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CIRCUMFERENCE OF GRAPHS WITH BOUNDED DEGREE*
GUANTAO CHENT, JUN XU#, AND XINGXING YU$

Abstract. Karger, Motwani, and Ramkumar [Algorithmica, 18 (1997), pp. 82-98] have shown
that there is no constant approximation algorithm to find a longest cycle in a Hamiltonian graph,
and they conjectured that this is the case even for graphs with bounded degree. On the other hand,
Feder, Motwani, and Subi [SIAM J. Sci. Comput., 31 (2002), pp. 1596-1607] have shown that
there is a polynomial time algorithm for finding a cycle of length n!°832 in a 3-connected cubic
n-vertex graph. In this paper, we show that if G is a 3-connected n-vertex graph with maximum
degree at mgst d, then one can find, in O(n?) time, a cycle in G of length at least Q(n!°%b2), where
b=2(d—1)*+1.
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1. Introduction and notation. The circumference of a graph is the length
of a longest cycle in that graph. The problem of approximating the circumference
of a graph is NP-hard [15]. For many canonical NP-hard problems, either good
approximation algorithms have been devised, or strong negative results have been
established, leading to better understanding of the approximability of these problems.
However, not much is known for finding longest paths and cycles, positive or negative.
For example, there is no known algorithm which guarantees an approximation ratio
better than n/polylog(n), where n denotes the number of vertices. This is true even
for graphs which are Hamiltonian or have bounded degree. Karger, Motwani, and
Ramkumar [15] showed that unless P = NP, it is impossible to find, in polynomial
time, a path of length n — n® in an n-vertex Hamiltonian graph for any € < 1. They
conjectured that it is just as hard for graphs with bounded degree.

On the positive side, if a graph has a path of length L, then one can find a
path of length Q((log L/ loglog L)?) [1] (also see [20]). Feder, Motwani, and Subi [6]
showed that there is a polynomial time algorithm for finding a cycle of length at least
n'°832 in a 3-connected cubic n-vertex graph. They also showed that if a graph has
maximum degree at most three and has a path or cycle of length L, then one can
find a path or cycle of length at least L(oe3)/2, Therefore, an intermediate problem is
to find long paths or cycles in graphs of bounded degree that have a Hamilton cycle.
Specifically, Feder, Motwani, and Subi (see [6], p. 1605) asked (1) whether there exists
some constant 0 < ¢ < 1 such that if G is a 3-connected planar n-vertex graph, then
the circumference of G is at least 2(n¢), and (2) whether there exists some constant
0 < ¢ < 1 such that if G is a 3-connected n-vertex graph with bounded degree, then
the circumference of G is at least 2(n®). There are known results showing that such
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a constant ¢ exists in both cases ([3], [14]); however, none addresses the algorithmic
issue. The main goal of this paper is to establish a cubic algorithm that produces a
long cycle in a 3-connected graph with bounded degree.

The work on circumferences of planar graphs dates back to 1931, when Whitney
[21] proved that every 4-connected planar triangulation contains a Hamilton cycle
(and, hence, its faces are 4-colorable). This result is generalized to all 4-connected
planar graphs in [18]. A linear time algorithm is given in [4] for finding a Hamilton
cycle in a 4-connected planar graph. There are many 3-connected planar graphs
which do not contain Hamilton cycles (see [9]). On the other hand, the following
conjecture of Barnette (see [16]) remains open: every bipartite, cubic, 3-connected,
planar graph contains a Hamilton cycle. When studying paths in polytopes, Moon and
Moser [17] implicitly conjectured that if G is a 3-connected planar n-vertex graph then
G contains a cycle of length at least (n!°®32). (Griinbaum and Walther [8] made
the same conjecture for a class of 3-connected cubic planar graphs.) Jackson and
Wormald [13] gave the first polynomial lower bound (n¢), where ¢ is approximately
0.2, which was improved to Q(n%%) by Gao and Yu [7]. Chung [5] further improved
this lower bound to Q(n’%). Recently, Chen and Yu [3] fully established the Moon—
Moser conjecture; their proof implies a quadratic algorithm for finding a cycle of
length at least (n!°832) in a 3-connected planar n-vertex graph. We conjecture that
such a cycle may be found in linear time.

The work on circumferences of 3-connected graphs with bounded degree dates
back to 1980, when Bondy and Simonovits [2] conjectured that there exists a constant
0 < ¢ < 1 such that the circumference of any 3-connected cubic n-vertex graph
is at least ©(n°). This conjecture was verified by Jackson [12]. In 1993, Jackson
and Wormald [14] proved that if G is a 3-connected n-vertex graph with maximum
degree at most d, then the circumference of G is at least %nlogb 2 41, where b = 6d2.
The argument in [14] is technical, and Jackson and Wormald did not address the
algorithmic issue.

In this paper, we improve the lower bound of Jackson and Wormald, for both
the exponent and the constant coefficient. Our argument makes efficient use of two
results: a convexity result of a function and a decomposition result of 2-connected
graphs. Our proof gives rise to a cubic algorithm for finding a long cycle in 3-connected
graphs with bounded degree. More precisely, we prove the following result.

THEOREM 1.1. Letn > 4 and d > 3 be integers. Let G be a 3-connected graph
on n vertices such that the mazimum degree of G is at most d. Then G contains a
cycle of length at least n'°8»2 + 2 where b = 2(d — 1) + 1. Moreover, such a cycle
can be found in O(n?) time.

It is conjectured in [14] that, for d > 4, the lower bound in Theorem 1.1 may be
replaced by Q(n'°8a-12). We are hopeful that our approach will eventually lead to a
resolution of this conjecture.

To prove Theorem 1.1, we will need to deal with graphs which result from a
3-connected graph by deleting one vertex. Such graphs are 2-connected but not nec-
essarily 3-connected. Our technique is to decompose such a graph into “3-connected
components.” This can be done in linear time by a result of Hopcroft and Tarjan [10].
(A similar idea is used in [14], but our decomposition is done once for each graph in
a single iteration of the algorithm, and we make more eflicient use of such a decom-
position.) In most situations, we will not use all 3-connected components of a graph.
Instead, we will pick some large 3-connected components and find long cycles in such
components. We will then use a convexity property of the function f(x) = z'°%2 to
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account for the unused components. These two ideas will be made more precise in
the next two sections.

This paper is organized as follows. In section 2, we will state a technical result,
consisting of three statements about (a) the existence of a long cycle through a given
edge and avoiding a given vertex, (b) the existence of a long cycle through two given
edges, and (c) the existence of a long cycle through a given edge. (We will see that
(c) implies Theorem 1.1.) We will also describe the decomposition of a 2-connected
graph into 3-connected components. In section 3, we will prove useful properties of
the convex function f(x) = %82 for b = 3 and b > 4. We will also prove several
lemmas to be used in the proof of our main result. In sections 4-6, we will show
that each of (a), (b), and (c) can be reduced in linear time to (a), (b), and/or (c) for
smaller graphs. In section 7, we will complete the proof of our main result and give a
cubic algorithm that finds a long cycle in a 3-connected graph with bounded degree.

We end this section with notation and terminology to be used throughout this
paper. Let G be a graph. We use V(G) and E(G) to denote the vertex set and edge
set of G, respectively, and we write G = (V(G), E(G)). For convenience, we write |G|
instead of |V(G)|. If e € E(G) and x,y are the vertices of G incident with e, then we
write e = xy. For any S C V(G) U E(G), G — S denotes the graph obtained from G
by deleting S and all edges of G with an incident vertex in S. If S = {z}, then we
simply write G — z instead of G — S.

Let G and H be two graphs. By H C G we mean that H is a subgraph of G. We
use GUH and GNH to denote the union and intersection, respectively, of G and H. For
any S C V(G)UE(G) and for any H C G, we use H+S to denote the graph with vertex
set V(H)U(SNV(Q)) and edge set E(H)U{uv € S : {u,v} CV(H)U(SNV(QG))}.

We say that a graph G is k-connected if |G| > k + 1 and, for any S C V(G) with
|S| <k —1, G— S is connected. Let G be a graph. If S C V(G) for which G — S is
not connected, then S is a cut of G, and if, in addition, |S| = k, then S is a k-cut.
If © € V(G) for which G — z is not connected, then z is called a cut vertex of G. If
e € E(G) for which G — e is not connected, then e is called a cut edge of G.

2. 3-connected components. We begin this section by stating a technical re-
sult which implies Theorem 1.1. To motivate that statement, let G be a 3-connected
graph. In order to find a long cycle in G, we will try to find a cycle through a specific
edge e = zy (for induction purposes). To reduce the problem to smaller graphs, we
consider G — y. Clearly G — y is 2-connected but not necessarily 3-connected. In the
case when G —y is not 3-connected, y is contained in a 3-cut T of G. Let T := {y, a, b},
and let G1, G2 be subgraphs of G such that E(G1)NE(Gs) =0, V(G1)NV(Ge) =T,
and G; UGy = G. See Figure 1 for an illustration. Assume z € V(Gy) —T. We could
find a long cycle C; through both e and ab in G + ab and a long cycle Cy through ab
in (G + ab) — y, and then C := (C; — ab) U (Cy — ab) would give a long cycle in G.
Note that C is a cycle through two given edges, Cs is a cycle through one given edge
and avoiding a given vertex, and C' is a cycle through one given edge. This suggests
that we prove three statements simultaneously. Indeed, we will prove the following.

THEOREM 2.1. Letn > 5 and d > 3 be integers, let r =10gyq_1)211 2, and let G
be a 3-connected graph on n vertices. Then the following statements hold:

(a) Letzy € E(G) and z € V(G)—{z,y}, and let t denote the number of neighbors
of z distinct from x and y. Assume that the maximum degree of G is at most
d+ 1, and every vertex of degree d+ 1 (if any) is incident with the edge zx
or zy. Then there is a cycle C through xy in G — z such that |C| > ()" +2.

(b) Suppose the mazimum degree of G is at most d. Then, for any distinct e, f €
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Fic. 1. An illustration.

E(G), there is a cycle C through e and f in G such that |C| > (ﬁ)r +3.

(c) Suppose that the mazimum degree of G is at most d. Then, for any e € E(G),

there is a cycle C through e in G such that |C| > n" + 3.

Clearly, Theorem 2.1 (¢) implies Theorem 1.1 when n > 5, and Theorem 1.1 is
obvious when n = 4. Note the condition in (a) about the maximum degree; it is due
to the addition of edges in order to maintain 3-connectivity.

To prove Theorem 2.1, we need to decompose a 2-connected graph (such as G — z
in (a) above) into 3-connected components. This is similar to the decomposition of a
connected graph into 2-connected components. Let G be a connected graph. A block
of G is a subgraph of G which is either a maximal 2-connected subgraph of G or a
subgraph of G induced by a cut edge of G. A block of G is also called a 2-connected
component of G. It is easy to see that the intersection of any two blocks of GG either is
empty or consists of only one vertex (which is a cut vertex). Also any noncut vertex
of G occurs in exactly one block of G. This implies that the blocks and cut vertices
of G form a tree structure.

Now let G be a 2-connected graph. We describe the 3-connected components of
G, following Hopcroft and Tarjan [10]. For this purpose, we allow multiple edges (and
hence E(G) is a multiset). We say that {a,b} C V(G) is a separation pair in G if
there are subgraphs G, G2 of G such that G; UGy = G, V(G1) NV (G2) = {a,b},
E(G1) N E(G2) =0, and |E(G;)| > 2 for i = 1,2. Let G} := (V(G;), E(G;) U {ab})
for i = 1,2. See Figure 2 for an example. Then G} and G} are called split graphs
of G with respect to the separation pair {a,b}, and the new edge ab added to G; is
called a virtual edge. Virtual edges are illustrated with dashed edges in Figures 2—4.
It is easy to see that since G is 2-connected, G, is 2-connected or G’ consists of two
vertices and at least three multiple edges between them.

Suppose that a multigraph is split, and the split graphs are split, and so on, until
no more splits are possible. Then each remaining graph is called a split component.
See Figure 3 for a graph G and its split components. No split component contains
a separation pair, and therefore each split component must be one of the following:
a triangle, a triple bond (two vertices with three multiple edges between), or a 3-
connected graph.

It is not hard to see that if a split component of a 2-connected graph is 3-
connected, then it is unique. It is also easy to see that, for any two split compo-
nents G1,Gs of a 2-connected graph, we have |V(G;) N V(G3)| = 0 or 2, and if
[V(G1) NV (G2)| = 2, then either G; and Gj share a virtual edge between vertices
in V(G1) N V(G2) or there is a sequence of triple bonds such that the first shares a
virtual edge with G1, any two consecutive triple bonds in the sequence share a virtual
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Fic. 3. Split components of G.

edge, and the last triple bond shares a virtual edge with G.

In order to get unique 3-connected components, we need to merge some triple
bonds and to merge some triangles. Let G, = (V/, E!), i = 1,2, be two split compo-
nents, both containing a virtual edge ab. Let G' = (VJ UV, (B —{ab})U(E,—{ab})).
Then the graph G’ is called the merge graph of G; and G2. See Figure 2 for an exam-
ple of a merge graph. Clearly, a merge of triple bonds gives a graph consisting of two
vertices and multiple edges, which is called a bond. Also a merge of triangles gives a
cycle, and a merge of cycles also gives a cycle.

Let D denote the set of 3-connected split components of a 2-connected graph G.
We merge the other split components of G as follows: the triple bonds are merged
as much as possible to give a set of bonds B, and the triangles are merged as much
as possible to give a set of cycles C. Then BUC U D is the set of the 3-connected
components of G. Figure 4 gives the 3-connected components of the graph in Figure
3. Note that any two 3-connected components either are edge disjoint or share exactly

one virtual edge.

' I // \\ I [ ! ! I '
‘ g g ! ! g '
H, Ch Co Hs

F1a. 4. 3-connected components of the graph G in Figure 3.

Tutte [19] proved that the above decomposition of a 2-connected graph into 3-
connected components is unique. Hopcroft and Tarjan [10] gave a linear time algo-
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rithm for finding the 3-connected components of a graph.

THEOREM 2.2. For any 2-connected graph, the 3-connected components are
unique and can be found in O(|E|) time. Moreover, the total number of edges in
the 3-connected components is at most 3|E| — 6.

We define a graph whose vertices are the 3-connected components of G, and two
vertices are adjacent if the corresponding 3-connected components share a virtual
edge. Then it is easy to see that such a graph is a tree, and we call it the block-bond
tree of G.

For convenience, 3-connected components that are not bonds are called 3-blocks.
An extreme 3-block is a 3-block that contains at most one virtual edge. That is, either
it is the only 3-connected component, or it corresponds to a degree one vertex in the
block-bond tree.

We will make use of cycle chains. Intuitively, a cycle chain in a 2-connected graph
G is a sequence C1C5 ... of 3-blocks of G for which each C; is a cycle and there
exist bonds By, Bs, ..., Bir_1 of G such that C1B1CsB5 ... Br_1C}) is a path in the
block-bond tree of G. More precisely, we have the following.

DEFINITION 2.3. Let G be a 2-connected graph. By a cycle chain in G we mean
a sequence C1 ...Cy with the following properties:

(i) for each 1 <i <k, C; is a 3-block of G and C; is a cycle;

(ii) |[V(C;) NV (Cix1)| =2, and C; and Ci11 each contain a virtual edge between

the vertices in V(C;) NV (Ciy1); and

(iii) [V(Ci)NV(Cj)| <1 when j>i+2, and if i < j and |V(C;) NV (C))| =1,

then, for alli <t < j, V(C;) NV (C;) CV(Cy) NV (Cj).
For convenience, we sometimes write H := C1 ...Cy and view H as the graph Ule C;.
Hence V(H) := Ule V(C;). Note that H is a multigraph, with two virtual edges
between the vertices in V(C;) NV (Ciy1), 1 <i <k —1.

As an example, take the graph G in Figure 3 and its 3-connected components in
Figure 4; we see that C1C5 is a cycle chain.

Remark. We choose not to include bonds in our definition of cycle chains because
those bonds do not contribute the vertex count in our arguments.

It is easy to see that if C;...C} is a cycle chain, then deleting all virtual edges
with both ends in V(C;) NV (Ci11), 1 <i < k — 1, results in a cycle. We state it as
follows.

PROPOSITION 2.4. Let G be a 2-connected graph, let Cy...Cy be a cycle chain
in G, let wv € E(Cy) with {u,v} # V(C1) NV (Cs) when k # 1, and let xy € E(C})
with {z,y} # V(Cr—1)NV(Ck) when k # 1. Then Ule C; contains a Hamilton cycle
through wv and xy. Moreover, such a cycle can be found in O(] Ule V(Cy)|) time.

For later applications, we need several facts about paths in cycle chains. We say
that a path P in a graph G is from a vertex € V(G) to a set S C V(G) — {z} if one
end of P is x, the other end of P is in S, and P is otherwise disjoint from S.

PROPOSITION 2.5. Let G be a 2-connected graph, let C1 ...Cy be a cycle chain in
G, let wv € E(Ch) with {u,v} # V(C1)NV(Cs) when k # 1, and let xzy € E(Cy,) with
{z,y} #V(Cr_1) NV (Ck) when k # 1. Then there is a path in (Uf:1 C;) — {uwv, zy}
which is from u to {x,y} and contains (Uf;ll(V(C'i) NV(Cit1)) — {x,y} U {u,v}.
Moreover, such a path can be found in O(] Ule V(Cy)|) time.

Proof. If k = 1, this is obvious. So assume that k& > 2. Let 2’y denote the virtual
edge in Ck_;1 such that {z/,y'} = V(Cr_1) N V(Cx). By induction, (Ui:ll C;) —
{uv, 2'y’'} contains a path P’ that is from u to {z,3'} and contains (Ui:f(V(CZ) N
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V(Cit1)) — {2',y,u,v}. By symmetry, we may assume that P’ ends at 2/. If ¢/ €
V(P'), then let Q" denote the path in Cy — {zy,y'} from =’ to {z,y}. If v/ & V(P),
then let @' denote the path in Cj — zy that is from 2’ to {z,y} and through the
virtual edge z'y’. Clearly, P := P’ U Q' gives the desired path.

It is easy to see that such a path can be found in O(| Ule V(C;)]) time. d

By a similar argument, we can prove the following.

PROPOSITION 2.6. Let G be a 2-connected graph, let Cy...Cy be a cycle chain
in G, let uwv € E(Cy) with {u,v} # V(C1) NV (Cy) when k # 1, and let © € V(Cy)
with x ¢ V(Ci_1) when k # 1. Then there is a path in (Uf=1 C;) — uv which is from
u to x and contains (Uf;ll(V(CZ-) NV (Cit1)) — {u,v,z}. Moreover, such a path can
be found in O(| Ule V(Cy)]) time.

The next two facts about cycle chains are slightly more complicated. We only
prove the first; the other can be proved similarly.

PROPOSITION 2.7. Let G be a 2-connected graph, let C;...Cy be a cycle chain
in G, let ww € E(C1) with {u,v} # V(C1) NV(Cq) when k # 1, ab € E(Cy) with
{a,b} # V(Cx—1)NV(Cx) when k # 1, and cd € E(Uf:1 C;)—{ab}. Suppose ab # wv
when k = 1. Then there is a path P in (Uf:1 C;) — ab from {a,b} to {c,d} such
that uwv € E(P), cd ¢ E(P) unless ¢d = uv, and (Ui:ll(V(Ci) NV(Cit1)) CV(P).
Moreover, such a path can be found in O(] Ule V(Cy)]) time.

Proof. We apply induction on k. If & = 1, then since ab # wv, the result is
obvious. So assume that k > 2.

First, assume that c¢d € E(Cy) and {c,d} # V(Ck—1) N V(C%). Let a’b’ denote
the virtual edge in Cy with {a’,0'} = V(Ck—1) NV (Cy). In Cj — {ab, cd}, we find a
path P’ from {a,b} to {c,d} through oa't’. In Uf;ll C;, we apply Proposition 2.4 to
find a Hamilton cycle C' through wv and a'b’. Now P := (P’ —a't') U (C — a'l’) gives
the desired path.

Thus we may assume that there is some 1 < ¢ < k such that c¢d € E(C}). We
may choose t so that {c,d} # V(Cy—1) NV (C}) when ¢ # 1.

Suppose {c¢,d} =V (C;)NV(Cy41). By applying Proposition 2.4, we find a Hamil-
ton cycle C' in U§=1 C; such that uv, cd € E(C). Now P’ := C'—cd is a path in U§=1 C;
from ¢ to d through wv. By Proposition 2.5, we find a path P” in (Uf:tJrl C;)—{ab, cd}
that is from d to {a,b} and contains (Ui.:ta_l(V(C’i) NV(Cit1)) — ({a,b} U {c,d}).
Now P := P’ U P” gives the desired path.

So assume that {c,d} # V(C;) NV (Ciy1). By applying induction, there is a path
P’ from V(C;)NV (Cii1) to {c,d} in |J!_, C; such that uv € E(P'), cd ¢ E(P’) unless
cd = wv, and (Uf;i(V(CZ) NV (Cit1)) C V(P'). Let ¢ denote the virtual edge of
Ci41 between the vertices in V/(Cy) NV (Ci11), and let uw € V/(C) NV (Ciy1) be an end
of P’. Now apply Proposition 2.5 to C¢41 . .. Ck, we find a path P” from u to {a, b} in
(Ui 1 Ci)—{€',ab} such that (U}, (V(C;)NV (Ci1))— (V(CONV (Ciq1)) € V(P").
Clearly, P := P’ U P” gives the desired path.

Since finding P’ and P” takes O(] Ule V(C;)|) time, P can also be found in
O(|UL, V(Cy)) time. O

By a similar argument, we can prove the following.

PROPOSITION 2.8. Let G be a 2-connected graph, let Cy...Cy be a cycle chain
in G, let uv € E(Cy) with {u,v} #V(C1) NV (Cy) when k # 1, x € V(C}) with x ¢
V(Ci—1) when k # 1, and cd € E(Uf=1 C;). Then there is a path P in (Uf=1 Cy) —uw
from x to {c,d} such that uwv € E(P), cd ¢ E(P) unless cd = uv, and (Uf;ll(V(Ci) N
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V(Cit1)) CV(P). Moreover, such a path can be found in O(| Ule V(Cy)]) time.

We conclude this section by generalizing the concept of a cycle chain to a block
chain. Intuitively, a block chain in a 2-connected graph G is a sequence Hj ... Hy for
which (1) each H; is either a 3-connected 3-block of G or a cycle chain in G and (2)
there exist bonds By,..., B,_1 of G such that H1B1H>Bs> ... Bj_1Hj, form a path in
the block-bond tree of G (by also patching the tree paths corresponding to H; when
H; is a cycle chain). More precisely, we have the following.

DEFINITION 2.9. Let G be a 2-connected graph. By a block chain in G we mean
a sequence Hy ... Hp with the following properties:

(i) For each 1 < i < h, either H; is a 3-connected component of G or H; is a

cycle chain in G, and for 1 <i < h—1, H; and H;1 cannot both be cycle

chains.
(ii) Foreach 1 <i<h—1,|V(H;)NV(H;+1)| =2 and both H; and H;+1 contain
a virtual edge between the vertices in V( )NV (Hizr).

(iii) [V(H)NV(H;)| <1if3<i+2<j<h andifl <i<j<hand
|[V(H;)NV(H;)| =1, then, foralli <t < j, V(H;)NV(H;) CV(H,)NV(H;).
(iv) Suppose H; = C1Cy ... Cy is a cycle chain. Ifi < h, then V(H;+1)NV (H, ) C
V(Cy) and V(H;11)NV (H;) # V(Cr—1)NV(Ck), and ifi > 1, then V(H;_1)N
V(H;) CV(C1) and V(H;—1) NV (H;) #V(C1) NV(Cy).
For convenience, we denote H = Hy ... Hy and view H as the graph U?:l H;. Thus
V(H) = U?:l V(H;). Note that H is a multigraph, with two virtual edges between
vertices in V(H;) NV (H;y1), 1 <i<h—1.
In Figure 4, H = H1H3Hj3 is a block chain in GG, where H is the cycle chain
C1C5. In a block chain, we do not include bonds, because bonds do not contribute to
the vertex count in our arguments.

3. Technical lemmas. In this section we prove several lemmas to be used in
the proof of Theorem 2.1. Notice G = G1 U G2 in the illustration of Figure 1. If,
instead, for some k > 3, G = Ule Gi, E(G;)NE(G;) =0, and |V(G;) NV (G,)| =3
for 1 <1 < j <k, then the following lemma will enable us to conclude that if |G|
and |G| are the largest among all |G;|’s, then the cycle C produced by finding long
cycles C; in G; (as in the first paragraph in section 2), i = 1,2, will be long as well.

LEMMA 3.1. Let b =3 or b > 4 be an integer, and let m,n be positive integers
with m > n. Then m!°8» 2 4+ nlogv2 > (m + (b — 1)n)'oes 2,

Proof. By dividing both sides of the above inequality by m!°8 2, it suffices to
show that, for any s with 0 < s <1,

145982 > (14 (b—1)s)lo82,

Let f(s) = 1+ 52 — (1 + (b — 1)s)°&:2. Clearly, f(0) = f(1) = 0. Taking the
derivative about s, we have

£'(s) = (log, 2)(5(10gb 2)—1 _ (b—1)(1+ (b— 1)5)(logb 2)71)'

A simple calculation shows that f’(s) = 0 has a unique solution. Therefore, since
f(0) = f(1) = 0, either 0 is the absolute maximum of f(s) over [0,1] or 0 is the
absolute minimum of f(s) over [0,1]. That is, either f(s) > 0 for all s € [0,1] or
f(s) <0 for all s € [0,1]. Note that 0 < 7 < 1 (since b > 3) and

1(G)=(+5) - (5™
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3 (2 1)om?
2 2 '
We claim that f(3) > 0. If b = 3, then f(3) = £(3 —5"°832) > 0. So assume

b>4. Then f(1) >3- G2 _ 5 glow2 Gince b > 4, 21082 < 210842 = /2 < 3.
f(3)>0forb>4.

Therefore, we have f(s) > 0 for all s € [0, 1]. |

We remark that Lemma 3.1 holds for b > 3. We choose to state it for b = 3 and
b > 4 for simplicity in calculations.

The observations in the following lemma will be convenient in the proof of The-
orem 2.1.

LEMMA 3.2. Let m be an integer, b > 4, and d > 3. If m > 4, then m >

ml°&s 242, If m > 3, thenm > (z(dwjl))logﬂ—i-z Ifm > 2, thenm > (%)logﬁ—kl.

Proof. Let f(x) = x — 2'°82. We can show that f’(x) > 0 for + > 4. Hence
f(z) is an increasing function when z > 4. Thus, f(z) > f(4) = 4 — 41°%:2 > 2 (since
b > 4). Thus when m > 4, we have m > mlogs2 4 2.

Next, let f(x) = © — (2(d“”_1))1°gb2. We can show that f(x) is an increasing
function when = > 2. The second inequality follows from f(x) > f(3) > 2, and the
third inequality follows from f(z) > f(2) > 1. O

After we decompose a 2-connected graph into 3-connected components, we need to
find long cycles in certain 3-connected components. This will be done by inductively
applying (a), (b), or (c¢) of Theorem 2.1 to 3-connected components or to graphs
obtained from 3-connected components by an “H-transform” or “T-transform.”

Let G be a graph and let e, f be distinct edges of G. An H-transform of G at
{e, f} is an operation that subdivides e and f by vertices = and y, respectively, and
then adds the edge xy. See Figure 5. Let G be a graph, let e € E(G), and let
x € V(G), which is not incident with e. A T-transform of G at {x, e} is an operation
that subdivides e with a vertex y and then adds the edge xy. If there is no need to
specify e, f, x, we will simply speak of an H-transform or a T-transform. The following
result is easy to prove.

H-transform

T-transform

F1c. 5. H-transform and T-transform.

LEMMA 3.3. Let d > 3 be an integer, and let G be a 3-connected graph with
mazimum degree at most d. Let G' be a graph obtained from G by an H-transform
or a T-transform. Then G’ is 3-connected graph, the vertex of G involved in the T-

transform has degree at most d + 1, and all other vertices of G’ have degree at most
d.
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Next, we state two results from [11]. The first says that any k-connected graph
contains a sparse k-connected spanning subgraph.

LEMMA 3.4. Let G be a k-connected graph, where k is a positive integer. Then
G contains a k-connected spanning subgraph with O(|G|) edges, and such a subgraph
can be found in O(|E(G)|) time.

The next result is an easy consequence of a result in [11], which states that, in
a 2-connected graph G, one can find, in O(|G|) time, two disjoint paths between two
given vertices.

LEMMA 3.5. Let G be a 2-connected graph and let e, f € E(G). Then there is a
cycle through e and f in G, and such a cycle can be found in O(|G|) time.

The final two results of this section deal with the existence of certain paths in a
3-connected graph. Since such paths need to be produced (when finding a long cycle),
we also show that they can be found in linear time. The proofs of these two results
are almost identical, so we omit the details of the second proof.

LEMMA 3.6. Let G be a 3-connected graph, let f € E(G), let ab, cd,vw € E(G) —
{f}, and assume that {c,d} # {v,w}. Then there exists a path P from {a,b} to some
z € {c,d} U{v,w} in G such that

() f € B(P),

(ii) ed € E(P) orvw € E(P), and

(iii) if cd € E(P), then z € {v,w} and vw ¢ E(P), and if vw € E(P), then

z € {c,d} and cd ¢ E(P).
Moreover, such a path can be found in O(|G]) time.

Note that in (iii) above when vw ¢ E(P), it is possible that v € V(P) and/or
w € V(P).

Proof. First, we find a cycle C' through both ab and f. This can be done in
O(|G|) time using Lemma 3.5. Next we distinguish three cases. Note that checking
these cases can be done in O(|G|) time.

Case 1. cd,vw € E(C). In this case one of the following holds: f and vw are
contained in a component P of C'—{ab, cd}, or f and cd are contained in a component
P of C—{ab,vw}. In either case, P gives the desired path and can be found in O(|G|)
time.

Case2. cd ¢ E(C) and vw € E(C), or cd € E(C) and vw ¢ E(C). By symmetry,
assume that c¢d ¢ E(C) and vw € E(C). Let Q1 and Q)2 denote the components of
C — {ab, f}, and assume that vw € E(Q;). By Lemma 3.5, we can find, in O(|G|)
time, disjoint paths P; and P from c, d to some vertices ¢/, d’, respectively, of C' which
are also disjoint from C' — {¢/,d'}.

If ¢ € V(Q2) or d € V(Q2), then (CUP;UP;) —{ab, cd} contains a path P from
{a,b} to {¢,d} though f and vw. So assume that ¢, d" € V(Q1).

If vw is contained in the subpath of Q1 between ¢’ and d’, then (CU P, U Py) —
{ab,vw} contains a path P from {a,b} to {v,w} through f and cd.

If {¢,d'} is contained in the subpath of Q1 between vw and ab, then (C'U Py U
P,) — {ab, cd} contains a path P from {a,b} to {c,d} through f and vw.

Assume that {¢/,d’} is contained in the subpath of @y between vw and f. Then
(CU Py UPy) — {ab,vw} contains a path P from {a,b} to {v,w} through f and cd.

Note that the above cases can be checked in constant time, and in each case, P
can be found in O(|G|) time.

Case 3. cd ¢ E(C) and vw ¢ E(C). Let @1 and Q2 denote the components
of C' — {ab, f}. By Lemma 3.5, there are disjoint paths P; and P in G from c,d
to ¢,d" € V(C), respectively, which are also disjoint from C — {¢’,d'} (and can be
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found in O(|G]) time). We may assume that {¢/,d'} € V(Q;) for i = 1,2; otherwise,
C U P, U P, contains a cycle through ab, cd, f and, as in Cases 1 and 2, we can find
the desired path in O(|G|) time. Thus, by symmetry, we may assume that ¢’ € V(Q)
and d' € V(Q2).

If vw € E(Py U P,), then (C U Py U Py) — {ab,vw} contains a path P from {a,b}
to {v,w} through f and cd, which can be found in O(|G|) time. So assume that
vw ¢ E(Py U Py). Therefore, by Lemma 3.5, we can find, in O(|G|) time, disjoint
paths Ry, Ry from v, w to v/, w’ € V(C'U Py U Py), respectively, which are also disjoint
from (CU P, UPy) — {v,w'}.

By similar arguments, we may assume that {v’,w'} € V(Q;) (or we go back to
Case 1 or Case 2) and {v',w'} € V(P;) for any ¢ € {1,2} (or we could have chosen
Py, P; to include vw and have gone back to the case in the previous paragraph).

Subcase 3.1. {v',w'} # {c,d'}. First assume {v',w'} C V(P; U P,). Then cd
belongs to the subpath of (P; U Py) + cd between v’ and w’. We see that there is a
path P in ((C —ab) U PL U P URy URy)+ cd C G — {ab,vw} from {a,b} to {v,w}
through both f and cd.

Now assume {v',w'} C V(Q1 UQ2). Then by symmetry, we may assume that
v eV(Qr), w € V(Q2), and w' #d'. If f,w',d',ab occur on C in cyclic order, then
there is a path P from {a, b} to {v,w} through f and ¢d in ((C' —ab) UP, U P, URy U
Ry)+cd C G—{ab,vw}. If f,d',w’, ab occur on C' in cyclic order, then there is a path
P from {a,b} to {¢c,d} through both f and vw in ((C'—ab)UP,UP,UR;URs)+vw C
G — {ab, cd}.

Thus we may assume by symmetry that v € (V(P1) UV (P)) — {¢,d'} and
w' € (V(Q1)UV(Q2))—{c,d'}. Tt is easy to see that ((C—ab)UP,UP;UR1URs)+vw C
G — {ab, cd} contains a path P from {a,b} to {c,d} through both f and vw.

The above three cases can be checked in O(|G|) time, and in all cases, P can be
found in O(|G]) time.

Subcase 3.2. {v',w'} = {¢,d'}. Let S; and Sz denote the paths between ¢’ and
d' in C containing f and ab, respectively. Since G is 3-connected, there is a path S
from some s € V(R URa U Sy) —{c,d'} to s’ € V(P UP,US;) —{c,d}, which
is also disjoint from (C'U Py U P, U Ry U Ry) — {s,s’}. Note that S can be found in
O(|G]) time.

If s € V(S3), then (C —ab)UPLUP,UR URyUS)+cd C G — {ab,vw}
contains a path P from {a,b} to {v,w} through both f and cd. If s € V(S;), then
((C—ab)UPLUP,UR1URyUS) +vw C G —{ab, cd} contains a path P from {a, b} to
{¢, d} through both f and vw, or ((C —ab)UP,UP,UR;URyUS)+cd C G—{ab,vw}
contains a path P from {a,b} to {v,w} through both f and cd.

Assume that s € V(R; U Ry) — {¢/,d'} and s’ € V(PL U Py) — {v/,w'}. Then
((C—=ab)uPLUP,UR; URyUS) +vw C G —{ab,cd} contains a path P from {a,b}
to {¢,d} through both f and vw.

The above three cases can be checked in constant time, and in all cases, P can
be found in O(|G]) time. d

LEMMA 3.7. Let G be a 3-connected graph, let f € E(G), let x € V(G) which is
not incident with f, let cd,vw € E(G) —{f}, and assume that {c,d} # {v,w}. Then
there exists a path P in G from x to some z € {c,d} U {v,w} such that

(i) f e EP),

(ii) ed € E(P) orvw € E(P), and

(iii) if cd € E(P) then z € {v,w} and vw ¢ E(P), and if vw € E(P), then

z € {c,d} and cd ¢ E(P).
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Moreover, such a path can be found in O(|G|) time.
Proof. The proof is the same as for Lemma 3.6, with ab replaced by x, and when
finding paths P;, R;, we apply Lemma 3.5 to G — x (which is 2-connected). d

4. Cycles avoiding a vertex. In this section, we show how to reduce Theorem
2.1 (a) to (b) and/or (c) of the same theorem in linear time. First, we state the
reduction as a lemma.

LEMMA 4.1. Letn > 6 and d > 3 be integers, let 7 = logyq_1y241 2, and assume
that Theorem 2.1 holds for graphs with at most n — 1 vertices. Let G be a 3-connected
graph with n vertices, let vy € E(G) and z € V(G) — {z,y}, and let t denote the
number of neighbors of z distinct from x and y. Assume that the maximum degree of
G is at most d+ 1, and every vertex of degree d+ 1 in G (if any) is incident with the
edge zx or zy. Then there is a cycle C' through xy in G —z such that |C| > (3;)" +2.

Proof. We consider G — z. Since the vertices of G with degree d + 1 rnust be
incident with the edge yz or xz, the maximum degree of G — z is at most d. Since G
is 3-connected and by the assumption on degrees, we see that 1 <t <d— 1.

First, assume that G — z is 3-connected. Since n > 6, |G — z| > 5, and hence
Theorem 2.1 holds for G — z. By Theorem 2.1 (¢), G — z contains a cycle C' through
e such that

Cl=(n—-1)"+
=({(n-1)" +1)+2
> (

(n—1)+1)"+2 (by3.1)

n
— 2.
> () +

Therefore, we may assume that G — z is not 3-connected. By Theorem 2.2, we
can decompose G — z into 3-connected components. Let H = H; ... Hp be a block
chain in G — z such that

(i) {z,y} CV(Hy), and {z,y} # V(H,) NV (H3) when k # 1,

(ii) Hp contains an extreme 3-block of G — z, and

(iii) subject to (i) and (ii), |H| is maximum.

Note that Hj ... Hy can be found in O(|G]) time.

We claim that [H| > 2=1. Since G is 3-connected, each extreme 3-block of G — z
distinct from H; contains a neighbor of z that is not incident with zy. Therefore,
there are at most ¢ extreme 3-blocks of G — z different from H;. Thus there are at
most ¢ different block chains in G — z starting with a 3-block or cycle chain containing
{z,y} and ending with an extreme 3-block of G—z or a cycle chain in G — z containing
an extreme 3-block. Since all such chains cover the whole graph G — z, it follows from
(iii) that [H|—2 > 222 and thus |H| > 2.

Let V(H;) NV (H;11) = {xs,yi}, 1 <i < h—1, and assume that the notation is
chosen so that H; contains disjoint paths from x;_1,y;—1 to x;, y;, respectively, where
x9 = x and yo = y. See Figure 6. Next, we show how to find the desired cycle in
G-z

Case 1. There exists some 1 < i < h such that [H;| > 3;. We choose H; so that
|H;| > |Hj| for all 1 < j < h. Then |H;| > 3

First, assume that |H;| = 3. Then 3 > . By the choice of H;, |H;| = 3 for all
1 < j < h. Since ‘H does not contain two consecutlve cycle chains, we have h = 1.
Hence G — z is a union of triangles which share the edge xy. Therefore, there are
exactly t triangles. Because n > 6, we have t > 3, and thus n = ¢t + 3 < 2¢. Hence
C := H; is a cycle through zy in G — 2z, and |C| =3 > (§)" + 2.
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— 1 2 h—1
Y =% Y “ Y
r = Xo T T9 Tho1

FiG. 6. Block chain H = Hy ... Hyp,.

We may assume that |H;| > 4. If H; = K4 or H; is a cycle chain in G — z, then,
by Proposition 2.4, let C; denote a Hamilton cycle through x; 1y;_1,z;y; in H;. By
Lemma 3.2, |C;| = |H;| > (|H;|)" +2 > (5;)" + 2.

Thus assume that H; is 3-connected and |H;| > 5. Since |H;| < |G| and the
maximum degree of H; is at most d, Theorem 2.1 holds for H;. By Theorem 2.1 (c),
there is a cycle C; through e; := z;_1y;—1 in H; such that |C;| > [H;|"+3 > (5;)" +2.

We can obtain a cycle C' in G by replacing virtual edges contained in C; with
disjoint paths in G (in particular, replacing x;_1y;—1 by a path through zy in G).
Therefore, C' is a cycle through zy in G, and |C| > [Ci] > (5;)" + 2.

Case 2. For each 1 < i < h, |H;| < 2. Since [H| > 271 > 2 we have h > 2. We
will find a cycle C; through x;_1y;_1 and x;y; in each H;, where x,y, is an arbitrary
edge of Hp,.

If H; = K4 or H; is a cycle chain in G — z, then, by Proposition 2.4, let C; be a
Hamilton cycle through both x;_1y;—1 and z;y; in H;. By Lemma 3.2, |C;| = |H;| >
(i) +2-

Assume that H; # K4 and H; is not a cycle chain in G — z. Then |H;| > 5 and H;
is a 3-connected graph with maximum degree d. Since |H;| < n, Theorem 2.1 holds
for H;. By Theorem 2.1 (b), there is a cycle C; through x;_1y;—1 and x;y; in H; such
that [Ci| > (5(325)" + 3.

Note that Cl — I1Y1, Ch — Th—1Yh—1, and CIL' — {xi—lyi—laxiyi}a 2 <1< h— 1,
are disjoint edges, and their union is a cycle C’ through zy in H. By replacing the
virtual edges in C” with disjoint paths in G, we can produce a cycle C through e in
G — z such that |C| > |C’|. Hence |C] > (2(‘5—1‘1))T NN (2‘(5f|1))T +2.

Note that h > 2 and the vertices in V(H;)NV (Hz) are counted twice in |Hy|+. ..+
|Hp|. Hence |Hy|+ -+ |Hp| > 271 +1 > 2. Consider the function f(z1,--,x,) =
i+ ...+ xp +2, with oy + -+ 2, > ﬁ and 0 < z; < ﬁ. By the
convexity of f(x1,...,xp), the minimum of f(x1,---,xy) is achieved on the boundary
of its domain. In particular, the minimum is achieved when x; = x5 = g ;. and

r3 =--- =z = 0. Hence
n n
>
f(xla 7xh)—f<4<d_1)ta4(d_1)t703 70)

n T
LAY
= <2t) +

i

The final inequality follows from the fact that 7 = logy(y_1)2.41 2 and 2 = (2(d — 1)+
1)". Therefore, |C| > (g)" + 2. 0

As we can see from the above proof, the desired cycle through xy in G — z can
be found either (1) directly, (2) by finding a long cycle through e; in some H; with



14

GUANTAO CHEN, JUN XU, AND XINGXING YU

|H;| > 57, or (3) by finding long cycles through x;_1y; 1 and z;y; in H;, 1 <j < h.
Next we show that the proof of Lemma 4.1 implies that this process can be done in
O(|G|) time.

ALGORITHM AVOIDVERTEX. Let G be a 3-connected graph, e = xy € E(G), and
z € V(G) — {z,y}, satisfying the conditions of Lemma 4.1. The algorithm performs
the following steps.

1.

.

Preprocessing. Replace G by a 3-connected spanning graph of G with O(|G|)
edges. (This can be done in O(|E(G)]) time using Lemma 3.4.)

. Decompose G — z into 3-connected components. (This can be done in O(|G])

time using Lemma 2.2.)

. If there is only one 3-block of G — z, then G — z is 3-connected and we proceed

to find a cycle D through e = zy in G — z such that |D| > (|G| —1)"+3. That
is, we reduce (a) for G, zy, z to (c¢) for G — z, zy. (Clearly, this reduction can
be done in constant time.)

If there are at least two 3-blocks of G — z, then G — z is not 3-connected.
We find a block chain H = H; ... Hy in G — z such that {z,y} C V(H,),
{z,y} # V(H1)NV(Hz), and [H| > 271 Let V(H;) NV (H;41) = {x;, y;} for
1 <i< h-1. (Note that H can be found in O(|G]) time by a simple search.)

. Either find some H; with |H;| > 2 or certify that |H;| < 2t for all 1 <i < h.

2t
(This can be done in O(|G]) time by a simple search.)

2t

. Suppose there exists some 1 < ¢ < h for which |H;| > %

e If H;, = K4 or H; is a cycle chain, then let C; denote a Hamilton cycle
in H; through the edge x;_1y;—1. Let C be a cycle in G obtained from
C; by replacing virtual edges with paths in G, and make sure e € E(C).
(Note that C; can be found in O(|G|) time using Proposition 2.4, and
so C can be found in O(|G|) time.)

e If H; is 3-connected and H; # K4, then to find the desired cycle in G— z
through e it suffices to find a cycle D in H; through x;_1y;_1 such that
|D| > |H;|" + 3. Hence, we reduce (a) for G, e, z to (c) for H;, x;—1y;—1.
(This can be done in constant time.)

Now assume that, for all 1 < j < h, |H;| < 5. Then h > 2. For each
1 < j < h, we perform the following;:

o If H; = K4 or H; is a cycle chain in G — 2, let C; denote a Hamilton
cycle through both z;_1y;—1 and z;y; in H;. (Note that C; can be
found in O(|H,|) time using Proposition 2.4.)

o If Hj is 3-connected and H; # K4, then it suffices to find a cycle D in

H; through z;_1y;—1 and z;y; such that |D| > (Qéfj‘l))r. Hence, we
reduce (a) for G, zy, z to (b) for H;, x;_1y;_1, x;y;, for all H; which are
not cycle chains and are not isomorphic to K4. (Clearly, this can done
in O(|G|) time. Moreover, any such H; contains a vertex that does not
belong to any other Hj—this is why we want H; # Ky, and it will be

used in the final complexity analysis.)

The correctness of the algorithm follows from the proof of Lemma 4.1. To sum-
marize, we have the following result.

PROPOSITION 4.2. Let G,e = xy, z,t,d,r be as in Theorem 2.1 (a). Then, in
O(|E(G)|) time, we can either

(1) find a cycle C through e in G — z with |C| > (l%)r +2,

(2) reduce (a) of Theorem 2.1 for G, zy, z to (¢) of Theorem 2.1 for some 3-block

. G
H; of G — z that is 3-connected and |H;| > max{5, ‘27‘}, or
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(3) reduce (a) of Theorem 2.1 for G, zy, z to (b) of Theorem 2.1 for Hj, x;_1y;—1,
x;y; for some 3-connected 3-blocks H; # K.
Moreover, in (3), each H; contains a vertex that does not belong to any other Hy,
k#3j.

5. Cycles through two edges. In this section, we show how to reduce (b) of
Theorem 2.1 to (a) or (b) of the same theorem for smaller graphs. We will show that
such a reduction can be performed in linear time.

LEMMA 5.1. Letn > 6 and d > 3 be integers, let 7 =logyq_1y241 2, and assume
that Theorem 2.1 holds for graphs with at most n — 1 wvertices. Suppose G is a 3-
connected graph onn vertices and that the mazimum degree of G is at most d. Then for
any {e, f} C E(QG) there is a cycle C through e, f in G such that |C| > (ﬁ)’”—i—&

Proof. First, assume that e is incident with f. Let e = zz and f = yz, and let
G’ := G + xy. Then G’ is a 3-connected graph with maximum degree at most d + 1,
and the possible vertices of degree d + 1 in G’ are x and y, which are incident with
the edge zx or zy. By applying Lemma 4.1 to G’, zy, 2z, there is a cycle C’ through
ry in G’ — z such that |C’| > (5;)" + 2, where ¢ is the number of neighbors of z in G
distinct from z and y. Since 2z, zy € E(G),t <d—1. Now let C := C' —zy+{e, f}.
Then |C] > (3;)" + 3 = (gz=5y)" + 3, and C gives the desired cycle.

Therefore, we may assume that e and f are not incident. Let e = xy, and consider
G — y. Since y is not incident with f, f € E(G — y). Since G is 3-connected, G — y
is 2-connected.

Suppose that G — y is 3-connected. Let 3y’ # x be a neighbor of y. Then G’ :=
(G—y)+xy' is a 3-connected graph with maximum degree at most d, and 5 < |G'| < n.
Hence Theorem 2.1 holds for G'. By Theorem 2.1 (b), there is a cycle C’ through xy’
and f in G’ such that |C'| > (#:ﬁ))r +3. Let C:= (C" — xy) + {y,zy,yy’'}. Then

ICl=|C"[+1
n—1\"
N
_(2(d1)> +3+1

n—1 "
> | ——= .
> (2(d—1) +1) +3 (by Lemma 3.1)

. (2(;1)>T+3.

Assume that G —y is not 3-connected. By Theorem 2.2, we can decompose G —y
into 3-connected components. Let H := H;...H, be a block chain in G — y such
that @ € V(Hy) — V(Hp—1), f € E(Hy), and f is not incident with both vertices in
V(Hy) NV (Hs). See Figure 7. Define V(Hs) NV (Hs41) = {as, b5} for 1 <s < h—1.

For each 1 < s < h we define A, which consists of vertices of H, to be counted
when applying induction. If Hy is 3-connected, then let A := V(H,). If h =1 and
H, =C;...Cy is a cycle chain in G — y, then let A, consist of the vertices incident
with f and the vertices in Uf:_ll V(C;NCiy1). f h>1and Hy =Cy...Cy is a cycle
chain in G —y, then let A; consist of those vertices of H; —{a1, b1 } which are incident
with f or contained in U;:ll V(CinCit1). fl <s< hand Hy =Cy...Cy is a cycle
chain, then let A, := (U2 V(CiNCit1)) — ({as—1,bs 1} U{as, bs}). I 1 < s = h and
H,=C)...Cy is a cycle chain, then let A, := (U=, V(Ci N Ciy1)) — {as_1,bs_1}-

Define o(H) := | ngl As|. Intuitively, o(H) consists of the vertices incident with
f, and those vertices which are of degree at least three in H (when viewed as a graph).
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b b be bu—1 by  bh-1

Y

Fic. 7. Block chains H, I, and J.

We wish route our cycle through two large “parts” of G — y. For this purpose,
we consider chains 7 and J in G — y defined below.

Let Z := I ...I; be a block chain in G — y such that (i) |V(I;) NV (H)| = 2, (ii)
V(@)NV(H) = V(I:)NV(H), (iil) I; is an extreme 3-block of G—y, and (iv) subject to
(1), (i), and (iii), |[V(Z)| is maximum. When Z is nonempty, let V(I1)NV(H) = {p, ¢}.
In this case, {p, ¢, y} is a 3-cut of G, and we let G; denote the subgraph of G by deleting
those components of G — {p, ¢, y} which contain an element of V(H). (Note that Gy
can be defined in a more direct way; however, defining it from Z is more natural for
our algorithm because we have all 3-blocks.) See Figure 7.

Since all degree two vertices in H are contained in some other 3-blocks of G —y or
are neighbors of y, G —y can be covered by at most d — 1 block chains starting from a
3-block containing f and ending with an extreme 3-block (or a cycle chain containing
an extreme 3-block). Hence, we have the following.

Observation 1. If Gy # ) then |G| > %(IH).

Let J := Ji...J; be a block chain in G — y such that (i) |V(J1) N (V(H) U
V(G) =2, (i) V()N (V(H)UV(G1)) =V (J1) N (V(H) UV (Gh)), (iii) J; is an
extreme 3-block of G — y, and (iv) subject to (i), (ii), and (iii), |V(J)| is maximum.
When J is nonempty, let V(J) N (V(H) UV (G1)) = {v,w}. By the choice of Gj,
{v,w} # {p,q} and {v,w} C V(H). In this case, {v,w,y} is a 3-cut of G, and we
let G2 denote the subgraph of G by deleting those components of G — {v,w, y} that
contain an element of V(G1) UV (H). Note that V(G1) NV (G2) C {p,q,y} N {v,w,y}
and |V (G1) NV (G3)| < 2 (because {v,w} # {p,q}). See Figure 7.

By the same reasoning as for Observation 1, we have following two observations.

Observation 2. If Ga # 0, then |G| > %.

Observation 3. If o(H) > |Ga|, then o(H) > %.

Next we distinguish two cases by comparing o(H) and |G2|.

Case 1. 0(H) > |G2|. In this case, it suffices to consider H and G;. Clearly, there
is some 1 < ¢t < h such that {p,q} C V(H;), and {p,q} # {at—1,b:—1} when ¢t # 1.
Let ag, by be the vertices incident with f. We will find paths in Hg, 1 < s < h, and a
path in G to form the desired cycle.

(1) If s =1 < ¢, then there is a path P; from ay to by in Hy such that f € E(Py)

and |E(Py)| > (Qgg‘jll))r + 1. If 1 < s < t, then there exists P, C H,, consisting of
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disjoint paths from {as_1,bs—1} to {as,bs}, such that |[E(Ps)| > (2(d |1))T' + 1.
Suppose Hy; = K4 or Hg is a cycle chain. By Proposition 2.4, let Cs denote a

Hamilton cycle through as_1bs—1 and asbs in Hy. Since |Hg| > 3 and by Lemma 3.2,

Ol = |H,| = (Z)('f_s'l))ﬂz > (2('6;4_'1))+2

If s =1, then Py := Cy —aqb; gives the desired path for (1). Now assume 1 < s < t. If

|H,| > 4, then |C| = |Hs| > (5 ‘5 ‘1)) + 3, and if |H;| = 3, then |A;| = 0, and hence

|Cs| = |Hs| = (2(‘;‘75) +3. Hence P := Cs —{as—1bs—1, asbs } gives the desired path
for (1).

Now suppose H; is 3-connected and Hy # Ky. Then 5 < |H,| < n, and hence
Theorem 2.1 holds for Hs. By Theorem 2.1 (b), there is a cycle Cs through as_1b5_1
and asbs in Hy such that |Cy| = ( ‘5 ‘1)) +3> (2(‘2‘;*'1))7’ +3.

When s # 1, then Ps := Cs — {as—1bs—1,asbs} is as desired, and when s = 1,
then Py := C, — asbs gives the desired path for (1).

(2) Next we find P, C Hy, and to do so, we consider three subcases.

(2a) First, assume that 1 = ¢ = h. We will find a path P, from z to {p, ¢} such

that f € E(P;), pq ¢ E(P;) unless pq = f, and |E(P;)| > (;Zgji))’“ + 1.
If H; is a cycle chain, then by Proposition 2.8, let P, denote a path from z to
{p,q} in H; such that f € E(FP;), pq ¢ E(P;) unless pg = f, and A; C V(P;). When

H; consists of only one 3-block of G — y, then |E(P;)| > 2 = |A¢| > (2&4"1)) +1=

(2[(’(57_'?)) 1 (by Lemma 3.2). When H; has at least two 3-blocks of G — y, then

41| > 3 and [B(Py)] > [Ai] = 1> (575)" + 1 = (53745)" + 1 (by Lemma 3.2). So
P, gives the desired path for (2a).
If Hy = K4, then o(H) = 4. Let P; denote a Hamilton path from z to {p, ¢} in H

such that f € E(P,), and pqg ¢ E(P;) unless pg = f. Then |E(P;)| =3 > (2‘(76({72))“1—2.

Hence, P; gives the desired path for (2a).

Now assume that H; is not a cycle chain and H; # Kjy.

If z € {p,q}, then f # pq since x is not incident with f. Since 5 < |Hi| < n,
Theorem 2.1 holds for H;. By Theorem 2.1 (b), there exists a cycle Cy in H; such
that pq, f € E(P;) and |Cy| > (2251))’“ +3 = '(T(H))) + 3. Hence P; := C; —
gives the desired path.

Assume z ¢ {p,q}.

Suppose f # pq. Let H{ be obtained from H; by a T-transform at {z, pq}, and
let 2’ denote the new vertex. By Lemma 3.3 and since x has degree at most d — 1
in H:, H{ is a 3-connected graph with maximum degree at most d. Since G — y is
not 3-connected, |Hy| < n — 1. Hence 5 < |H/| < n, and Theorem 2.1 holds for
H,. By Theorem 2.1 (b), there exists a cycle C; in H; such that f,zz’ € E(C}) and
|Cy| > (2(|fj|1))r +3= (;{ét{i))’" + 3. Hence P; := C; — z’ gives the desired path for
(2a).

Finally, assume that f = pq. Let H] := H; + {pz,qr}. Then Hj is a 3-connected
graph with maximum degree at most d + 1, and all vertices of degree d + 1 must be
incident with pz or pg. By Theorem 2.1, we can find a cycle C; in H, — p through zq
such that |Cy| > (‘Htl) +2= (U(H)) +2, where t < d—1 is the number of neighbors
of p distinct from z and ¢. Hence P, := (Cy — qz) + {p, pq} gives the desired path for

(2a).
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(2b) Now assume that 1 <t < h. If t = 1, we will find a path P, from {a;,b;} to
{p,q} in Hy such that f € E(P;), pg ¢ E(P;) unless pg = f, and |[E(P,)| > (575)"-
If t # 1, we will find P, C H;, consisting of disjoint paths from {p, ¢} and {as,b:} to

{as—1,b,-1} such that [E(Py)| > (53— 1.

Suppose H; is a cycle chain. If {a:,b:} = {p,q}, then by Proposition 2.4 let C;
denote a Hamilton path in H; from a; to by through f. If {a¢, b} # {p, ¢}, then by
Proposition 2.7, let C; denote a path in Hy — azb; from {a, b} to {p,q} such that
ai—1bi—1 € E(Ct), pq ¢ E(C}), and Ay C V(C}). From the definition of A; and since
t<h,a ¢ Ay and by ¢ A;. Also note that if ¢ # 1, then a;—1 ¢ A; or by—1 ¢ A;. So
if t =1, then |E(Cy)| > |A¢], and if ¢t # 1, then |E(Cy)| > |A¢| + 1. Let P, := Cy if
t=1,and let P, := Cy —az_1b;—1 if t # 1. Then P; is as desired for (2b).

If H; = K4, then let C; denote a Hamilton path in Hy — {pq, a;b; } from {as, b:} to
{p,q} through a;_1b; 1. Then |E(Cy)| = 3 > (5{745)"+1, and s0 P, := Cy—a, 1y
is as desired for (2b).

Now assume that H; is not a cycle and H; # Kjy.

Suppose {a¢,b:} = {p,q}. Since 5 < |Hy| < n, Theorem 2.1 holds for H;. By
Theorem 2.1 (b), there is a cycle Cy through a;_1b;—; and a:b; in H; such that
|Cy| > (2(If_t‘1))r +3= (2(‘;:'1))T +3. If t =1 then P, := C; — a;b; gives the desired
path, and if ¢ # 1 then P, := C; — {a;—1bs—1,a:b:} is as desired for (2b).

Now assume that {a¢, b} # {p, ¢}. Let H{ be obtained from H; by an H-transform
at {a;by, pq}, and let a’, b’ denote the new vertices. By Lemma 3.3, H] is a 3-connected
graph with maximum degree at most d. Since G — y is not 3-connected and since 7
is nonempty (when {p,q} is defined), we have |H;| < n — 3. Hence 5 < |H{| < n.
Hence Theorem 2.1 holds for H]. By Theorem 2.1 (b), there is a cycle C; through

@'t/ and a,_1b,_y in H{ such that |Cy] > (z55)" +3 = (52E52)7 +3. 1 £ = 1 then
P, := C;—{a,a'} gives the desired path, and if t # 1 then P; := C; — {a,a’,a;_1bi—1}
is as desired for (2b).

(2¢) Finally, assume 1 < t = h. We will find P, C Hy, consisting of disjoint paths
from z and {p, ¢} to {at—1,bi—1}, such that |[E(P;)| > (2(‘;j|1))r.

If H; is a cycle chain, then by Proposition 2.8, let C; denote a path in H; from z to
{p, q} such that a;_1b;—1 € E(C}), pq ¢ E(P;), and A; C V(P;). Since z,a¢—1,b;—1 ¢
A, |[E(Cy)] > |Al +1 > (2(|(‘14_t‘1))r + 1. Hence P; := C; — a;_1b;_1 is as desired for
(2¢).

If H; = K4, then let C; denote a Hamilton path in H;—pq from z to {p, ¢} through

atflbtfl. Then |E(Ct)| =3> (2(‘5]:|1))r_~_2 = (2(‘;:|1))T+2 Hence Pt = Ct—at,lbt,l

is as desired for (2c).
Now assume that Hy is not a cycle chain and Hy # Ky.
Suppose x € {p,q}. Since 5 < |H;| < n, Theorem 2.1 holds for H;. By Theorem

2.1 (b), there is a cycle C; through a;—1b;—1 and pq in H; such that |Cy| > (ngjll) )+

3= (Qing))r + 3. Then P; := C; — {pq, az—1b;—1} is as desired.

Now assume that « ¢ {p, ¢}. Recall that {p, ¢} # {a;—1,b—1}. Let H] be obtained
from H; by a T-transform {z,pq} and let ¢’ denote the new vertex. By Lemma 3.3,
H{ is a 3-connected graph with maximum degree at most d (because the degree of
x in H; is at most d — 1). Since G — y is not 3-connected, |H;| < n — 2, and so,
5 < |H{| < n. Hence Theorem 2.1 holds for H;. By Theorem 2.1 (b), there is a cycle

Cy through z¢’ and a;—1b,—1 in Hj such that |Cy| > (QAdLj/ll))T +3> (zg;j‘l))T + 3.
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Hence P; := Cy — {c,a;_1b;_1} is as desired for (2c).

(3) For each t + 1 < s < h, we will find a path P, C H, such that |E(Ps)| >
(z(ljj‘l))’" when s # h, |E(Ps)| > (22:;‘?'1))’" + 1 when s = h, and Ug:t+1 P, is a path
from z to the end of P; contained in {a, b} and is otherwise disjoint from P;.

We find P; in the order s =¢+1,..., h.

Suppose P,_; is found, and the notation of {as_1,bs—1} is chosen so that as_1
is an end of Ps_1, and assume that the notation of {as,bs} is chosen so that as ¢
{asfla b571}~

First, assume that H; is a cycle chain. If s # h, then by Proposition 2.5, let P;
denote a path in Hs — {as—1bs—1,asbs} from as_1 to {as,bs} such that A; C V(Ps).
Since as_1,bs_1,as,bs & As, we have that |E(Py)| > |As]+1 > (2(|:i4j|1))r+1. If s =h,
then by Proposition 2.6 let P be a path from x to as_1 in Hy — as_1bs_1 such that

As CV(Ps). Since x,a5-1,bs—1 ¢ As, we have that |E(Ps)| > |As]+1 > (2(|:14i‘1))r+1'

Now assume Hy = Ky. If s # h, then let P, denote a path in Hs—{as—1bs—1, asbs}

from as—1 to as with |E(P)| > 1 > (2(\375\1))@ If s = h, then let P be a path in
|As |

Hg —as_1bs—1 from as_1 to x with |[E(P)| > 2 > (2(dj1))r + 1.

Assume that H, is not a cycle chain and Hg # Kj.

Suppose s # h. If bs_1 = bg, then let H. := H; 4+ as_1as. Clearly, H. is 3-
connected with maximum degree at most d + 1, and the vertices of degree d + 1 must
be incident with as_1bs—1 or asbs—1. Thus by Theorem 2.1 (a), there is a cycle Cj in

H! —bs_1 such that as_q1as € E(Cs) and |Cs| > (2(|§Ié|1))r+2. Let P, :=C, —as_1as.

Then |E(Ps)| > (2(d ‘1)) +1. So assume bs_; # bs. Let H” be obtained from Hy by a
T-transform at {bs_1, asbs}, and let a’ denote the new vertex. Let H. := H! +as_1d’.
Since G — y is not 3-connected, |[HY| < n — 2, and so 5 < |H/| < n. By Lemma 3.3,
H! is a 3-connected graph with maximum degree at most d + 1, and the vertices of
degree d + 1 must be incident with bs_1a’ or bs_jas—1. Thus H.,as_1a’,bs_1 satisfy
the conditions Theorem 2.1 (a). By Theorem 2.1 (a), there is a cycle Cs through

as—1a’ in H. — bs_1 such that |C| > (2(‘5_;‘1))T + 2. Let P, := Cy, —a’. Then
[E(P)| > (50725

Now assume s = h. Let H. := H; + {abs_1,xas_1}. Then H. is a 3-connected
graph, the vertices z,as_1,bs_1 have degree at most d + 1, and all other vertices of

H! have degree at most d. Thus H., as_1z,bs_1 satisfy the conditions of Theorem 2.1
(a). By Theorem 2.1 (a), there is a cycle C! through as_ix in H, — bs_1 such that

|CL] > (2(‘5_;‘1))T + 2. Let P; := C. — as_1z. Then P; is a path from as_; to z and
H| \r Al \r
[E(P)] 2 (b ) +1 2 (g42h)7 + 1.

It is easy to see that Ug:t+1 P is a path from z to the end of P; in {as, b} and
is otherwise disjoint from P;.

(4) Let P := U?Zl P;. We claim that P is a path from = to {p,q}, f € E(P),
pg ¢ E(P) unless pg = f, and |[E(P)| > (7755)" + 1.

This is obvious if h =1 (by (2a)). So assume that i > 2.

Suppose t # 1. Then |E(P,)| > (5= +1for 1 < s < t—1 (by (1)),

2(d—1)
|E(P)| > (‘;(‘C;'ﬁﬁ)r — 1 when t # h (by (2b)), |E(P)| > (5(25)" when t = h (by
(20)), |E(P,)| > (5325)" when t+ 1 < s < h (by (3)), and |E(Py)| > (5/225)") + 1
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when ¢ < h (by (3)). Hence we have

h

Pl= 2 )
)
>< LR >+1 (by Lemma 3.1)
—<2<d—1>> ot

Now suppose t = 1. Then |E(P;)| > (2(d 0 )" (by (2b)), |E(Ps)| > (2(d 1)) for

12
2<s<h—1(by (3), and |E(P,)| > (25;‘5'1)) +1 (by (3)). Hence by the same

argument as in the above paragraph, we have |E(P)| > (2‘(7[572) )" 4+ 1. Thus, we have
(4).

By (4), we may assume that the notation of {p, ¢} is chosen so that P is from z
to p.

(5) We claim that there is a path @ in G; — ¢ from p to y such that |E(Q)| >
( (\Gll )) + 1.

Note that |G1]| > 4 and that G; is not a cycle. Thus G} := G1 + {yp,yq,pq} is a
3-connected graph.

If G| = K4, then we can find a path @ in G} — ¢ from p to y such that |E(Q)| =

G r
2> (515) + 1.

Now assume that G} # K4. Then Theorem 2.1 holds for G}. Note that all
vertices of G} have degree at most d, except possibly y,p,q, which have degree at
most d + 1. By Theorem 2.1 (a), there is a cycle Cy through py in G} — ¢ such that
|Cy| > (ngjll))r + 2. Let @Q := C1 — py. Then Q gives the desired path.

(6) Finally, let C := (PUQ) + xy. Then C is a cycle through e and f in G and,

G r o r G r
by (4) and (5), |C] > (GA25)" + 1)+ (525)" + 1) +1 = (2255)" + (5158205)7 +3.
Recall that o(H) > |G2| and |G1| > |Ga|.
If o(H) < |G4], then

0 () (s

|G1]
(( o (1) +

( 5(d = )) +3 (by Observation 3).

Y]

) +3 (by Lemma 3.1 and since o(H) < |G1])

Otherwise, o(H) > |G1|. Hence,

orz (28] + (L) +s

<2(d(H)1) + (d— )|G1|) +3 (by Lemma 3.1 and since o(H) > |G1])
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- (2(d71_1>> +3 (by Observation 1).

Case 2. o(H) < |G2|. In this case G5 is nonempty. We will use G; and G2 to
find the desired cycle. Let V(G2)NV(H) = {v, w} Then there exists some 1 < u < h
such that {v,w} C V(H,), and {v,w} # {ay—1,by—1} when u # 1. Also there exists
some 1 <t < h such that {p,q} C V(H;), and {p, ¢} # {as—1,bs—1} when t # 1.

(1) We claim that we can find, in O(|H|) time, a path P from x to some z €
{p,q} U{v,w} in ngl H, for which

(i) f € B(P),

(ii) pg € E(P) or vw € E(P), and
(iii) if pg € E(P), then z € {v,w}, and vw ¢ E(P) unless vw = f, and if

vw € E(P), then z € {p,q}, and pg ¢ E(P) unless pq = f.

To prove (1), let us assume that ¢t < u; the case ¢ > u can be taken care of in
exactly the same way.

When ¢ # 1, we use Lemma 3.5 to find a cycle @’ in Ui;ll H, through a;_1b;_1
and f. Let Q := Q" — a;_1b;_1, which is a path from a;_1 to b;_; through f. Let
Q@ = 0 when t = 1. We distinguish two cases.

Subcase (1a). t < u. By choosing the notation of {a¢,b;}, we may assume that
(Ug:tJrl H) — b; contains a path X from a; to z through vw.

If b, € {p,q}, then we use Lemma 3.5 to find a cycle C; through a;_1b;—; and
azby in Hy. If pg ¢ E(Cy) or by € {as—1,bt—1}, let Pp := Cy — {as—1bt—1,a:b:} when
t# 1, and let P, := Cy — a;b; when t = 1. Then P := Q U X U P; gives the desired
path for (1) (with z = b). So assume pq € E(C) and b; ¢ {as—1,b—1}. Then let
P, .= Cy — {at—1bi—1,b;} when t # 1, and let P, := C; — by when ¢ = 1. Then
P := QU X U P, gives the desired path for (1) (with z = p).

We may therefore assume that b; ¢ {p, q}.

Suppose H; is not a cycle chain. Then H; is 3-connected. Let H{ be obtained
from H; by a T-transform at {a;, pg} and let a’ denote the new vertex. Then H;—b; is
2-connected. By Lemma 3.5, we find a cycle C through a;_1b;—1 and a’a; in H] — b;.
Ift =1, then let P, :=Cj —d/, and if t # 1, then let P, := C{ — {a’,a;—1b;—1}. Then
P:=QU P, UX gives the desired path for (1).

Now assume that H; is a cycle chain. By the structure of a cycle chain, we can,
in O(|Hy|) time, either find a path C; in H; — a:b; from a; to {p, ¢} through as—1bs_1,
or find a path C} in H; from a; to by through a;_1b;—1 and pq.

If we find C%, then let P; :== Cy — a;—1b;—1 when t # 1 and P; := C; when t = 1.
In this case, P := Q U P, U X gives the desired path for (1).

Assume that we find C{. In this case, we cannot use X. Let P, := Cy if t = 1,
and otherwise let P, := C} — a;_1b;—1. Let H := UZ:tH H,. If x € {v,w}, then
find a cycle C' in H through a;b; and vw, and so P := QU P, U (C' — {aibs, vw})
gives the desired path for (1). So assume that z ¢ {v,w}. Let H' be obtained from
H by a T-transform at {z,vw}, and let 2’ denote the new vertex. Then H' is a
2-connected graph. By Lemma 3.5, we find a cycle C’ through a;b; and zz’. Now
P:=QUPU(C"—{2',ab:}) gives the desired path for (1).

Subcase (1b). t = u. Recall that {p,q} # {v,w}.

First, assume that ¢t # h. We claim that there is a path @Q; in H; from {a, b}
to some z € {p,q} U {v,w} such that (i) a_1b;—1 € E(Qy), (i) pg € E(Q;) or
vw € E(Q:), and (iii) if pg € E(Q:), then z € {v,w}, and vw ¢ E(Q:) unless vw =
az—1bi—1, and if vw € E(Qy), then z € {p,q}, and pq ¢ E(Q;) unless pg = a;_1bs_1.
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This is easy to see if H; is a cycle chain, and otherwise, it follows from Lemma 3.6.
Assume without loss of generality that a; € V(Q;). In (Ug=t+1 H,) — by, we find a
path R from a; to . Now P := QU Q; U R gives the desired path for (1).

Now assume that ¢ = h. We note that there is a path @Q; in H; from z to
z € {p,q} U{v,w} such that (i) a;—1bi—1 € E(Q:), (ii) pg € E(Q:) or vw € E(Qy),
and (iii) if pg € E(Q:), then z € {v,w}, and vw ¢ E(Q;) unless vw = a;_1b;—1, and
if vw € E(Q4), then z € {p, ¢}, and pq ¢ E(Q;) unless pq = a;_1b;—1. This is easy to
see if Hy; is a cycle chain, and otherwise, it follows from Lemma 3.7. Now P := QU Q;
gives the desired path for (1).

Assume that vw € E(P) in (1) (the case pq € E(P) is similar), and assume p is
an end of P.

(2) Note that G} := G1 + {yp,yq, pq} is a 3-connected graph, vertices y, p, ¢ have
degree at most d + 1 in G, and all other vertices of G} have degree at most d. If
G} = K4, then we can find a path P; from p to y in G} — ¢ such that |E(P)] =2 >

(2(‘5_”1) )"+ 1. If G} # K4, then Theorem 2.1 holds for G. By Theorem 2.1 (a), there
|G|

is a cycle C; through py in G| —q such that |C| > (ﬂ)r +2, where t; is the number
of neighbors of ¢ in G} distinct from p and y. Let P, := C; — py. Then P, is a path
from p to y in G| — q. Since t; < d — 1, we have |E(Py)| > (2(‘5_1‘1))’” +1.

(3) Note that G} := G2 + {yv,yw,vw} is a 3-connected graph, vertices y, v, w
have degree at most d + 1 in G, and all other vertices of G have degree at most d.
If G, = K4, then we can find a path P, from v to w in G4 — y such that |E(Pz)| =

2> (Qéff‘l))r + 1. If G4 # K4, then Theorem 2.1 holds for G5. By Theorem 2.1 (a),
1G5

there is a cycle Cp through vw in G5 — y such that [Ca| > ('52)" + 2, where ¢5 is the

number of neighbors of y in G4 distinct from v and w. Let Py := Cy — vw. Then P

is a path from v to w in G4 — y. Since t3 < d — 1, we have |E(P2)| > (ngfll))r + 1.
Let C := ((P —vw)U Py U P2) 4+ e. Then C'is a cycle through e and f in G and

[Cl = |E(P)| + [E(P)| + [E(P)| +1

> (2(';"1)) " (2([;"1)) +3 (by (2) and (3))
> (2(|ch—1|1) +(d— 1)|G2|> +3 (by Lemma 3.1 and since |G1| > |G2])

> () *+*

where the final inequality holds because of Observation 2 and since |G2| > o(H). O
Next we show that the above proof gives an O(|G|) algorithm which reduces
Theorem 2.1 (b) to (a) and (b) of the same theorem (for smaller graphs).

ALGORITHM TWOEDGE. Let n,d,r,G,e, f be as in Lemma 5.1.

1. Preprocessing Replace G with a 3-connected spanning subgraph of G with
O(|@G|) edges. (This can be done in O(|E(G)]) time by 3.4.)

2. If e is adjacent to f, then let e = zz and f = yz. It suffices to find a cycle

C' through zy in G’ := (G + zy) — z such that |C’| > (%)r + 2, where

t is the number of neighbors of z in G’ distinct from x and y. That is, we

reduce Theorem 2.1 (b) for G, e, f to Theorem 2.1 (a) for G', zy, z. We apply

Algorithm Avoidvertex to G, zy, z. (By Proposition 4.2, we can, in O(|G|)

time, either find the desired cycle C’ or reduce it to (a) or (c¢) for smaller
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graphs. Moreover, each smaller graph contains a vertex that does not belong
to any other smaller graph.)

3. Now assume that e is not adjacent to f, and let ¢ = zy. Decompose G —y into
3-connected components. (This can be done in O(|G|) time using Theorem
2.2.)

4. Suppose there is only one 3-connected component of G —y. Then G — y is
3-connected, and let ¢y denote a neighbor of y distinct from z. Let G' :=
(G—y)+xy and ¢ = zy’. To find the desired cycle through e and f in G, it

suffices to find a cycle C’ through ¢’ and f in G’ such that |C’] > (2(‘5]1))"—#3.
Thus we reduce Theorem 2.1 (b) for G, e, f to Theorem 2.1 (b) for G', ¢/, f,
with |G’| < |G|. (This reduction can be done in constant time.)

5. Now assume that G — y has at least two 3-connected components. Find the
block chain H = H; ... Hy such that f € E(Hy), x € V(Hy) — V(Hp-1), and
f is not incident with both vertices in V/(H;) N V(Hz). Find Gy and G2 as
in the proof Lemma 5.1. (This can be done in O(|G|) time.)

6. Suppose o(H) > |Gal.

e Assume 1 < s <t—1. We need to find P as in (1) of Case 1 in the proof
of 5.1. If H; = K4 or H, is a cycle chain then we find P,, and otherwise,
we need to find a cycle Cy through as_1bs_1 and asbs in H, such that
|Cs| > (2(|fj|1))7- + 3. So either we find Ps in O(|H,|) time or we reduce
the problem of finding Py to Theorem 2.1 (b) for Hs,as_1bs—1,asbs in
constant time.

e We need to find P, C Hy as in (2) of Case 1 in the proof of Lemma 5.1.
If H, is a cycle chain or H; = K4 then we find P, C H; as in (2) of
Case 1 in the proof of Lemma 5.1. (This can be done in O(|H;|) time.)
If H; is not a cycle chain and H; # K,, then we reduce the problem
of finding P; to the following:Theorem 2.1 (b) for Hy, f,pq or Hj, f,xa’;
Theorem 2.1 (a) for H{,pz,q (as in (2a) of Case 1); Theorem 2.1 (b) for
Hy,ap_1bi_1,a:by or H{,a;_1b;—1,a’b’ (as in (2b) of Case 1); Theorem
2.1 (b) for Hy,a;—1bi—1,pq or H{,a;_1b—1,zc (as in (2¢) of Case 1).
(This reduction can be done in constant time.)

e Suppose t +1 < s < h. We need to find Ps as in (3) of Case 1 in
the proof of Lemma 5.1. If H;, = K, or H, is a cycle chain, we find
a path Ps. (This can be done in O(|H,|) time.) If Hy # K4 and H,
is not a cycle chain, then we reduce the problem of finding P, to the
following: Theorem 2.1 (a) for H.,as_1as,bs—1, or H. as_1a’,bs_1, or
H!,as_1x,bs_1. (This reduction can be done in constant time.)

e Let G} := Gy + {yp,yq,pq}. We need to find a path @ in G} as in (5)
of Case 1 in the proof of Lemma 5.1. If G] = K4, we find a path @
in O(|G1]) time, and otherwise, we reduce the problem of finding @ to
Theorem 2.1 (a) for G, py, ¢, in constant time.

(The operations in step 6 can be done in O(|G]) time. Also each 3-connected
graph reduced to from Hg’s or G; contains a vertex which does not belong
to any other 3-connected graphs reduced to from H,’s or G;.)

7. Now assume o(H) < |Gal.

e First, we find H; and H,, such that {p,q} C V(H), {p,q} # {at—1,bi—1}
when ¢ # 1, {v,w} C V(H,), and {v,w} # {ay—1,by—1} when u # 1.
(This can be done in O(]G|) time by searching the 3-connected compo-
nents of G — y.)
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e Assume that ¢t < u (u > t can be treated similarly). Find a path P in
UZ=1 H; from z to {p, q} (or {v,w}) to {v,w} (or {p,q}) through f and
vw (or pg). (This can be done in O(|G]) time as in (1) of Case 2 in the
proof of Lemma 5.1.)

e Assume P is from z to p and through f and vw. If G} = Ky, then we
find a path P; in G| — ¢q from p to y of length 2. If G| # K4, then we
need to apply Theorem 2.1 (a) to G, yp, q. (This reduction can be done
in constant time, as in (2) of Case 2 in the proof of Lemma 5.1.)

o If G, = Ky, then find a path P, in G} — y from v to w of length 2. If
Gl # Ky, then we need to apply Theorem 2.1 (a) to G, vw,y. (Again,
this can be done in constant time, as in (3) of Case 2 in the proof of
Lemma 5.1.)

To summarize, we have the following.

PROPOSITION 5.2. Given G, e, f,n,d,r as in Lemma 5.1, we can, in O(|E(G)|)
time, either

(1) find a cycle C through e and f in G such that |C| > (Z(IdCil))T +3, or

(2) reduce Theorem 2.1 (b) for G,e, f to Theorem 2.1 (a) or (b) for smaller 3-

connected graphs.

Moreover, any smaller graph in (2) comes from a 3-connected 3-block of G — y that
is not Ky. Hence, any smaller graph in (2) contains a vertex that does not belong to
any other smaller graph in (2).

6. Cycles through one edge. In this section, we show how to reduce Theorem
2.1 (c), in linear time, to Theorem 2.1 (a), (b), or (c) of 2.1 for smaller graphs. As in
the previous two sections, we state the reduction as a lemma.

LEMMA 6.1. Let n > 6 and d > 3 be integers, let r =10gy(q_1)241 2, and assume
that Theorem 2.1 holds for graphs with at most n — 1 vertices. Let G be a 3-connected
graph on n wvertices, and assume that the mazimum degree of G is at most d. Then
for any e € E(G) there is a cycle C through e in G such that |C| > n" + 3.

Proof. Let e = zy € E(G), and consider G — y.

If G — y is 3-connected, then let 3’ be a neighbor of y other than z. Clearly,
G' = (G —y) + xy’ is a 3-connected graph with maximum degree at most d. Since
5 < |G'| < n, Theorem 2.1 holds for G’. By Theorem 2.1 (c), there is a cycle C’
through zy’ in G’ such that |C'| > (n—1)"+3. Now let C' := (C' —zy') +{y, 2y, yy'}.
Then C' is a cycle through zy in G and

ICl=1C"+1
>n—-1)"+1+3
>n"+3 (by Lemma 3.1).

Therefore, we may assume that G —y is not 3-connected. Since G is 3-connected,
G — y is 2-connected. By Theorem 2.2, we can decompose G — y into 3-connected
components.

First, let us consider the case where all 3-blocks of G — y are cycles. Let 7 =
I ...I; be a block chain in G — y such that (i) z € V(I;) — V(I2), (ii) I; is an
extreme 3-block of G — y, and (iii) subject to (i) and (ii), |V(Z)| is maximum. For
convenience, let B := I;. Then |V(Z)| > % + |B| = %, where ¢
is the number of extreme 3-blocks of G — y distinct from I;. So n > t + 4 (since
|B| > 3) and t < d— 1. It is easy to see that there is some y’ € V(Z) — {z} such that

J:_, Is contains a Hamilton path P from x to y’ and G has a path @ from ¥y’ to y

s=1
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Fic. 8. Block chains L and H.

disjoint from V(Z) — {y}. (Note that P and y' can be found in O(|G|) time.) Let
C:=(PUQ)+{y,zy,yy'}. Then |C| > [V(T)|+1 > "HUZ2IBIEL L1 Next we show
that |C| — 3 > n”. Note that |C] — 3 > "HIZAIBIEL 9 > nbto5 (gince |B| > 3).
One can prove that ZH% — g7 is an increasing function when z > 2(d — 1)% + 1.
Hence when n > 2(d — 1)* + 1, 255 > n™. Now if t +4 < n < 2(d — 1)2, then
225 > 2 > n". Therefore, |C| —3 > n", and so |C| > n" + 3.

Hence, we may assume that some 3-block of G — y is 3-connected. Let L denote
a 3-connected 3-block of G — y with |L| maximum. Then |L| > 4. Let £ :=L;... L,
denote a block chain in G — y such that L1 = L and = € V(L;) — V(L¢_1), where
£ > 1. See Figure 8.

Let V(L;)NV(Lijt+1) = {ci,d;} for 1 <i < £—1. For each 1 < i < ¢, we define B;
as follows: if L; is 3-connected, then B; := V(L;);ifi < fand L; = C; ... C} is a cycle
chain, then Bi = (Uf:_ll V(CZ N Ci+1)) — ({Ci—hdi—l} U {CZ‘, dz}), if L[ = Cl N Ok
is a cycle chain, then B, consists of z and the vertices in (Uf::ll V(C; N Ciyr)) —
{coi—1,dp—1}. Define o(L) := |U§:1 Byl

If V(L) = V(G) — {y}, then let H = (. Otherwise, let H := H; ... H denote a
block chain in G — y such that (i) |[V(H) NV (L) =2, (ii)) V(H)NV (L) =V (H) N

V(L) # V(Hy) N V(Hs), (iii) Hy is an extreme 3-block of G — y. See Figure 8.
Let V(H;) N V(H;11) = {ai, b}, 1 < ¢ < h—1. Let ag,by denote the vertices in
V(H)NV(L). If H =0, then let ' denote a neighbor of y distinct from z and let
ag =bg =y'. If H # 0, then let y be a neighbor of y in V(Hp) — {ap—1,bn—1}. For
each 1 < s < h, we define A, as follows: if H is 3-connected, then A, := V(Hy); if
h=1and H, = C, ...Cy is a cycle chain, then A; := (U, V(C;NCiy1))U{ag, bo}; if
h > 1 and H, =C,...Cfis acycle chain, then A; consists of ag, by and those vertices
in (U V(CiNCiy1))—{a1,b1};if 1 < s < hand Hy = C ... Cy is acycle chain, then
Ay = (Uk ! V(C;NCit1)) —{as—1,bs-1,as,bs}; if h > 1 and Hy, = Cy...C} is a cycle
chain, then Aj, consists of ¥’ and those vertices in (Ui:ll V(CinCiy1))—{an—1,bn-1}.
Define o(H) := |J"_, As].

We choose H = H ... Hj, so that, subject to (i)—(iii), o(H) is maximum. Without
loss of generality, we may assume that, for some 1 < t < ¢, ag,by € V(L;) and
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{ao,bo} 7é {Ct—17dt—1} (OI“ y/ ¢ {Ct—l,dt—l} if ag = bo = y/) when ¢ > 2.

Note that each vertex in (Ule(V(Li) —B;)U (ngl(V(Hs) —Ay)) either appears
in some other block chain in G — y or is adjacent to y. By the choice of H and
since there are at most d — 1 extreme blocks of G — y not containing z, we have
o(H) > %. Hence we have the following.

Observation. o(L) + (d—1)o(H) > n — 1.

We consider three cases.

Case 1. £ = 1. In this case, 0(L) = |L1| (because L; is not a cycle chain). Since
G — y is not 3-connected, H # 0.

(1) First, we find a path P in £ — agby from z to {ag,bp} such that |E(P)
(c(L)+1)"+1.

If L; = K4, then we can find a Hamilton path P from z to {ag,bo} in L1 — agpbp.
Hence by Lemma 3.2, |[E(P)| =3 > |L1|" +2 = (6(£) + 1)" + 1. So assume that
L1 # K.

If € {ag,bo}, then by Theorem 2.1 (c), there is a cycle C; through agbg in Ly
such that |C1| > |L1]” +3. Now P := C; — agbp is a path from z to {ag,bo} in
Ly — apbg and |E(P)| > (a(£L)" +2(c(L) +1)" + 1 (by Lemma 3.1).

Assume x ¢ {ag,bo}. Let L) denote the graph obtained from L; by a T-transform
at {x,apbp }, and let ' denote the new vertex. By Lemma 3.3 and because z has degree
at most d—1 in Ly, L] is a 3-connected graph with maximum degree at most d. Note
that 5 < |L}| < n. Thus Theorem 2.1 holds for L}. By Theorem 2.1 (c), there is
a cycle Cy through zz’ in L} such that |C]| > |Li]" +3 = (|L1| + 1)" + 3. Now
P := C1 — 1/ gives the desired path.

Without loss of generality, we may assume that the path P found in (1) is from
x to ag.

(2) For i =1,...,h—1, we find paths Q; from {a;—1,b;—1} to {a;,b;} in H; such
that

(1) U?:_ll Q; is a path from ag to {ap—1,bn—1},

(i) if H; is 3-connected, then |E(Q;)| > (5iilo)r,

)

>

2(d—1

(iii) if H; is a cycle chain, then |A;| > 2 anii |E2(Q1)| > |Aq], and

(iv) if 1 <i < h and H; is a cycle chain, then |E(Q;)| > |A;| + 1.

Suppose that, for some 1 < ¢ < h—1, we have found paths @;, 1 < j <7—1, from
{aj—1,bj—1} to {a;,b;} in H; such that U;;ll Q; is a path from ag to {a;—1,b;—1} and
(ii)-(iv) above are satisfied for H;, Q;, A;. For ease of presentation, we may assume
that a;_; is an end of U;;ll Q.

If H; = K4, then we find a path Q; in H; — b;—1 from a;—1 to {a;,b;} such that
|E(Q:)| = 2. Clearly, |E(Qi)] > 2 > (5(75)"

If H; is a cycle chain, then by Proposition 2.5 let Q; be a path in H;—{a;_1b;_1, a;b;}
from a;—1 to {a;,b;} such that A; C V(Q;). If i = 1, then since ag,byp € A; and
({a1,b1} — {ao,bo}) N Ay = 0, we have |A1| > 2 and |E(Q;)| > |A;|. If i # 1, then
since ({ai_l, bz’—l} U {CL,L', bz}) N Ai = @, we have |E(Qz)‘ > |Az| + 1.

Now assume that H; is not a cycle chain and H; # Kjy.

If b;—1 € {ai,b;}, then assume b;_; = b; (by choosing the notation of {a;,b;}),
and let H! := H; + a;_1a;. Clearly, H] is 3-connected with maximum degree at
most d + 1, and the possible vertices of degree d 4+ 1 are incident with a;_1b;_1 or
a;b;—1. By Theorem 2.1 (a), there is a cycle D; through a;_1a; in H] —b;_1 such that
|E(D;)| > (%)T + 2, where ¢; is the number of neighbors of b;_1 in H] distinct from

a; 1 and Q. So ti S d—1. Let Qz = Dz — Q;-105. Then ‘E(Qlﬂ Z (2(|:14i|1))r + 1.
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Hence, assume b;_1 ¢ {a;,b;}. Let H]' be obtained from H; by a T-transform at
{bi—1,a;b;}, and let a denote the new vertex. By Lemma 3.3, H/ is a 3-connected
graph. Let H := H' + a;—1a. Then 5 < |H}| < n. Also a;_1,b;—1,a have degrees at
most d+1 in H/, and all other vertices have degree at most d in H/. Thus by Theorem
2.1 (a), there is a cycle D; through a,_1a in H] — b;_; such that |D;| > (IH ‘) + 2,
where ¢; is the number of neighbors of b;,_; in H/ distinct from @ and a;—;. Thus
t; <d—1. Let Q; := D; —a. Then Q; is a path in H; —b;_1 between a;_1 and {a;,b;}

H;| \r
and |E(Qi)] = (5245)"
(3) We find a path Qy, in Hy, from {ap_1,bp_1} to 3’ such that

)

(i) U?Zl Q; is a path from ag to ¢/,
)
)

(ii) if Hy is 3-connected, then |E(Qn)| > (515255)" +1,

(iii) if h = 1 and Hj, is a cycle chain, then |A,| > 2 and |E(Qr)| > |Ar|, and

(iv) if h # 1 and Hy, is a cycle chain, then |E(Qn)| > |An| + 1.

For ease of presentation, let us assume that U?;ll Q; is from ag to ap_1.

If Hy, is a cycle chain, then by Proposition 2.6, let @5, denote a path from a,_1 to
y' in Hyp — bp—1 such that Ay, C V(Qp). If h = 1, then since ag, by € Ay, and y' ¢ Ay,
we have (iii). If h # 1, then ap_1,bn—1,y" ¢ Ay, and so we have (iv).

If H;, = K4, then let Q;, be a Hamilton path from ap_1 to v/ in Hy, — b;,_1. Then
IB(Qn)| =2 > (525)" + 1= (53205)" + 1, and (i) holds.

Now assume that Hj is not a cycle chain and Hj # Ky. Let H,/L = H; +
{an—1y',bp—1y'}. Then Hj is 3-connected, the vertices ap_1,bp—1,y" have degree at
most d+1 in Hj, and all other vertices have degree at most d in H}. By Theorem 2.1

(a), there is a cycle Dy, through aj,—1y’ in H; — b1 such that | D] > ( |5h|1)) + 2.

Let Qp := Dp, — ap—1y’. Then |E(Qp)| > (222&‘1)) + 1, and we have (ii).

(4) Let C := (P U (U?=1 Q) + {y,zy,yy’'}. Now C is a cycle in G through zy
and, by (1)—(3), we have

Cl= () + 1) +1+ (D |4il) + (Z (2(5”1))) +2,

where the first summation is over all cycle chains H; and the second summation is
over all 3-connected H;. Note that each |4;| in the first summation can be written
as 1" + .-+ + 1" (JA4;| times), and this allows us to apply Lemma 3.1 in the following
inequalities. Hence

|C| > (0(5)—}—1—1— -1 Z\A |> +3 (by Lemma 3.1)

=(0(L£)+1+(d- 1o (H)) +3
>n"+3 (by Observation).

Case 2. 1 =t < {. Recall that if H = ), then ag = by = ¢/, and {ag,bo} = {v'}.

(1) We find a path P; from {ag,bo} to {c1,d1} in Ly = L such that |E(Py)| >
(|B1] +2)". (Note that |By| = |L1| by definition.)

If L1 = K4, then we can find a Hamilton path P; from {ag,bo} to {c1,d1} in
L1 — {aobo,Cldl} (OI‘ in L1 — Cldl when H = @) Thus7 |E(P1)‘ =3 2 |L1|T +1=
|B1|" + 1> (|B1] +2)" (by Lemma 3.1).
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Now assume that Ly # Ky4. If {ag,bo} C {c1,d1}, then by Theorem 2.1 (c) there is
a cycle C; through ¢1dy in Ly such that |Cy| > |L1|"+3. Let P, := C1 —c1dy; then Py
is a path between ¢; and dy € {ag,bo}, and |E(P1)| > |L1|"4+2 = |B1]"+2 > (| B1|+2)"
(by Lemma 3.1).

Assume that {ag,bo} € {c1,d1}. If H =0, then let L} be obtained from L; by
a T-transform at {y’,c1d;}, and let ¢ denote the new vertex. Of H # () then let L]
be obtained from L; by an H-transform at {agbg,c1d1}, and let a,c denote the new
vertices with a adjacent to ag and by and ¢ adjacent to ¢; and d;. By Lemma 3.3, L}
is a 3-connected graph with maximum degree at most d. Since 5 < |L}| < n, Theorem
2.1 holds for L. By Theorem 2.1 (c), there is a cycle C; in L} through ac such that
|C1| > |LY|"+3. IfH =0, let P, := Cy —¢; then P; is a path from {ag, b} to {c1,d1}
in Ly and |[E(P1)| > |LY|"+1 = (|L1|+1)"+1 > (|L1|+2)" = (|B1| +2)" (by Lemma
3.1). If H # 0 let Py := Cy —{a,c}; then Py is a path from {ag,bo} to {c1,d1} in Ly
and [E(P)| > [L4]7 = (L] +2)" = (|Bu| +2)".

Without loss of generality, assume that the notation of {ag,bo} and {ci,d;} is
chosen so that P; is between ¢ and ag.

(2) For i = 2,...,¢— 1, we find paths P; from {c¢;_1,d;_1} to {¢;,d;} in L; such
that

(1) Uf;; P; is a path from ¢y to {cp—1,ds—1},

(ii) if L; is 3-connected, then |E(F;)| > (%)T, and

(iii) if L; is a cycle chain, then |E(F;)| > |B;| + 1.

Assume that, for some 2 < i < /¢—1, we have found paths P;, 1 < j <i—1, from
{¢j_1,dj—1} to {cj,d;} in L; such that U;;lz P; is a path from ¢; to {¢;—1,d;—1} and
(ii) and (iii) are satisfied for L;, B;, P;. Without loss of generality, assume that ¢;_;
is an end of U;;lz P; other than c;.

If L; is a cycle chain, then by Proposition 2.5 let P; be a path from ¢;_; to {c¢;, d;}
in Ll - {Cifldi,h Czdl} such that Bz Q V(Pl) Then, since Ci—1, di,hci, d1 ¢ BZ', we
see that |E(F;)| > |B;i| + 1, and we have (iii).

Now assume that L; is not a cycle chain.

If ¢;_1 € {¢;,d;}, then, by choosing the notation of {c¢;,d;}, we may assume
C; ¢ {Ci—la dz’—l}- If Li = K4, then let Pi be a path from ci—1 to ¢ in Li — di—l such

that [E(P)| =2 > (5745)". 1f Li # Ku, then let Lj := L; + cid; 1. By Theorem 2.1
14

(a), there is a cycle C; through ¢;_1¢; in L} — d;—; such that |C;| > (2(d71))7‘ +2 =

(2(|f_i‘1))r + 2. Let P; := C; — c;c;—1; then P; is a path from ¢;_; to ¢; in L; — d;_1,

|E(P,)| > (5225)" + 1, and we have ().

Assume that ¢;—1 ¢ {¢;,d;}. Let L be obtained from L; by a T-transform at
{ci—1,¢id;}, and let ¢ denote the new vertex. Let L} := LY + d;,_1c. By Lemma 3.3,
L’ is 3-connected. Note that ¢, ¢;,d;—1 have degree at most d+ 1 in L}, and all other

vertices have degree at most d in L. By Theorem 2.1 (a), there is a cycle C; through

¢i—1cin L; —d;_y such that |C;| > (2(‘53‘1))’" +2. Let P,:=C; —¢}_;. Then P, is a

path from ¢;_q to {¢;,d;} in L; — d;—1 and |E(P;)| > (Qijll))T, and we have (iii).
(3) We find a path Py from {c¢—1,ds—1} to x in Ly such that
(1) Uf:z P; is a path from ¢; to =z,
(ii) if Ly is 3-connected, then |E(P)| > (%)T +1, and
(iii) if L¢ is a cycle chain, then |By| > 1 and |E(P;)| > | Be|.

By choosing the notation of {c,—1,d¢—_1}, we may assume that Uf;; P; is between
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c1 and cp_1q.

If L, is a cycle chain, then by Proposition 2.6 let P, be a path from x to ¢,—; in
Ly such that By C V(P). Since ¢y—1,d¢—1 ¢ By, we have |E(P;)| > |By¢|. Note that
|B¢| =1 only if L, is a cycle and By = {z}.

If L, = K4, then we can find a path P, from x to ¢;—1 in Ly —dy—1 with |E(P,)| =
2 Z (2(|§/f|1))7" +1= (2(‘dB_ZI1))T +1.

Now assume that Ly is not a cycle chain and that L, # Ky. Let Lz = Ly +
{xce—1,2dy—1}. Then L} is a 3-connected graph, the vertices x,c,—1,d¢—1 have degree
at most d+1 in L}, and all other vertices of L} have degree at most d. So by Theorem

2.1 (a), there is a cycle Cy through zc,—1 in L}, — dg—1 such that |Cy| > (2(|de|1) )" 4 2.

Now Py := Cy — xcy—; gives the desired path for (ii).

(4) Let P := Uf:l P;. Clearly P is a path in Ule L; from z to ag. We claim that
[E(P)[ = (o(£) +1)" + 1.

By (2), we have

B2 EE+ (S18) + (3 (5205 ) ) + 1B

where the first summation is over all cycle chains L; and the second is over all 3-

connected L;. Note that each B; in the first summation can be written as 1" +---4+1"

(|B;| times), and this allows the application of Lemma 3.1 in the following argument.
If Ly is 3-connected, then by (1) and (3),

|E(P)| > (|B1] +2)" + (Z |Bi|) - (Z (2(d3i|1)y> - <(2((|13€|1)>T + 1)
> (2 + zej |Bi|)r +1 (by Lemma 3.1)

> (o(L))" + 1.

If Ly is a cycle chain, then by (1) and (3),

Bz (i + 2 + (S 8) + (3 (50205 ) ) + 08 -0+

¢ T
> (1 + Z |Bl|> +1 (by Lemma 3.1)
i=1
=(o(L)+1)" + 1.

(5) For i = 1,...,h — 1, we find paths @; from {a;_1,b;—1} to {a;,b;} in H;, as
in (2) of Case 1.

(6) We find a path @y, in Hj, as in (3) of Case 1.

(

7) Let C := (P U (U:;l Q) + {y,zy,yy’'}. Now C is a cycle in G through zy
and

012 () +17 +1 + (1) + (T (25) ) +2

where the first summation is over all cycle chains H; and the second is over all 3-
connected H;. Again, when we apply Lemma 3.1 in the following argument, each | A;]
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in the first summation may be written as 1" + --- + 1". Since o(£) > |Ly| > |A;| for
all 3-connected H;, we have

h
|C| > (O’(,C) +1+(d-1) Z |Al|> r+3 (by Lemma 3.1)
i=1

=((L)+1+(d—-1)o(H))"+3
>n"+3 (by Observation).

Case 3. 1 <t < {. Note that in this case there exist y’ € V(L1) — {c1,d1} and a
path Y in G from y to y” disjoint from (V (L) — {y”}) UV (H). For convenience, let
S = (Uf:2 B;) — (B1UByy1). We consider two subcases by comparing o(H) and |S|.

Subcase 3.1. |S| < o(H). Then H # §) and ag # by. Since 2?21 |A;| = o(H) and
there are at most d — 2 extreme 3-blocks of G — y containing neither z nor y”, we
have the following inequality:

h
o(c)f|5|+<df1)Z|Ai|znf1.

(1) First, we find a path P; from ¢; to dy in L such that |E(Py)| > (|B1|+1)"+1.

If Ly = K4, then let P; be a Hamilton path from ¢; to dy in L;. Hence |E(Py)| =
3> (L1 +1)"+1=(|B1|+1)"+1. If Ly # K4 then 5 < |L;| < n. By Theorem 2.1
(c), there is a cycle C; through c;d; in Ly such that |Cy| > |Li|" +3 = |B1|" + 3 >
(|IB1]+ 1)" + 1. Then P; := C} — ¢1d; gives the desired path.

(2) Next, we find @ C (U§=2 L;) —{aobo, c1d; } such that (1) P UQ is a path from
{ao0,bo} to {ct,d:} when t # ¢, and (2) Py UQ is a path from {ag, bp} to  when ¢t = £.

Let K :=J'_, L;. First, assume that t # . If {ag, b} = {ct, d;}, then by Lemma
3.5 we find a cycle D through agbg and ¢1d; in K, and Q := D — {agbg, c1d1} is as
desired. If {ag,bo} # {ct,d;}, then let K’ be obtained from K by an H-transform at
{agbo, cd;}, and let a, ¢ denote the new vertices. By Lemma 3.5, we find a cycle D’
through ac and ¢1dy, and Q := D’ — {a,c,c1d1} is as desired.

Now assume that t = ¢. If « € {ag, bo}, then by Lemma 3.5 there is a cycle D in
K through agbg and c¢1dy, and Q := D — {apbg, c1d1} is as desired. So assume that
x ¢ {ap,bp}. Let K’ be obtained from K by a T-transform at {z,agbg}, and let a
denote the new vertex. By Lemma 3.5, there is a cycle D in K’ through za and ¢1d;.
Now Q := D — {a,c1d; } is as desired.

We choose the notation of {ag,bo} and {c,d;} so that P, U Q is from ag to ¢;.

(3) For each t+1 < i < ¢—1, we find a path P; in L; from {¢;—1,d;—1} to {¢;,d;}

exactly as in (2) of Case 2 such that (i) (Uf;tl-t,-l P;)UP,UQ is a path from {ce_1,de—1}

to {ao, bo}, (if) | E(P;)| > (5(725)" when L; is 3-connected, and (iii) |E(P;)| > |Bi|+1
when L; is a cycle chain.

(4) If t # ¢, we find a path Py between {c¢_1,d¢—1} and = exactly as in (3) of
Case 2 such that (i) (Uf:t-i-l P;)U P, UQ is a path from {ag, b} to z, (iii) |E(FP)| >
(2(‘5_22) )" +1 when Ly is 3-connected, and (iii) |E(P;)| > |B¢| when Ly is a cycle chain.

(5) Fori=1,...,h—1, we find paths Q; from {a;_1,b;—1} to {a;,b;} in H;—b;_1,
as in (2) of Case 1, such that (i) U?:_ll Q; is a path from ag to {ap—_1,bp-1}, (ii)
|E(Q:)] > (Qij‘l))T when H; is 3-connected, (iii) |E(Q1)| > |A1] > 2 when H; is a
cycle chain, and (iv) |E(Q;)| > |A;| + 1 when 1 < < h and H; is a cycle chain.
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(6) We find a path @, exactly as in (3) of Case 1 such that (i) U?Zl Q; is a path
from ag to ', (ii) |E(Qn)| > (2(‘2&‘1))7 + 1 when Hj, is 3-connected, (iii) |E(Q4)| >
|Ap| > 2 when h =1 and Hj, is a cycle chain, and (iv) |[E(Qr)| > |An|+1 when h > 1
and Hj, is a cycle chain.

(7) Let C := (PLUQU (U1 w1 Pi)U (U, Q)+ {y, 2y, yy'}. Then C is a cycle
in G through zy and, by (1)—(6), we have

1= Qe+ (S iad)+ (X (i) )+ (S 1) +(E () )+

where the first sum is taken over all cycle chains L; for ¢ + 1 < ¢ < £, the second is
over all 3-connected L; for t +1 <1 < £, the third is over all cycle chains H;, and the
fourth is over all 3-connected H;. Because o(L) > |A;| for all 3-connected H;, and
o(L) > |Bj| for all 3-connected L;, we have

c] > <o<c> F1-18]4 -1 Z|A |> (by Lemma 3.1)
>n" 4 3.

The second inequality follows from the inequality in the first paragraph of this subcase.
Subcase 3.2. |S| > o(H). As in the previous subcase, we deduce the following
inequality:

|Bi| + (d—1) Z|B|>n71

(1) First, we find a path Py from y” to {ci,d;} in L — ¢1d;y such that |E(Py)| >
(|1B1| +1)" +1.

Let L} denote the graph obtained from L; by a T-transform at {y”,c;1d;}, and
let * denote the new vertex. By Lemma 3.3 and since ¢y has degree at most d — 1 in
Ly, L} is a 3-connected graph with maximum degree at most d. Since 5 < |L}| < n,
Theorem 2.1 holds for L}. By Theorem 2.1 (c), L} has a cycle C1 through y*y” such
that |C1]| > |L|"+3 = (|B1|+1)" +3. Then P, := Cy — y* gives the desired path for
(1).

We may choose the notation of {¢1,d;} so that P; is between y” and ¢;.

(2) For each 2 < i < £ —1, we find a path P; in L; as in (2) of Case 2 such
that (i) Uf;zl Py is a path from ¢; to {ag—1,be—1}, (ii) [E(P)] = (53 |Bs |1))”" when L; is
3-connected, and (iii) |E(P;)| > |B;| + 1 when L; is a cycle chain.

(3) We find a path P, as in (3) of Case 2 such that (i) Usz P; is a path from
a to z, (ii) |E(Py)| > (245_”1))” + 1 when Ly is 3-connected, and (iii) |E(P;)| > |Be|
when Ly is a cycle chain.

(4) Let C:= (Y U (Uf=1 P;)) + zy. Then C is a cycle in G through zy and

e (Sim) + ( (725) ) +»

where the first sum is over all L; which are cycle chains and the second is over all
3-connected L;. Again, we may view |B;| in the first summation as 1" + --- 1" (| B;|
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times). Since |By| > |B;| for all 3-connected L;, we have

Z T
|C| > <|Bl|+1+(d—l)Z|Bi|> +3 (by Lemma 3.1)
i=2
>n" 4+ 3.

The second inequality follows from the inequality in the first paragraph of this
case. a

Next we show that the above proof gives rise to an O(|G|) algorithm which reduces
Theorem 2.1 (c) to Theorem 2.1 (a), (b), and (c) for smaller graphs.

ALGORITHM ONEEDGE. Let n,d,r, G, e, be as in Lemma 6.1.

1. Preprocessing. Replace G by a 3-connected spanning subgraph of G with
O(|@G|) edges. (This can be done in O(|E(G)|) time using Lemma 3.4.)

2. Let e = xy. Decompose G — y into 3-connected components. (This can be
done in O(|G|) time using Theorem 2.2.)

3. If there is only one 3-connected component of G —y, then G—1y is 3-connected.
Let y denote a neighbor of y other than z, and let G’ := (G — y) + v/
and ¢ = zy’. It suffices to to find a cycle C’ through €’ in G’ such that
|C’] > |G'|" + 3. So reduce Theorem 2.1 (¢) for G,e to Theorem 2.1 (c¢) for
G, €', with |G'| < |G|. (Note that this reduction takes constant time.)

4. Now assume that G — y has at least two 3-connected components. If all
3-blocks of G — y are cycles, find a cycle chain Z = I ...I; such that (i)
x € V(I;) = V(I2), (ii) I; is an extreme 3-block of G — y, and (iii) subject
to (i) and (ii), |[V(Z)| is maximum. (This can be done in O(|G|) time by a
simple search.) Then, find a neighbor 4’ € V(Z) — {z} of y, a Hamilton path
P in 7 from z to ¢/, and a path @ from y to y’ disjoint from V(Z) — {y'},
so that (P U Q) + {y,zy, yy'} gives the desired cycle. (These paths can be
computed in O(|G|) time as in the proof of Lemma 6.1.)

5. Now assume that G — y has at least two 3-blocks, and at least one is 3-
connected. We choose a 3-connected 3-block L of G — y such that |L| is
maximum. Find the block chain £ = Lq...L, such that L; = L and = €
V(L¢) — V(Lg—1). Find a block chain H = H; ... Hp, in G — y with ¢/ € Hy,
and define a;, b;, A;, cj, dj, Bj fori = 1,...hand j = 1,...,¢ as in the
proof of Lemma 6.1. (All these can be done in O(|G]) time by searching the
3-blocks of G — y.)

6. Suppose ¢ = 1.

e First, we need to find a path P in £ from x to {ag, b} as in (1) of Case
1. We either find the desired P or reduce the problem of finding P to
Theorem 2.1 (c) for Ly, apby or L}, za’, both are smaller graphs. (From
(1) of Case 1 in the proof of 6.1, this can be done in constant time.)

e For each 1 <i < h— 1, we want to find a path @; from {a;_1,b;_1} to
{a;,b;} in H; as in (2) of Case 1 in the proof of Lemma 6.1. We either
find the desired @Q; or reduce the problem of finding @); to Theorem 2.1
(a) for H/,a;—1a;,b;—1 or H},a;—1a,b;—1. (From (2) of Case 1 in the
proof of Lemma 6.1, this can be done in O(]H;|) time.)

e We need to find a path @ in Hy from ap_1 to 3 as in (3) of Case 1.
We either find the desired @, or reduce the problem of finding @ to
Theorem 2.1 (a) for Hj,ap—1y’,bp—1. (From (3) of Case 1 in the proof
of Lemma 6.1, this can be done in O(|Hp|) time.)
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Since Z?:1(|Hi| —2) = |V(H)| — 2, we see that this step takes O(|G|)
time.

7. Suppose 1 =t < £.

First, we need to find a path P; from {ag,bo} to {c1,d1} in Ly, as in (1)
of Case 2 in the proof of Lemma 6.1. We either find the desired P; or
reduce the problem of finding P; to Theorem 2.1 (c) for either Ly, ¢1dy
or L,ac. (From (1) of Case 2 in the proof of Lemma 6.1, this can be
done in constant time.)

Assume that the notation is chosen so that P; is a path from ag to c¢;.
For each 2 < i < ¢ — 1, we need to find a path P; from {¢;_1,d;_1} to
{¢i,d;} in L; as in (2) of Case 2 in the proof of Lemma 6.1. We either
find the desired P; or reduce the problem of finding P; to Theorem 2.1
(a) for either L}, ¢;—1¢;,di—1 or L}, ¢;—1¢,d;—1. (From (2) of Case 2 in
the proof of Lemma 6.1, this can be done in O(|L;|) time.)

We need to find a path Py from {cs—1,dp—1} to = in Ly, as in (3) of
Case 2 in the proof of Lemma 6.1. We either find the desired path P, or
reduce the problem of finding P, to Theorem 2.1 (a) for L}, zco—1,de—1.
(From (3) of Case 2 in the proof of Lemma 6.1, this can be done in
O(|L¢|) time.)

Next we need to find paths Q;, 1 < i < h. This is taken care of exactly
as in step 6 above.

(Since Soj_y (|Hi| = 2) = [V(H)| — 2 and i, (ILi| = 2) = [V(£)| - 2,
we see that all operations in this step can be done in O(|G|) time.)

8. Suppose 1 < t < {. First, find a path Y from y to y” € V(L) — V(L2) such
that Y —y” is disjoint from V (£)UV (H). Define S := (J!_, Bi) — (B1UB:11).
(Note that Y and all B;’s can be found in O(|G|) time, as in Case 3 in the
proof of Lemma 6.1.)

9. Suppose |S| < o(H).

We need to find a path P; from ¢; to dy in Ly, as in (1) of Subcase
3.1 in the proof of Lemma 6.1. We either find the desired P; or reduce
the problem of finding P; to Theorem 2.1 (¢) for Ly, c1d;. (From (1)
of Subcase 3.1 in the proof of Lemma 6.1, this can be done in O(|L4])
time.)

Find @ C (UE=2 L;) — {aobo, c+d;} as in (2) of Subcase 3.1 in the proof
of Lemma 6.1. (From (2) of Subcase 3.1 in the proof of Lemma 6.1, this
can be done in O(|G]) time.)

For each t +1 < i < ¢ — 1, we need to find a path P; from {c¢;—1,d;—1}
to {¢i,d;}, as in (3) of Subcase 3.1 in the proof of Lemma 6.1. (This can
be done as in step 7 above, and hence in O(|G|) time.)

Next, we need to find a path Py from {cy_1,d¢—1} to = in L, as in (4)
of Subcase 3.1 in the proof of Lemma 6.1. (This can be done as in step
7 above, and hence in O(|Ly|) time.)

For each 1 <4 < h — 1, we want to find a path @; as in (5) of Subcase
3.1 in the proof of Lemma 6.1. (This can be done as in step 6 above,
and hence in O(|H;|) time.)

Finally, we find a Qp, in Hy, from {ap_1,bp_1} to ¢’ as in (6) of Subcase
3.1 in the proof of Lemma 6.1. (This can be done as in step 6 above,
and hence in O(|Hp|) time.)

(Since Y21, (1Hi| = 2) = [V(H)| = 2 and i, (ILi] - 2) = [V(£)] - 2,
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we see that all operations in this step can be done in O(|G|) time.)
10. Suppose |S| > o(H).
e First, we need to find a path P, from y” to {¢1,d;} in Ly, as in (1) of
Subcase 3.2 in the proof of Lemma 6.1. We either find the desired P; or
reduce the problem of finding P; to Theorem 2.1 (c) for L7, y*y”. (From
(1) of Subcase 3.2 in the proof of Lemma 6.1, this can be done in O(|Ly])
time.)
e For each 2 <i </ —1, we need to find a P; as in (2) of Subcase 3.2 in
the proof of Lemma 6.1. (This can be done as in step 7 above for each
i, and hence, in O(|L;|) time.)
e Next, we want to find a path P from {cs—1,d¢—1} to @ in Ly as in (3)
of Subcase 3.2 in the proof Lemma 6.1. (This can be done as in step 7
above, and hence, in O(|L,|) time.)
(All operations in this step can be done in O(|G|) time since Zle(\Lﬂ -
2) = [V(£)| - 2.)
We summarize the above procedure as follows.
PROPOSITION 6.2. Given G,e,n,d,r as in Lemma 6.1, we can, in O(|E(G)|)
time, either
(1) find a cycle C through e in G such that |C| > |G|" + 3, or
(2) reduce Theorem 2.1 (c) of for G, e to Theorem 2.1 (a) or (b) or (c) for smaller
3-connected graphs.
Moreover, any smaller graph in (2) results from a 3-connected 3-block of G —y which
is not K4. Hence, any smaller graph in (2) contains a vertex that does not belong to
any other smaller graph in (2).

7. Conclusions. We now complete the proof of Theorem 2.1. Let n,d,r,G be
given as in the theorem. We will prove te conclusions by applying induction on n.
When n = 5, then G is isomorphic to one the following three graphs: K5, K5 minus
an edge, or the wheel on five vertices. In each case, we can verify that Theorem 2.1
holds. So assume that n > 6 and that Theorem 2.1 holds for all 3-connected graphs
with at most n — 1 vertices. Then (a) holds by Lemma 4.1, (b) holds by Lemma 5.1,
and (c) holds by Lemma 6.1. This completes the proof of Theorem 2.1. |

ALGORITHM CYCLE. Let G be a 3-connected graph with maximum degree at
most d, let e = zy € E(G), and assume |G| > 5. The following procedure finds a
cycle C through e in G with |C| > |G| + 3.

1. Preprocessing Replace G with a 3-connected spanning subgraph of G with
O(|@G|) edges.

2. Apply Algorithm Oneedge to G,e. We either find the desired cycle C' or we
reduce the problem to Theorem 2.1 (a), (b), or (c) of 2.1 for some 3-connected
graphs G;, for which |G;| < |G| and each G; contains a vertex which does not
belong to any other G;.

3. Replace each G; with a 3-connected spanning subgraph of G; with O(|G;])
edges.

4. Apply Algorithm Avoidvertex to those G; for which Theorem 2.1 (a) needs
to be applied. Apply Algorithm Twoedge to those G; for which (Theorem
2.1 (b) needs to be applied. Apply Algorithm Oneedge to those G; for which
Theorem 2.1 (c) needs to be applied.

5. Repeat steps 3 and 4 for new 3-connected graphs.

6. In the final output, replace all virtual edges by paths in G to complete the
desired cycle C.
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Note that step 1 takes O(|E(G)]|) time by Lemma 3.4 and step 2 takes O(|E(G)|)
time by Proposition 4.2.

By Lemma 3.4, step 3 spends O(|E(G};)|) time for each G; from step 2. Note that
each GG; in step 2 contains a vertex which does not belong to any other GG;. By Theorem
2.2 and since each G; contributes at most three additional edges due to T-transform
or H-transform, the total number of edges in step 2 is at most 3|E(G)| — 6 + 3|V (G)|.
Hence step 3 takes O(|E(G)]) time.

From Propositions 4.2, 5.2, and 6.2, we see that step 4 spends O(|E(G;)|) time
for each G; from step 2. By Theorem 2.2 and since each G; contributes at most three
additional edges due to T-transform or H-transform, the total number of edges in step
4 is at most ) . (3|E(G;)| — 6 4+ 3|V (G;)|). Since each G; in step 2 contains a vertex
which does not belong to any other G, Step 4 takes O(|G|?) time.

Since there are at most |G| iterations, we see that Algorithm Cycle takes O(|G|?)
time.
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