The k-proper index of complete bipartite and complete multipartite graphs*

Wenjing Li ${ }^{1}$, Xueliang Li ${ }^{1,2}$ and Jingshu Zhang ${ }^{1}$
${ }^{1}$ Center for Combinatorics and LPMC
Nankai University, Tianjin 300071, China
linwenjing_61004@163.com; lxl@nankai.edu.cn; jszhang1992@126.com
${ }^{2}$ School of Mathematics and Statistics
Qinghai Normal University
Xining, Qinghai 810008, China

Abstract

Let G be an edge-colored graph. A tree T in G is a proper tree if no two adjacent edges of it are assigned the same color. Let k be a fixed integer with $2 \leq k \leq n$. For a vertex subset $S \subseteq V(G)$ with $|S| \geq 2$, a tree is called an S-tree if it connects the vertices of S in G. A k-proper coloring of G is an edgecoloring of G having the property that for every set S of k vertices of G, there exists a proper S-tree T in G. The minimum number of colors that are required in a k-proper coloring of G is defined as the k-proper index of G, denoted by $p x_{k}(G)$. In this paper, we determine the 3 -proper index of all complete bipartite and complete multipartite graphs and partially determine the k-proper index of them for $k \geq 4$.

Keywords: 3-proper index, color code, binary system, complete bipartite and multipartite graphs, k-proper index.
AMS subject classification 2010: 05C15, 05C35, 05C38, 05C40.

1 Introduction

All graphs considered in this paper are simple, finite, undirected and connected. We follow the terminology and notation of Bondy and Murty in [2] for those not defined here. Let G be a graph, we use $V(G), E(G),|G|, \Delta(G)$ and $\delta(G)$ to denote the vertex set, edge set, order (number of vertices), maximum degree and minimum degree of G, respectively. For $D \subseteq V(G)$, let $\bar{D}=V(G) \backslash D$, and let $G[D]$ denote the subgraph of G induced by D.

[^0]Let G be a nontrivial connected graph with an edge-coloring $c: E(G) \rightarrow\{1, \ldots, t\}$, $t \in \mathbb{N}$, where adjacent edges may be colored with the same color. If adjacent edges of G receive different colors by c, then c is called a proper coloring. The minimum number of colors required in a proper coloring of G is referred as the chromatic index of G and denoted by $\chi^{\prime}(G)$. Meanwhile, a path in G is called a rainbow path if no two edges of the path are colored with the same color. The graph G is called rainbow connected if for any two distinct vertices of G, there is a rainbow path connecting them. For a connected graph G, the rainbow connection number of G, denoted by $r c(G)$, is defined as the minimum number of colors that are required to make G rainbow connected. These concepts were first introduced by Chartrand et al. in [6] and have been wellstudied since then. For further details, we refer the reader to a book [10].

Motivated by rainbow coloring and proper coloring in graphs, Andrews et al. [1] and, independently, Borozan et al. [3] introduced the concept of proper-path coloring. Let G be a nontrivial connected graph with an edge-coloring. A path in G is called a proper path if no two adjacent edges of the path are colored with the same color. The graph G is called proper connected if for any two distinct vertices of G, there is a proper path connecting them. The proper connection number of G, denoted by $p c(G)$, is defined as the minimum number of colors that are required to make G proper connected. For more details, we refer to a dynamic survey [9].

Chen et al. [7] recently generalized the concept of proper-path to proper tree. A tree T in an edge-colored graph is a proper tree if no two adjacent edges of it are assigned the same color. For a vertex subset $S \subseteq V(G)$, a tree is called an S-tree if it connects S in G. Let G be a connected graph of order n with an edge-coloring and let k be a fixed integer with $2 \leq k \leq n$. A k-proper coloring of G is an edge-coloring of G having the property that for every set S of k vertices of G, there exists a proper S-tree T in G. The minimum number of colors that are required in a k-proper coloring of G is the k-proper index of G, denoted by $p x_{k}(G)$. Clearly, $p x_{2}(G)$ is precisely the proper connection number $p c(G)$ of G. For a connected graph G, it is easy to see that $p x_{2}(G) \leq p x_{3}(G) \leq \cdots \leq p x_{n}(G)$. The following results are not difficult to obtain.

Proposition 1.1. [7] If G is a nontrivial connected graph of order $n \geq 3$, and H is a connected spanning subgraph of G, then $p x_{k}(G) \leq p x_{k}(H)$ for any k with $3 \leq k \leq n$. In particular, $p x_{k}(G) \leq p x_{k}(T)$ for every spanning tree T of G.

Proposition 1.2. [7] For an arbitrary connected graph G with order $n \geq 3$, we have $p x_{k}(G) \geq 2$ for any integer k with $3 \leq k \leq n$.

A Hamiltonian path in a graph G is a path containing every vertex of G and a graph having a Hamiltonian path is a traceable graph.

Proposition 1.3. [7] If G is a traceable graph with $n \geq 3$ vertices, then $p x_{k}(G)=2$ for each integer k with $3 \leq k \leq n$.

Armed with Proposition 1.3, we can easily obtain $p x_{k}\left(K_{n}\right)=p x_{k}\left(P_{n}\right)=p x_{k}\left(C_{n}\right)=$ $p x_{k}\left(W_{n}\right)=p x_{k}\left(K_{s, s}\right)=2$ for each integer k with $3 \leq k \leq n$, where K_{n}, P_{n}, C_{n} and
W_{n} are respectively a complete graph, a path, a cycle and a wheel on $n \geq 3$ vertices and $K_{s, s}$ is a regular complete bipartite graph with $s \geq 2$.

A vertex set $D \subseteq G$ is called an s-dominating set of G if every vertex in \bar{D} is adjacent to at least s distinct vertices of D. If, in addition, $G[D]$ is connected, then we call D a connected s-dominating set. Recently, Chang et al. [4] gave an upper bound for the 3 -proper index of graphs with respect to the connected 3-dominating set.

Theorem 1.1. [4] If D is a connected 3-dominating set of a connected graph G with minimum degree $\delta(G) \geq 3$, then $p x_{3}(G) \leq p x_{3}(G[D])+1$.

Using this, we can easily obtain the following.
Theorem 1.2. For any complete bipartite graph $K_{s, t}$ with $t \geq s \geq 3$, we have $2 \leq$ $p x_{3}\left(K_{s, t}\right) \leq 3$.

Proof. Let U and W be the two partite sets of $K_{s, t}$, where $U=\left\{u_{1}, u_{2}, u_{3}, \ldots, u_{s}\right\}$ and $W=\left\{w_{1}, w_{2}, w_{3}, \ldots, w_{t}\right\}$. Obviously, $D=\left\{u_{1}, u_{2}, u_{3}, w_{1}, w_{2}, w_{3}\right\}$ is a connected 3dominating set of $K_{s, t}$ and $\delta\left(K_{s, t}\right) \geq 3$. It follows from Theorem 1.1 that $p x_{3}\left(K_{s, t}\right) \leq$ $p x_{3}\left(K_{s, t}[D]\right)+1=3$. By Proposition 1.2, we have $p x_{3}\left(K_{s, t}\right) \geq 2$.

Naturally, we wonder among these complete bipartite graphs, whose 3-proper index is 2 . Moreover, what are the exact values of $p x_{3}\left(K_{s, t}\right)$ with $s+t \geq 3, t \geq s \geq 1$ and $p x_{3}\left(K_{n_{1}, n_{2}, \ldots, n_{r}}\right)$ with $r \geq 3$? Moreover, what happens when $k \geq 4$? So our paper is organised as follows: In Section 2, we concentrate on all complete bipartite graphs and determine the value of the 3-proper index of each of them. In Section 3, we go on investigating all complete multipartite graphs and obtain the 3-proper index of each of them. In the final section, we turn to the case that $k \geq 4$, and give a partial answer. In the sequel, we use $c(u w)$ to denote the color of the edge $u w$.

2 The 3-proper index of a complete bipartite graph

In this section, we concentrate on all complete bipartite graphs $K_{s, t}$ with $s+t \geq 3, t \geq$ $s \geq 1$ and obtain a complete answer of the value of $p x_{3}\left(K_{s, t}\right)$. From [7], we know $p x_{3}\left(K_{1, t}\right)=t$. Hence, in the following we assume that $t \geq s \geq 2$. Our result will be divided into three separate theorems depending upon the value of s.

Theorem 2.1. For any integer $t \geq 2$, we have

$$
p x_{3}\left(K_{2, t}\right)= \begin{cases}2 & \text { if } 2 \leq t \leq 4 \\ 3 & \text { if } 5 \leq t \leq 18 \\ \left\lceil\sqrt{\frac{t}{2}}\right\rceil & \text { if } t \geq 19\end{cases}
$$

Proof. Let U, W be the two partite sets of $K_{2, t}$, where $U=\left\{u_{1}, u_{2}\right\}$ and $W=\left\{w_{1}\right.$, $\left.w_{2}, \ldots, w_{t}\right\}$. Suppose that there exists a 3-proper coloring $c: E\left(K_{2, t}\right) \rightarrow\{1,2, \ldots, k\}$,
$k \in \mathbb{N}$. Corresponding to the 3-proper coloring, there is a color $\operatorname{code}(w)$ assigned to every vertex $w \in W$, consisting of an ordered 2-tuple (a_{1}, a_{2}), where $a_{i}=c\left(u_{i} w\right) \in$ $\{1,2, \ldots, k\}$ for $i=1,2$. In turn, if we give each vertex of W a code, then we can induce the corresponding edge-coloring of $K_{2, t}$.

Claim 1: $p x_{3}\left(K_{2, t}\right)=2$ if $2 \leq t \leq 4$.
Proof. Give the codes $(1,2),(2,1),(1,1),(2,2)$ to $w_{1}, w_{2}, w_{3}, w_{4}$ (if each of these vertices exists). Then it is easy to check that for every 3 -subset S of $K_{2, t}$, the edge-colored $K_{2, t}$ has a proper path P connecting S.

Claim 2: $p x_{3}\left(K_{2, t}\right)>2$ if $t>4$.
Proof. Otherwise, give $K_{2, t}$ a 3-proper coloring with colors 1 and 2. Then for any 3subset S of $K_{2, t}$, any proper tree connecting S must actually be a path. For $t>4$, there are at least two vertices w_{p}, w_{q} in W such that $\operatorname{code}\left(w_{p}\right)=\operatorname{code}\left(w_{q}\right)$. We may assume that $\operatorname{code}\left(w_{1}\right)=\operatorname{code}\left(w_{2}\right)$. Then for an arbitrary integer i with $3 \leq i \leq t$, let $S=\left\{w_{1}, w_{2}, w_{i}\right\}$. There must be a proper path of length 4 connecting S. Suppose that the path is $w_{a} u_{a^{\prime}} w_{b} u_{b^{\prime}} w_{c}$, where $\left\{w_{a}, w_{b}, w_{c}\right\}=\left\{w_{1}, w_{2}, w_{i}\right\}$ and $\left\{u_{a^{\prime}}, u_{b^{\prime}}\right\}=\left\{u_{1}, u_{2}\right\}$. By symmetry, we can assume that $u_{a^{\prime}}=u_{1}, u_{b^{\prime}}=u_{2}$. Then $w_{b}=w_{i}$ for otherwise we have $c\left(w_{a} u_{1}\right)=c\left(u_{1} w_{b}\right)$ or $c\left(w_{b} u_{2}\right)=c\left(u_{2} w_{c}\right)$, a contradiction. By symmetry, let $w_{a}=w_{1}, w_{c}=w_{2}$. Thus $c\left(w_{i} u_{1}\right) \neq c\left(w_{i} u_{2}\right)$. Without loss of generality, we can suppose that $c\left(w_{i} u_{1}\right)=1$ and $c\left(w_{i} u_{2}\right)=2$. Hence, $\operatorname{code}\left(w_{i}\right)=(1,2)$ for each integer $3 \leq i \leq t$. Now let $S=\left\{w_{3}, w_{4}, w_{5}\right\}$. It is easy to verify that there is no proper path $w_{a} u_{a^{\prime}} w_{b} u_{b^{\prime}} w_{c}$ connecting S, for we always have $c\left(w_{a} u_{a^{\prime}}\right)=c\left(u_{a^{\prime}} w_{b}\right), c\left(w_{b} u_{b^{\prime}}\right)=c\left(u_{b^{\prime}} w_{c}\right)$.

Claim 3: Let k be a integer where $k \geq 3$. Then $p x_{3}\left(K_{2, t}\right) \leq k$ for $4<t \leq 2 k^{2}$.
Proof. Set $\operatorname{code}\left(w_{1}\right)=(1,1), \operatorname{code}\left(w_{2}\right)=(1,2), \ldots, \operatorname{code}\left(w_{k}\right)=(1, k)$;
$\operatorname{code}\left(w_{k+1}\right)=(2,1), \operatorname{code}\left(w_{k+2}\right)=(2,2), \ldots, \operatorname{code}\left(w_{2 k}\right)=(2, k) ;$
$\operatorname{code}\left(w_{k(k-1)+1}\right)=(k, 1), \operatorname{code}\left(w_{k(k-1)+2}\right)=(k, 2), \ldots, \operatorname{code}\left(w_{k^{2}}\right)=(k, k)$
(if each of these vertices exists). And let $\operatorname{code}\left(w_{k^{2}+i}\right)=\operatorname{code}\left(w_{i}\right)$ for $1 \leq i \leq k^{2}$ (if each of these vertices exists). Now, we prove that this induces a 3-proper coloring of $K_{2, t}$. First of all, we notice that each code appears at most twice. Let S be a 3 -subset of $K_{2, t}$. We consider the following two cases.

Case 1: Let $S=\left\{w_{l}, w_{m}, w_{n}\right\}$, where $1 \leq l<m<n \leq t$.
Subcase 1.1: If there is a $j \in\{1,2\}$ such that the colors of $u_{j} w_{l}, u_{j} w_{m}, u_{j} w_{n}$ are pairwise distinct, then the tree $T=\left\{u_{j} w_{l}, u_{j} w_{m}, u_{j} w_{n}\right\}$ is a proper S-tree.

Subcase 1.2: If there is no such j, that is, at least two of the edges $u_{j} w_{l}, u_{j} w_{m}, u_{j} w_{n}$ share the same color for both $j=1$ and $j=2$.
i) $\operatorname{code}\left(w_{l}\right), \operatorname{code}\left(w_{m}\right)$ and $\operatorname{code}\left(w_{n}\right)$ are pairwise distinct. Without loss of generality, we suppose that $c\left(u_{1} w_{l}\right)=c\left(u_{1} w_{m}\right)=a, c\left(u_{2} w_{l}\right)=c\left(u_{2} v_{n}\right)=b\left(1 \leq a, b \leq k^{2}\right)$. Then
$c\left(u_{1} w_{n}\right) \neq c\left(u_{1} w_{l}\right), c\left(u_{2} w_{l}\right) \neq c\left(u_{2} w_{m}\right)$. If $a=b$, then we have $c\left(u_{1} w_{n}\right) \neq c\left(w_{n} u_{2}\right)$. So the path $P=w_{l} u_{1} w_{n} u_{2} w_{m}$ is a proper S-tree. Otherwise, the path $P=w_{n} u_{1} w_{l} u_{2} w_{m}$ is a proper S-tree.
ii) Two of the codes of the vertices in S are the same. Without loss of generality, we assume that $\operatorname{code}\left(w_{l}\right)=\operatorname{code}\left(w_{m}\right)=(a, b), \operatorname{code}\left(w_{n}\right)=(x, y)\left(1 \leq a, b, x, y \leq k^{2}\right)$. Notice that $(x, y) \neq(a, b)$, then suppose that $x \neq a$. Since $k \geq 3$, there are two positive integers $p, q \leq k$ such that $p \neq a, p \neq x$ and $q \neq b, q \neq p$. Pick a vertex w_{r} whose code is (p, q) (this vertex exists since all of the k^{2} codes appear at least once). Then the tree $T=\left\{u_{1} w_{m}, u_{1} w_{n}, u_{1} w_{r}, w_{r} u_{2}, u_{2} w_{l}\right\}$ is a proper S-tree.

Case 2: $S=\left\{u_{r}, w_{l}, w_{m}\right\}$, where $1 \leq l<m \leq t$. By symmetry, let $r=1$.
Suppose that $\operatorname{code}\left(w_{l}\right)=(a, b), \operatorname{code}\left(w_{m}\right)=(x, y)\left(1 \leq a, b, x, y \leq k^{2}\right)$. If $a \neq x$ then the path $P=w_{l} u_{1} w_{m}$ is a proper S-tree. If $a=x$, then we consider whether $b=y$ or not. We discuss two subcases.
i) $b \neq y$, then at least one of them is not equal to a, assume that $b \neq a$. So the path $P=u_{1} w_{l} u_{2} w_{m}$ is a proper S-tree.
ii) $b=y$, that is $\operatorname{code}\left(w_{l}\right)=\operatorname{code}\left(w_{m}\right)$, so all of the k^{2} codes appear at least at once. Since $k \geq 3$, there are two positive integers $p, q \leq k$ such that $p \neq a$ and $q \neq b, q \neq p$. Pick a vertex w_{r} whose code is (p, q). Then the path $P=w_{l} u_{1} w_{r} u_{2} w_{m}$ is a proper S-tree.

Case 3: $S=\left\{u_{1}, u_{2}, w_{l}\right\}$, where $1 \leq l \leq t$.
Suppose that $\operatorname{code}\left(w_{l}\right)=(a, b)\left(1 \leq a, b \leq k^{2}\right)$. If $a \neq b$, then the path $P=u_{1} w_{l} u_{2}$ is a proper S-tree. Otherwise, according to our edge-coloring, there exists a vertex w_{r} of W with the code (p, q) such that $q \neq a$ and $p \neq q$. Then the path $P=w_{l} u_{2} w_{r} u_{1}$ is a proper S-tree.

Claim 4: $p x_{3}\left(K_{2, t}\right)>k$ for $t>2 k^{2}$.
Proof. For any edge-coloring of $K_{2, t}$ with k colors, there must be a code which appears at least three times. Suppose that w_{1}, w_{2}, w_{3} are the vertices with the same code and set $S=\left\{w_{1}, w_{2}, w_{3}\right\}$. Then for any tree T connecting S, there is a $j \in\{1,2\}$ such that $\left\{u_{j} w_{l}, u_{j} w_{m}\right\} \subseteq E(T)$ for some $\{l, m\} \subseteq\{1,2,3\}, l \neq m$. But $c\left(u_{j} w_{l}\right)=c\left(u_{j} w_{m}\right)$, so T can not be a proper S-tree. Thus $p x_{3}\left(K_{2, t}\right)>k$.

By Claims 2-4, we have the following result: if $5 \leq t \leq 8, p x_{3}\left(K_{2, t}\right)=3$; if $t>8$, let $k=\left\lceil\sqrt{\frac{t}{2}}\right\rceil$, then $3 \leq \sqrt{\frac{t}{2}} \leq k<\sqrt{\frac{t}{2}}+1$, i.e., $2(k-1)^{2}+1 \leq t \leq 2 k^{2}$, so we have $p x_{3}\left(K_{2, t}\right)=k=\left\lceil\sqrt{\frac{t}{2}}\right\rceil$. Notice that $p x_{3}\left(K_{2, t}\right)=3$ for $5 \leq t \leq 18$.

Theorem 2.2. For any integer $t \geq 3$, we have

$$
p x_{3}\left(K_{3, t}\right)= \begin{cases}2 & \text { if } 3 \leq t \leq 12 \\ 3 & \text { otherwise }\end{cases}
$$

Proof. Let U, W be the two partite sets of $K_{3, t}$, where $U=\left\{u_{1}, u_{2}, u_{3}\right\}$ and $W=$ $\left\{w_{1}, w_{2}, \ldots, w_{t}\right\}$. Suppose that there exists a 3 -proper coloring $c: E\left(K_{3, t}\right) \rightarrow\{0,1,2, \ldots$, $k-1\}, k \in \mathbb{N}$. Analogously to Theorem 2.1, corresponding to the 3 -proper coloring, there is a color code (w) assigned to every vertex $w \in W$, consisting of an ordered 3tuple (a_{1}, a_{2}, a_{3}), where $a_{i}=c\left(u_{i} w\right) \in\{0,1,2, \ldots, k-1\}$ for $i=1,2,3$. In turn, if we give each vertex of W a code, then we can induce the corresponding edge-coloring of $K_{3, t}$.

Case 1: $3 \leq t \leq 8$.
In this part, we give the vertices of W the codes which induce a 3-proper coloring of $K_{3, t}$ with colors 0 and 1 . And by application of binary system, we can introduce the assignment of the codes in a clear way. Recall the Abelian group \mathbb{Z}_{2}. We build a bijection $f:\left\{w_{1}, w_{2}, \ldots, w_{8}\right\} \rightarrow \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$, where $f\left(w_{4 a_{1}+2 a_{2}+a_{3}+1}\right)=\left(a_{1}, a_{2}, a_{3}\right)$. For instance, $f\left(w_{3}\right)=(0,1,0)$. Under this condition, we use its restriction f_{W} on W. Now, we prove that f induces a 3-proper coloring of $K_{3, t}$. Let S be an arbitrary 3-subset.

Subcase 1.1: $S=\left\{w_{l}, w_{m}, w_{n}\right\}$ for some l, m, n.
Because there is no copy of any code, we can find a vertex in U, say u_{1}, such that $u_{1} w_{l}, u_{1} w_{m}, u_{1} w_{n}$ are not all with the same color. We may assume that $c\left(u_{1} w_{l}\right)=$ $c\left(u_{1} w_{m}\right)=0$ and $c\left(u_{1} w_{n}\right)=1$.
i) $\operatorname{code}\left(w_{l}\right)=(0,0,0)$. Then there is a ' 1 ' in the code of w_{m}. By symmetry, assume that $c\left(u_{2} w_{m}\right)=1$. Then there is a proper path $P=w_{l} u_{2} w_{m} u_{1} w_{n}$ connecting S.
ii) code $\left(w_{l}\right)=(0,0,1)$. If code $\left(w_{m}\right)=(0,0,0)$, then we return to $\left.i\right)$. Otherwise, the code of w_{m} is neither $(0,0,0)$ nor $(0,0,1)$. So $c\left(u_{2} w_{m}\right)=1$. Then the proper S-tree is the same as that in i).
iii) $\operatorname{code}\left(w_{l}\right)=(0,1,0)$. It is similar to $\left.i i\right)$.
iv) $\operatorname{code}\left(w_{l}\right)=(0,1,1)$. Then either $c\left(u_{2} w_{m}\right)=0$ or $c\left(u_{3} w_{m}\right)=0$. By symmetry, we suppose that $c\left(u_{2} w_{m}\right)=0$. Then the path $P=w_{m} u_{2} w_{l} u_{1} w_{n}$ is a proper S-tree.

Subcase 1.2: $S=\left\{u_{j}, w_{l}, w_{m}\right\}$ for some j, l, m.
If $c\left(u_{j} w_{l}\right) \neq c\left(u_{j} w_{m}\right)$, then the path $P=w_{l} u_{j} w_{m}$ is a proper S-tree. Otherwise, by symmetry, we assume that $c\left(u_{j} w_{l}\right)=c\left(u_{j} w_{m}\right)=0$, then there is a $j^{\prime} \neq j$ such that $c\left(u_{j^{\prime}} w_{l}\right) \neq c\left(u_{j^{\prime}} w_{m}\right)$ (otherwise w_{l}, w_{m} will have the same code). So one of $c\left(u_{j^{\prime}} w_{l}\right)$ and $c\left(u_{j^{\prime}} w_{m}\right)$ equals 1, say $c\left(u_{j}^{\prime} w_{l}\right)=1$. Then the path $P=u_{j} w_{l} u_{j^{\prime}} w_{m}$ is a proper S-tree.

Subcase 1.3: $S=\left\{u_{j_{1}}, u_{j_{2}}, w_{l}\right\}$ for some j_{1}, j_{2}, l.
If $c\left(u_{j_{1}} w_{l}\right) \neq c\left(u_{j_{2}} w_{l}\right)$, then the path $P=u_{j_{1}} w_{l} u_{i_{2}}$ is a proper S-tree. Otherwise, by symmetry, we assume that $c\left(u_{j_{1}} w_{l}\right)=c\left(u_{j_{2}} w_{l}\right)=0$. By the sequence of the codes according to f and $t \geq 3$, we know that for any two vertices $u_{a^{\prime}}, u_{b^{\prime}}$ of U, there exists a vertex $w \in W$ such that $c\left(u_{a^{\prime}} w\right) \neq c\left(u_{b^{\prime}} w\right)$. Similar to Subcase 1.2, we can obtain a proper S-tree.

Subcase 1.4: $S=\left\{u_{1}, u_{2}, u_{3}\right\}$.
$P=u_{1} w_{3} u_{2} w_{2} u_{3}$ is a proper path connecting S.

Case 2: $9 \leq t \leq 12$.
Set $\operatorname{code}\left(w_{1}\right)=(0,0,1), \operatorname{code}\left(w_{2}\right)=(0,1,0), \operatorname{code}\left(w_{3}\right)=(0,1,1)$,
$\operatorname{code}\left(w_{4}\right)=(1,0,0), \operatorname{code}\left(w_{5}\right)=(1,0,1), \operatorname{code}\left(w_{6}\right)=(1,1,0)$.
And let $\operatorname{code}\left(w_{6+i}\right)=\operatorname{code}\left(w_{i}\right)$ for $1 \leq i \leq 6$ (if each of these vertices exist). For convenience, we denote $w_{6+i}=w_{i}^{\prime}$. Now, we claim that this induces a 3 -proper coloring of $K_{3, t}$. Let S be an arbitrary 3 -subset of $K_{3, t}$. Based on Case 1, we only consider about the case that $\left\{w_{i}, w_{i}^{\prime}\right\} \subseteq S$ for some $1 \leq i \leq 6$. By symmetry, we suppose that $i=1$. First of all, we list three proper paths containing $w_{1}, w_{1}^{\prime}: P_{1}=w_{1} u_{3} w_{2} u_{2} w_{1}^{\prime}$, $P_{2}=w_{1} u_{2} w_{3} u_{1} w_{4} u_{3} w_{1}^{\prime}$ and $P_{3}=w_{1} u_{1} w_{5} u_{2} w_{6} u_{3} w_{1}^{\prime}$, in which w_{j} can be replaced by w_{j}^{\prime} for $2 \leq j \leq 6$. Then, we can always find a proper path from $\left\{P_{1}, P_{2}, P_{3}\right\}$ connecting S whichever the third vertex of S is.

Case 3: $t \geq 13$.
We claim that $p x_{3}\left(K_{3, t}\right)=3$. We prove it by contradiction. If there is a 3 -proper coloring of $K_{3, t}$ with two colors 0 and 1 , then any proper tree for an arbitrary 3 -subset S is in fact a path. Consider the set $S \subseteq W$. As the graph is bipartite and we just care about the shortest proper path connecting S, there are only two possible types of such a path:

I: $w_{a} u_{a^{\prime}} w_{b} u_{b^{\prime}} w_{c}$
II: $w_{a} u_{a^{\prime}} w_{b} u_{b^{\prime}} w^{\prime} u_{c^{\prime}} w_{c}$
where $\left\{u_{a^{\prime}}, u_{b^{\prime}}, u_{c^{\prime}}\right\}=U$ and $\left\{w_{a}, w_{b}, w_{c}\right\}=S, w^{\prime} \in W \backslash S$.
Firstly, as $t \geq 13$, we know that some code appears more than once. But it can not appear more than twice. Otherwise, assume that $w_{i}, w_{i}^{\prime}, w_{i}^{\prime \prime}$ are the three vertices with the same code, and let $S=\left\{w_{i}, w_{i}^{\prime}, w_{i}^{\prime \prime}\right\}$. Whether the proper path connecting S is type I or type II, it should be $c\left(w_{a} u_{a^{\prime}}\right) \neq c\left(w_{b} u_{a^{\prime}}\right)$, contradicting with the assumption that $\operatorname{code}\left(w_{i}\right)=\operatorname{code}\left(w_{i}^{\prime}\right)=\operatorname{code}\left(w_{i}^{\prime \prime}\right)$.

Secondly, we prove the following several claims by contradiction.
Claim 1: The repetitive code can not be $(0,0,0)$ or $(1,1,1)$.
Proof. Suppose that code $\left(w_{1}\right)=\operatorname{code}\left(w_{2}\right)=(0,0,0)$. Let $S=\left\{w_{1}, w_{2}, w_{3}\right\}$ where $w_{3} \in W \backslash\left\{w_{1}, w_{2}\right\}$, and let P be a proper path connecting S. Then w_{1}, w_{2} are the two end vertices of P, and so the two end edges of it are assigned the same color. However, since the length of P is even, the colors of the end edges can not be the same, a contradiction. Analogously, the code $(1,1,1)$ cannot appear more than once.

Claim 2: If the code $(0,0,1)$ is repeated, then there is no vertex in W with $(0,0,0)$ as its code.

Proof. Suppose that $\operatorname{code}\left(w_{1}\right)=\operatorname{code}\left(w_{2}\right)=(0,0,1), \operatorname{code}\left(w_{3}\right)=(0,0,0)$. Let $S=$ $\left\{w_{1}, w_{2}, w_{3}\right\}$, and let P be a proper path connecting S. Then w_{3} is one of the end vertices of P. Moreover, the path P must be type II, for in type I, we need $c\left(w_{a} u_{a^{\prime}}\right) \neq$ $c\left(w_{b} u_{a^{\prime}}\right)$ and $c\left(w_{b} u_{b^{\prime}}\right) \neq c\left(w_{c} u_{b^{\prime}}\right)$, which is impossible for S. We can also deduce that
$u_{a^{\prime}}=u_{3}$ because $c\left(w_{a} u_{a^{\prime}}\right) \neq c\left(w_{b} u_{a^{\prime}}\right)$. And $\left\{w_{1}, w_{2}\right\} \neq\left\{w_{a}, w_{b}\right\}$ since they are with the same code. So we have $w_{a}=w_{3}$. Thus, $\left\{w_{b}, w_{c}\right\}=\left\{w_{1}, w_{2}\right\}$ and $\left\{u_{b^{\prime}}, u_{c^{\prime}}\right\}=\left\{u_{1}, u_{2}\right\}$, contradicting with the fact that $c\left(w_{b} u_{b^{\prime}}\right) \neq c\left(w_{c} u_{c^{\prime}}\right)$.

Analogously, we have that the repetitive code $(0,1,0)$ or $(1,0,0)$ can not exist along with the code $(0,0,0)$, respectively. Symmetrically, the repetitive code $(0,1,1),(1,0,1)$ or $(1,1,0)$ can not exist along with the code $(1,1,1)$, respectively.

Finally, as $t \geq 13$ and no code could appear more than twice, there are at least 7 different codes in W and at least 5 codes repeated. But considering Claim 2 and its analogous results, it is a contradiction. So $p x_{3}\left(K_{3, t}\right)=3$ when $t \geq 13$.
Theorem 2.3. For a complete bipartite graph $K_{s, t}$ with $t \geq s \geq 4$, we have $p x_{3}\left(K_{s, t}\right)=$ 2.

Proof. Let U, W be the two partite sets of $K_{s, t}$, where $U=\left\{u_{1}, u_{2}, \ldots, u_{s}\right\}$ and $W=\left\{w_{1}, w_{2}, \ldots, w_{t}\right\}$. And denote a cycle $C_{s}=u_{1} w_{1} u_{2} w_{2} \ldots u_{s} w_{s} u_{1}$. Moreover, if $u, v \in V\left(C_{s}\right)$, then we use $u C_{s} v$ to denote the segment of C_{s} from u to v in the clockwise direction, and we denote the opposite direction by $u C_{s}^{\prime} v$. Then we demonstrate a $3-$ proper coloring of $K_{s, t}$ with two colors 0 and 1. Let $c\left(u_{i} w_{i}\right)=0(1 \leq i \leq s)$ and $c\left(u_{i} w_{j}\right)=1(1 \leq i \neq j \leq s)$. And assign $c\left(w_{r} u_{i}\right)=i(\bmod 2)(1 \leq i \leq s, s<r \leq t)$. Now we prove that this coloring is a 3 -proper coloring of $K_{s, t}$. Consider a 3 -subset S.
i) $S \subseteq V\left(C_{s}\right)$. The proper path is a segment of C_{s}.
ii) $S=\left\{w_{l}, w_{m}, w_{n}\right\}$ where $l, m, n>s$. Then the path $P=w_{l} u_{1} w_{1} u_{2} w_{m} u_{3} w_{3} u_{4} w_{n}$ is a proper S-tree.
iii) $S=\left\{w_{l}, w_{m}, w_{n}\right\}$ where $l \leq s, m, n>s$. If $c\left(w_{m} u_{l}\right)=1$, then the path $P=w_{m} u_{l} w_{l} C_{s} u_{2} w_{n}$ is a proper S-tree. If $c\left(w_{m} u_{l}\right)=0$, then the proper S-tree is the path $P=w_{m} u_{l} w_{l-1} u_{l-1} w_{n} u_{l-2} C_{s}^{\prime} w_{l}$, where $u_{0}=u_{s}, u_{-1}=u_{s-1}$ if $i_{1}=2$.
iv) $S=\left\{u_{j}, w_{l}, w_{m}\right\}$ where $l, m>s$. The way to find a proper S-tree is similar with that in iii).
v) $S=\left\{u_{j}, w_{l}, w_{m}\right\}$ where $l \leq s, m>s$. If $c\left(w_{m} u_{j}\right)=1$, then the proper S-tree is the path $P=w_{m} u_{j} w_{j} C_{s} w_{l}$. If $c\left(w_{m} u_{j}\right)=0$, then the path $P=w_{m} u_{j} C_{s}^{\prime} w_{l}$ is a proper S-tree.
vi) $S=\left\{u_{j_{1}}, u_{j_{2}}, w_{i}\right\}$ where $i>s$. The way to find a proper S-tree is similar with that in v).

Remarks. Here, we introduce a generalization of k-proper index which was recently proposed by Chang et. al. in [5]. Let G be a nontrivial κ-connected graph of order n, and let k and ℓ be two integers with $2 \leq k \leq n$ and $1 \leq \ell \leq \kappa$. For $S \subseteq V(G)$, let $\left\{T_{1}, T_{2}, \ldots, T_{\ell}\right\}$ be a set of S-trees. They are internally disjoint if $E\left(T_{i}\right) \cap E\left(T_{j}\right)=\emptyset$ and $V\left(T_{i}\right) \cap V\left(T_{j}\right)=S$ for every pair of distinct integers i, j with $1 \leq i, j \leq \ell$. The (k, ℓ)-proper index of G, denoted by $p x_{k, \ell}(G)$, is the minimum number of colors that are required in an edge-coloring of G such that for every k-subset S of $V(G)$, there exist ℓ internally disjoint proper S-trees connecting them. In their paper, they investigated the complete bipartite graphs and obtained the following.

Theorem 2.4. [5] Let s and t be two positive integers with $t=O\left(s^{r}\right), r \in \mathbb{R}$ and $r \geq 1$. For every pair of integers k, ℓ with $k \geq 3$, there exists a positive integer $N_{3}=N_{3}(k, \ell)$ such that $p x_{k, \ell}\left(K_{s, t}\right)=2$ for every integer $s \geq N_{3}$.

Obviously, they did not give the exact value of $p x_{k, \ell}\left(K_{s, t}\right)$, even for $k=3$ and $\ell=1$. Our Theorem 2.3 completely determines the value of $p x_{k, \ell}\left(K_{s, t}\right)$ for $k=3$ and $\ell=1$, without using the condition that $t=O\left(s^{r}\right), r \in \mathbb{R}$ and $r \geq 1$.

3 The 3-proper index of a complete multipartite graph

With the aids of Theorems 2.1, 2.2 and 2.3, we are now able to determine the 3-proper index of all complete multipartite graphs. First of all, we give a useful theorem.

Theorem 3.1. [8] Let G be a graph with n vertices. If $\delta(G) \geq \frac{n-1}{2}$, then G has a Hamiltonian path (i.e. G is traceable).

Theorem 3.2. Let $G=K_{n_{1}, n_{2}, \ldots, n_{r}}$ be a complete multipartite graph, where $r \geq 3$ and $n_{1} \leq n_{2} \leq \cdots \leq n_{r}$. Set $s=\sum_{i=1}^{r-1} n_{i}$ and $t=n_{r}$. Then we have

$$
p x_{3}(G)= \begin{cases}3 & \begin{array}{l}
\text { if } G=K_{1,1, t}, 5 \leq t \leq 18 \\
\text { or } G=K_{1,2, t}, t \geq 13 \\
\text { or } G=K_{1,1,1, t}, t \geq 15
\end{array} \\
& \begin{array}{l}
\text { or } G=K_{1,1, t}, t \geq 19 \\
\text { if } G \\
\text { otherwise }
\end{array}\end{cases}
$$

Proof. The graph G has a $K_{s, t}$ as its spanning subgraph, so it follows from Propositions 1.1 and 1.2 that $2 \leq p x_{3}(G) \leq p x_{3}\left(K_{s, t}\right)$. In the following, we discuss two cases according to the relationship between s and t.

Case 1: $s \leq t$. Let $U_{1}, U_{2}, \ldots, U_{r}$ denote the different r-partite sets of G, where $\left|U_{i}\right|=n_{i}$ for each integer $1 \leq i \leq r$.

When $s \geq 4$, then by Theorem 2.3, we have $p x_{3}(G)=p x_{3}\left(K_{s, t}\right)=2$. When $s \leq 3$, there are only three possible values of $\left(n_{1}, n_{2}, \ldots, n_{r-1}\right)$.

Subcase 1: $\left(n_{1}, n_{2}, \ldots, n_{r-1}\right)=(1,1)$. Set $U_{1}=\left\{u_{1}\right\}, U_{2}=\left\{u_{2}\right\}$. Under this condition, giving the edge $u_{1} u_{2}$ an arbitrary color, the proof is exactly the same as that of Theorem 2.1. So it holds that $p x_{3}(G)=p x_{3}\left(K_{2, t}\right)$.

Subcase 2: $\left(n_{1}, n_{2}, \ldots, n_{r-1}\right)=(1,2)$. Set $U_{1}=\left\{u_{1}\right\}, U_{2}=\left\{u_{2}, u_{3}\right\}$ and $W=U_{r}$. By Theorem 2.2, we have $p x_{3}(G)=p x_{3}\left(K_{3, t}\right)=2$ if $t \leq 12 ; p x_{3}(G) \leq p x_{3}\left(K_{3, t}\right)=3$ if $t>12$. We claim that $p x_{3}(G)=3$ if $t>12$. Assume, to the contrary, that G has a 3-proper coloring with two colors 0 and 1 . By symmetry, we assume that $c\left(u_{1} u_{2}\right)=0$. With the similar reason in Case 3 of the proof of Theorem 2.2, no code can appear more than twice. And recall the bijection f defined in that proof. To label the vertices
in W, we use its inverse $f^{-1}:\left(a_{1}, a_{2}, a_{3}\right) \mapsto w_{4 a_{1}+2 a_{2}+a_{3}+1}$, and denote by w_{i}^{\prime} the copy of the vertex w_{i} with $1 \leq i \leq 8$. Then we prove the following results by contradiction.

Claim 1: $\left\{w_{1}, w_{1}^{\prime}, w_{2}\right\} \nsubseteq W$ and $\left\{w_{2}, w_{2}^{\prime}, w_{1}\right\} \nsubseteq W$.
Proof. Set $S=\left\{w_{1}, w_{1}^{\prime}, w_{2}\right\}$. We know from the proof of Theorem 2.2 that there is no proper path of type I or II. So the proper path P connecting S is type III, defined as $w_{a} u_{a^{\prime}} w_{b} u_{b^{\prime}} u_{c^{\prime}} w_{c}$. Then w_{1}, w_{1}^{\prime} must be the end vertices of P, and so $w_{b}=w_{2}$ and $u_{a^{\prime}}=u_{3}$. Since $c\left(w_{a} u_{a^{\prime}}\right)=0, c\left(u_{b^{\prime}} u_{c^{\prime}}\right)=1$, contradicting with $c\left(u_{1} u_{2}\right)=0$. Hence, we obtain $\left\{w_{1}, w_{1}^{\prime}, w_{2}\right\} \nsubseteq W$. Similarly, we have $\left\{w_{2}, w_{2}^{\prime}, w_{1}\right\} \nsubseteq W$.

Claim 2: $\left\{w_{4}, w_{4}^{\prime}, w_{8}\right\} \nsubseteq W$ and $\left\{w_{8}, w_{8}^{\prime}, w_{4}\right\} \nsubseteq W$.
Proof. Set $S=\left\{w_{4}, w_{4}^{\prime}, w_{8}\right\}$. Similar to Claim 1, any proper path P connecting S should be type III: $w_{a} u_{a^{\prime}} w_{b} u_{b^{\prime}} u_{c^{\prime}} w_{c}$. Then w_{8} must be an end vertex of P, and so both of the end edges of P are colored with 1. Thus $u_{a^{\prime}}=u_{1}$. Then $\left\{u_{b^{\prime}}, u_{c^{\prime}}\right\}=\left\{u_{2}, u_{3}\right\}$ and $c\left(u_{2} u_{3}\right)=0$, contradicting with the fact that $u_{2} u_{3} \notin E(G)$. Similarly, we have $\left\{w_{8}, w_{8}^{\prime}, w_{4}\right\} \nsubseteq W$.

So there are four cases that some vertices can not exist in W at the same time, and each code appears at most twice. However, there are more than 12 vertices in W, a contradiction. So $p x_{3}(G)=p x_{3}\left(K_{3, t}\right)=3$ when $t>12$.

Subcase 3: $\left(n_{1}, n_{2}, \ldots, n_{r-1}\right)=(1,1,1)$. Set $U=\cup_{j=1}^{r-1} U_{j}=\left\{u_{1}, u_{2}, u_{3}\right\}$ and $W=U_{r}$.

Claim 3: $p x_{3}(G)=2$ if $t \leq 14$.
Proof. By Theorem 2.2, we have $p x_{3}(G)=p x_{3}\left(K_{3, t}\right)=2$ if $t \leq 12 ; p x_{3}(G) \leq$ $p x_{3}\left(K_{3, t}\right)=3$ if $t>12$. When $t=13$ or 14 , we recall $\operatorname{code}(w)$ defined in Case 2 of Theorem 2.2. Set

$$
\begin{aligned}
& \operatorname{code}\left(w_{1}\right)=(0,0,1), \operatorname{code}\left(w_{2}\right)=(0,1,0), \operatorname{code}\left(w_{3}\right)=(0,1,1), \operatorname{code}\left(w_{4}\right)=(1,0,0), \\
& \operatorname{code}\left(w_{5}\right)=(1,0,1), \operatorname{code}\left(w_{6}\right)=(1,1,0), \operatorname{code}\left(w_{7}\right)=(1,1,1) .
\end{aligned}
$$

And let $\operatorname{code}\left(w_{7+i}\right)=\operatorname{code}\left(w_{i}\right)$ for $1 \leq i \leq 7$ (if each of these vertices exists) and $c\left(u_{i} u_{j}\right)=0$ for $1 \leq i \neq j \leq 3$. For convenience, we denote $w_{7+i}=w_{i}^{\prime}$. Now, we claim that this induces a 3 -proper coloring of G. Let S be an arbitrary 3 -subset of G. Based on Theorem 2.2, we only consider about the case that $w_{7}\left(w_{7}^{\prime}\right) \in S$. When $S=\left\{w_{1}, w_{7}, w_{7}^{\prime}\right\}$, then the path $P=w_{7} u_{1} w_{1} u_{3} u_{2} w_{7}^{\prime}$ is a proper path connecting S. Similarly, we can find a proper path in type III connecting S whichever the two other vertices of S are.

Claim 4: $p x_{3}(G)=3$ if $t>14$.
Proof. Assume, to the contrary, that G has a 3-proper coloring with two colors 0 and 1. If the edges of $G[U]$ are colored with two different colors, then we set u_{2} the common vertex of two edges with two different colors. Moreover, without loss of generality, we
suppose that $c\left(u_{1} u_{2}\right)=0$. Similar to Subcase 2, we have $p x_{3}(G)=3$ if $t>12$. If all the edges of $G[U]$ are colored with one color, say 0 . Repeat the discussion in Subcase 2, then we know Claim 1 is also true under this condition. As $t \geq 15$ and no code could appear more than twice, there are at least 8 different codes in W and at least 7 codes repeated. But from Claim 1, we know $\left\{w_{1}, w_{1}^{\prime}, w_{2}\right\} \nsubseteq W$ and $\left\{w_{2}, w_{2}^{\prime}, w_{1}\right\} \nsubseteq W$. So $p x_{3}(G)=3$ when $t \geq 15$.

Case 2: $s \geq t$. Under this condition, we have $\delta(G) \geq \frac{n-1}{2}$. By Theorem 3.1, we know G is traceable. Thus, it follows from Proposition 1.3 that $p x_{3}(G)=2$.

4 The k-proper index

Now, we turn to the k-proper index of a complete bipartite graph and a complete multipartite graph for general k. Throughout this section, let k be a fixed integer with $k \geq 3$. Firstly, we generalize Theorem 1.1 to the k-proper index.

Theorem 4.1. If D is a connected k-dominating set of a connected graph G with minimum degree $\delta(G) \geq k$, then $p x_{k}(G) \leq p x_{k}(G[D])+1$.

Proof. Since D is a connected k-dominating set, every vertex v in \bar{D} has at least k neighbors in D. Let $x=p x_{k}(G[D])$. We first color the edges in $G[D]$ with x different colors from $\{2,3, \ldots, x+1\}$ such that for every k vertices in D, there exists a proper tree in $G[D]$ connecting them. Then we color the remaining edges with color 1 .

Next, we will show that this coloring makes $G k$-proper connected. Let $S=$ $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ be any set of k vertices in G. Without loss of generality, we assume that $\left\{v_{1}, \ldots, v_{p}\right\} \subseteq D$ and $\left\{v_{p+1}, \ldots, v_{k}\right\} \subseteq \bar{D}$ for some $p(0 \leq p \leq k)$. For each $v_{i} \in \bar{D}$ $(p+1 \leq i \leq k)$, let u_{i} be the neighbour of v_{i} in D such that $\left\{u_{p+1}, \ldots, u_{k}\right\}$ is a $(k-p)$ set. It is possible since D is a k-dominating set. Then the edges $\left\{u_{p+1} v_{p+1}, \ldots, u_{k} v_{k}\right\}$ together with the proper tree connecting the vertices $\left\{v_{1}, \ldots, v_{p}, u_{p+1}, \ldots, u_{k}\right\}$ in $G[D]$ induces a proper S-tree. Thus, we have $p x_{k}(G) \leq p x_{k}(G[D])+1$.

Based on this theorem, we can give a lower bound and a upper bound on the k-proper index of a complete bipartite graph, whose proof is similar to Theorem 1.2.

Theorem 4.2. For a complete bipartite graph $K_{s, t}$ with $t \geq s \geq k$, we have $2 \leq$ $p x_{k}\left(K_{s, t}\right) \leq 3$.

Let G be a complete bipartite graph. Using the techniques in Theorem 2.3, we can obtain the sufficient condition such that $p x_{k}(G)=2$.

Theorem 4.3. For a complete bipartite graph $K_{s, t}$ with $t \geq s \geq 2(k-1)$, we have $p x_{k}\left(K_{s, t}\right)=2$.

Proof. We demonstrate a k-proper coloring of $K_{s, t}$ with two colors 0 and 1 , the same as Theorem 2.3. For completeness, we restate the coloring. Let U, W be the two partite sets of $K_{s, t}$, where $U=\left\{u_{1}, u_{2}, \ldots, u_{s}\right\}$ and $W=\left\{w_{1}, w_{2}, \ldots, w_{t}\right\}, t \geq s \geq 2(k-1)$. Denote a cycle $C_{s}=u_{1} w_{1} u_{2} w_{2} \ldots u_{s} w_{s} u_{1}$. Let $c\left(u_{i} w_{i}\right)=0(1 \leq i \leq s)$ and $c\left(u_{i} w_{j}\right)=1$ $(1 \leq i \neq j \leq s)$. And assign $c\left(w_{r} u_{i}\right)=i(\bmod 2)(1 \leq i \leq s, s<r \leq t)$. Now, we show that for any k-subset $S \subseteq V\left(K_{s, t}\right)$, there is a proper path P_{S} connecting all the vertices in S. Set $W_{1}=\left\{w_{1}, w_{2}, \ldots, w_{s}\right\}$ and $W_{2}=\left\{w_{s+1}, \ldots, w_{t}\right\}$ (if $t>s$). Then S can be divided into three parts, i.e., $S=S_{1} \cup S_{2} \cup S_{3}$, where $S_{1}=S \cap W_{1}, S_{2}=S \cap W_{2}$ and $S_{3}=S \cap U$. Suppose $\left|S_{1}\right|=p,\left|S_{2}\right|=q$, then $p+q \leq k$. If $q=0$, the path $P=$ $u_{1} w_{1} u_{2} w_{2} \ldots u_{s} w_{s}$ is a proper path connecting S. If $q \geq 1$, set $S_{2}=\left\{w_{\alpha_{1}}, w_{\alpha_{2}}, \ldots, w_{\alpha_{q}}\right\}$, where $s<\alpha_{1}, \alpha_{2}, \ldots, \alpha_{q} \leq t$. Let $P=w_{\alpha_{q}} u_{1} w_{1} u_{2} w_{2} \ldots u_{s} w_{s}$. Then consider the vertex set $W_{S}^{\prime}=\left\{w_{2 i}: w_{2 i} \in W_{1} \backslash S_{1}\right\}$. We have $\left|W_{S}^{\prime}\right| \geq s / 2-p \geq k-p-1 \geq q-1$. So set $\left|W_{S}^{\prime}\right|=\ell$ and $W_{S}^{\prime}=\left\{w_{\beta_{1}}, w_{\beta_{2}}, \ldots, w_{\beta_{q-1}}, \ldots, w_{\beta_{\ell}}\right\}$, where $2 \leq \beta_{1}, \beta_{2}, \ldots, \beta_{\ell} \leq s$ are even. Then we construct a path P_{S} by replacing the subpath $u_{\beta_{j}} w_{\beta_{j}} u_{\beta_{j}+1}$ of P with $u_{\beta_{j}} w_{\alpha_{j}} u_{\beta_{j}+1}$ (and $u_{s} w_{s}$ with $u_{s} w_{\alpha_{j}}$ if $\beta_{j}=s$) for $1 \leq j \leq q-1$. Hence, the new path P_{S} is a proper path contains all the vertices of U so that P_{S} connects S_{3}. By the replacement we know that P_{S} also connects S_{1} as well as S_{2}. Thus we complete the proof.

With the aids of Theorems 4.3 and 3.1, we can easily obtain the following, whose proof is similar to Theorem 3.2.

Theorem 4.4. Let $G=K_{n_{1}, n_{2}, \ldots, n_{r}}$ be a complete multipartite graph, where $r \geq 3$ and $n_{1} \leq n_{2} \leq \cdots \leq n_{r}$. Set $s=\sum_{i=1}^{r-1} n_{i}$ and $t=n_{r}$. If $t \geq s \geq 2(k-1)$ or $t \leq s$, then we have $p x_{k}(G)=2$.

References

[1] E. Andrews, E. Laforge, C. Lumduanhom and P. Zhang, On proper-path colorings in graphs, J. Combin. Math. Combin. Comput. 97 (2016), 189-207.
[2] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, The Macmillan Press, London and Basingstoker, 1976.
[3] V. Borozan, S. Fujita, A. Gerek, C. Magnant, Y. Manoussakis, L. Montero and Zs. Tuza, Proper connection of graphs, Discuss. Math. 312 (2012), 2550-2560.
[4] H. Chang, X. Li and Z. Qin, Some upper bounds for the 3-proper index of graphs, Bull. Malays. Math. Sci. Soc. DOI: 10.1007/s40840-016-0404-5, in press.
[5] H. Chang, X. Li, C. Magnant and Z. Qin, The (k, ℓ)-proper index of graphs, arXiv:1606.03872 [math.CO].
[6] G. Chartrand, G.L. Johns, K.A. McKeon and P. Zhang, Rainbow connection in graphs, Math. Bohem. 133(1) (2008), 85-98.
[7] L. Chen, X. Li and J. Liu, The k-proper index of graphs, Appl. Math. Comput. 296 (2016), 57-63.
[8] G.A. Dirac, Some theorems on abstract graphs, Proc. Lond. Math. Soc. 2(3) (1952), 69-81.
[9] X. Li and C. Magnant, Properly colored notions of connectivity - a dynamic survey, Theory and Appl. Graphs 0(1)(2015), Art. 2.
[10] X. Li and Y. Sun, Rainbow Connections of Graphs, Springer Briefs in Math., Springer, New York, 2012.

[^0]: *Supported by NSFC No. 11371205 and 11531011, and PCSIRT.

