setwise. The graph
I' is said to be G-locally-primitive if G, acts primitively on I'(u) for every
ue VI

This paper is devoted to characterizing edge-transitive graphs of square-free
order. In the literature, vertex- or edge-transitive graphs of square-free order
has been studied extensively, and many interesting results have appeared. See
for example [1,3,4,18,19,21] for those graphs of order a prime or a product
of two primes. Recently, several classification results were given about edge-
transitive graphs of square-free order. For arc-transitive graphs of square-free
order, Feng and Li [7] gave a classification of one-regular graphs and prime
valency, and Li et al. [11-13,15] gave a classification of locally-primitive graphs
of valency no more than 7. For half-transitive graphs of square-free order, one
may deduce a classification of tetravalent graphs from [11,13]. For semisym-
metric graphs of square-free order, Liu and Lu [16] gave a explicit list of such
graphs of valency 3. Some of the mentioned results were in fact motivated by
the observation in [14].

Let I' be a connected G-edge-transitive regular graph of square-free order.
Then I' is G-arc-transitive, G-semisymmetric or G-half-transitive. In [14], the
first two cases were considered under the ‘locally-primitive’ assumption, see
[14, Theorems 4 and 30]. In the present paper, we shall deal with the half-
transitive case under some restrictions. We first introduce several concepts.

Let I' be a G-half-transitive graph. Then G has two orbits on AI', say A
and A* := {(u,v) | (v,u) € A}. For u, v € VI', a A-alternative walk between
u and v means a sequence u = Vg vV ... Uy = v of odd number of vertices such
that (1}21',1121'_;,_1), (U2i+27v2i+1) € Afor 0 <i¢<l[l-—1.The graph I is called
(A-)alternatively connected if there exists a A-alternative walk between each
pair of distinct vertices. For u € VI, set

A(u) = {v | (u,v) € A} and A*(u) = {v | (u,v) € A*}.
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Then I'(u) = A(u) U A*(u), and G,, fixes both A(u) and A*(u) setwise. The
graph I' is called G-locally-biprimitive if for every w € VI', the stabilizer G,,
acts primitively on both A(u) and A*(u).

We now outline the main results of this paper. The following reduction
result is proved in Section 4.

Theorem 1 Let I' be a G-half-transitive graph of square-free order and va-
lency 2d, where d > 2. Let M be a mazimal intransitive normal subgroup of
G. Assume that I' is alternatively connected and G-locally-biprimitive. Then
M is semiregular on VI and one of the following holds.

(1) G has a regular normal cyclic subgroup (a), |G| =d|V |, d is a prime and
q — 1 is divisible by d for each prime divisor q of |VI'|. Setting G,, = (b)
foru € VI, we have b=tab = a" for some r with r¢ = 1 (mod |VT'|) and
(r—1,|VIr|) =1.
(2) G=M:X for some subgroup X of G, where X is almost simple with socle
T isomorphic to one of the following simple groups:
Mlla M12,M22,M23, M24, Jl,' An with n < 3d,
PSL(2,p) for prime p > 5; PSL(2,p?) with p > 3 and d divisible by
p+1; PSL(2,p/) with f >3, pf > 9 and d divisible by p/=;
simple classical groups of dimension n over GF (pf) with p < d, n > 3
and [3]f < d;
simple exceptional groups Go(p’), 3Dy (p?), Fa(p’), 2Es(p?) and E;(p’)
with 2f < d and p < d.

Moreover, MT = M x T and I' is T-half-transitive.

As an application of Theorem 1, we give in Section 5 a characterization of
alternatively connected edge-transitive graphs of square-free order and valency
6.

Theorem 2 Let I' be a G-half-transitive graph of square-free order and valen-
cy 6, let uw € VI'. Assume that G is insoluble and I' is alternatively connected.
Then one of the following holds.

(1) G = PSL(2,p) and G, = Dio, where p is a prime with p* — 1 not divisible
by 32.

(2) Either G = PSL(2,p) and G, = S3, or G = PGL(2,p) and G, = D12,
where p is a prime with p = £3 (mod 8) and p = 1 not a power of 2.

(8) G =7y x PSL(2,p), where p is a prime with p = +11 (mod 24) and p £ 1
not a power of 2.

2 Alternative walks and standard double covers

In this section, we always assume that A is a simple digraph with vertex set
VA. By (u,v) € A we mean that (u,v) is an arc (directed edge) of A. By A*
we denote the digraph on VA with arc set {(v,u) | (u,v) € A}.

For vertices u, v € VA, an alternative walk between u and v mean-
S a sequence u = vgvy ... Vy = v of odd number of vertices such that
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(Ugi,U2i+1),(U2i+2,1}2i+1) € Afor 0 < i <[ — 1. Define a relation ‘~’ on
V A as follows:

u~v <& u=w, or there is an alternative walk between u and v.

It is easily shown that this gives an equivalent relation among the elements of
V A. Every equivalent class is called an alternative component of A, and the
number of alternative components is called the alternative index of A, denoted
by alt(A). The digraph A is called alternative connected if alt(A) = 1, that is,
there exists an alternative walk between each pair of distinct vertices of A.

The standard double cover of A, denoted by A, is the (undirected) graph
defined on VA x {1, 2} such that {(u, 1), (v,2)} is an edge if and only if (u,v) €
A. Foru € VA, set A(u) = {v | (u,v) € A} and A*(u) = {v | (v,u) € A}
Then we have the following simple observation.

Lemma 1 If |A*(u)| > 1 holds for every u € VA, then alt(A) is equal to the
number of connected components of A2,

Let AutA be the automorphism group of A, and G < AutA. Then A
is called G-vertez-transitive or G-arc-transitive if G acts transitively on the
vertices or the arcs of A, respectively. (If A has no isolated vertex, then the
arc-transitivity yields the vertex-transitivity.) For each g € G, we obtain an

automorphism § of A®) by (u,i)9 = (u9,7). Set G= {§| g€ G} Then G is a
subgroup of AutA®) and isomorphic to G, and

Gu = Gl
for u € VA and i = 1, 2. Moreover, the following lemma is easily shown.

Lemma 2 Let A be a G-arc-transitive digraph without isolated vertices. Then

(1) AP s G-semisymmetric;

(2) alt(A) = |G : (Gy, Gy)| for (u,v) € A;

(3) A is alternatively connected if and only if G = (G, Gy) for (u,v) € A; in
particular, A is alternatively connected if G is primitive on VA unless A
1$ a directed cycle of prime length.

Proof (1) is trivial.

Since A is @—edge—tmnsitive7 G acts transitively on the set of connected
components of A®). Let (u,v) € A, and let ¥ be the connected component
which contains the vertices (u, 1) and (v, 2). Let H be the subgroup of G such
that H preserves Y invariantly. Then X' is H- edge-transitive, and \G H |
is the number of connected components of A®). Thus alt(A) = |G : H| by
Lemma 1. Since X is a connected bipartite graph by [22] (FAI(u 1),1?[(1,,2))
acts transmlvely on EJX. This 1mphes that H = (H(u 1),H(v 2))- Note that
Hu = H(u 1) = G(u 1) = G and HU = H(v 2) = G(v 2) = G Then alt(A)
|G :H|=|G: H|=|G : (Gy,Gy)|. Thus (2) holds, and then the first part of
(3) follows.
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Assume that G is primitive on VA. Then both G, and G, are maximal
subgroups of G, and so either G = (G, G,,) or G, = G,,. The former case says
that I' is alternatively connected. The latter case yields that G, = 1 and G
is a cyclic group of prime order, and then A is a directed cycle of length |G|.
Thus (3) is proved.

Lemma 3 Let A be a G-arc-transitive digraph with |A(u)| = 2 for all u €
VA. If A is alternatively connected, then |V A| is odd and (u,v) € A yields
(v,u) € A.

Proof Assume that A is alternatively connected. Then A(®) is a cycle of length
2n, where n = |V A|. Thus AutA®) = Dy, the dihedral group of order 4n.
Noting that A is é—semisymmetric, it implies that G~ Ds,, and so G =
Da,. Set G = (a,b), where a has order n and b is an involution with bab = a~*.
Then (a) is a regular subgroup of G, and there is u € VA with G,, = (b). Take
u® € A(u). Then G .i = G2 = (ba*). By Lemma 2, G = (b,ba® ) = (b, a®).
Then (a) = (a?)), it implies that n is odd. Note that (u,u®?) € A. We have
(u"u) = (u,u?)
of A.

For a subgroup G of AutA, the digraph A is called G-locally-primitive if
for every vertex u, neither A(u) = @) nor A*(u) = (), and the stabilizer G,, acts
primitively on both A(u) and A*(w). It is easily shown that A is G-locally-
primitive if and only if A® is G-locally-primitive.

Assume that A is G-locally-primitive and alternatively connected. Then
A®) is a connected G-locally-primitive graph. (Note that a general analyzing
about the class of locally-primitive graphs is given in [8].) It is easy to see that
A®) is a regular bipartite graph. By edge-transitivity of A(®), we know that
A is G-arc-transitive. R

Note that every normal subgroup of G is transitive on VA x {1} if and
only if it is transitive on VA x {2}. We have the following result.

@'b ¢ A. Then our result follows from the arc-transitivity

Theorem 3 Let A be a G-locally-primitive digraph, and let N be an intransi-
tive normal subgroup of G. Let B be the set of N-orbits, and G® the permuta-
tion group on B induced by G. Assume that A is alternatively connected. Then
A is G-arc-transitive; in particular, A is G-vertex-transitive. Assume further
that |A(u)| > 2 for some (and so for all) u € VA. Then GB = G/N, every
N-orbit is an independent set of A, and N is regular on each of its orbits.
Moreover, one the following statements hold.

(1) For By, By € B, the subdigraph [By, Ba] of A induced by By U By is either
empty or a directed matching. Define a digraph on B, denoted by Ay, such
that (B, Bs) € An if and only if (u1,us) € A for some uy € By and u; €
By. Then Ay is GB-locally-primitive, GB-arc-transitive and alternatively
connected.

(2) For By, By € B, the subdigraph By, Bs| is either empty or a union of
disjoint directed cycles. Define a graph on B, denoted by Ay, such that
{B1, B2} € EAy if and only if [B1, B2] has a directed cycle. Then Ay is
GB-locally-primitive, GB-arc-transitive, non-bipartite and of valency | A(u)|.
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Proof By the argument above this theorem, we know that A is G-arc-transitive.
Assume that |A(u)] > 2 for uw € VA. Then A® is a connected G-locally-
primitive graph of valency no less than 3. Note that for every B € B, both
B x {1} and B x {2} are N-orbits on VA x {1,2}. By [8, Lemma 5. 1, N
is semiregular and has at least |A(u)| orbits on VA x {1,2}, and N is the
kernel of the action of G on the N-orbits. Thus N is semiregular on VA, and
GB = G/N.

Let B € B. Since A is G-arc-transitive, G is transitive on VA, and so B is a
G-invariant partition of VA. Then for each g € G, either BY = B or BNBY =
(. Noting that A is connected, there is (u,v) € A with [{u,v} N B| = 1. If
{u9,v9} C B for some g € G, then BNBY " # (), and so B = BY ', yielding
{u,v} C B, a contradiction. Thus, since A is G-arc-transitive, we know that
B is an independent set of A. Then the first part of this theorem follows.

Let By, By € B such that uw; € B; with (uj,us) € A. Note that each
B; x {j} is an N-orbit on VA x {1,2}. Consider the subgraphs X; and X of
A(Q) induced by (B x {1}) (Bax{2}) and (Byx{1})U(B;1 x{2}), respectively.
Since A® is a connected G- locally-primitive graph, by [8, Lemma 5.1], > is a
matching, and Y is either empty or a matching. If X5 is empty then [By, Bs]
is a directed matching. If X5 is a matching then [By, Bs] is a union of disjoint
directed cycles.

Since A is G-arc-transitive, there are no Bi, Bs, B3, By € B such that
[B1, Bs] is a directed matching and [Bs, By] has a directed cycle. Thus Ay is
well-defined in each of cases (1) and (2). Let u € B € B. Then Gg = NG,
and so G5 = Gp/N = G,,. Define

0: A(u) UA*(u) » An(B)U (Ax)*(B), v s vV

Then 6 gives a well-defined bijection between A(u) and Ay (B) and a well-
defined bijection between A*(u) and (Ayx)*(B). (Note that Ay (B) = (An)*(B)
for case (2).) Moreover,

6(u?) = ()N = vV = (V)7 = f(v)?

for g € G, and v € A(u) U A*(u). It follows that GE™ and (GB)AN(B) are
permutation isomorphic, and so do for G ™ and (GB)(AN)"(B) Thus Ay is
GB-locally-primitive.

Since A is alternatively connected, G = (Gy,,Gu,) for (ui,uz) € A. Set
B; = u} for i =1, 2. Then G = (Gg,,Gp,), yielding G® = (G§ ,GE ). If
Ay is a digraph, then (B, Bs) is an arc of Ay, and so Ay is alternatively
connected by Lemma 2. Thus (1) holds.

Assume that Ay is a graph. Then {Bj, By} is an edge of Ay. Suppose
that Ay is a bipartite graph. Then both Ggl and ng fix the bipartition of
Ap. In particular, (Ggl , Gg2> is intransitive on the vertex set of Ay. Noting
that Ay is GB-vertex-transitive, we have GF # (Ggl,GZg,Q), a contradiction.
Thus Ay is not bipartite, and hence (2) holds.
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3 Alternatively connected edge-transitive graphs

In this section, we let I" be a G-half-transitive graph of valency 2d. Then G has

exactly two orbits on AI'. Let A be the digraph on V' I" with arc set being one

of the G-orbits on AI'. (Then A* is the digraph on VI" with arc set being the

other G-orbit on AT'.) The alternative index alt(I") of I' is defined as alt(A).
By Lemma 3, we have the following result.

Corollary 1 If I' is a G-half-transitive graph of valency 4, then alt(I") > 1.

Take an edge {u,v} € EI'. Since I' is G-vertex-transitive v = u9 for some
g € G. Consider the arc-stabilizers of (u,u9) and (u9 ', u), which are G, N GY
and GUDG{1 respectively. Suppose that G,,NGY, and GUOG{l are conjugate
in Gy. Set G, NGY = (G, NGY ") for some x € Gy,. Then

GuNGY =GENGY * =G,NGY "= (GY ' 'NG,)Y ' = (G,NGY)I 7,

that is, g~ 'x lies in the normalizer Ng (G, NGY). Noting that (ugflx, u) € AT,
since I is not G-arc-transitive, (u9 @, u)? '@ # (u,u9 ©). This implies that
(¢97t2)? € G, N GY. In particular, Ng(G, N GY)/(G, N GY) is not a 2-group.
Then, by Lemma 2, we have the following lemma.

Lemma 4 Let I' be a G-half-transitive graph of valency 2d with alt(I") =
1, where d > 2. Let {u,u9} € EI. Suppose that G, N G% and G, N GY~

are congugate in Gy,. Then Ng(Gy, N GY)/(Gy, N GY) is not a 2-group, and
Ng (G, NGY) contains an element h such that u € I'(u) and G = (G,,G").

Take (u v) € ¢ A. Since G is transitiveon VI, G,, and G, are conjugate in G
and so G and G are conjugate in G. Note that G(u = G and G(U 9) = G
Then G (u,1) and G (v,2) are conjugate in G. Let d = 3 and alt(I") = 1. Note
that A® is a connected G- -semisymmetric cubic graph. By [9], G, = Gu & Zs,
S3, D12, S4 or Zs x Sy. In this case, noting that |G, : (G, NG,)| = 3, we know
that G, N G, is a Sylow 2-subgroup of G,,. Since all Sylow 2-subgroup of G,
are conjugate, by Lemma 4, we have the following result.

Lemma 5 Let I' be a G-half-transitive graph of valency 6 with alt(I") = 1.
Let {u,v} € ET'. Then

(1) Gu = Z3} S37 D12) S4 or ZQ X S4;
(2) Na(Gu N Gy) is not a 2-group, and Ng(G, N Gy,) contains an element h
such that u" € I'(u) and G = (G,,Gh).

Recall that I' is G-locally-biprimitive if A is G-locally-primitive. The fol-
lowing result give an undirected version of Theorem 3.

Theorem 4 Let I' be a G-half-transitive graph of valency 2d with alt(I') = 1,
where d > 2. Assume that I' is G-locally-biprimitive. Let N be an intransitive
normal subgroup of G, and let B be the set of N-orbits. Then GB = G/N,
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every N-orbit is an independent set of I', and N is regular on each of its
orbits. Define a graph on B, denoted by I'y, such that {B1, Bo} € EI'n if and
only if {uy,us} € EI" for some uy € By and u; € Bs. Then either

(1) I'n is GB-locally-biprimitive, alternatively connected and of valency 2d; or

(2) I'n is GB-vertex-transitive, GB-locally-primitive and of valency d; more-
over, for By, By € B, the subgraph [B1, Ba] is either empty or a union of
disjoint cycles.

The next result is a direct consequence from Theorem 4.

Corollary 2 Let I' be a G-half-transitive graph of valency 2d with alt(I") =
1, where d > 2. Assume that I' is G-locally-biprimitive. Let N be a normal
subgroup of G. If N is not semireqular on VI, then I' is N -half-transitive.

Proof Let N be a normal subgroup of G. Assume that IV is not semiregular on
VT. By [11, Lemma 3.1}, for each u € VI, the stabilizer N,, acts nontrivially
on I'(u), and all N,-orbits on I'(u) have the same length. Since N, is normal
in G, and I' is G-locally-biprimitive, N, has two orbits on I'(u) which are
the orbits of G,,. Moreover, by Theorem 4, N is transitive on VI'. Thus I is
N-half-transitive.

4 The graphs of square-free order

Let I" be a G-half-transitive graph of square-free order and valency 2d, where
d > 2. Assume that I' is G-locally-biprimitive, and alt(I") = 1.

Let M be a maximal intransitive normal subgroup of G, and let B be the
set of M-orbits. Then every nontrivial normal subgroup of G? is transitive on
B. Then, by [14, Lemma 12], either |B| = p and G® = Z,:Z; for an odd prime
p and a divisor [ of p — 1, or G® is almost simple. For the former case, by [13,
Lemma 2.5], we conclude that [ = d is an odd prime.

Lemma 6 Assume that GB = 7,,:Z,. Then G has a regular normal cyclic
subgroup {(a), |G| is square-free and q—1 is divisible by d for each prime divisor
q of |VI'|. Moreover, setting G, = (b) for u € VI, we have b=tab = a" for
some r with r® =1 (mod |VT|) and (r — 1,|VI|) = 1.

Proof By Theorem 4, GB = G/M and M is semiregular on VI'. Since |V I|
is square-free, |M| is square-free and (|M|,p) = 1. Clearly, G has a normal
regular subgroup R := M:P, where P =2 Z,,. Let ¢ be the smallest prime divisor
of R. Then, since R has square-free order, R has a unique ¢’-Hall subgroup
N. In particular, N is a characteristic subgroup of R, and hence N is normal
in G. Note N is also a maximal intransitive normal subgroup of G. Then G
induces a permutation group on the N-orbits, which is isomorphic to Z4:Zg
with ¢ — 1 divisible by d. Thus d is the smallest prime divisor of |G| = dp|M].
Without loss of generality, we let ¢ = p. Note that G has square-free order. It
is well-known and easily shown that G = (c¢)x({a):(b)) for some a, b, ¢ € G,
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where (c) is the center of G. Note that an abelian transitive permutation group
must be regular. Then G is not abelian, and so a # 1 and b # 1. Let a and b
have orders m and n, respectively.

Take an edge {u,v} € ET'. Then G = (G, G,) by Lemma 2. Note that for
every prime divisor of |{¢)x(a)|, the group G has a unique subgroup of order
r. It follows that both G,, and G, are conjugate to a subgroup of (b). Without
loss of generality, let G,, < (b). Note that G, and G, are conjugate in G, and
that every element of G has the form of ¢*b7a’. Then G, = G¢  for some integer
i. Set G, = (V). Then G = (Gy,G,) = (,a"Wa') < (a’,b7) = (a?):(b7),
yielding ¢ =1, (i,m) = 1 and (j,n) = 1, and so G,, = {b), n = d and R = (a).
Thus, without loss of generality, we choose i = 1 and j = 1. Set b~ 'ab = a”.
Then r¢ = 1 (mod m), and G = (b,a"'ba) = (b,ba'~") = (a"~1,b), and hence
(r—1,m)=1.

Let g be an arbitrary prime divisor of m. Then the ¢’-Hall subgroup of (a)
is a maximal intransitive normal subgroup of G. Thus ¢ — 1 is divisible by d
by the argument in the first paragraph. This completes the proof.

Remark 1 Let G be the group in Lemma 6. Noting that G has trivial center,
it is easily shown that G is a Frobenius group with Frobenius kernel (a).

Lemma 7 Assume that G is almost simple. Then soc(G) is (isomorphic to)
one of the following simple groups:

M1, My2, Mg, Mag, Moy, Ji; A, with n < 3d;

PSL(2,p) for prime p > 5; PSL(2, p?) with p > 3 and d divisible by p + 1;
PSL(2, pf) with f >3, pf > 9 and d divisible by pf~*;

simple classical groups of dimension n over GF(p/) with p < d, n > 3 and
[3]f <d;

simple exceptional groups Go(pf), 3D4(p?), Fa(p?), 2Es(pf) and E;(p/)
with 2f < d and p <d.

Proof Let T = soc(G). Since I' has square-free order, by Corollary 2, I' is
T-half-transitive. It is easy to see that I" and G satisfy the assumptions of [14,
Theorem 1]. Then T is (isomorphic to) one of the following simple groups:

Mji1, Mio, Mo, Moz, Moy, J1; A,, with n < 6d;

PSL(2, p) for prime p > 5; PSL(2,p?) with p > 3 and 2d divisible by p+ 1;
PSL(2, pf) with f >3, p/ > 9 and 2d divisible by p/~;

Sz(2/) with odd f > 3 and 2d divisible by 22f~1;

simple classical groups of dimension n over GF(pf) with p < 2d, n > 3 and
[3]f < 2d;

simple exceptional groups Ga(p?), *Dy(p’), Fa(p?), 2Ee(p/) and E;(p/)
with 2f < 2d and p < 2d.

Checking carefully the argument given in [14], we conclude that the restricted
conditions ‘n < 6d’, ‘[3]f < 2d’, 2f < 2d’ and ‘p < 2d’ are in fact derived from
the facts that |T : T,| is square-free and each prime divisor of |T;,| is no more
than |T, : Ty.|. The restricted conditions for PSL(2,p) and PSL(2,p/) that
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2d is divisible by some special integers are from the fact that those special
integers are divisors of |T,, : Ty,|. Given these facts, either T is one of the
simple groups listed in this lemma, or T = Sz(2f) with odd f > 3 and d
divisible by 2271

Suppose that 7' = Sz(27). Let A be an orbit of G on AI'. Then G,, induces
a primitive permutation group Gf(u) on A(u). By Corollary 2, we conclude
that T uA () is a transitive normal subgroup of Gqf ) Since |T : T,| is square-
free, inspecting the subgroups of T' (see [20]), we get T, = Q:Z;, where @Q has
order 22f or 227=1 and I is a divisor of 2/ — 1. Tt follows soc(Gi™) = 74 for
some integer ¢ > 1, and TuA(u) ~ 757y, where I’ is a divisor of I. Moreover,
d=2' andsot=2f or 2f — 1.

Let P be a Sylow 2-subgroup of T" with P > Q. Then P = Q or Q.Z,.
Assume that Q # P. Then |Q| = 22/~ and hence Q = Z2/~'. By [20], all
involutions of P are contained in the center of P. It follows that P is abelian,
which is impossible as Sz(2/) has no abelian Sylow 2-subgroup. Thus P = Q.
If t =2f then P & ng, again a contradiction. Let ¢t = 2f — 1. Then there is
a normal subgroup K of P of order 2 such that P/K & ng ~!. Consider the
Frattini subgroup ¢(P) of P. By [10, II1.3.14], we have Zy = K > &(P) =
(z? | z € P). In particular, &(P) = (22) for each element x € P of order 4.
However, by [20], P contains two elements x and y of order 4 with 22 # 2, a
contradiction. Then this lemma follows.

Lemma 8 Assume that G® is almost simple. Then G = M:X for some sub-
group X of G, where X is almost simple with socle isomorphic to soc(G®) and
centralizing M.

Proof By [14, Lemma 28|, G = M:X for some subgroup X of G. Then X &

G/M = GB, and so X is almost simple. Since |M]| is square-free, M has soluble

automorphism group Aut(M). Noting that G/Cg(M) = Ng(M)/Ca(M) <

Aut(M), it follows that G/Cg(M) is soluble. Thus soc(X) < Cg(M), and the

lemma follows. a
Finally, Theorem 1 follows from Corollary 2 and Lemmas 6-8.

5 The graphs of valency 6

Let I' be a G-half-transitive graph of square-free order and valency 6. Assume
that G is insoluble and I is alternatively connected. By Theorem 1 and Lem-
ma 8, we set G = M:X, where M is a maximal intransitive normal subgroup of
G, and X is an almost simple group with socle 7. Then I' is T-half-transitive,
where T normal in G and described as in Theorem 1.

5.1 The simple group T'

Considering the restricted conditions for T', we know that either T' = PSL(2, p)
for prime p > 5, or T is one of a finite number of simple groups. Let u € VI'.
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Since T is nonabelian simple, |T| is divisible by 4, so T,, has even order as
|T : Ty| is square-free. By Lemma 5, T, is isomorphic to one of Sz, D13, Sy
and Zo x Sy. Since |T : T,| is square-free, |T| is not divisible by 26 or 32.
Checking the orders of the finite number of candidates other than PSL(2, p)
for T, up to isomorphism of groups, we may assume that T is listed in the
following lemma.

Lemma 9 T = A5, Ag, A7, My, J1 or PSL(2,p), where p > 5 is a prime.
Lemma 10 T ¢ {A5, Ag, A7}.

Proof Assume that T = As. Then |T,| = 6 or 12. Note that A5 has no sub-
group isomorphic to D2, see the Atlas [5]. Then T, 2 S5, and so T,,NT,, = Zo,
where v € I'(u). In this case, Ny (T, NT,) = Z3, which contradicts Lemma 5.
The group Ag is excluded by a similar argument.

Assume that T = A;. Then |T,| = 12 or 24, and so T,, =& Dy or Sy.
Suppose that T,, = S4. Then T,, N T, = Dg for v € I'(u). Checking the
subgroups of A7, we get Np(T,, N T,,) = (T, N T},), a contradiction. Thus
Ty = Dys. Set Ty, = (a,b), where a has order 6 and b is an involution. Since
A7 consists of even permutations on {1,2,3,4,5,6,7}, we may choose a =
(12)(34)(567) and b= (3 4)(5 6), and let T, N T, = (a®,b). Then Np(T, N
T,) = (a,b):((136)(245),(36)(45)) =S,. It is easily shown that, for each
x € Np(T, NT,), the subgroup (T, TF) fixes either {1,2} or {3,4} setwise.
Thus T # (T, T*) for any x € Np(T,,NT),), which contradicts Lemma 5. This
completes the proof.

Lemma 11 T # M;y;.

Proof Assume that T = M;j;. Then |T,| = 24, and so T,, £ S4 and T, N T, =
Dg, where v € I'(u). Let P be a Sylow 2-subgroup of T' with P > T;,,NT,,. Then
P <Np(T,NT,), and so Ny (T;,NT,) has odd index in T'. Let H be a maximal
subgroup of T' with H > N (T, N T,). Then Np(T,, N T,,) = Ny (T, N T,).
Noting that H has odd index in T, we have H 2 M;q or 2.4 by the Atlas [5].
Checking the subgroups of H, we conclude that Ny (7,,NT,) = Ny (T,NT,) =
P, which contradicts Lemma 5. (This was also confirmed by GAP.)

Lemma 12 T # J;.

Proof Assume that T' = J;. Then |T,| = 12, and so T, = D15 and T,,NT,, = 73,
where v € I'(u). It follows from the information given in the Atlas [5] that
all subgroups of T isomorphic to D12 are conjugate. Thus we may choose a
maximal subgroup M of T with Zs x A5 2 M > T,. Then Ny (T, N T,,) =
Z2 X A4.

By a similar argument as in the proof of Lemma 11, N¢(T,,NT;,) = Ny (TN
T,), where H is a maximal subgroup of T of odd index. By the Atlas [5], H =
Zo % Ag or Z3:(Z7:Z3). Tt follows that N (T, NT,) = Ng(T,NT,) = Zy x Ay.
Then N (T, NT,) = Nyg(T, NT,) =2 Ny (T, NTy), and so Np(T,, N T,) =
Ny (T, N'Ty). Recalling that M > Ty, we have (T,,,T?) < M # T for any
xz € Np(T, NT,), which contradicts Lemma 5.
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5.2 The proof of Theorem 2

By the foregoing argument, we may let T' = PSL(2, p), where p is a prime and
p=>T.

Let {u,v} be an edge of I'. Checking the subgroups of PSL(2,p) (see [10,
11.8.27]), we conclude that T, T, and T, N T, are listed (up to isomorphism)
as follows:

Ty, T, |S5|D12[Ss
T, NT,|Z2| 7% |Ds

If T, = Sy then we have |N¢ (T, NT,)| = 8 or 16 by checking the subgroups
of PSL(2,p), which contradicts Lemma 5. Thus we assume next that T, = S
or D12.

Let B be the set of M-orbits, and let u € B € B. Since T is transitive
on VI, the setwise stabilizer T of B in T is transitive on B. Noting that
M centralizes Ts and M is regular on B, it follows that Tz induces a regular
permutation group on B, see [6, Theorem 4.2A] for example. Then T}, is normal
in ’TB7 and |TB :Tu| = |M|

Consider the graph I'y;. Noting that GB 22 G/M = X, we identify X with
a subgroup of Autl'y;. By Theorem 4, I'y; has valency 6 or 3.

Suppose that I'ys is a cubic graph. Then M # 1 and I'); is X-arc-transitive.
It is easily shown that Iy is also T-arc-transitive, and so T = Zs, S3, D1o,
Sy or Zg x Sy (see [2, 18C]). Recalling that Ts has a normal subgroup T,, & S3
or Dy3, we conclude that T = Dy and Ty, 2 S3. Thus M| = [T : Ty| = 2.
Then I'y; has odd order M, which is impossible as I'y; is a cubic graph.

2
By Theorem 4, we assume next that I'y; is an X-half-transitive alternative-

ly connected graph of order % and valency 6. Then the foregoing argument
in this subsection works for the pair of I'y; and T. It follows that T = Ss,
D2 or Sy. Recalling T has a normal subgroup of index | M|, we conclude that
either M =1, or M 2 Zy, T,, 2 Sz and T = Dq5.

Let T,, = Dy2. Then M = 1, and so G = PSL(2,p) or PGL(2,p). Noting
that T, < G, and |G : G| = |T : Ty| = |[VI'|, we have |G, : T,,| = |G : T|.
If G = PGL(2,p) then G, has order 24, and so G, = S4; however, S, has
no subgroup isomorphic to Dig. Thus G = T = PSL(2,p). Since |G : G,| is
square-free, p? — 1 is not divisible by 32. Then part (1) of Theorem 2 follows.

Let T,, = S3. Then T, N T}, = Zy, and N¢(T,, N T,) =2 D4, where e = £1
such that p + € is divisible by 4. By Lemma 5, p + € is not a power of 2; in
particular p # 7. Since T has order divisible by 4, |V I'| = |T : T,,| is even and
square-free. This implies that p+ € is not divisible by 8. Then p = +3 (mod 8).

Recall that |[M| =1 or 2. If M = 1 then we get part (2) of Theorem 2.
Assume that | M| = 2. Then T = D14 for an M-orbit B with u € B. Consider
the pair I'y and X. By a similar argument as in the case for T,, = D15, we
know that X = T = PSL(2,p), and so G = M x T. Note that T has a
subgroup isomorphic to Dys. It follows that p 4 € is divisible by 12, that is
p = £11 (mod 24). Then part (3) of Theorem 2 occurs.
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