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Abstract

A graph G is called integral or Laplacian integral if all the eigenvalues of the
adjacency matrix A(G) or the Laplacian matrix Lap(G) = D(G)−A(G) of G are
integers, where D(G) denote the diagonal matrix of the vertex degrees of G. Let
Kn,n+1 ≡ Kn+1,n and K1,p[(p−1)Kp] denote the (n+1)-regular graph with 4n+2
vertices and the p-regular graph with p2 + 1 vertices, respectively. In this paper,
we shall give the spectra and characteristic polynomials of Kn,n+1 ≡ Kn+1,n and
K1,p[(p − 1)Kp] from the theory on matrices. We derive the characteristic poly-
nomials for their complement graphs, their line graphs, the complement graphs
of their line graphs and the line graphs of their complement graphs. We also
obtain the numbers of spanning trees for such graphs. When p = n2 + n + 1,
these graphs are not only integral but also Laplacian integral. The discovery of
these integral graphs is a new contribution to the search of integral graphs.
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I. Introduction

We use G to denote a simple graph with vertex set V (G) = {v1, v2, · · · , vn} and
edge set E(G). The adjacency matrix A = A(G) = [aij] of G is an n× n symmetric
matrix of 0’s and 1’s with aij = 1 if and only if vi and vj are joined by an edge. The
characteristic polynomial of G is the polynomial P (G) = P (G, x) = det(xIn − A),
where and in the sequel In always denotes the n × n identity matrix. The spec-
trum of A(G) is also called the spectrum of G. If the eigenvalues are ordered by
λ1 > λ2 > · · · > λr, and their multiplicities are m1,m2, · · · ,mr, respectively, then
we shall write

Spec(G) =

(
λ1 λ2 · · · λr
m1 m2 · · · mr

)
.

LetD(G) = diag(d(v1), d(v2), · · · , d(vn)) be the diagonal matrix of the vertex degrees
of G. Then Lap(G) = D(G) − A(G) is called the Laplacian matrix of G. Clearly,
Lap(G) is a real symmetric matrix. If all the eigenvalues of the Laplacian matrix
Lap(G) of G are integers, we say that G is Laplacian integral.

The notion of integral graphs was first introduced by F. Harary and A.J. Schwenk
in 1974 (see [1]). A graph G is called integral if all the zeros of the characteristic
polynomial P (G, x) of G are integers. In general, the problem of characterizing
integral graphs seems to be very difficult. Thus, it makes sense to restrict our
investigations to some interesting families of graphs, for instance, cubic graphs [2,
3], complete r-partite graphs [4, 24], graphs with three eigenvalues [5], graphs with
maximum degree 4 [6], etc. Trees present another important family of graphs for
which the problem has been considered in [7-20]. Some graph operations, which
when applied on integral graphs produce again integral graphs, are described in [1]
or [22]. Other results on integral graphs can be found in [21-23, 28, 34]. For all
other facts or terminology on graph spectra, see [22, 23].

For a graph G, let G be the complement graph of G and L(G) denote the line
graph of G, in which V (L(G)) = E(G), and where two vertices are adjacent if
and only if they are adjacent as edges of G. The m-iterated line graph of G is
defined recursively by L0(G) = G and Lm(G) = L(Lm−1(G)). A graph is said to
be regular of degree k (or k-regular) if each of its vertices has degree k. Denote
κ(G) the number of spanning trees in a graph G. We denote by G1 ∪G2 the union
of two disjoint graphs G1 and G2, and by nG the disjoint union of n copies of
G. A complete bipartite graph Kp1,p2 is a graph with vertex classes V1 and V2 if
V = V1 ∪ V2, V1 ∩ V2 = ∅, where Vi are nonempty disjoint sets, |Vi| = pi for i = 1, 2,
such that two vertices in V are adjacent if and only if they belong to different
classes. The (n + 1)-regular graph Kn,n+1 ≡ Kn+1,n on 4n + 2 vertices is obtained
by adding the edges {viwi|i = 1, 2, · · · , n + 1} from two disjoint copies of Kn,n+1

with vertex classes V1 = {ui|i = 1, 2, · · · , n}, V2 = {vi|i = 1, 2, · · · , n + 1} and
U1 = {zi|i = 1, 2, · · · , n}, U2 = {wi|i = 1, 2, · · · , n + 1}, respectively. Let K1,p be a
graph with vertex classes V1 = {u1} and V2 = {vi|i = 1, 2, · · · , p}. The i-th graph
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Kp of (p − 1)Kp has the vertex set {wij |j = 1, 2, · · · , p}, where i = 1, 2, · · · , p − 1.
Then the p-regular graph K1,p[(p − 1)Kp] on p2 + 1 vertices is obtained by adding
the edges {viwji|j = 1, 2, · · · , p − 1} for i = 1, 2, · · · , p between the graph K1,p and
the graph (p − 1)Kp. In this paper, we shall give the spectra and characteristic
polynomials of Kn,n+1 ≡ Kn+1,n and K1,p[(p − 1)Kp] from the theory on matrices.
We derive the characteristic polynomials for their complement graphs, their line
graphs, the complement graphs of their line graphs and the line graphs of their
complement graphs. We also obtain the numbers of spanning trees for such graphs.
When p = n2 +n+ 1, these graphs are not only integral but also Laplacian integral.
The discovery of these integral graphs is a new contribution to the search of integral
graphs.

II. Preliminaries

In this section, we shall give some useful properties of circulant matrices.

First of all, we give the following notations.
(1) C and R denote the set of complex and real numbers, respectively.
(2) Cm×n and Rm×n denote the set of m×n matrices whose entries are in C and R,
respectively.
(3) AT denotes the transpose of the matrix A.
(4) A∗ denotes the conjugate transpose of the matrix A.
(5) Jm×n and 0m×n denotes the m× n all 1 and all 0 matrix, respectively.

All other notations and terminology on matrices can be found in [25,32].

Let A ∈ BC(m, r) be a block circulant matrix given as follows

A =




A0 A1 · · · Am−1

Am−1 A0 · · · Am−2
...

...
. . .

...
A1 A2 · · · A0



,

where Ak ∈ Rr×r, k = 0, 1, · · · ,m− 1.

Obviously, A can be expressed as

A =
m−1∑

k=0

Πk
m ⊗ Ak, (1)

where Πm ∈ Rm×m is the permutation matrix

Πm =




0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 1
1 0 0 · · · 0 0




(2)
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and ⊗ denotes the Kronecker product.

We can easily obtain that the characteristic polynomial of Πm is |xIm − Πm| =
xm− 1. Let ωm = exp(2πi

m
) = cos2π

m
+ isin2π

m
, where i =

√−1. Then the eigenvalues
of Πm are 1, ωm, ω

2
m, · · · , ωm−1

m . Note that the sequence ωkm (k = 0, 1, · · ·) is periodic.

Let Fl ∈ C l×l be a matrix as follow

Fl =
1√
l
(ω

(t−1)(s−1)
l ) =

1√
l




1 1 1 · · · 1
1 ωl ω2

l · · · ωl−1
l

1 ω2
l ω4

l · · · ω
2(l−1)
l

...
...

...
. . .

...

1 ωl−1
l ω

2(l−1)
l · · · ω

(l−1)(l−1)
l



, (3)

where ωl = exp(2πi
l

). Obviously, Fl is a unitary matrix.

The following Lemmas 1 and 2 can be found in [25, 26].

Lemma 1. Let A ∈ BC(m, r) be symmetric, then A is unitarily similar to an
Hermitian block diagonal matrix, i.e., A is of the form

A = (Fm ⊗ Ir)diag(M̃0, M̃1, · · · , M̃m−1)(Fm ⊗ Ir)∗,
where M̃j ∈ Cr×r, j = 0, 1, · · · ,m− 1, are given as follows
(1) For m ≥ 2 even ,

M̃j = A0 +
m/2−1∑

k=1

(ωkjmAk +$kj
mA

T
k ) + (−1)jAm/2.

(2) For m ≥ 3 odd ,

M̃j = A0 +
(m−1)/2∑

k=1

(ωkjmAk +$kj
mA

T
k ).

Lemma 2. Let A ∈ BC(m, r) be symmetric, then we have that
(1) For m ≥ 2 even , all the eigenvalues x of A are given by

{x | AX = xX,X ∈ Cmr}
= {x | [A0 +

∑m/2−1
k=1 (Ak + ATk ) + Am/2]Y = xY, Y ∈ Cr}

∪{x | [A0 +
∑m/2−1
k=1 (ωkmAk +$k

mA
T
k )− Am/2]Z = xZ, Z ∈ Cr} ∪ · · ·

∪{x | [A0 +
∑m/2−1
k=1 (ωk(m−1)

m Ak +$k(m−1)
m ATk ) + (−1)m−1Am/2]W = xW,

W ∈ Cr}.
(2) For m≥ 3 odd, all the eigenvalues x of A are given by

{x | AX = xX,X ∈ Cmr}
= {x | [A0 +

∑(m−1)/2
k=1 (Ak + ATk )]Y = xY, Y ∈ Cr}

∪{x | [A0 +
∑(m−1)/2
k=1 (ωkmAk +$k

mA
T
k )]Z = xZ, Z ∈ Cr} ∪ · · ·

∪{x | [A0 +
∑(m−1)/2
k=1 (ωk(m−1)

m Ak +$k(m−1)
m ATk )]W = xW, W ∈ Cr}.
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Lemma 3. Let A ∈ BC(2, r) be symmetric, then the eigenvalues of A are those of
A0 + A1 together with those of A0 − A1.

Proof. It is easy to check the correctness by Lemma 2. 2

III. The Characteristic Polynomials of Two classes

of Regular Graphs

In this section, we shall determine the characteristic polynomials of Kn,n+1 ≡
Kn+1,n and K1,p[(p− 1)Kp] from the theory on matrices.

Theorem 1. For the regular graph Kn,n+1 ≡ Kn+1,n of degree (n+ 1) with 4n+ 2
vertices, its characteristic polynomial is

P (Kn,n+1 ≡ Kn+1,n, x) = (x+ n+ 1)(x+ n)(x+ 1)nx2n−2(x− 1)n(x− n)(x− n− 1).

Proof. By properly ordering the vertices of the graph Kn,n+1 ≡ Kn+1,n, the adja-
cency matrix A = A(Kn,n+1 ≡ Kn+1,n) of Kn,n+1 ≡ Kn+1,n can be written as the
(4n + 2) × (4n + 2) symmetric block circulant matrix such that A = A(Kn,n+1 ≡
Kn+1,n) ∈ BC(2, 2n+ 1) and

A = A(Kn,n+1 ≡ Kn+1,n) =

[
A0 A1

A1 A0

]
,

where A0 =

[
0n×n Jn×(n+1)

J(n+1)×n 0(n+1)×(n+1)

]
and A1 =

[
0n×n 0n×(n+1)

0(n+1)×n In+1

]
.

From Lemma 3, we distinguish the following two cases.

Case 1. Let b0 = |xI2n+1 − (A0 + A1)|. Then we have

b0 =

∣∣∣∣∣
xIn −Jn×(n+1)

−J(n+1)×n (x− 1)In+1

∣∣∣∣∣

By careful calculation, we can obtain that b0 = xn−1(x− 1)n(x+ n)(x− n− 1).
Case 2. Let b1 = |xI2n+1 − (A0 − A1)|. Then we have

b1 =

∣∣∣∣∣
xIn −Jn×(n+1)

−J(n+1)×n (x+ 1)In+1

∣∣∣∣∣

By careful calculation, we can obtain that b=x
n−1(x+ 1)n(x− n)(x+ n+ 1).

Hence, the characteristic polynomial of Kn,n+1 ≡ Kn+1,n is

P (Kn,n+1 ≡ Kn+1,n, x) = (x+ n+ 1)(x+ n)(x+ 1)nx2n−2(x− 1)n(x− n)(x− n− 1).
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The proof is complete. 2

We note that the graph K1,2 ≡ K2,1 is the cycle C6 and the graph K2,3 ≡ K3,2 is
the graph 3.20 of [22, P.293] or G10 of [3].

Theorem 2. For the regular graph K1,p[(p− 1)Kp] of degree p with p2 + 1 vertices,
its characteristic polynomial is

P (K1,p[(p− 1)Kp], x) = (x+ 1)(p−1)(p−2)(x− p+ 1)p−2(x− p)(x2 + x− p+ 1)p.

Proof. By properly ordering the vertices of the graph K1,p[(p−1)Kp], the adjacency
matrix A = A(K1,p[(p− 1)Kp]) of K1,p[(p− 1)Kp] can be written as the (p2 + 1)×
(p2 + 1) matrix such that

A = A(K1,p[(p− 1)Kp])

=




A1 A2 A3 · · · Ap−2 Ap−1 Ip 0p×1

Ap−1 A1 A2 · · · Ap−3 Ap−2 Ip 0p×1

Ap−2 Ap−1 A1 · · · Ap−4 Ap−3 Ip 0p×1
...

...
... · · · ...

...
...

...
A3 A4 A5 · · · A1 A2 Ip 0p×1

A2 A3 A4 · · · Ap−1 A1 Ip 0p×1

Ip Ip Ip · · · Ip Ip 0p×p Jp×1

01×p 01×p 01×p · · · 01×p 01×p J1×p 0




,

where A1 = Jp×p − Ip and A2 = A3 = · · · = Ap−1 = 0p×p.

Then we have

P (K1,p[(p− 1)Kp], x) = |xIp2+1 − A(K1,p[(p− 1)Kp])|

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(x+ 1)Ip − Jp×p 0p×p · · · 0p×p −Ip 0p×1

0p×p (x+ 1)Ip − Jp×p · · · 0p×p −Ip 0p×1
...

...
. . .

...
...

...
0p×p 0p×p · · · (x+ 1)Ip − Jp×p Ip 0p×1

−Ip −Ip · · · −Ip xIp −Jp×1

01×p 01×p · · · 01×p −J1×p x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

By careful calculation, we can obtain that the characteristic polynomial of K1,p

[(p− 1)Kp] is

P (K1,p[(p− 1)Kp], x) = (x+ 1)(p−1)(p−2)(x− p+ 1)p−2(x− p)(x2 + x− p+ 1)p.

The proof is complete. 2

We note that the graph K1,3[2K3] is the graph 3.16 of [22, P.293] or G11 of [3].
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IV. Other Results

In this section,we shall give the characteristic polynomials for Kn,n+1 ≡ Kn+1,n,
L(Kn,n+1 ≡ Kn+1,n), L(Kn,n+1 ≡ Kn+1,n), L(Kn,n+1 ≡ Kn+1,n), K1,p[(p− 1)Kp],
L(K1,p [(p − 1)Kp]), L(K1,p[(p− 1)Kp]) and L(K1,p[(p− 1)Kp]). We also obtain
the numbers of spanning trees for these graphs, the graph Kn,n+1 ≡ Kn+1,n and
the graph K1,p[(p − 1)Kp]. For integers n ≥ 0 and m ≥ 0, if a regular graph G
is integral, then the graphs Lm(G) and Ln(Lm(G)) are not only integral but also
Laplacian integral. We note some interesting characteristic polynomials of integral
graphs, see [1-24, 28] and [34].

The following Lemmas 4, 5, 6, 7 and 8 can be found in [27, 28].

Lemma 4. If G is a regular graph of degree k, then its line graph L(G) is regular
of degree 2k − 2.

Lemma 5. If G is a regular graph of degree k with n vertices and m = 1
2
nk edges,

then

P (G, x) = (−1)n
x− n+ k + 1

x+ k + 1
P (G,−x− 1).

Lemma 6. If G is a regular graph of degree k with n vertices and m = 1
2
nk edges,

then
P (L(G), x) = (x+ 2)

1
2
n(k−2)P (G, x+ 2− k).

Lemma 7. If G is a regular graph of degree k with n vertices and m = 1
2
nk edges,

then the number of spanning trees κ(G) of G is given by

κ(G) =
1

n
P ′(G, x)|x=λ1 =

1

n

n∏

i=2

(λ1 − λi),

where λi (1 ≤ i ≤ n) are the roots of P (G, x) and λ1 = k.

Lemma 8. If G is a regular graph of degree k with n vertices and m = 1
2
nk edges,

then the number of spanning trees of L(G) is given by

κ(L(G)) = 2m−n+1km−n−1κ(G).

Theorem 3. For the complement of the regular graph Kn,n+1 ≡ Kn+1,n, the char-
acteristic polynomial of Kn,n+1 ≡ Kn+1,n is

P (Kn,n+1 ≡ Kn+1,n, x) = (x+n+ 1)(x+ 2)n(x+ 1)2n−2xn(x−n+ 1)(x−n)(x− 3n).

Proof. It is easy to check the correctness by Theorem 1 and Lemmas 4 and 5. 2

Theorem 4. For the line graph, the complement of the line graph and the line graph
of the complement of the regular graph Kn,n+1 ≡ Kn+1,n, we have the following
results.
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(1) The characteristic polynomial of L(Kn,n+1 ≡ Kn+1,n) is

P [L(Kn,n+1 ≡ Kn+1,n), x] = (x+ 2)n(2n−1)(x+ 1)(x− n+ 2)n(x− n+ 1)2n−2

·(x− n)n(x− 2n+ 1)(x− 2n).

(2) The characteristic polynomial of L(Kn,n+1 ≡ Kn+1,n) is

P [L(Kn,n+1 ≡ Kn+1,n), x] = (x+ 2n)(x+ n+ 1)n(x+ n)2n−2(x+ n− 1)n

·x(x− 1)n(2n−1)(x− 2n2 − n).

(3) The characteristic polynomial of L(Kn,n+1 ≡ Kn+1,n) is

P [L(Kn,n+1 ≡ Kn+1,n), x] = (x+ 2)(2n+1)(3n−2)(x− 2n+ 3)(x− 3n+ 4)n

·(x− 3n+ 3)2n−2(x− 3n+ 2)n(x− 4n+ 3)(x− 4n+ 2)(x− 6n+ 2).

Proof. It is easy to check the correctness by Theorems 1, 3 and Lemmas 4, 5, 6. 2

Corollary 1. The graphs Kn,n+1 ≡ Kn+1,n, Kn,n+1 ≡ Kn+1,n, L(Kn,n+1 ≡ Kn+1,n),
L(Kn,n+1 ≡ Kn+1,n) and L(Kn,n+1 ≡ Kn+1,n) are integral.

Proof. It is easy to check the correctness by Theorems 1, 3 and 4. 2

Theorem 5. For the numbers of spanning trees in the graphs Kn,n+1 ≡ Kn+1,n,
Kn,n+1 ≡ Kn+1,n, L(Kn,n+1 ≡ Kn+1,n), L(Kn,n+1 ≡ Kn+1,n) and L(Kn,n+1 ≡ Kn+1,n),
we have the the following results.

(1) κ(Kn,n+1 ≡ Kn+1,n) = nn(n+ 1)2n−1(n+ 2)n.
(2) κ(Kn,n+1 ≡ Kn+1,n) = 3nnn+1(3n+ 1)2n−2(3n+ 2)n(4n+ 1).
(3) κ(L(Kn,n+1 ≡ Kn+1,n)) = 2n(2n−1)nn(n+ 1)(2n+3)(n−1)(n+ 2)n

(4) κ(L(Kn,n+1 ≡ Kn+1,n)) = 22n−2n2n(n+ 1)(2n+3)(n−1)(2n− 1)n(2n−1)(2n+ 3)
·(2n2 + 2n− 1)n(2n2 + 2n+ 1)n.

(5) κ(L(Kn,n+1 ≡ Kn+1,n)) = 2(2n−1)(3n+1)36n2−3n6n2−2(3n+ 1)2n−2(3n+ 2)n

·(4n+ 1).

Proof. It is easy to check the correctness by Theorems 1, 3, 4 and Lemmas 4, 5, 6,
7 and 8. 2

Theorem 6. For the complement of the regular graph K1,p[(p− 1)Kp], the charac-
teristic polynomial of K1,p[(p− 1)Kp] is

P (K1,p[(p− 1)Kp], x) = x(p−1)(p−2)(x+ p)p−2(x− p2 + p)(x2 + x− p+ 1)p.

Proof. It is easy to check the correctness by Theorem 2 and Lemmas 4 and 5. 2

Theorem 7. For the line graph, the complement of the line graph and the line
graph of the complement of the regular graph K1,p[(p − 1)Kp], we have the the
following results.
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(1) The characteristic polynomial of L(K1,p[(p− 1)Kp]) is

P [L(K1,p[(p− 1)Kp]), x] = (x+ 2)
1
2

(p−2)(p2+1)(x− p+ 3)(p−1)(p−2)(x− 2p+ 3)p−2

·(x− 2p+ 2)[(x− p+ 2)2 + (x− p+ 2)− (p− 1)]p.

(2) The characteristic polynomial of L(K1,p[(p− 1)Kp]) is

P [L(K1,p[(p− 1)Kp]), x] = (x− 1)
1
2

(p−2)(p2+1)(x+ p− 2)(p−1)(p−2)(x+ 2p− 2)p−2

·[x− 1
2
(p− 1)2(p+ 2)][(x+ p− 1)2 − (x+ p− 1)− (p− 1)]p.

(3) The characteristic polynomial of L(K1,p[(p− 1)Kp]) is

P [L(K1,p[(p− 1)Kp]), x] = [(x− p2 + p+ 2)2 + (x− p2 + p+ 2)− (p− 1)]p

·(x− p2 + 2p+ 2)p−2(x− 2p2 + 2p+ 2)(x+ 2)
1
2

(p+1)(p−2)(p2+1)

·(x− p2 + p+ 2)(p−1)(p−2).

Proof. It is easy to check the correctness by Theorems 2, 6 and Lemmas 4, 5, 6. 2

Corollary 2. For the regular graphs K1,p[(p− 1)Kp], K1,p[(p− 1)Kp], L(K1,p[(p−
1)Kp]), L(K1,p[(p− 1)Kp]) and L(K1,p[(p− 1)Kp]), let n be any positive integer,
then any one of these graphs is integral if and only if p = n2 + n+ 1.
Proof. It is easy to check the correctness by Theorems 2, 6 and 7. 2

Corollary 3. For the regular graphs K1,p[(p−1)Kp], the line graph, the complement
of the line graph and the line graph of the complement of the regular graph K1,p[(p−
1)Kp], let p = n2 + n+ 1 and n be any positive integer, then we have the following
results.

(1) P (K1,n2+n+1[n(n+ 1)Kn2+n+1], x) = (x+ 1)n(n+1)(n2+n−1)[x− n(n+ 1)]n
2+n−1

·(x− n2 − n− 1)(x+ n+ 1)n
2+n+1(x− n)n

2+n+1.

(2) P (K1,n2+n+1[n(n+ 1)Kn2+n+1], x) = xn(n+1)(n2+n−1)(x+ n2 + n+ 1)n
2+n−1

[x− n(n+ 1)(n2 + n+ 1)](x+ n+ 1)n
2+n+1(x− n)n

2+n+1.

(3) P [L(K1,n2+n+1[n(n+ 1)Kn2+n+1]), x] = (x+ 2)
1
2

(n2+n−1)[(n2+n+1)2+1]

·[x− (n+ 2)(n− 1)]n(n+1)(n2+n−1)(x− 2n2 − 2n+ 1)n
2+n−1

·[x− 2n(n+ 1)](x− n2 + 2)n
2+n+1(x− n2 − 2n+ 1)n

2+n+1.

(4) P (L(K1,n2+n+1[n(n+ 1)Kn2+n+1]), x) = (x− 1)
1
2

(n2+n−1)[(n2+n+1)2+1]

·(x+ n2 + n− 1)n(n+1)(n2+n−1)(x+ 2n2 + 2n)n
2+n−1

·[x− 1
2
n2(n+ 1)2(n2 + n+ 3)](x+ n2 + 2n)n

2+n+1(x+ n2 − 1)n
2+n+1.

(5) P (L(K1,n2+n+1[n(n+ 1)Kn2+n+1]), x) = (x+ 2)
1
2

(n2+n−1)(n2+n+2)[(n2+n+1)2+1]

·(x− 2n4 − 4n3 − 4n2 − 2n+ 2)[x− (n2 + n− 1)(n2 + n+ 2)]n(n+1)(n2+n−1)

·(x− n4 − 2n3 − n2 + 3)n
2+n−1(x− n4 − 2n3 − 2n2 + 3)n

2+n+1

·(x− n4 − 2n3 − 2n2 − 2n+ 2)n
2+n+1.

Proof. It is easy to check the correctness by Theorems 2, 6 and 7. 2
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Theorem 8. For the numbers of spanning trees in the graphs K1,p[(p − 1)Kp],
K1,p[(p− 1)Kp], L(K1,p[(p− 1)Kp]), L(K1,p[(p− 1)Kp]) and L(K1,p[(p− 1)Kp]), we
have the the following results.

(1) κ(K1,p[(p− 1)Kp]) = (p+ 1)(p−1)(p−2)(p2 + 1)p−1.

(2) κ(K1,p[(p− 1)Kp]) = p(p+1)(p−2)(p− 1)p
2−p+2(p2 + 1)p−1.

(3) κ(L(K1,p[(p− 1)Kp])) = 2
1
2

(p−2)(p2+1)+1p
1
2

(p−2)(p2+1)−1(p+ 1)(p−1)(p−2)

·(p2 + 1)p−1.

(4) κ(L(K1,p[(p− 1)Kp])) = (1
2
)

1
2

(p3+p−4)p
1
2

(p3−2p2+p−4)(p2 − 3)
1
2

(p−2)(p2+1)

·(p3 − p− 2)(p−1)(p−2)(p− 1)2p−2(p2 + p+ 2)p−2(p2 + 1)p−1(p3 + p2 − 2p− 4)p.

(5) κ(L(K1,p[(p− 1)Kp])) = 2
1
2
p(p3−p2−p−1)p

1
2

(p4−p3+p2−3p−8)(p− 1)
1
2
p(p3−p2+p−3)

·(p2 + 1)p−1.

Proof. It is easy to check the correctness by Theorems 2, 6, 7 and Lemmas 4, 5, 6,
7 and 8. 2

The following Lemmas 9 and 10 can be found in [1] or [27, 28].

Lemma 9. If a regular graph G is integral, then so is G.

Lemma 10. If a regular graph G is integral, then so is its line graph L(G).

Theorem 9. For integers n ≥ 0 and m ≥ 0, if a regular graph G is integral, then
the graphs Lm(G) and Ln(Lm(G)) are integral.

Proof. It is easy to check the correctness by Lemmas 4, 9 and 10. 2

Corollary 4. For integers p ≥ 0, n ≥ 1 and m ≥ 0, the regular graphs Lm(Kn,n+1 ≡
Kn+1,n), Lp(Lm(Kn,n+1 ≡ Kn+1,n)), Lp(Lm(K1,n2+n+1[n(n+ 1)Kn2+n+1])) and
Lm (K1,n2+n+1 [n(n+ 1)Kn2+n+1]) are integral.

Proof. It is easy to check the correctness by Lemma 4 and Corollaries 1, 2, 3 and
Theorems 1, 2, 3, 4, 6, 7 and 9.2

In the remainder of the paper, we shall consider the Laplacian integral graphs on the
regular graphs. Mohar [29] argues that, because of its importance in various physi-
cal and chemical theories, the spectrum of Lap(G) = D(G)−A(G) is more natural
and important than the more widely studied adjacency spectrum. For background
knowledge, see [29, 30, 31]. The characteristic polynomial of Lap(G) is the polyno-
mial σ(G) = σ(G,µ) = det(µIn − Lap(G)). Let µ1(G) ≥ µ2(G) ≥ · · · ≥ µn(G) (or
simple µ1 ≥ µ2 ≥ · · · ≥ µn) be all the eigenvalues of the Lapalacian matrix Lap(G)
of G, the multiplicity of µ as an eigenvalue of Lap(G) will be denoted by mG(µ).

The following Lemmas 11, 12 and 13 can be found in [27, 30].

Lemma 11. If G is a regular graph of degree k with n vertices, then

σ(G, µ) = (−1)nP (G, k − µ).

or µi(G) = µi = k − xi (i = 1, 2, · · · , n), where the xi’s are the eigenvalues of A(G),
ordered in weakly decreasing manner.
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Lemma 12. Let G be a graph on n vertices, then the eigenvalues of the Laplacian
matrix Lap(G) are

µi(G) = n− µn−i(G) (1 ≤ i < n) and 0.

Lemma 13. G is Laplacian integral if and only if G is Laplacian integral.

Theorem 10. For the σ-polynomials of the regular graphs Kn,n+1 ≡ Kn+1,n,
Kn,n+1 ≡ Kn+1,n, L(Kn,n+1 ≡ Kn+1,n), L(Kn,n+1 ≡ Kn+1,n) and L(Kn,n+1 ≡ Kn+1,n),
we have the the following results.
(1) The characteristic polynomial of Lap(Kn,n+1 ≡ Kn+1,n) is

σ[Kn,n+1 ≡ Kn+1,n, x] = x(x− 1)(x− n)n(x− n− 1)2n−2(x− n− 2)n(x− 2n− 1)
·(x− 2n− 2).

(2) The characteristic polynomial of Lap(Kn,n+1 ≡ Kn+1,n) is

σ[Kn,n+1 ≡ Kn+1,n, x] = x(x− 2n)(x− 2n− 1)(x− 3n)n(x− 3n− 1)2n−2

·(x− 3n− 2)n(x− 4n− 1).

(3) The characteristic polynomial of Lap(L(Kn,n+1 ≡ Kn+1,n)) is

σ[L(Kn,n+1 ≡ Kn+1,n), x] = x(x− 1)(x− n)n(x− n− 1)2n−2(x− n− 2)n

·(x− 2n− 1)(x− 2n− 2)n(2n−1).

(4) The characteristic polynomial of Lap(L(Kn,n+1 ≡ Kn+1,n)) is

σ(L(Kn,n+1 ≡ Kn+1,n), x) = x(x− 2n2 − n+ 1)n(2n−1)(x− 2n2 − n)
·(x− 2n2 − 2n− 1)n(x− 2n2 − 2n)2n−2(x− 2n2 − 2n+ 1)n(x− 2n2 − 3n).

(5) The characteristic polynomial of Lap(L(Kn,n+1 ≡ Kn+1,n)) is

σ(L(Kn,n+1 ≡ Kn+1,n), x) = x(x− 2n)(x− 2n− 1)(x− 3n)n(x− 3n− 1)2n−2

·(x− 3n− 2)n(x− 4n− 1)(x− 6n)(2n+1)(3n−2).

Proof. It is easy to check the correctness by Theorems 1, 3, 4 and Lemmas 11, 12.
2

Corollary 5. The graphs Kn,n+1 ≡ Kn+1,n, Kn,n+1 ≡ Kn+1,n, L(Kn,n+1 ≡ Kn+1,n),
L(Kn,n+1 ≡ Kn+1,n) and L(Kn,n+1 ≡ Kn+1,n) are Laplacian integral.
Proof. It is easy to check the correctness by Theorem 10 and Lemmas 11, 12, 13.
2

Theorem 11. For the σ-polynomials of the graphs K1,p[(p−1)Kp], K1,p[(p− 1)Kp],
L(K1,p[(p− 1)Kp]), L(K1,p[(p− 1)Kp]) and L(K1,p[(p− 1)Kp]), we have the the fol-
lowing results.
(1) The characteristic polynomial of Lap(K1,p[(p− 1)Kp]) is

σ[K1,p[(p− 1)Kp], x] = x(x− 1)p−2(x− p− 1)(p−1)(p−2)[(x− p)2− (x− p)− (p− 1)]p.
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(2) The characteristic polynomial of Lap(K1,p[(p− 1)Kp]) is

σ[K1,p[(p− 1)Kp], x] = x(x− p2 + p)(p−1)(p−2)(x− p2)p−2

·[(x− p2 + p)2 − (x− p2 + p)− (p− 1)]p.

(3) The characteristic polynomial of Lap(L(K1,p[(p− 1)Kp])) is

σ[L(K1,p[(p− 1)Kp]), x] = x(x− p− 1)(p−1)(p−2)(x− 1)p−2(x− 2p)
1
2

(p−2)(p2+1)

·[(x− p)2 − (x− p)− (p− 1)]p.

(4) The characteristic polynomial of Lap(L(K1,p[(p− 1)Kp]) is

σ(L(K1,p[(p− 1)Kp]), x) = x[x− 1
2
p(p2 − 3)]

1
2

(p−2)(p2+1)[x− 1
2
(p3 − p− 2)](p−1)(p−2)

·{[x− 1
2
p(p− 1)(p+ 1)]2 − [x− 1

2
p(p− 1)(p+ 1)]− (p− 1)}p

·[x− 1
2
(p− 1)(p2 + p+ 2)]p−2

(5) The characteristic polynomial of Lap(L(K1,p[(p− 1)Kp])) is

σ(L(K1,p[(p− 1)Kp]), x) = x(x− p2 + p)(p−1)(p−2)(x− p2)p−2

·(x− 2p2 + 2p)
1
2

(p+1)(p−2)(p2+1)[(x− p2 + p)2 − (x− p2 + p)− (p− 1)]p.

Proof. It is easy to check the correctness by Theorems 2, 6, 7 and Lemmas 11, 12.
2

Corollary 6. Any one of the graphs K1,p[(p− 1)Kp], K1,p[(p− 1)Kp], L(K1,p[(p−
1)Kp]), L(K1,p[(p− 1)Kp]) and L(K1,p[(p− 1)Kp]) is Laplacian integral if and only
if p = n2 + n+ 1.
Proof. It is easy to check the correctness by Theorems 2, 6, 7, 11 and Lemmas 11,
12, 13. 2

Corollary 7. For the σ-polynomials of the graphs K1,p[(p− 1)Kp], K1,p[(p− 1)Kp],
L(K1,p[(p − 1)Kp]), L(K1,p[(p− 1)Kp]) and L(K1,p[(p− 1)Kp]), if p = n2 + n + 1,
then we have the the following results.
(1) The characteristic polynomial of Lap(K1,n2+n+1[n(n+ 1)Kn2+n+1]) is

σ[K1,n2+n+1[n(n+ 1)Kn2+n+1], x] = x(x− 1)n
2+n−1(x− n2 − n− 2)n(n+1)(n2+n−1)

·(x− n2 − 1)n
2+n+1(x− n2 − 2n− 2)n

2+n+1.

(2) The characteristic polynomial of Lap(K1,n2+n+1[n(n+ 1)Kn2+n+1]) is

σ[K1,n2+n+1[n(n+ 1)Kn2+n+1], x] = x[x− n(n+ 1)(n2 + n+ 1)]n(n+1)(n2+n−1)

·[x− (n2 + n+ 1)2]n
2+n−1[x− (n+ 1)2(n2 + 1)]n

2+n+1

·[x− n2(n2 + 2n+ 2)]n
2+n+1.

(3) The characteristic polynomial of Lap(L(K1,n2+n+1[n(n+ 1)Kn2+n+1])) is

σ[L(K1,n2+n+1[n(n+ 1)Kn2+n+1]), x] = x(x− n2 − n− 2)n(n+1)(n2+n−1)

·(x− 1)n
2+n−1[x− 2(n2 + n+ 1)]

1
2

(n2+n−1)[(n2+n+1)2+1](x− n2 − 2n− 2)n
2+n+1

·(x− n2 − 1)n
2+n+1.

12



(4) The characteristic polynomial of Lap(L(K1,n2+n+1[n(n+ 1)Kn2+n+1]) is

σ(L(K1,n2+n+1[n(n+ 1)Kn2+n+1]), x) = x{x− 1
2
[(n2 + n+ 1)3

−(n2 + n+ 3)]}n(n+1)(n2+n+1) · [x− 1
2
n(n+ 1)(n4 + 2n3 + 4n2 + 3n+ 3)]n

2+n−1

·{x− 1
2
(n+ 1)[n(n2 + n+ 1)(n2 + n+ 2)− 2]}n2+n+1

·{x− 1
2
n[(n+ 1)(n2 + n+ 1)(n2 + n+ 2) + 2]}n2+n+1

·{x− 1
2
(n2 + n+ 1)[(n2 + n+ 1)2 − 3]} 1

2
(n2+n−1)[(n2+n+1)2+1].

(5) The characteristic polynomial of Lap(L(K1,n2+n+1[n(n+ 1)Kn2+n+1])) is

σ(L(K1,n2+n+1[n(n+ 1)Kn2+n+1]), x) = x[x− n(n+ 1)(n2 + n+ 1)]n(n+1)(n2+n−1)

·[x− (n2 + n+ 1)2]n
2+n−1[x− 2n(n+ 1)(n2 + n+ 1)]

1
2

(n2+n−1)(n2+n+2)[(n2+n+1)2+1]

·[x− (n+ 1)2(n2 + 1)]n
2+n+1[x− n2(n2 + 2n+ 2)]n

2+n+1.

Proof. It is easy to check the correctness by Theorems 2, 6, 7, 11 and Lemmas 11,
12. 2

Theorem 12. For integers n ≥ 0 and m ≥ 0, if a regular graph G is integral, then
the graphs Lm(G) and Ln(Lm(G)) are Laplacian integral.

Proof. It is easy to check the correctness by Lemmas 4, 11, 12, 13 and Theorem 9.
2

Corollary 8. For integers p ≥ 0, n ≥ 1 and m ≥ 0, the regular graphs Lm(Kn,n+1 ≡
Kn+1,n), Lp(Lm(Kn,n+1 ≡ Kn+1,n)), Lp(Lm(K1,n2+n+1[n(n+ 1)Kn2+n+1])) and
Lm(K1,n2+n+1[n(n+ 1)Kn2+n+1]) are Laplacian integral.

Proof. It is easy to check the correctness by Lemmas 4, 11, 12, 13 and Corollary 7
as well as Theorems 1, 2 and 12. 2

Theorem 13. If G is a regular graph of degree k with n vertices and m = 1
2
nk edges,

let t ≥ 2 be an integer, then the characteristic polynomial of the (2tk − 2t+1 + 2)-
regular graph Lt(G) with n

∏t−1
i=0(2i−1k − 2i + 1) vertices and n

∏t
i=0(2i−1k − 2i + 1)

edges is

P (Lt(G), x) = P [G, x+ (2− k)(2t − 1)](x+ 2)2t−2n(k−2)
∏t−2

i=0
(2i−1k−2i+1)

·∏t−1
j=2[x+ 2 + (2− k)

∑t−1
i=j 2i]2

j−2n(k−2)
∏j−2

i=0
(2i−1k−2i+1)[x+ 2 + (2− k)

·(2t − 2)]
1
2
n(k−2).

Proof. By induction on t ≥ 2, we are easy to check the correctness from Lemmas
4 and 6. 2
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