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ON THE INDEX R FREE SEQUENCES OVER FINITE CYCLIC GROUPS

CHAO LIU

Abstract. Let Cn be a finite cyclic group of order n ≥ 2. Every sequence S over Cn can be
written in the form S = (n1g), . . . , (nlg) where g ∈ Cn and n1, . . . , nl ∈ [1, ord(g)], and the
index ind(S) of S is defined as the minimum of (n1 + . . . + nl)/ ord(g) over all g ∈ Cn with
ord(g) = n. Let d > 1 and r ≥ 1 be any fixed integers. We prove that, for every sufficiently
large integer n divisible by d, there exists a sequence S over Cn of length |S| ≥ n+n/d+O(

√
n)

having no subsequence T of index ind(T ) ∈ [1, r], which has substantially improved the previous
results in this direction.

1. Introduction and Main Results

Throughout this paper, let Cn be an additively written finite cyclic group of order |Cn| = n,
where n ∈ Z with n > 1. By a sequence S of length |S| = ` over Cn we mean an unordered
sequence with ` terms from Cn and the repetition of terms is allowed. We call S a zero-sum
sequence if the sum of S is zero. We let Z denote the integers, and R the real numbers. Given
real numbers a, b ∈ R, we use [a, b] := {u : u ∈ Z, a ≤ u ≤ b} to denote all integers between a
and b. Recall that the index of a sequence S is defined as follows.

Definition 1.1. For a sequence

S = (n1g) · . . . · (nlg) over Cn,

where n1, . . . , nl ∈ [1, n] and g ∈ Cn with ord(g) = |Cn|, we set

‖S‖g =
n1 + . . .+ nl

n
,

and the index of S is defined by

ind(S) = min{‖S‖g | g ∈ Cn with ord(g) = |Cn|}.

The index of a sequence is a crucial invariant in the investigation of zero-sum sequences
over cyclic groups. It was first addressed by Lemke and Kleitman ([9]), used as a key tool by
Geroldinger ([7, page 736]), and then investigated by Gao [3] in a systematical way. And it has
found a lot of attention in recent years (see [1, 2, 4, 6, 8, 10, 11, 13, 15, 16]). If S is a minimal
zero-sum sequence, then |S| ≤ 3, as well as |S| ≥ bn2 c+ 2, implies that ind(S) = 1 (see [1], [12],
[14]).

An important open problem (at the end of [5]) is to determine the maximum length of
sequences over Cn without index 1 subsequences. Clearly, S is a zero-sum sequence if and
only if ind(S) is an integer by definition 1.1. Hence we introduce the definitions of tr(n) and
index-r-free sequences.
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Definition 1.2. Let r be a positive integer, denote by tr(n) the smallest integer ` such that
every sequence S over Cn of length |S| ≥ ` has a zero-sum subsequence T with ind(T ) ∈ [1, r].

Definition 1.3. For any integer r ≥ 1, a sequence S over Cn is called index-r-free, if S has
no zero-sum subsequence T with ind(T ) ∈ [1, r].

In 1989, Lemke and Kleitman ([9, page 344]) conjectured that if S is a sequence over Cn of
length |S| = n, then there exists a subsequence T of S such that ind(T ) = 1. That is to say,
t1(n) = n. In 2011, Gao, Li, Peng, Plyley and Wang ([5]) gave a counterexample and proved
that t1(n) ≥ n+

⌊
n
4

⌋
− 4 for n = 4k + 2 ≥ 22. In 2015, Zeng, Yuan and Li ([16]) promoted the

former counterexample to general counterexamples, and by their results we could derive that
t1(n) ≥ n+

⌊
n
d2

⌋
− (d3 − d2 + d− 1) for n > d2(d3 − d2 + d+ 1), where d ∈ Z with d > 1.

In this paper we give longer general structures (theorem 1.4) to the conjecture of Lemke and
Kleitman, and prove that t1(n) ≥ n+ n

d +O(
√
n) for every sufficiently large integer n divisible by

d, where d ∈ Z with d > 1 (theorem 1.5). It is a greater lower bound of t1(n) than before, and
we conjecture that it is the best possible bound when n is big enough. Furthermore, we promote
the index 1 free sequences to index r free sequences, and show that tr(n) ≥ n+ n

d +O(
√
n) for

every sufficiently large integer n divisible by d, where constant r ∈ Z with r ≥ 2. Here are our
main results.

Theorem 1.4. Let d, n be any integers with 1 < d|n and n > d2, and g ∈ Cn with ord(g) = n.

For every integer r ∈
[
1, n

d2

)
and k ∈

[
0, log

n
r
d − 2

)
,

(1) S =
∏

(i,j)∈A

( (
im+ dj

)
g
)⌊ m

dj

⌋
−(dr−1)dk−j−1

is an index-r-free sequence, where m = n
d and A = [1, d− 1]× [0, k]

⋃{
(0, 0)

}
.

Theorem 1.5. Given any fixed integers d > 1 and r ≥ 1, for every sufficiently large integer n
with d|n, there exists an index-r-free sequence S over Cn such that |S| ≥ n+ n

d +O(
√
n).

In the following sections we provide the preliminaries and the proofs of Theorem 1.4 and
Theorem 1.5. We end the paper with a further conjecture and an open problem.

2. Notations and Preliminaries

We let n and d be any integers with 1 < d|n and n > d2, and let g ∈ Cn with ord(g) = n.

For every integer r ∈
[
1, n

d2

)
and k ∈

[
0, log

n
r
d − 2

)
, let a sequence

S =
∏

(i,j)∈A

( (
im+ dj

)
g
)⌊ m

dj

⌋
−(dr−1)dk−j−1

,

where m = n
d and A = [1, d− 1]× [0, k]

⋃{
(0, 0)

}
.

Let T be a subsequence of S and tij ∈ Z be the multiplicity of (im + dj)g in T , where
(i, j) ∈ A. If (im+ dj)g /∈ T , we set tij = 0. That is,

T =
∏

(i,j)∈A

(
(im+ dj)g

)tij ⊂ S,
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where

(2) 0 ≤ tij ≤
⌊m
dj

⌋
− (dr − 1)dk−j − 1.

We set ind(T ) =‖ T ‖g1 , where g1 ∈ Cn with 〈g1〉 = Cn. And we set g = hg1, where h ∈ [1, n−1]
with gcd(h, n) = 1. Then

T =
∏

(i,j)∈A

(
(im+ dj)hg1

)tij ,
and

(3) n ‖ T ‖g1=
∑

(i,j)∈A

tij
∣∣(im+ dj)h

∣∣
n
,

where
∣∣w∣∣

n
denotes the least positive residue of w ∈ Z modulo n > 0. We fix the notation

concerning sequences over Cn. And let

B =
{

(i, j) ∈ A
∣∣∣ 0 < ∣∣(im+ dj)h

∣∣
n
< m

}
,

and

C =
{

(i, j) ∈ A
∣∣∣m <

∣∣(im+ dj)h
∣∣
n
< n

}
.

By next lemma we split A into two parts.

Lemma 2.1. B ∪ C = A.

Proof. For every (i, j) ∈ A, combining A = [1, d − 1] × [0, k]
⋃{

(0, 0)
}

, r ∈
[
1, n

d2

)
with k ∈[

0, log
n
r
d − 2

)
, we derive 0 < dj < m. Then by gcd(h, n) = 1 and dm = n, we have 0 <∣∣(im+ dj)h
∣∣
n
< n and

∣∣(im+ dj)h
∣∣
n
6= m for every (i, j) ∈ A. Then by the definitions of B

and C, we have B ∪ C = A. �

Lemma 2.2. For any integer j ∈ [0, k], we have{∣∣(im+ dj)h
∣∣
n

∣∣∣ i ∈ [0, d− 1]
}

=
{
im+

∣∣hdj∣∣
m

∣∣∣ i ∈ [0, d− 1]
}
,

and there exists only one element i0 ∈ [0, d− 1] such that 0 <
∣∣(i0m+ dj)h

∣∣
n
< m.

Proof. By ∣∣∣∣∣(im+ dj)h
∣∣
n

∣∣∣
m

=
∣∣hdj∣∣

m
, where i ∈ [0, d− 1],

we have {∣∣(im+ dj)h
∣∣
n

∣∣∣ i ∈ [0, d− 1]
}
⊂
{
im+

∣∣hdj∣∣
m

∣∣∣ i ∈ Z
}
.

For any j ∈ [0, k], by the relevant definitions we have 0 < dj < m, then 0 <
∣∣(im+ dj)h

∣∣
n
< n.

So we have {∣∣(im+ dj)h
∣∣
n

∣∣∣ i ∈ [0, d− 1]
}
⊂
{
im+

∣∣hdj∣∣
m

∣∣∣ i ∈ [0, d− 1]
}
.

By gcd(h, n) = 1, we derive that
{∣∣(im+ dj)h

∣∣
n

∣∣∣ i ∈ [0, d− 1]
}

have d distinct elements. Since

these two sets both have d elements, we have{∣∣(im+ dj)h
∣∣
n

∣∣∣ i ∈ [0, d− 1]
}

=
{
im+

∣∣hdj∣∣
m

∣∣∣ i ∈ [0, d− 1]
}
,

and there exists only one element i0 ∈ [0, d− 1] such that

0 <
∣∣(i0m+ dj)h

∣∣
n
< m.

�
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By lemma 2.1, we rewrite Eq. (3) as

(4) n ‖ T ‖g1=

 ∑
(i,j)∈B

+
∑

(i,j)∈C

 tij
∣∣(im+ dj

)
h
∣∣
n
.

We consider the d elements of A, (i, 0), where i ∈ [0, d− 1]. By lemma 2.2, we have{∣∣(im+ d0)h
∣∣
n

∣∣∣ i ∈ [0, d− 1]
}

=
{
im+

∣∣hd0∣∣
m

∣∣∣ i ∈ [0, d− 1]
}
.

Then for some i0 ∈ [0, d − 1], one has
∣∣(i0m + d0)h

∣∣
n

= |h|m, so (i0, 0) ∈ B. For some

i1 ∈ [0, d−1], one has
∣∣(i1m+d0)h

∣∣
n

= m+ |h|m, so (i1, 0) ∈ C. Then we derive that B,C 6= ∅.
Here we set |B| = x and sort the elements in B as

B =
{

(µ1, τ1), (µ2, τ2), · · · , (µx, τx)
}
,

where µ∗, τ∗ and x are integers with µ∗ ∈ [0, d− 1], 0 = τ1 ≤ τ2 ≤ · · · ≤ τx ≤ k and x ≥ 1.

By lemma 2.2, we derive that for any integer τ∗, there exists at most one element µ∗ ∈ [0, d−1]
such that 0 <

∣∣(µ∗m + dτ∗)h
∣∣
n
< m. By the enumeration of the elements of B, we know that

actually 0 = τ1 < τ2 < · · · < τx ≤ k.

Next we will prove another quality of the sorted elements in B when x ≥ 2.

Lemma 2.3. When |B| = x ≥ 2, for every integer a ∈ [1, x− 1], we have

m <
∣∣(µam+ dτa)h

∣∣
n
dτa+1−τa < n.

Proof. Case 1. τa+1 − τa = 1.

By the definition of B we have 0 <
∣∣(µam + dτa)h

∣∣
n
< m, thus 0 <

∣∣(µam + dτa)h
∣∣
n
d < n.

It is clear that
∣∣(µam + dτa)h

∣∣
n
d 6= m. Assuming that 0 <

∣∣(µam + dτa)h
∣∣
n
d < m, by the

definition of B we also have 0 <
∣∣(µa+1m+ dτa+1)h

∣∣
n
< m. Thus

(5)
∣∣(µam+ dτa)h

∣∣
n
d−

∣∣(µa+1m+ dτa+1)h
∣∣
n
∈ (−m,m).

But we have∣∣∣ ∣∣(µam+ dτa)h
∣∣
n
d−

∣∣(µa+1m+ dτa+1)h
∣∣
n

∣∣∣
n

=
∣∣ − µa+1hm

∣∣
n

=
∣∣ − µa+1h

∣∣
d
m.

Since µa+1 ∈ [1, d− 1] and gcd(h, n) = 1, we have
∣∣ − µa+1h

∣∣
d
6= d. Hence∣∣(µam+ dτa)h

∣∣
n
d−

∣∣(µa+1m+ dτa+1)h
∣∣
n

= ym with integer y 6= 0,

a contradiction to Eq. (5). So that m <
∣∣(µam+ dτa)h

∣∣
n
d < n.

Case 2. τa+1 − τa ≥ 2.

First, for any integers v ∈ [τa + 1, τa+1 − 1] and i ∈ [1, d − 1], we have (i, v) ∈ A by the
definition of A. By definition of B, (i, v) /∈ B. By lemma 2.1, we have (i, v) ∈ C. Then by the
definition of C, we have

(6) m <
∣∣(im+ dv)h

∣∣
n
< n,

where v ∈ [τa + 1, τa+1 − 1] and i ∈ [1, d− 1].
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Second, for every z ∈ [0 , τa+1 − τa − 2], we will prove that, if 0 <
∣∣(µam+ dτa)h

∣∣
n
dz < m,

then 0 <
∣∣(µam+ dτa)h

∣∣
n
dz+1 < m.

For every z ∈ [0 , τa+1 − τa − 2], we let v = τa + z + 1, and suppose that

0 <
∣∣(µam+ dτa)h

∣∣
n
dz < m.

Then we have

0 <
∣∣(µam+ dτa)h

∣∣
n
dz+1 < n.

Therefore, ∣∣(µam+ dτa)h
∣∣
n
dz+1 =

∣∣(µam+ dτa)hdz+1
∣∣
n

=
∣∣dτa +z+1h

∣∣
n

=
∣∣hdv∣∣

n
.(7)

By lemma 2.2, we have

(8)
{∣∣(im+ dv)h

∣∣
n

∣∣∣ i ∈ [0, d− 1]
}

=
{
im+

∣∣hdv∣∣
m

∣∣∣ i ∈ [0, d− 1]
}
.

Note that v = τa + z + 1 ∈ [τa + 1, τa+1 − 1]. By Eq. (6), we have{∣∣(im+ dv)h
∣∣
n

∣∣∣ i ∈ [1, d− 1]
}
⊂
{
im+

∣∣hdv∣∣
m

∣∣∣ i ∈ [1, d− 1]
}
.

Since these two sets both have d− 1 elements, we have

(9)
{∣∣(im+ dv)h

∣∣
n

∣∣∣ i ∈ [1, d− 1]
}

=
{
im+

∣∣hdv∣∣
m

∣∣∣ i ∈ [1, d− 1]
}
.

Then combining Eq. (8) with Eq. (9), we have{∣∣(im+ dv)h
∣∣
n

∣∣∣ i = 0
}

=
{
im+

∣∣hdv∣∣
m

∣∣∣ i = 0
}
.

That is,
∣∣hdv∣∣

n
=
∣∣hdv∣∣

m
. Then by 0 <

∣∣hdv∣∣
m
< m and Eq. (7), we have

0 <
∣∣(µam+ dτa)h

∣∣
n
dz+1 < m.

Last, thus we proceed by induction on z ∈ [0 , τa+1 − τa − 2]. Since 0 <
∣∣(µam+dτa)h

∣∣
n
dz <

m is true for z = 0 by the definition of B, we let z = τa+1 − τa − 2 and derive that

0 <
∣∣(µam+ dτa)h

∣∣
n
dτa+1− τa− 1 < m

is true. Thus 0 <
∣∣(µam+ dτa)h

∣∣
n
dτa+1− τa < n. It is clear that

∣∣(µam+ dτa)h
∣∣
n
dτa+1− τa 6= m.

Assuming that 0 <
∣∣(µam + dτa)h

∣∣
n
dτa+1− τa < m, by the definition of B we also have 0 <∣∣(µa+1m+ dτa+1)h

∣∣
n
< m. Thus

(10)
∣∣(µam+ dτa)h

∣∣
n
dτa+1− τa −

∣∣(µa+1m+ dτa+1)h
∣∣
n
∈ (−m,m).

But we have∣∣∣ ∣∣(µam+ dτa)h
∣∣
n
dτa+1− τa −

∣∣(µa+1m+ dτa+1)h
∣∣
n

∣∣∣
n

=
∣∣ − µa+1h

∣∣
d
m.

It is a contradiction to Eq. (10). So that m <
∣∣(µam+ dτa)h

∣∣
n
dτa+1− τa < n. �
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3. Proof of Theorem 1.4 and Theorem 1.5

Proof of Theorem 1.4. Suppose to the contrary that there exists a subsequence T ⊂ S with
T 6= ∅ and ind(T ) ∈ [1, r]. We use the same relevant notions defined in last section. Without
loss of generality, we assume that |B| = x ≥ 2, because the following proof also holds true by

some minor modifications (for example, we view all the
∑x−1

l=1 f(l) as 0 when x = 1). We could
rewrite Eq. (4) as

n ‖ T ‖g1=
x−1∑
l=1

tµl τl
∣∣(µlm+ dτl)h

∣∣
n

+ tµx τx
∣∣(µxm+ dτx)h

∣∣
n

+
∑

(i,j)∈C

tij
∣∣(im+ dj)h

∣∣
n
.(11)

For l ∈ [1, x− 1], we set

(12) tµl τl = sl d
τl+1− τl + t′µl τl ,

where sl ≥ 0 and t′µl τl ∈ [0 , dτl+1− τl − 1]. Then we use three steps to complete the proof.

First, we will prove that
∑x−1

l=1 sl +
∑

(i,j)∈C tij ≤ dr − 1. By Eqs. (11) and (12), we have

n ‖ T ‖g1=
x−1∑
l=1

(sl d
τl+1− τl + t′µl τl)

∣∣(µlm+ dτl)h
∣∣
n

+ tµx τx
∣∣(µxm+ dτx)h

∣∣
n

+
∑

(i,j)∈C

tij
∣∣(im+ dj)h

∣∣
n

=

x−1∑
l=1

t′µl τl
∣∣(µlm+ dτl)h

∣∣
n

+ tµx τx
∣∣(µxm+ dτx)h

∣∣
n

+

( x−1∑
l=1

sl d
τl+1− τl

∣∣(µlm+ dτl)h
∣∣
n

+
∑

(i,j)∈C

tij
∣∣(im+ dj)h

∣∣
n

)
.(13)

Hence we have

n ‖ T ‖g1 ≥
x−1∑
l=1

sl d
τl+1−τl

∣∣(µlm+ dτl)h
∣∣
n

+
∑

(i,j)∈C

tij
∣∣(im+ dj)h

∣∣
n

>

x−1∑
l=1

slm+
∑

(i,j)∈C

tijm =

x−1∑
l=1

sl +
∑

(i,j)∈C

tij

m.

We suppose that
∑x−1

l=1 sl +
∑

(i,j)∈C tij > dr, and derive

n ‖ T ‖g1 >

x−1∑
l=1

sl +
∑

(i,j)∈C

tij

m > rn.
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Thus ind(T ) =‖ T ‖g1 > r, a contradiction to ind(T ) ∈ [1, r]. So we have

(14)
x−1∑
l=1

sl +
∑

(i,j)∈C

tij ≤ dr − 1.

Next, we will prove that
∣∣n ‖ T ‖g1 ∣∣m 6= m. By Eq. (13), we have

∣∣∣n ‖ T ‖g1 ∣∣∣
m

=

∣∣∣∣∣∣
x−1∑
l=1

t′µl τl d
τlh+ tµx τx d

τxh+
x−1∑
l=1

sl d
τl+1− τl dτlh+

∑
(i,j)∈C

tij d
jh

∣∣∣∣∣∣
m

=

∣∣∣∣∣∣h
( x−1∑
l=1

t′µl τl d
τl + tµx τx d

τx +

x−1∑
l=1

sl d
τl+1 +

∑
(i,j)∈C

tij d
j

)∣∣∣∣∣∣
m

=
∣∣h(∗∗)

∣∣
m
,(15)

where

(∗∗) =

x−1∑
l=1

t′µl τl d
τl + tµxτx d

τx +
x−1∑
l=1

sl d
τl+1 +

∑
(i,j)∈C

tij d
j

≤
x−1∑
l=1

(dτl+1−τl − 1)dτl + tµxτx d
τx +

x−1∑
l=1

sl d
k +

∑
(i,j)∈C

tij d
k

=− dτ1 + dτx + tµxτx d
τx +

( x−1∑
l=1

sl +
∑

(i,j)∈C

tij

)
dk

≤− dτ1 + dτx +
(⌊ m
dτx

⌋
− (dr − 1)dk−τx − 1

)
dτx + (dr − 1)dk(16)

≤− dτ1 + dτx +m− (dr − 1)dk − dτx + (dr − 1)dk

≤m− 1 .(17)

It is clear that (∗∗) > 0 by T 6= ∅. So we have
∣∣n ‖ T ‖g1 ∣∣m =

∣∣h(∗∗)
∣∣
m
6= m by Eqs. (15) and

(17).

Last, since
∣∣n ‖ T ‖g1 ∣∣m 6= m and m|n, we have

∣∣n ‖ T ‖g1 ∣∣n 6= n. Hence ind(T ) =‖ T ‖g1 is
not an integer and T is not a zero-sum subsequence of S. It is a contradiction to ind(T ) ∈ [1, r].
Thus S is an index-r-free sequence.

�

Proof of Theorem 1.5. Given any fixed integers d > 1 and r ≥ 1, we take the same S defined
in theorem 1.4 and let n > rd2 with d|n. Then S is an index-r-free sequence for any k ∈
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[
0, log

n
r
d − 2

)
by theorem 1.4. Since

⌊
m
dj

⌋
> m

dj
− 1, we calculate the length of S and have

|S| =
∑

(i,j)∈A

(⌊m
dj

⌋
− (dr − 1)dk−j − 1

)
>

∑
(i,j)∈[1,d−1]×[0,k]

(m
dj
− (dr − 1)dk−j − 2

)
+m− (dr − 1)dk − 1

=(d− 1)
∑
j∈[0,k]

(m
dj
− (dr − 1)dk−j − 2

)
+m− (dr − 1)dk − 1

=

(
1 +

1

d
− 1

dk+1

)
n− (dr − 1)(dk+1 + dk − 1)− 2(k + 1)(d− 1)− 1 .

We let k =
⌊

1
2 ln(n)

⌋
> 0 and have

|S| >
(

1 +
1

d

)
n+ C1

√
n+ C2 ln(n) + C3 ,

where C1, C2 and C3 are some constants determined by d and r. Thus we have proved the
theorem. �

Therefore, tr(n) ≥ n+ n
d +O(

√
n) for every sufficiently large integer n divisible by d, where

d > 1 and r ≥ 1 are constant integers.

4. Concluding Remarks

Given any fixed integers d > 1 and r ≥ 1. Since
⌊
m
dj

⌋
≤ m

dj
, we can also get upper bounds of

|S| in theorem 1.5. Let d be the least prime factor of n. Generally, |S| < n + n
d . So we have

the following conjecture.

Conjecture 4.1. Let n be a composite number, Cn a cyclic group of order n, and d the least
prime factor of n. Then every sequence S of length |S| = n + n

d over Cn has a zero-sum
subsequence T with ind(T ) = 1.

Open Problem. Determine tr(n) for all integers n ≥ 2 and r > 0.
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