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Abstract. This paper discusses the enumeration of rooted labelled
spanning forests of the complete bipartite graph K, n.
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1 Introduction

In this paper we consider the enumeration problem of rooted labelled span-
ning forests of the complete bipartite graph. Labelled spanning forest of
the complete graph K, has been researched by ([5], [6]), but the spanning
forest of the complete bipartite graph seems to appear occasionally. A com-
ponent of forest consisting of only a vertex is also viewed as a rooted tree
in this paper. For convenience call a forest of [ + k labelled rooted trees as
spanning subgraphs of K, , (V(Kmm,n) = AU B,|A| = m,|B| = n) with
[ roots in A and k roots in B as a [m,l;n,k]-forest (I < m,k < n). We
assume there is no order between the [ trees or the k trees, unless other-
wise stated. Vertices in A and B will be labelled on the set {1',2',...,m'}
and {1,2,...,n} respectively. From the definition we know that [m,0;n,1]-
forest and [m, 1; n, 0])-forest are rooted spanning trees of K, n, in fact. This
paper first concerns the [m,0;n,k]-forest (k > 1) by adding some new
vertices to them and then establishing a bijective correspondence between
them and [m, 0; n, 1)-forests; and later solves the general case of [m,;n, k]-
forests by a further discussion of the method contained in [1].
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2 The number of labelled [m,[; n, k]-forests

Let T be a [m,0;n, 1]-forest with root vp. To a vertex v (v € V(T')), we
will let OV (v) denote the vertex subset {u|u € V(T),d(u,v) = d(u,v) +
d(v,vp)}, where d(u,v) is the distance between u and v. Heights of vertex
v (v € V(T)) and T are defined by d(v, vp) and maz{d(u,vo)|u € V(T)} re-
spectively. Obviously in a [m, 0; n, k]-forest, there are m odd height vertices
and n even height vertices. Denote the number of labelled [m, I; n, k]-forests
by f(m,l;n, k). First we calculate f(m,0; n, k), where f(0,0; 1, 1) is defined
to be 1.

Lemma 2.1 ([1]-[4]) The number of spanning trees of Kp n ts n™ mn1
From above Lemma we can get
f(m,0;n,1) = n™m"™" L, (1)
Now suppose k >1and n > 1.
Theorem 2.2
f(m,0;n, k) = k(:) mrkpm-1, (2)

Proof. Denote by F; and F;, the set of all [m, 0; n, 1]-forests and [m, 0; n, k]-
forests, respectively. From (1) it is sufficient for us to show

|F| (',: _ ;) = |Film*~1,

where [F1| = n™m™"! and |F| = f(m,0;n, k).

To any forest in Fy, there are m odd height vertices altogether. We add
k — 1 new vertices labelled by 1*,2*,...,(k — 1)* into the forest and link
an edge between i*(1 < ¢ < k — 1) and some odd height vertex, there are
m*-1 ways. Then we get a new forest of k rooted trees with m odd height
vertices and n + k — 1 even height vertices, let F, be the set of all these
new forests and we have |F;| = |Fi|m*~!. The procedure to construct a
[m, 0; n, 1]-forest from a forest F in F,', is as follows:
(1) Find tree Tp in F with the smallest root such that there is not any
vertex assigned * in Tp. Let i be the root.
(2) Find tree T) in F containing the smallest vertex assigned *. Let j* be
this assigned vertex.
(3) Merge Tp and T by identifying ¢ and j* and keeping i as the new vertex.
(4) Repeat (1), (2) and (3) until there is no vertex assigned *.
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Without question we then get a [m,0; n, 1]-forest. On the contrary, to
get a forest in Fk from a [m, 0;n, 1]-forest T', we can select out k — 1 even
height vertices in T ( root of T' can’t be selected ), there being (}-]) ways.
Suppose these selected vertices are 1;,...,i_ (1 <i) <--- < z'k_l <n).
(1) Select out the vertex i; with the biggest height in T'. If we meet some
vertices with the same heights, then we choose the vertex with the least
label.

(2) Remove the subgraph of T induced by vertex set OV (i;) which is also
a rooted tree with root ¢;, and relabel the original vertex i; by j*.

(3) Repeat (1) and (2) until the heights of those k — 1 selected vertices are
all 0. Then we get a forest in F}. O

Now we consider the number f(m,l;n,k) of [m,l;n, k]-forests, where
(1 <1< m,1< k< n). Here we solve the general case through another
method similar to that in [1].

Theorem 2.3
fim,lin k) = ('rln) (:) n™ = imn k= (e 4 In — k). (3)

Proof. Suppose any edge in a rooted tree has a direction leading toward
the root. Then the out-degree of any vertex (with root as exception) is 1.
We say an directed edge e = #d is determined by vertex u, and call u link
e or ¢ is linked by u in the following proof. Since there are ! roots in A and
k roots in B, there are ('})(}) ways to select these roots. For convenience,
let {@1,...,a1} and {by,...,bx} are chosen in A and B respectively. Denote

= A/{a1,...,a1} and B’ = B/{by,...,bs}, then the out-degree of any
vertex in A’ and B’ is 1. Suppose in B’ there are s vertices linking edges
into A’ and n — k — s vertices linking edges into A/A’. There are two cases
as to s:

Case 1. s = 0, every vertex in B’ links an edge into 4/A’. Obviously
any vertex in A’ can link an edge to an vertex in B, so there are I"~*n™~!
ways altogether.

Case 2. 8 > 0, there are ("'.'") ways to choose s vertices out from B’,
denoted by B"” = {bg+1,...,bk+s}. Then vertices in B” link edges into A’
and those left n — k — s vertices in B'/B" link edges into A/A’, there being
(m — 1)*I"~*—¢ ways. To vertices in A’ there are also two ways to link
edges-(into B” or B/B"). Suppose the number of vertices in A’ linking
edges into B” is t, we have 0 < t < m —[— 1. To avoid producing any cycle
after linking edges, there are #(m=i- l)'(m_' =2)-e(m=i-t) _ st(™} ") ways
to link those t edges. Each of the left m — l — 1 vertices in A’ link an edge
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into B/B", there are (n — s)™ 't ways. Therefore when s > 0 the ways is

’i" (n - k) (m — 1)1k mi—l (m —tl - 1) st(n — g)mI~t

§=1 t=0

L n-k\,m
— pm—=l-1n—k = — 1\ (r —
= pm-i-1] ,§=1:( j )(z 1)*(n — s).

From above two cases we get that f(m,l;n, k) equals

n—k
('l") (:) (z""'n’"“ TRy (" . k) (? -1)*(n- s))
= (';‘) (Z) ™ tm (k4 In - Ki).O
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