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Abstract An edge-transitive graph Γ is called alternatively connected if a
subgroup G of the automorphism group of Γ has two orbits on the arc set
of Γ , and there exists an alternative walk (with respect to a given G-orbit
on arcs) between every pair of vertices of Γ . Employing the standard double
covers of digraphs, we give some basic properties of alternatively connected
edge-transitive graphs. The main result of this paper is a reduction result
on alternatively connected edge-transitive graphs of square-free order. As an
application of this result, we give a characterization for alternatively connected
edge-transitive graphs of square-free order and valency 6. It is proved that such
a graph is either a circulant or constructed from PSL(2, p).

Keywords edge-transitive graph · half-transitive graph · locally-primitive
graph · alternatively connected graph · (almost) simple group.

1 Introduction

In this paper we consider only finite and simple graphs.
Let Γ be a graph. We use V Γ , EΓ and AutΓ to denote its vertex set,

edge set and automorphism group, respectively. Recall that an arc in a graph
is an ordered pair of adjacent vertices. We denote by AΓ the arc set of Γ .
For a vertex u ∈ V Γ , set Γ (u) = {v | (u, v) ∈ AΓ}. Then Γ (u) is called the
neighborhood of u in Γ , and the size |Γ (u)| is called the valency of u. The
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graph Γ is said to be regular of valency k if all vertices have the same valency
k.

Let Γ be a graph, and let G be a subgroup of AutΓ . Then G acts on both
EΓ and AΓ naturally by

{u, v}g = {ug, vg} and (u, v)g = (ug, vg), g ∈ G, {u, v} ∈ EΓ ,

respectively. The graph Γ is said to be G-vertex-transitive, G-edge-transitive
or G-arc-transitive if G acting transitively on V Γ , EΓ or AΓ , respectively.
(Note that, for graphs without isolated vertices, the arc-transitivity yields the
vertex-transitivity.) If Γ is G-edge-transitive but not G-arc-transitive, then G
has two orbits on AΓ ; in this case, Γ is said to be G-semisymmetric when Γ
is regular and G is intransitive on V Γ , and Γ is said to be G-half-transitive
when G is transitive on V Γ . For u ∈ V Γ , set

Gu = {g ∈ G | ug = u},

called the vertex-stabilizer of u in G. Then Gu fixes Γ (u) setwise. The graph
Γ is said to be G-locally-primitive if Gu acts primitively on Γ (u) for every
u ∈ V Γ .

This paper is devoted to characterizing edge-transitive graphs of square-free
order. In the literature, vertex- or edge-transitive graphs of square-free order
has been studied extensively, and many interesting results have appeared. See
for example [1,3,4,18,19,21] for those graphs of order a prime or a product
of two primes. Recently, several classification results were given about edge-
transitive graphs of square-free order. For arc-transitive graphs of square-free
order, Feng and Li [7] gave a classification of one-regular graphs and prime
valency, and Li et al. [11–13,15] gave a classification of locally-primitive graphs
of valency no more than 7. For half-transitive graphs of square-free order, one
may deduce a classification of tetravalent graphs from [11,13]. For semisym-
metric graphs of square-free order, Liu and Lu [16] gave a explicit list of such
graphs of valency 3. Some of the mentioned results were in fact motivated by
the observation in [14].

Let Γ be a connected G-edge-transitive regular graph of square-free order.
Then Γ is G-arc-transitive, G-semisymmetric or G-half-transitive. In [14], the
first two cases were considered under the ‘locally-primitive’ assumption, see
[14, Theorems 4 and 30]. In the present paper, we shall deal with the half-
transitive case under some restrictions. We first introduce several concepts.

Let Γ be a G-half-transitive graph. Then G has two orbits on AΓ , say ∆
and ∆∗ := {(u, v) | (v, u) ∈ ∆}. For u, v ∈ V Γ , a ∆-alternative walk between
u and v means a sequence u = v0 v1 . . . v2l = v of odd number of vertices such
that (v2i, v2i+1), (v2i+2, v2i+1) ∈ ∆ for 0 ≤ i ≤ l − 1. The graph Γ is called
(∆-)alternatively connected if there exists a ∆-alternative walk between each
pair of distinct vertices. For u ∈ V Γ , set

∆(u) = {v | (u, v) ∈ ∆} and ∆∗(u) = {v | (u, v) ∈ ∆∗}.
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Then Γ (u) = ∆(u) ∪∆∗(u), and Gu fixes both ∆(u) and ∆∗(u) setwise. The
graph Γ is called G-locally-biprimitive if for every u ∈ V Γ , the stabilizer Gu

acts primitively on both ∆(u) and ∆∗(u).
We now outline the main results of this paper. The following reduction

result is proved in Section 4.

Theorem 1 Let Γ be a G-half-transitive graph of square-free order and va-
lency 2d, where d > 2. Let M be a maximal intransitive normal subgroup of
G. Assume that Γ is alternatively connected and G-locally-biprimitive. Then
M is semiregular on V Γ and one of the following holds.

(1) G has a regular normal cyclic subgroup ⟨a⟩, |G| = d|V Γ |, d is a prime and
q − 1 is divisible by d for each prime divisor q of |V Γ |. Setting Gu = ⟨b⟩
for u ∈ V Γ, we have b−1ab = ar for some r with rd ≡ 1 (mod |V Γ |) and
(r − 1, |V Γ |) = 1.

(2) G = M :X for some subgroup X of G, where X is almost simple with socle
T isomorphic to one of the following simple groups:

M11,M12,M22,M23,M24, J1; An with n < 3d;
PSL(2, p) for prime p ≥ 5; PSL(2, p2) with p > 3 and d divisible by
p+ 1; PSL(2, pf ) with f ≥ 3, pf > 9 and d divisible by pf−1;
simple classical groups of dimension n over GF(pf ) with p ≤ d, n ≥ 3
and [n2 ]f < d;
simple exceptional groups G2(p

f ), 3D4(p
f ), F4(p

f ), 2E6(p
f ) and E7(p

f )
with 2f < d and p ≤ d.

Moreover, MT = M × T and Γ is T -half-transitive.

As an application of Theorem 1, we give in Section 5 a characterization of
alternatively connected edge-transitive graphs of square-free order and valency
6.

Theorem 2 Let Γ be a G-half-transitive graph of square-free order and valen-
cy 6, let u ∈ V Γ. Assume that G is insoluble and Γ is alternatively connected.
Then one of the following holds.

(1) G ∼= PSL(2, p) and Gu
∼= D12, where p is a prime with p2 − 1 not divisible

by 32.
(2) Either G ∼= PSL(2, p) and Gu

∼= S3, or G ∼= PGL(2, p) and Gu
∼= D12,

where p is a prime with p ≡ ±3 (mod 8) and p± 1 not a power of 2.
(3) G ∼= Z2 × PSL(2, p), where p is a prime with p ≡ ±11 (mod 24) and p± 1

not a power of 2.

2 Alternative walks and standard double covers

In this section, we always assume that ∆ is a simple digraph with vertex set
V ∆. By (u, v) ∈ ∆ we mean that (u, v) is an arc (directed edge) of ∆. By ∆∗

we denote the digraph on V ∆ with arc set {(v, u) | (u, v) ∈ ∆}.
For vertices u, v ∈ V ∆, an alternative walk between u and v mean-

s a sequence u = v0 v1 . . . v2l = v of odd number of vertices such that
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(v2i, v2i+1), (v2i+2, v2i+1) ∈ ∆ for 0 ≤ i ≤ l − 1. Define a relation ‘∼’ on
V ∆ as follows:

u ∼ v ⇔ u = v, or there is an alternative walk between u and v.

It is easily shown that this gives an equivalent relation among the elements of
V ∆. Every equivalent class is called an alternative component of ∆, and the
number of alternative components is called the alternative index of ∆, denoted
by alt(∆). The digraph ∆ is called alternative connected if alt(∆) = 1, that is,
there exists an alternative walk between each pair of distinct vertices of ∆.

The standard double cover of ∆, denoted by ∆(2), is the (undirected) graph
defined on V ∆×{1, 2} such that {(u, 1), (v, 2)} is an edge if and only if (u, v) ∈
∆. For u ∈ V ∆, set ∆(u) = {v | (u, v) ∈ ∆} and ∆∗(u) = {v | (v, u) ∈ ∆}.
Then we have the following simple observation.

Lemma 1 If |∆∗(u)| ≥ 1 holds for every u ∈ V ∆, then alt(∆) is equal to the
number of connected components of ∆(2).

Let Aut∆ be the automorphism group of ∆, and G ≤ Aut∆. Then ∆
is called G-vertex-transitive or G-arc-transitive if G acts transitively on the
vertices or the arcs of ∆, respectively. (If ∆ has no isolated vertex, then the
arc-transitivity yields the vertex-transitivity.) For each g ∈ G, we obtain an

automorphism ĝ of ∆(2) by (u, i)ĝ = (ug, i). Set Ĝ = {ĝ | g ∈ G}. Then Ĝ is a
subgroup of Aut∆(2) and isomorphic to G, and

Ĝu = Ĝ(u,i)

for u ∈ V ∆ and i = 1, 2. Moreover, the following lemma is easily shown.

Lemma 2 Let ∆ be a G-arc-transitive digraph without isolated vertices. Then

(1) ∆(2) is Ĝ-semisymmetric;
(2) alt(∆) = |G : ⟨Gu, Gv⟩| for (u, v) ∈ ∆;
(3) ∆ is alternatively connected if and only if G = ⟨Gu, Gv⟩ for (u, v) ∈ ∆; in

particular, ∆ is alternatively connected if G is primitive on V ∆ unless ∆
is a directed cycle of prime length.

Proof (1) is trivial.

Since ∆(2) is Ĝ-edge-transitive, Ĝ acts transitively on the set of connected
components of ∆(2). Let (u, v) ∈ ∆, and let Σ be the connected component
which contains the vertices (u, 1) and (v, 2). Let H be the subgroup of G such

that Ĥ preserves Σ invariantly. Then Σ is Ĥ-edge-transitive, and |Ĝ : Ĥ|
is the number of connected components of ∆(2). Thus alt(∆) = |Ĝ : Ĥ| by
Lemma 1. Since Σ is a connected bipartite graph, by [22], ⟨Ĥ(u,1), Ĥ(v,2)⟩
acts transitively on EΣ. This implies that Ĥ = ⟨Ĥ(u,1), Ĥ(v,2)⟩. Note that

Ĥu = Ĥ(u,1) = Ĝ(u,1) = Ĝu and Ĥv = Ĥ(v,2) = Ĝ(v,2) = Ĝv. Then alt(∆) =

|Ĝ : Ĥ| = |G : H| = |G : ⟨Gu, Gv⟩|. Thus (2) holds, and then the first part of
(3) follows.
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Assume that G is primitive on V ∆. Then both Gu and Gv are maximal
subgroups of G, and so either G = ⟨Gu, Gv⟩ or Gu = Gv. The former case says
that Γ is alternatively connected. The latter case yields that Gu = 1 and G
is a cyclic group of prime order, and then ∆ is a directed cycle of length |G|.
Thus (3) is proved.

Lemma 3 Let ∆ be a G-arc-transitive digraph with |∆(u)| = 2 for all u ∈
V ∆. If ∆ is alternatively connected, then |V ∆| is odd and (u, v) ∈ ∆ yields
(v, u) ∈ ∆.

Proof Assume that ∆ is alternatively connected. Then ∆(2) is a cycle of length
2n, where n = |V ∆|. Thus Aut∆(2) ∼= D4n, the dihedral group of order 4n.

Noting that ∆(2) is Ĝ-semisymmetric, it implies that Ĝ ∼= D2n, and so G ∼=
D2n. Set G = ⟨a, b⟩, where a has order n and b is an involution with bab = a−1.
Then ⟨a⟩ is a regular subgroup of G, and there is u ∈ V ∆ with Gu = ⟨b⟩. Take
uai ∈ ∆(u). Then Guai = Gai

u = ⟨ba2i⟩. By Lemma 2, G = ⟨b, ba2i⟩ = ⟨b, a2i⟩.
Then ⟨a⟩ = ⟨a2i⟩, it implies that n is odd. Note that (u, uaib) ∈ ∆. We have

(uaib, u) = (u, uaib)a
ib ∈ ∆. Then our result follows from the arc-transitivity

of ∆.
For a subgroup G of Aut∆, the digraph ∆ is called G-locally-primitive if

for every vertex u, neither ∆(u) = ∅ nor ∆∗(u) = ∅, and the stabilizer Gu acts
primitively on both ∆(u) and ∆∗(u). It is easily shown that ∆ is G-locally-

primitive if and only if ∆(2) is Ĝ-locally-primitive.
Assume that ∆ is G-locally-primitive and alternatively connected. Then

∆(2) is a connected Ĝ-locally-primitive graph. (Note that a general analyzing
about the class of locally-primitive graphs is given in [8].) It is easy to see that
∆(2) is a regular bipartite graph. By edge-transitivity of ∆(2), we know that
∆ is G-arc-transitive.

Note that every normal subgroup of Ĝ is transitive on V ∆ × {1} if and
only if it is transitive on V ∆× {2}. We have the following result.

Theorem 3 Let ∆ be a G-locally-primitive digraph, and let N be an intransi-
tive normal subgroup of G. Let B be the set of N -orbits, and GB the permuta-
tion group on B induced by G. Assume that ∆ is alternatively connected. Then
∆ is G-arc-transitive; in particular, ∆ is G-vertex-transitive. Assume further
that |∆(u)| > 2 for some (and so for all) u ∈ V ∆. Then GB ∼= G/N , every
N -orbit is an independent set of ∆, and N is regular on each of its orbits.
Moreover, one the following statements hold.

(1) For B1, B2 ∈ B, the subdigraph [B1, B2] of ∆ induced by B1 ∪B2 is either
empty or a directed matching. Define a digraph on B, denoted by ∆N , such
that (B1, B2) ∈ ∆N if and only if (u1, u2) ∈ ∆ for some u1 ∈ B1 and u1 ∈
B2. Then ∆N is GB-locally-primitive, GB-arc-transitive and alternatively
connected.

(2) For B1, B2 ∈ B, the subdigraph [B1, B2] is either empty or a union of
disjoint directed cycles. Define a graph on B, denoted by ∆N , such that
{B1, B2} ∈ E∆N if and only if [B1, B2] has a directed cycle. Then ∆N is
GB-locally-primitive, GB-arc-transitive, non-bipartite and of valency |∆(u)|.
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Proof By the argument above this theorem, we know that∆ isG-arc-transitive.
Assume that |∆(u)| > 2 for u ∈ V ∆. Then ∆(2) is a connected Ĝ-locally-
primitive graph of valency no less than 3. Note that for every B ∈ B, both
B × {1} and B × {2} are N̂ -orbits on V ∆ × {1, 2}. By [8, Lemma 5.1], N̂

is semiregular and has at least |∆(u)| orbits on V ∆ × {1, 2}, and N̂ is the

kernel of the action of Ĝ on the N̂ -orbits. Thus N is semiregular on V ∆, and
GB ∼= G/N .

Let B ∈ B. Since ∆ is G-arc-transitive, G is transitive on V ∆, and so B is a
G-invariant partition of V ∆. Then for each g ∈ G, either Bg = B or B∩Bg =
∅. Noting that ∆ is connected, there is (u, v) ∈ ∆ with |{u, v} ∩ B| = 1. If

{ug, vg} ⊆ B for some g ∈ G, then B ∩ Bg−1 ̸= ∅, and so B = Bg−1

, yielding
{u, v} ⊆ B, a contradiction. Thus, since ∆ is G-arc-transitive, we know that
B is an independent set of ∆. Then the first part of this theorem follows.

Let B1, B2 ∈ B such that ui ∈ Bi with (u1, u2) ∈ ∆. Note that each

Bi × {j} is an N̂ -orbit on V ∆× {1, 2}. Consider the subgraphs Σ1 and Σ2 of
∆(2) induced by (B1×{1})∪(B2×{2}) and (B2×{1})∪(B1×{2}), respectively.
Since ∆(2) is a connected Ĝ-locally-primitive graph, by [8, Lemma 5.1], Σ1 is a
matching, and Σ2 is either empty or a matching. If Σ2 is empty then [B1, B2]
is a directed matching. If Σ2 is a matching then [B1, B2] is a union of disjoint
directed cycles.

Since ∆ is G-arc-transitive, there are no B1, B2, B3, B4 ∈ B such that
[B1, B2] is a directed matching and [B3, B4] has a directed cycle. Thus ∆N is
well-defined in each of cases (1) and (2). Let u ∈ B ∈ B. Then GB = NGu,
and so GB

B
∼= GB/N ∼= Gu. Define

θ : ∆(u) ∪∆∗(u) → ∆N (B) ∪ (∆N )∗(B), v 7→ vN .

Then θ gives a well-defined bijection between ∆(u) and ∆N (B) and a well-
defined bijection between∆∗(u) and (∆N )∗(B). (Note that∆N (B) = (∆N )∗(B)
for case (2).) Moreover,

θ(vg) = (vg)N = vgNg−1g = (vN )g = θ(v)g

for g ∈ Gu and v ∈ ∆(u) ∪∆∗(u). It follows that G
∆(u)
u and (GB

B)
∆N (B) are

permutation isomorphic, and so do for G
∆∗(u)
u and (GB

B)
(∆N )∗(B). Thus ∆N is

GB-locally-primitive.
Since ∆ is alternatively connected, G = ⟨Gu1

, Gu2
⟩ for (u1, u2) ∈ ∆. Set

Bi = uN
i for i = 1, 2. Then G = ⟨GB1 , GB2⟩, yielding GB = ⟨GB

B1
, GB

B2
⟩. If

∆N is a digraph, then (B1, B2) is an arc of ∆N , and so ∆N is alternatively
connected by Lemma 2. Thus (1) holds.

Assume that ∆N is a graph. Then {B1, B2} is an edge of ∆N . Suppose
that ∆N is a bipartite graph. Then both GB

B1
and GB

B2
fix the bipartition of

∆N . In particular, ⟨GB
B1

, GB
B2

⟩ is intransitive on the vertex set of ∆N . Noting

that ∆N is GB-vertex-transitive, we have GB ̸= ⟨GB
B1

, GB
B2

⟩, a contradiction.
Thus ∆N is not bipartite, and hence (2) holds.
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3 Alternatively connected edge-transitive graphs

In this section, we let Γ be a G-half-transitive graph of valency 2d. Then G has
exactly two orbits on AΓ . Let ∆ be the digraph on V Γ with arc set being one
of the G-orbits on AΓ . (Then ∆∗ is the digraph on V Γ with arc set being the
other G-orbit on AΓ .) The alternative index alt(Γ ) of Γ is defined as alt(∆).

By Lemma 3, we have the following result.

Corollary 1 If Γ is a G-half-transitive graph of valency 4, then alt(Γ ) > 1.

Take an edge {u, v} ∈ EΓ . Since Γ is G-vertex-transitive v = ug for some

g ∈ G. Consider the arc-stabilizers of (u, ug) and (ug−1

, u), which are Gu ∩Gg
u

and Gu∩Gg−1

u respectively. Suppose that Gu∩Gg
u and Gu∩Gg−1

u are conjugate

in Gu. Set Gu ∩Gg
u = (Gu ∩Gg−1

u )x for some x ∈ Gu. Then

Gu∩Gg
u = Gx

u∩Gg−1x
u = Gu∩Gg−1x

u = (G(g−1x)−1

u ∩Gu)
g−1x = (Gu∩Gg

u)
g−1x,

that is, g−1x lies in the normalizer NG(Gu∩Gg
u). Noting that (ug−1x, u) ∈ AΓ ,

since Γ is not G-arc-transitive, (ug−1x, u)g
−1x ̸= (u, ug−1x). This implies that

(g−1x)2 ̸∈ Gu ∩Gg
u. In particular, NG(Gu ∩Gg

u)/(Gu ∩Gg
u) is not a 2-group.

Then, by Lemma 2, we have the following lemma.

Lemma 4 Let Γ be a G-half-transitive graph of valency 2d with alt(Γ ) =

1, where d > 2. Let {u, ug} ∈ EΓ. Suppose that Gu ∩ Gg
u and Gu ∩ Gg−1

u

are conjugate in Gu. Then NG(Gu ∩ Gg
u)/(Gu ∩ Gg

u) is not a 2-group, and
NG(Gu ∩Gg

u) contains an element h such that uh ∈ Γ (u) and G = ⟨Gu, G
h
u⟩.

Take (u, v) ∈ ∆. SinceG is transitive on V Γ ,Gu andGv are conjugate inG,

and so Ĝu and Ĝu are conjugate in Ĝ. Note that Ĝ(u,1) = Ĝu and Ĝ(v,2) = Ĝv.

Then Ĝ(u,1) and Ĝ(v,2) are conjugate in Ĝ. Let d = 3 and alt(Γ ) = 1. Note

that ∆(2) is a connected Ĝ-semisymmetric cubic graph. By [9], Gu
∼= Ĝu

∼= Z3,
S3, D12, S4 or Z2×S4. In this case, noting that |Gu : (Gu∩Gv)| = 3, we know
that Gu ∩Gv is a Sylow 2-subgroup of Gu. Since all Sylow 2-subgroup of Gu

are conjugate, by Lemma 4, we have the following result.

Lemma 5 Let Γ be a G-half-transitive graph of valency 6 with alt(Γ ) = 1.
Let {u, v} ∈ EΓ. Then

(1) Gu
∼= Z3, S3, D12, S4 or Z2 × S4;

(2) NG(Gu ∩ Gv) is not a 2-group, and NG(Gu ∩ Gv) contains an element h
such that uh ∈ Γ (u) and G = ⟨Gu, G

h
u⟩.

Recall that Γ is G-locally-biprimitive if ∆ is G-locally-primitive. The fol-
lowing result give an undirected version of Theorem 3.

Theorem 4 Let Γ be a G-half-transitive graph of valency 2d with alt(Γ ) = 1,
where d > 2. Assume that Γ is G-locally-biprimitive. Let N be an intransitive
normal subgroup of G, and let B be the set of N -orbits. Then GB ∼= G/N ,
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every N -orbit is an independent set of Γ , and N is regular on each of its
orbits. Define a graph on B, denoted by ΓN , such that {B1, B2} ∈ EΓN if and
only if {u1, u2} ∈ EΓ for some u1 ∈ B1 and u1 ∈ B2. Then either

(1) ΓN is GB-locally-biprimitive, alternatively connected and of valency 2d; or
(2) ΓN is GB-vertex-transitive, GB-locally-primitive and of valency d; more-

over, for B1, B2 ∈ B, the subgraph [B1, B2] is either empty or a union of
disjoint cycles.

The next result is a direct consequence from Theorem 4.

Corollary 2 Let Γ be a G-half-transitive graph of valency 2d with alt(Γ ) =
1, where d > 2. Assume that Γ is G-locally-biprimitive. Let N be a normal
subgroup of G. If N is not semiregular on V Γ, then Γ is N -half-transitive.

Proof Let N be a normal subgroup of G. Assume that N is not semiregular on
V Γ . By [11, Lemma 3.1], for each u ∈ V Γ , the stabilizer Nu acts nontrivially
on Γ (u), and all Nu-orbits on Γ (u) have the same length. Since Nu is normal
in Gu and Γ is G-locally-biprimitive, Nu has two orbits on Γ (u) which are
the orbits of Gu. Moreover, by Theorem 4, N is transitive on V Γ . Thus Γ is
N -half-transitive.

4 The graphs of square-free order

Let Γ be a G-half-transitive graph of square-free order and valency 2d, where
d > 2. Assume that Γ is G-locally-biprimitive, and alt(Γ ) = 1.

Let M be a maximal intransitive normal subgroup of G, and let B be the
set of M -orbits. Then every nontrivial normal subgroup of GB is transitive on
B. Then, by [14, Lemma 12], either |B| = p and GB ∼= Zp:Zl for an odd prime
p and a divisor l of p− 1, or GB is almost simple. For the former case, by [13,
Lemma 2.5], we conclude that l = d is an odd prime.

Lemma 6 Assume that GB ∼= Zp:Zd. Then G has a regular normal cyclic
subgroup ⟨a⟩, |G| is square-free and q−1 is divisible by d for each prime divisor
q of |V Γ |. Moreover, setting Gu = ⟨b⟩ for u ∈ V Γ, we have b−1ab = ar for
some r with rd ≡ 1 (mod |V Γ |) and (r − 1, |V Γ |) = 1.

Proof By Theorem 4, GB ∼= G/M and M is semiregular on V Γ . Since |V Γ |
is square-free, |M | is square-free and (|M |, p) = 1. Clearly, G has a normal
regular subgroup R := M :P , where P ∼= Zp. Let q be the smallest prime divisor
of R. Then, since R has square-free order, R has a unique q′-Hall subgroup
N . In particular, N is a characteristic subgroup of R, and hence N is normal
in G. Note N is also a maximal intransitive normal subgroup of G. Then G
induces a permutation group on the N -orbits, which is isomorphic to Zq:Zd

with q− 1 divisible by d. Thus d is the smallest prime divisor of |G| = dp|M |.
Without loss of generality, we let q = p. Note that G has square-free order. It
is well-known and easily shown that G = ⟨c⟩×(⟨a⟩:⟨b⟩) for some a, b, c ∈ G,
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where ⟨c⟩ is the center of G. Note that an abelian transitive permutation group
must be regular. Then G is not abelian, and so a ̸= 1 and b ̸= 1. Let a and b
have orders m and n, respectively.

Take an edge {u, v} ∈ EΓ . Then G = ⟨Gu, Gv⟩ by Lemma 2. Note that for
every prime divisor of |⟨c⟩×⟨a⟩|, the group G has a unique subgroup of order
r. It follows that both Gu and Gv are conjugate to a subgroup of ⟨b⟩. Without
loss of generality, let Gu ≤ ⟨b⟩. Note that Gu and Gv are conjugate in G, and

that every element of G has the form of ckbjai. Then Gv = Gai

u for some integer
i. Set Gu = ⟨bj⟩. Then G = ⟨Gu, Gv⟩ = ⟨bj , a−ibjai⟩ ≤ ⟨ai, bj⟩ = ⟨ai⟩:⟨bj⟩,
yielding c = 1, (i,m) = 1 and (j, n) = 1, and so Gu = ⟨b⟩, n = d and R = ⟨a⟩.
Thus, without loss of generality, we choose i = 1 and j = 1. Set b−1ab = ar.
Then rd ≡ 1 (mod m), and G = ⟨b, a−1ba⟩ = ⟨b, ba1−r⟩ = ⟨ar−1, b⟩, and hence
(r − 1,m) = 1.

Let q be an arbitrary prime divisor of m. Then the q′-Hall subgroup of ⟨a⟩
is a maximal intransitive normal subgroup of G. Thus q − 1 is divisible by d
by the argument in the first paragraph. This completes the proof.

Remark 1 Let G be the group in Lemma 6. Noting that G has trivial center,
it is easily shown that G is a Frobenius group with Frobenius kernel ⟨a⟩.

Lemma 7 Assume that G is almost simple. Then soc(G) is (isomorphic to)
one of the following simple groups:

M11,M12,M22,M23,M24, J1; An with n < 3d;
PSL(2, p) for prime p ≥ 5; PSL(2, p2) with p > 3 and d divisible by p+ 1;
PSL(2, pf ) with f ≥ 3, pf > 9 and d divisible by pf−1;
simple classical groups of dimension n over GF(pf ) with p ≤ d, n ≥ 3 and
[n2 ]f < d;
simple exceptional groups G2(p

f ), 3D4(p
f ), F4(p

f ), 2E6(p
f ) and E7(p

f )
with 2f < d and p ≤ d.

Proof Let T = soc(G). Since Γ has square-free order, by Corollary 2, Γ is
T -half-transitive. It is easy to see that Γ and G satisfy the assumptions of [14,
Theorem 1]. Then T is (isomorphic to) one of the following simple groups:

M11,M12,M22,M23,M24, J1; An with n < 6d;
PSL(2, p) for prime p ≥ 5; PSL(2, p2) with p > 3 and 2d divisible by p+1;
PSL(2, pf ) with f ≥ 3, pf > 9 and 2d divisible by pf−1;
Sz(2f ) with odd f ≥ 3 and 2d divisible by 22f−1;
simple classical groups of dimension n over GF(pf ) with p ≤ 2d, n ≥ 3 and
[n2 ]f < 2d;
simple exceptional groups G2(p

f ), 3D4(p
f ), F4(p

f ), 2E6(p
f ) and E7(p

f )
with 2f < 2d and p ≤ 2d.

Checking carefully the argument given in [14], we conclude that the restricted
conditions ‘n < 6d’, ‘[n2 ]f < 2d’, ‘2f < 2d’ and ‘p ≤ 2d’ are in fact derived from
the facts that |T : Tu| is square-free and each prime divisor of |Tu| is no more
than |Tu : Tuv|. The restricted conditions for PSL(2, p) and PSL(2, pf ) that
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2d is divisible by some special integers are from the fact that those special
integers are divisors of |Tu : Tuv|. Given these facts, either T is one of the
simple groups listed in this lemma, or T = Sz(2f ) with odd f ≥ 3 and d
divisible by 22f−1.

Suppose that T = Sz(2f ). Let ∆ be an orbit of G on AΓ . Then Gu induces

a primitive permutation group G
∆(u)
u on ∆(u). By Corollary 2, we conclude

that T
∆(u)
u is a transitive normal subgroup of G

∆(u)
u . Since |T : Tu| is square-

free, inspecting the subgroups of T (see [20]), we get Tu = Q:Zl, where Q has

order 22f or 22f−1, and l is a divisor of 2f − 1. It follows soc(G
∆(u)
u ) ∼= Zt

2 for

some integer t ≥ 1, and T
∆(u)
u

∼= Zt
2:Zl′ , where l′ is a divisor of l. Moreover,

d = 2t, and so t = 2f or 2f − 1.
Let P be a Sylow 2-subgroup of T with P ≥ Q. Then P = Q or Q.Z2.

Assume that Q ̸= P . Then |Q| = 22f−1, and hence Q ∼= Z2f−1
2 . By [20], all

involutions of P are contained in the center of P . It follows that P is abelian,
which is impossible as Sz(2f ) has no abelian Sylow 2-subgroup. Thus P = Q.

If t = 2f then P ∼= Z2f
2 , again a contradiction. Let t = 2f − 1. Then there is

a normal subgroup K of P of order 2 such that P/K ∼= Z2f−1
2 . Consider the

Frattini subgroup Φ(P ) of P . By [10, III.3.14], we have Z2
∼= K ≥ Φ(P ) =

⟨x2 | x ∈ P ⟩. In particular, Φ(P ) = ⟨x2⟩ for each element x ∈ P of order 4.
However, by [20], P contains two elements x and y of order 4 with x2 ̸= y2, a
contradiction. Then this lemma follows.

Lemma 8 Assume that GB is almost simple. Then G = M :X for some sub-
group X of G, where X is almost simple with socle isomorphic to soc(GB) and
centralizing M .

Proof By [14, Lemma 28], G = M :X for some subgroup X of G. Then X ∼=
G/M ∼= GB, and so X is almost simple. Since |M | is square-free, M has soluble
automorphism group Aut(M). Noting that G/CG(M) = NG(M)/CG(M) .
Aut(M), it follows that G/CG(M) is soluble. Thus soc(X) ≤ CG(M), and the
lemma follows. ⊓⊔

Finally, Theorem 1 follows from Corollary 2 and Lemmas 6-8.

5 The graphs of valency 6

Let Γ be a G-half-transitive graph of square-free order and valency 6. Assume
that G is insoluble and Γ is alternatively connected. By Theorem 1 and Lem-
ma 8, we set G = M :X, where M is a maximal intransitive normal subgroup of
G, and X is an almost simple group with socle T . Then Γ is T -half-transitive,
where T normal in G and described as in Theorem 1.

5.1 The simple group T

Considering the restricted conditions for T , we know that either T ∼= PSL(2, p)
for prime p ≥ 5, or T is one of a finite number of simple groups. Let u ∈ V Γ .
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Since T is nonabelian simple, |T | is divisible by 4, so Tu has even order as
|T : Tu| is square-free. By Lemma 5, Tu is isomorphic to one of S3, D12, S4
and Z2 × S4. Since |T : Tu| is square-free, |T | is not divisible by 26 or 33.
Checking the orders of the finite number of candidates other than PSL(2, p)
for T , up to isomorphism of groups, we may assume that T is listed in the
following lemma.

Lemma 9 T = A5, A6, A7, M11, J1 or PSL(2, p), where p > 5 is a prime.

Lemma 10 T ̸∈ {A5, A6, A7}.

Proof Assume that T = A5. Then |Tu| = 6 or 12. Note that A5 has no sub-
group isomorphic to D12, see the Atlas [5]. Then Tu

∼= S3, and so Tu∩Tv
∼= Z2,

where v ∈ Γ (u). In this case, NT (Tu ∩ Tv) ∼= Z2
2, which contradicts Lemma 5.

The group A6 is excluded by a similar argument.
Assume that T = A7. Then |Tu| = 12 or 24, and so Tu

∼= D12 or S4.
Suppose that Tu

∼= S4. Then Tu ∩ Tv
∼= D8 for v ∈ Γ (u). Checking the

subgroups of A7, we get NT (Tu ∩ Tv) = (Tu ∩ Tv), a contradiction. Thus
Tu

∼= D12. Set Tu = ⟨a, b⟩, where a has order 6 and b is an involution. Since
A7 consists of even permutations on {1, 2, 3, 4, 5, 6, 7}, we may choose a =
(1 2)(3 4)(5 6 7) and b = (3 4)(5 6), and let Tu ∩ Tv = ⟨a3, b⟩. Then NT (Tu ∩
Tv) = ⟨a3, b⟩:⟨(1 3 6)(2 4 5), (3 6)(4 5)⟩ ∼= S4. It is easily shown that, for each
x ∈ NT (Tu ∩ Tv), the subgroup ⟨Tu, T

x
u ⟩ fixes either {1, 2} or {3, 4} setwise.

Thus T ̸= ⟨Tu, T
x
u ⟩ for any x ∈ NT (Tu∩Tv), which contradicts Lemma 5. This

completes the proof.

Lemma 11 T ̸= M11.

Proof Assume that T = M11. Then |Tu| = 24, and so Tu
∼= S4 and Tu ∩ Tv

∼=
D8, where v ∈ Γ (u). Let P be a Sylow 2-subgroup of T with P > Tu∩Tv. Then
P ≤ NT (Tu∩Tv), and so NT (Tu∩Tv) has odd index in T . Let H be a maximal
subgroup of T with H ≥ NT (Tu ∩ Tv). Then NT (Tu ∩ Tv) = NH(Tu ∩ Tv).
Noting that H has odd index in T , we have H ∼= M10 or 2.S4 by the Atlas [5].
Checking the subgroups of H, we conclude that NT (Tu∩Tv) = NH(Tu∩Tv) =
P , which contradicts Lemma 5. (This was also confirmed by GAP.)

Lemma 12 T ̸= J1.

Proof Assume that T = J1. Then |Tu| = 12, and so Tu
∼= D12 and Tu∩Tv

∼= Z2
2,

where v ∈ Γ (u). It follows from the information given in the Atlas [5] that
all subgroups of T isomorphic to D12 are conjugate. Thus we may choose a
maximal subgroup M of T with Z2 × A5

∼= M > Tu. Then NM (Tu ∩ Tv) ∼=
Z2 ×A4.

By a similar argument as in the proof of Lemma 11,NT (Tu∩Tv) = NH(Tu∩
Tv), where H is a maximal subgroup of T of odd index. By the Atlas [5], H ∼=
Z2×A5 or Z3

2:(Z7:Z3). It follows that NT (Tu∩Tv) = NH(Tu∩Tv) ∼= Z2×A4.
Then NT (Tu ∩ Tv) = NH(Tu ∩ Tv) ∼= NM (Tu ∩ Tv), and so NT (Tu ∩ Tv) =
NM (Tu ∩ Tv). Recalling that M > Tu, we have ⟨Tu, T

x
u ⟩ ≤ M ̸= T for any

x ∈ NT (Tu ∩ Tv), which contradicts Lemma 5.
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5.2 The proof of Theorem 2

By the foregoing argument, we may let T = PSL(2, p), where p is a prime and
p ≥ 7.

Let {u, v} be an edge of Γ . Checking the subgroups of PSL(2, p) (see [10,
II.8.27]), we conclude that Tu, Tv and Tu ∩ Tv are listed (up to isomorphism)
as follows:

Tu, Tv S3 D12 S4
Tu ∩ Tv Z2 Z2

2 D8

If Tu
∼= S4 then we have |NT (Tu ∩ Tv)| = 8 or 16 by checking the subgroups

of PSL(2, p), which contradicts Lemma 5. Thus we assume next that Tu
∼= S3

or D12.

Let B be the set of M -orbits, and let u ∈ B ∈ B. Since T is transitive
on V Γ , the setwise stabilizer TB of B in T is transitive on B. Noting that
M centralizes TB and M is regular on B, it follows that TB induces a regular
permutation group on B, see [6, Theorem 4.2A] for example. Then Tu is normal
in TB, and |TB : Tu| = |M |.

Consider the graph ΓM . Noting that GB ∼= G/M ∼= X, we identify X with
a subgroup of AutΓM . By Theorem 4, ΓM has valency 6 or 3.

Suppose that ΓM is a cubic graph. ThenM ̸= 1 and ΓM isX-arc-transitive.
It is easily shown that ΓM is also T -arc-transitive, and so TB

∼= Z3, S3, D12,
S4 or Z2×S4 (see [2, 18C]). Recalling that TB has a normal subgroup Tu

∼= S3
or D12, we conclude that TB

∼= D12 and Tu
∼= S3. Thus |M | = |TB : Tu| = 2.

Then ΓM has odd order |V Γ |
2 , which is impossible as ΓM is a cubic graph.

By Theorem 4, we assume next that ΓM is an X-half-transitive alternative-

ly connected graph of order |V Γ |
|M | and valency 6. Then the foregoing argument

in this subsection works for the pair of ΓM and T . It follows that TB
∼= S3,

D12 or S4. Recalling TB has a normal subgroup of index |M |, we conclude that
either M = 1, or M ∼= Z2, Tu

∼= S3 and TB
∼= D12.

Let Tu
∼= D12. Then M = 1, and so G = PSL(2, p) or PGL(2, p). Noting

that Tu ≤ Gu and |G : Gu| = |T : Tu| = |V Γ |, we have |Gu : Tu| = |G : T |.
If G = PGL(2, p) then Gu has order 24, and so Gu

∼= S4; however, S4 has
no subgroup isomorphic to D12. Thus G = T = PSL(2, p). Since |G : Gu| is
square-free, p2 − 1 is not divisible by 32. Then part (1) of Theorem 2 follows.

Let Tu
∼= S3. Then Tu ∩ Tv

∼= Z2, and NT (Tu ∩ Tv) ∼= Dp+ϵ, where ϵ = ±1
such that p + ϵ is divisible by 4. By Lemma 5, p + ϵ is not a power of 2; in
particular p ̸= 7. Since T has order divisible by 4, |V Γ | = |T : Tu| is even and
square-free. This implies that p+ ϵ is not divisible by 8. Then p ≡ ±3 (mod 8).

Recall that |M | = 1 or 2. If M = 1 then we get part (2) of Theorem 2.
Assume that |M | = 2. Then TB

∼= D12 for an M -orbit B with u ∈ B. Consider
the pair ΓN and X. By a similar argument as in the case for Tu

∼= D12, we
know that X = T = PSL(2, p), and so G = M × T . Note that T has a
subgroup isomorphic to D12. It follows that p + ϵ is divisible by 12, that is
p ≡ ±11 (mod 24). Then part (3) of Theorem 2 occurs.
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