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Abstract. Karger, Motwani, and Ramkumar [Algorithmica, 18 (1997), pp. 82–98] have shown
that there is no constant approximation algorithm to find a longest cycle in a Hamiltonian graph,
and they conjectured that this is the case even for graphs with bounded degree. On the other hand,
Feder, Motwani, and Subi [SIAM J. Sci. Comput., 31 (2002), pp. 1596–1607] have shown that
there is a polynomial time algorithm for finding a cycle of length nlog3 2 in a 3-connected cubic
n-vertex graph. In this paper, we show that if G is a 3-connected n-vertex graph with maximum
degree at most d, then one can find, in O(n3) time, a cycle in G of length at least Ω(nlogb 2), where
b = 2(d− 1)2 + 1.
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1. Introduction and notation. The circumference of a graph is the length
of a longest cycle in that graph. The problem of approximating the circumference
of a graph is NP-hard [15]. For many canonical NP-hard problems, either good
approximation algorithms have been devised, or strong negative results have been
established, leading to better understanding of the approximability of these problems.
However, not much is known for finding longest paths and cycles, positive or negative.
For example, there is no known algorithm which guarantees an approximation ratio
better than n/polylog(n), where n denotes the number of vertices. This is true even
for graphs which are Hamiltonian or have bounded degree. Karger, Motwani, and
Ramkumar [15] showed that unless P = NP, it is impossible to find, in polynomial
time, a path of length n− nε in an n-vertex Hamiltonian graph for any ε < 1. They
conjectured that it is just as hard for graphs with bounded degree.

On the positive side, if a graph has a path of length L, then one can find a
path of length Ω((logL/ log logL)2) [1] (also see [20]). Feder, Motwani, and Subi [6]
showed that there is a polynomial time algorithm for finding a cycle of length at least
nlog3 2 in a 3-connected cubic n-vertex graph. They also showed that if a graph has
maximum degree at most three and has a path or cycle of length L, then one can
find a path or cycle of length at least L(log2

3)/2. Therefore, an intermediate problem is
to find long paths or cycles in graphs of bounded degree that have a Hamilton cycle.
Specifically, Feder, Motwani, and Subi (see [6], p. 1605) asked (1) whether there exists
some constant 0 < c < 1 such that if G is a 3-connected planar n-vertex graph, then
the circumference of G is at least Ω(nc), and (2) whether there exists some constant
0 < c < 1 such that if G is a 3-connected n-vertex graph with bounded degree, then
the circumference of G is at least Ω(nc). There are known results showing that such
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a constant c exists in both cases ([3], [14]); however, none addresses the algorithmic
issue. The main goal of this paper is to establish a cubic algorithm that produces a
long cycle in a 3-connected graph with bounded degree.

The work on circumferences of planar graphs dates back to 1931, when Whitney
[21] proved that every 4-connected planar triangulation contains a Hamilton cycle
(and, hence, its faces are 4-colorable). This result is generalized to all 4-connected
planar graphs in [18]. A linear time algorithm is given in [4] for finding a Hamilton
cycle in a 4-connected planar graph. There are many 3-connected planar graphs
which do not contain Hamilton cycles (see [9]). On the other hand, the following
conjecture of Barnette (see [16]) remains open: every bipartite, cubic, 3-connected,
planar graph contains a Hamilton cycle. When studying paths in polytopes, Moon and
Moser [17] implicitly conjectured that if G is a 3-connected planar n-vertex graph then
G contains a cycle of length at least Ω(nlog3 2). (Grünbaum and Walther [8] made
the same conjecture for a class of 3-connected cubic planar graphs.) Jackson and
Wormald [13] gave the first polynomial lower bound Ω(nc), where c is approximately
0.2, which was improved to Ω(n0.4) by Gao and Yu [7]. Chung [5] further improved
this lower bound to Ω(n0.5). Recently, Chen and Yu [3] fully established the Moon–
Moser conjecture; their proof implies a quadratic algorithm for finding a cycle of
length at least Ω(nlog3 2) in a 3-connected planar n-vertex graph. We conjecture that
such a cycle may be found in linear time.

The work on circumferences of 3-connected graphs with bounded degree dates
back to 1980, when Bondy and Simonovits [2] conjectured that there exists a constant
0 < c < 1 such that the circumference of any 3-connected cubic n-vertex graph
is at least Ω(nc). This conjecture was verified by Jackson [12]. In 1993, Jackson
and Wormald [14] proved that if G is a 3-connected n-vertex graph with maximum
degree at most d, then the circumference of G is at least 1

2n
logb 2 + 1, where b = 6d2.

The argument in [14] is technical, and Jackson and Wormald did not address the
algorithmic issue.

In this paper, we improve the lower bound of Jackson and Wormald, for both
the exponent and the constant coefficient. Our argument makes efficient use of two
results: a convexity result of a function and a decomposition result of 2-connected
graphs. Our proof gives rise to a cubic algorithm for finding a long cycle in 3-connected
graphs with bounded degree. More precisely, we prove the following result.

Theorem 1.1. Let n ≥ 4 and d ≥ 3 be integers. Let G be a 3-connected graph
on n vertices such that the maximum degree of G is at most d. Then G contains a
cycle of length at least nlogb 2 + 2, where b = 2(d − 1)2 + 1. Moreover, such a cycle
can be found in O(n3) time.

It is conjectured in [14] that, for d ≥ 4, the lower bound in Theorem 1.1 may be
replaced by Ω(nlogd−1 2). We are hopeful that our approach will eventually lead to a
resolution of this conjecture.

To prove Theorem 1.1, we will need to deal with graphs which result from a
3-connected graph by deleting one vertex. Such graphs are 2-connected but not nec-
essarily 3-connected. Our technique is to decompose such a graph into “3-connected
components.” This can be done in linear time by a result of Hopcroft and Tarjan [10].
(A similar idea is used in [14], but our decomposition is done once for each graph in
a single iteration of the algorithm, and we make more efficient use of such a decom-
position.) In most situations, we will not use all 3-connected components of a graph.
Instead, we will pick some large 3-connected components and find long cycles in such
components. We will then use a convexity property of the function f(x) = xlogb 2 to
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account for the unused components. These two ideas will be made more precise in
the next two sections.

This paper is organized as follows. In section 2, we will state a technical result,
consisting of three statements about (a) the existence of a long cycle through a given
edge and avoiding a given vertex, (b) the existence of a long cycle through two given
edges, and (c) the existence of a long cycle through a given edge. (We will see that
(c) implies Theorem 1.1.) We will also describe the decomposition of a 2-connected
graph into 3-connected components. In section 3, we will prove useful properties of
the convex function f(x) = xlogb 2, for b = 3 and b ≥ 4. We will also prove several
lemmas to be used in the proof of our main result. In sections 4–6, we will show
that each of (a), (b), and (c) can be reduced in linear time to (a), (b), and/or (c) for
smaller graphs. In section 7, we will complete the proof of our main result and give a
cubic algorithm that finds a long cycle in a 3-connected graph with bounded degree.

We end this section with notation and terminology to be used throughout this
paper. Let G be a graph. We use V (G) and E(G) to denote the vertex set and edge
set of G, respectively, and we write G = (V (G), E(G)). For convenience, we write |G|
instead of |V (G)|. If e ∈ E(G) and x, y are the vertices of G incident with e, then we
write e = xy. For any S ⊆ V (G) ∪ E(G), G− S denotes the graph obtained from G
by deleting S and all edges of G with an incident vertex in S. If S = {x}, then we
simply write G− x instead of G− S.

Let G and H be two graphs. By H ⊆ G we mean that H is a subgraph of G. We
use G∪H and G∩H to denote the union and intersection, respectively, of G and H. For
any S ⊆ V (G)∪E(G) and for any H ⊆ G, we use H+S to denote the graph with vertex
set V (H)∪ (S ∩ V (G)) and edge set E(H)∪ {uv ∈ S : {u, v} ⊆ V (H)∪ (S ∩ V (G))}.

We say that a graph G is k-connected if |G| ≥ k + 1 and, for any S ⊆ V (G) with
|S| ≤ k − 1, G− S is connected. Let G be a graph. If S ⊆ V (G) for which G− S is
not connected, then S is a cut of G, and if, in addition, |S| = k, then S is a k-cut.
If x ∈ V (G) for which G − x is not connected, then x is called a cut vertex of G. If
e ∈ E(G) for which G− e is not connected, then e is called a cut edge of G.

2. 3-connected components. We begin this section by stating a technical re-
sult which implies Theorem 1.1. To motivate that statement, let G be a 3-connected
graph. In order to find a long cycle in G, we will try to find a cycle through a specific
edge e = xy (for induction purposes). To reduce the problem to smaller graphs, we
consider G− y. Clearly G− y is 2-connected but not necessarily 3-connected. In the
case when G−y is not 3-connected, y is contained in a 3-cut T of G. Let T := {y, a, b},
and let G1, G2 be subgraphs of G such that E(G1)∩E(G2) = ∅, V (G1)∩V (G2) = T ,
and G1 ∪G2 = G. See Figure 1 for an illustration. Assume x ∈ V (G1)−T . We could
find a long cycle C1 through both e and ab in G1 + ab and a long cycle C2 through ab
in (G2 + ab) − y, and then C := (C1 − ab) ∪ (C2 − ab) would give a long cycle in G.
Note that C1 is a cycle through two given edges, C2 is a cycle through one given edge
and avoiding a given vertex, and C is a cycle through one given edge. This suggests
that we prove three statements simultaneously. Indeed, we will prove the following.

Theorem 2.1. Let n ≥ 5 and d ≥ 3 be integers, let r = log2(d−1)2+1 2, and let G
be a 3-connected graph on n vertices. Then the following statements hold:

(a) Let xy ∈ E(G) and z ∈ V (G)−{x, y}, and let t denote the number of neighbors
of z distinct from x and y. Assume that the maximum degree of G is at most
d + 1, and every vertex of degree d + 1 (if any) is incident with the edge zx
or zy. Then there is a cycle C through xy in G− z such that |C| ≥ ( n

2t )
r +2.

(b) Suppose the maximum degree of G is at most d. Then, for any distinct e, f ∈
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Fig. 1. An illustration.

E(G), there is a cycle C through e and f in G such that |C| ≥ ( n
2(d−1) )

r + 3.

(c) Suppose that the maximum degree of G is at most d. Then, for any e ∈ E(G),
there is a cycle C through e in G such that |C| ≥ nr + 3.

Clearly, Theorem 2.1 (c) implies Theorem 1.1 when n ≥ 5, and Theorem 1.1 is
obvious when n = 4. Note the condition in (a) about the maximum degree; it is due
to the addition of edges in order to maintain 3-connectivity.

To prove Theorem 2.1, we need to decompose a 2-connected graph (such as G− z
in (a) above) into 3-connected components. This is similar to the decomposition of a
connected graph into 2-connected components. Let G be a connected graph. A block
of G is a subgraph of G which is either a maximal 2-connected subgraph of G or a
subgraph of G induced by a cut edge of G. A block of G is also called a 2-connected
component of G. It is easy to see that the intersection of any two blocks of G either is
empty or consists of only one vertex (which is a cut vertex). Also any noncut vertex
of G occurs in exactly one block of G. This implies that the blocks and cut vertices
of G form a tree structure.

Now let G be a 2-connected graph. We describe the 3-connected components of
G, following Hopcroft and Tarjan [10]. For this purpose, we allow multiple edges (and
hence E(G) is a multiset). We say that {a, b} ⊆ V (G) is a separation pair in G if
there are subgraphs G1, G2 of G such that G1 ∪ G2 = G, V (G1) ∩ V (G2) = {a, b},
E(G1) ∩ E(G2) = ∅, and |E(Gi)| ≥ 2 for i = 1, 2. Let G′

i := (V (Gi), E(Gi) ∪ {ab})
for i = 1, 2. See Figure 2 for an example. Then G′

1 and G′
2 are called split graphs

of G with respect to the separation pair {a, b}, and the new edge ab added to Gi is
called a virtual edge. Virtual edges are illustrated with dashed edges in Figures 2–4.
It is easy to see that since G is 2-connected, G′

i is 2-connected or G′
i consists of two

vertices and at least three multiple edges between them.

Suppose that a multigraph is split, and the split graphs are split, and so on, until
no more splits are possible. Then each remaining graph is called a split component.
See Figure 3 for a graph G and its split components. No split component contains
a separation pair, and therefore each split component must be one of the following:
a triangle, a triple bond (two vertices with three multiple edges between), or a 3-
connected graph.

It is not hard to see that if a split component of a 2-connected graph is 3-
connected, then it is unique. It is also easy to see that, for any two split compo-
nents G1, G2 of a 2-connected graph, we have |V (G1) ∩ V (G2)| = 0 or 2, and if
|V (G1) ∩ V (G2)| = 2, then either G1 and G2 share a virtual edge between vertices
in V (G1) ∩ V (G2) or there is a sequence of triple bonds such that the first shares a
virtual edge with G1, any two consecutive triple bonds in the sequence share a virtual
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Fig. 2. Split and merge.

G

Fig. 3. Split components of G.

edge, and the last triple bond shares a virtual edge with G2.
In order to get unique 3-connected components, we need to merge some triple

bonds and to merge some triangles. Let G′
i = (V ′

i , E
′
i), i = 1, 2, be two split compo-

nents, both containing a virtual edge ab. Let G′ = (V ′
1 ∪V ′

2 , (E
′
1−{ab})∪(E′

2−{ab})).
Then the graph G′ is called the merge graph of G1 and G2. See Figure 2 for an exam-
ple of a merge graph. Clearly, a merge of triple bonds gives a graph consisting of two
vertices and multiple edges, which is called a bond. Also a merge of triangles gives a
cycle, and a merge of cycles also gives a cycle.

Let D denote the set of 3-connected split components of a 2-connected graph G.
We merge the other split components of G as follows: the triple bonds are merged
as much as possible to give a set of bonds B, and the triangles are merged as much
as possible to give a set of cycles C. Then B ∪ C ∪ D is the set of the 3-connected
components of G. Figure 4 gives the 3-connected components of the graph in Figure
3. Note that any two 3-connected components either are edge disjoint or share exactly
one virtual edge.

C1 C2H1
H3

Fig. 4. 3-connected components of the graph G in Figure 3.

Tutte [19] proved that the above decomposition of a 2-connected graph into 3-
connected components is unique. Hopcroft and Tarjan [10] gave a linear time algo-
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rithm for finding the 3-connected components of a graph.

Theorem 2.2. For any 2-connected graph, the 3-connected components are
unique and can be found in O(|E|) time. Moreover, the total number of edges in
the 3-connected components is at most 3|E| − 6.

We define a graph whose vertices are the 3-connected components of G, and two
vertices are adjacent if the corresponding 3-connected components share a virtual
edge. Then it is easy to see that such a graph is a tree, and we call it the block-bond
tree of G.

For convenience, 3-connected components that are not bonds are called 3-blocks.
An extreme 3-block is a 3-block that contains at most one virtual edge. That is, either
it is the only 3-connected component, or it corresponds to a degree one vertex in the
block-bond tree.

We will make use of cycle chains. Intuitively, a cycle chain in a 2-connected graph
G is a sequence C1C2 . . . Ck of 3-blocks of G for which each Ci is a cycle and there
exist bonds B1, B2, . . ., Bk−1 of G such that C1B1C2B2 . . . Bk−1Ck is a path in the
block-bond tree of G. More precisely, we have the following.

Definition 2.3. Let G be a 2-connected graph. By a cycle chain in G we mean
a sequence C1 . . . Ck with the following properties:

(i) for each 1 ≤ i ≤ k, Ci is a 3-block of G and Ci is a cycle;
(ii) |V (Ci) ∩ V (Ci+1)| = 2, and Ci and Ci+1 each contain a virtual edge between

the vertices in V (Ci) ∩ V (Ci+1); and
(iii) |V (Ci) ∩ V (Cj)| ≤ 1 when j ≥ i + 2, and if i < j and |V (Ci) ∩ V (Cj)| = 1,

then, for all i ≤ t ≤ j, V (Ci) ∩ V (Cj) ⊆ V (Ct) ∩ V (Cj).

For convenience, we sometimes write H := C1 . . . Ck and view H as the graph
⋃k

i=1 Ci.

Hence V (H) :=
⋃k

i=1 V (Ci). Note that H is a multigraph, with two virtual edges
between the vertices in V (Ci) ∩ V (Ci+1), 1 ≤ i ≤ k − 1.

As an example, take the graph G in Figure 3 and its 3-connected components in
Figure 4; we see that C1C2 is a cycle chain.

Remark. We choose not to include bonds in our definition of cycle chains because
those bonds do not contribute the vertex count in our arguments.

It is easy to see that if C1 . . . Ck is a cycle chain, then deleting all virtual edges
with both ends in V (Ci) ∩ V (Ci+1), 1 ≤ i ≤ k − 1, results in a cycle. We state it as
follows.

Proposition 2.4. Let G be a 2-connected graph, let C1 . . . Ck be a cycle chain
in G, let uv ∈ E(C1) with {u, v} �= V (C1) ∩ V (C2) when k �= 1, and let xy ∈ E(Ck)

with {x, y} �= V (Ck−1)∩V (Ck) when k �= 1. Then
⋃k

i=1 Ci contains a Hamilton cycle

through uv and xy. Moreover, such a cycle can be found in O(|⋃k
i=1 V (Ci)|) time.

For later applications, we need several facts about paths in cycle chains. We say
that a path P in a graph G is from a vertex x ∈ V (G) to a set S ⊆ V (G)−{x} if one
end of P is x, the other end of P is in S, and P is otherwise disjoint from S.

Proposition 2.5. Let G be a 2-connected graph, let C1 . . . Ck be a cycle chain in
G, let uv ∈ E(C1) with {u, v} �= V (C1)∩V (C2) when k �= 1, and let xy ∈ E(Ck) with

{x, y} �= V (Ck−1) ∩ V (Ck) when k �= 1. Then there is a path in (
⋃k

i=1 Ci) − {uv, xy}
which is from u to {x, y} and contains (

⋃k−1
i=1 (V (Ci) ∩ V (Ci+1)) − ({x, y} ∪ {u, v}.

Moreover, such a path can be found in O(|⋃k
i=1 V (Ci)|) time.

Proof. If k = 1, this is obvious. So assume that k ≥ 2. Let x′y′ denote the virtual
edge in Ck−1 such that {x′, y′} = V (Ck−1) ∩ V (Ck). By induction, (

⋃k−1
i=1 Ci) −

{uv, x′y′} contains a path P ′ that is from u to {x′, y′} and contains (
⋃k−2

i=1 (V (Ci) ∩
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V (Ci+1)) − {x′, y′, u, v}. By symmetry, we may assume that P ′ ends at x′. If y′ ∈
V (P ′), then let Q′ denote the path in Ck − {xy, y′} from x′ to {x, y}. If y′ /∈ V (P ′),
then let Q′ denote the path in Ck − xy that is from x′ to {x, y} and through the
virtual edge x′y′. Clearly, P := P ′ ∪Q′ gives the desired path.

It is easy to see that such a path can be found in O(|⋃k
i=1 V (Ci)|) time.

By a similar argument, we can prove the following.

Proposition 2.6. Let G be a 2-connected graph, let C1 . . . Ck be a cycle chain
in G, let uv ∈ E(C1) with {u, v} �= V (C1) ∩ V (C2) when k �= 1, and let x ∈ V (Ck)

with x /∈ V (Ck−1) when k �= 1. Then there is a path in (
⋃k

i=1 Ci) − uv which is from

u to x and contains (
⋃k−1

i=1 (V (Ci) ∩ V (Ci+1)) − {u, v, x}. Moreover, such a path can

be found in O(|⋃k
i=1 V (Ci)|) time.

The next two facts about cycle chains are slightly more complicated. We only
prove the first; the other can be proved similarly.

Proposition 2.7. Let G be a 2-connected graph, let C1 . . . Ck be a cycle chain
in G, let uv ∈ E(C1) with {u, v} �= V (C1) ∩ V (C2) when k �= 1, ab ∈ E(Ck) with

{a, b} �= V (Ck−1)∩V (Ck) when k �= 1, and cd ∈ E(
⋃k

i=1 Ci)−{ab}. Suppose ab �= uv

when k = 1. Then there is a path P in (
⋃k

i=1 Ci) − ab from {a, b} to {c, d} such

that uv ∈ E(P ), cd /∈ E(P ) unless cd = uv, and (
⋃k−1

i=1 (V (Ci) ∩ V (Ci+1)) ⊆ V (P ).

Moreover, such a path can be found in O(|⋃k
i=1 V (Ci)|) time.

Proof. We apply induction on k. If k = 1, then since ab �= uv, the result is
obvious. So assume that k ≥ 2.

First, assume that cd ∈ E(Ck) and {c, d} �= V (Ck−1) ∩ V (Ck). Let a′b′ denote
the virtual edge in Ck with {a′, b′} = V (Ck−1) ∩ V (Ck). In Ck − {ab, cd}, we find a

path P ′ from {a, b} to {c, d} through a′b′. In
⋃k−1

i=1 Ci, we apply Proposition 2.4 to
find a Hamilton cycle C through uv and a′b′. Now P := (P ′ − a′b′)∪ (C − a′b′) gives
the desired path.

Thus we may assume that there is some 1 ≤ t < k such that cd ∈ E(Ct). We
may choose t so that {c, d} �= V (Ct−1) ∩ V (Ct) when t �= 1.

Suppose {c, d} = V (Ct)∩V (Ct+1). By applying Proposition 2.4, we find a Hamil-
ton cycle C in

⋃t
i=1 Ci such that uv, cd ∈ E(C). Now P ′ := C−cd is a path in

⋃t
i=1 Ci

from c to d through uv. By Proposition 2.5, we find a path P ′′ in (
⋃k

i=t+1 Ci)−{ab, cd}
that is from d to {a, b} and contains (

⋃k−1
i=t+1(V (Ci) ∩ V (Ci+1)) − ({a, b} ∪ {c, d}).

Now P := P ′ ∪ P ′′ gives the desired path.

So assume that {c, d} �= V (Ct)∩V (Ct+1). By applying induction, there is a path
P ′ from V (Ct)∩V (Ct+1) to {c, d} in

⋃t
i=1 Ci such that uv ∈ E(P ′), cd /∈ E(P ′) unless

cd = uv, and (
⋃t−1

i=1(V (Ci) ∩ V (Ci+1)) ⊆ V (P ′). Let e′ denote the virtual edge of
Ct+1 between the vertices in V (Ct)∩V (Ct+1), and let u ∈ V (Ct)∩V (Ct+1) be an end
of P ′. Now apply Proposition 2.5 to Ct+1 . . . Ck, we find a path P ′′ from u to {a, b} in

(
⋃k

i=t+1 Ci)−{e′, ab} such that (
⋃k−1

i=t (V (Ci)∩V (Ci+1))−(V (Ct)∩V (Ct+1)) ⊆ V (P ′′).
Clearly, P := P ′ ∪ P ′′ gives the desired path.

Since finding P ′ and P ′′ takes O(|⋃k
i=1 V (Ci)|) time, P can also be found in

O(|⋃k
i=1 V (Ci)|) time.

By a similar argument, we can prove the following.

Proposition 2.8. Let G be a 2-connected graph, let C1 . . . Ck be a cycle chain
in G, let uv ∈ E(C1) with {u, v} �= V (C1) ∩ V (C2) when k �= 1, x ∈ V (Ck) with x /∈
V (Ck−1) when k �= 1, and cd ∈ E(

⋃k
i=1 Ci). Then there is a path P in (

⋃k
i=1 Ci)−uv

from x to {c, d} such that uv ∈ E(P ), cd /∈ E(P ) unless cd = uv, and (
⋃k−1

i=1 (V (Ci)∩
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V (Ci+1)) ⊆ V (P ). Moreover, such a path can be found in O(|⋃k
i=1 V (Ci)|) time.

We conclude this section by generalizing the concept of a cycle chain to a block
chain. Intuitively, a block chain in a 2-connected graph G is a sequence H1 . . . Hk for
which (1) each Hi is either a 3-connected 3-block of G or a cycle chain in G and (2)
there exist bonds B1,. . ., Bh−1 of G such that H1B1H2B2 . . . Bh−1Hh form a path in
the block-bond tree of G (by also patching the tree paths corresponding to Hi when
Hi is a cycle chain). More precisely, we have the following.

Definition 2.9. Let G be a 2-connected graph. By a block chain in G we mean
a sequence H1 . . . Hh with the following properties:

(i) For each 1 ≤ i ≤ h, either Hi is a 3-connected component of G or Hi is a
cycle chain in G, and for 1 ≤ i ≤ h − 1, Hi and Hi+1 cannot both be cycle
chains.

(ii) For each 1 ≤ i ≤ h−1, |V (Hi)∩V (Hi+1)| = 2 and both Hi and Hi+1 contain
a virtual edge between the vertices in V (Hi) ∩ V (Hi+1).

(iii) |V (Hi) ∩ V (Hj)| ≤ 1 if 3 ≤ i + 2 ≤ j ≤ h, and if 1 ≤ i < j ≤ h and
|V (Hi)∩V (Hj)| = 1, then, for all i ≤ t ≤ j, V (Hi)∩V (Hj) ⊆ V (Ht)∩V (Hj).

(iv) Suppose Hi = C1C2 . . . Ck is a cycle chain. If i < h, then V (Hi+1)∩V (Hi) ⊆
V (Ck) and V (Hi+1)∩V (Hi) �= V (Ck−1)∩V (Ck), and if i > 1, then V (Hi−1)∩
V (Hi) ⊆ V (C1) and V (Hi−1) ∩ V (Hi) �= V (C1) ∩ V (C2).

For convenience, we denote H = H1 . . . Hh and view H as the graph
⋃h

i=1 Hi. Thus

V (H) :=
⋃h

i=1 V (Hi). Note that H is a multigraph, with two virtual edges between
vertices in V (Hi) ∩ V (Hi+1), 1 ≤ i ≤ h− 1.

In Figure 4, H = H1H2H3 is a block chain in G, where H2 is the cycle chain
C1C2. In a block chain, we do not include bonds, because bonds do not contribute to
the vertex count in our arguments.

3. Technical lemmas. In this section we prove several lemmas to be used in
the proof of Theorem 2.1. Notice G = G1 ∪ G2 in the illustration of Figure 1. If,
instead, for some k ≥ 3, G =

⋃k
i=1 Gi, E(Gi) ∩ E(Gj) = ∅, and |V (Gi) ∩ V (Gj)| = 3

for 1 ≤ i < j ≤ k, then the following lemma will enable us to conclude that if |G1|
and |G2| are the largest among all |Gi|’s, then the cycle C produced by finding long
cycles Ci in Gi (as in the first paragraph in section 2), i = 1, 2, will be long as well.

Lemma 3.1. Let b = 3 or b ≥ 4 be an integer, and let m,n be positive integers
with m ≥ n. Then mlogb 2 + nlogb 2 ≥ (m + (b− 1)n)logb 2.

Proof. By dividing both sides of the above inequality by mlogb 2, it suffices to
show that, for any s with 0 ≤ s ≤ 1,

1 + slogb 2 ≥ (1 + (b− 1)s)logb 2.

Let f(s) = 1 + slogb 2 − (1 + (b − 1)s)logb 2. Clearly, f(0) = f(1) = 0. Taking the
derivative about s, we have

f ′(s) = (logb 2)(s(logb 2)−1 − (b− 1)(1 + (b− 1)s)(logb 2)−1).

A simple calculation shows that f ′(s) = 0 has a unique solution. Therefore, since
f(0) = f(1) = 0, either 0 is the absolute maximum of f(s) over [0, 1] or 0 is the
absolute minimum of f(s) over [0, 1]. That is, either f(s) ≥ 0 for all s ∈ [0, 1] or
f(s) ≤ 0 for all s ∈ [0, 1]. Note that 0 < 1

b < 1 (since b ≥ 3) and

f

(
1

b

)
=

(
1 +

1

2

)
−
(

1 +
b− 1

b

)logb 2
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=
3

2
− (2b− 1)logb 2

2
.

We claim that f( 1
b ) > 0. If b = 3, then f( 1

b ) = 1
2 (3 − 5log3 2) > 0. So assume

b ≥ 4. Then f( 1
b ) >

3
2 − (2b)logb 2

2 = 3
2 − 2logb 2. Since b ≥ 4, 2logb 2 ≤ 2log4 2 =

√
2 < 3

2 .
f( 1

b ) > 0 for b ≥ 4.

Therefore, we have f(s) ≥ 0 for all s ∈ [0, 1].

We remark that Lemma 3.1 holds for b ≥ 3. We choose to state it for b = 3 and
b ≥ 4 for simplicity in calculations.

The observations in the following lemma will be convenient in the proof of The-
orem 2.1.

Lemma 3.2. Let m be an integer, b ≥ 4, and d ≥ 3. If m ≥ 4, then m ≥
mlogb 2+2. If m ≥ 3, then m > ( m

2(d−1) )
logb 2+2. If m ≥ 2, then m > ( m

2(d−1) )
logb 2+1.

Proof. Let f(x) = x − xlogb 2. We can show that f ′(x) > 0 for x ≥ 4. Hence
f(x) is an increasing function when x ≥ 4. Thus, f(x) ≥ f(4) = 4− 4logb 2 ≥ 2 (since
b ≥ 4). Thus when m ≥ 4, we have m ≥ mlogb 2 + 2.

Next, let f(x) = x − ( x
2(d−1) )

logb 2. We can show that f(x) is an increasing

function when x ≥ 2. The second inequality follows from f(x) ≥ f(3) > 2, and the
third inequality follows from f(x) ≥ f(2) > 1.

After we decompose a 2-connected graph into 3-connected components, we need to
find long cycles in certain 3-connected components. This will be done by inductively
applying (a), (b), or (c) of Theorem 2.1 to 3-connected components or to graphs
obtained from 3-connected components by an “H-transform” or “T-transform.”

Let G be a graph and let e, f be distinct edges of G. An H-transform of G at
{e, f} is an operation that subdivides e and f by vertices x and y, respectively, and
then adds the edge xy. See Figure 5. Let G be a graph, let e ∈ E(G), and let
x ∈ V (G), which is not incident with e. A T-transform of G at {x, e} is an operation
that subdivides e with a vertex y and then adds the edge xy. If there is no need to
specify e, f, x, we will simply speak of an H-transform or a T-transform. The following
result is easy to prove.

x x

x y

ye

e f

H-transform

T-transform

Fig. 5. H-transform and T-transform.

Lemma 3.3. Let d ≥ 3 be an integer, and let G be a 3-connected graph with
maximum degree at most d. Let G′ be a graph obtained from G by an H-transform
or a T-transform. Then G′ is 3-connected graph, the vertex of G involved in the T-
transform has degree at most d + 1, and all other vertices of G′ have degree at most
d.
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Next, we state two results from [11]. The first says that any k-connected graph
contains a sparse k-connected spanning subgraph.

Lemma 3.4. Let G be a k-connected graph, where k is a positive integer. Then
G contains a k-connected spanning subgraph with O(|G|) edges, and such a subgraph
can be found in O(|E(G)|) time.

The next result is an easy consequence of a result in [11], which states that, in
a 2-connected graph G, one can find, in O(|G|) time, two disjoint paths between two
given vertices.

Lemma 3.5. Let G be a 2-connected graph and let e, f ∈ E(G). Then there is a
cycle through e and f in G, and such a cycle can be found in O(|G|) time.

The final two results of this section deal with the existence of certain paths in a
3-connected graph. Since such paths need to be produced (when finding a long cycle),
we also show that they can be found in linear time. The proofs of these two results
are almost identical, so we omit the details of the second proof.

Lemma 3.6. Let G be a 3-connected graph, let f ∈ E(G), let ab, cd, vw ∈ E(G)−
{f}, and assume that {c, d} �= {v, w}. Then there exists a path P from {a, b} to some
z ∈ {c, d} ∪ {v, w} in G such that

(i) f ∈ E(P ),
(ii) cd ∈ E(P ) or vw ∈ E(P ), and
(iii) if cd ∈ E(P ), then z ∈ {v, w} and vw /∈ E(P ), and if vw ∈ E(P ), then

z ∈ {c, d} and cd /∈ E(P ).

Moreover, such a path can be found in O(|G|) time.

Note that in (iii) above when vw /∈ E(P ), it is possible that v ∈ V (P ) and/or
w ∈ V (P ).

Proof. First, we find a cycle C through both ab and f . This can be done in
O(|G|) time using Lemma 3.5. Next we distinguish three cases. Note that checking
these cases can be done in O(|G|) time.

Case 1. cd, vw ∈ E(C). In this case one of the following holds: f and vw are
contained in a component P of C−{ab, cd}, or f and cd are contained in a component
P of C−{ab, vw}. In either case, P gives the desired path and can be found in O(|G|)
time.

Case 2. cd /∈ E(C) and vw ∈ E(C), or cd ∈ E(C) and vw /∈ E(C). By symmetry,
assume that cd /∈ E(C) and vw ∈ E(C). Let Q1 and Q2 denote the components of
C − {ab, f}, and assume that vw ∈ E(Q1). By Lemma 3.5, we can find, in O(|G|)
time, disjoint paths P1 and P2 from c, d to some vertices c′, d′, respectively, of C which
are also disjoint from C − {c′, d′}.

If c′ ∈ V (Q2) or d′ ∈ V (Q2), then (C ∪P1∪P2)−{ab, cd} contains a path P from
{a, b} to {c, d} though f and vw. So assume that c′, d′ ∈ V (Q1).

If vw is contained in the subpath of Q1 between c′ and d′, then (C ∪ P1 ∪ P2) −
{ab, vw} contains a path P from {a, b} to {v, w} through f and cd.

If {c′, d′} is contained in the subpath of Q1 between vw and ab, then (C ∪ P1 ∪
P2) − {ab, cd} contains a path P from {a, b} to {c, d} through f and vw.

Assume that {c′, d′} is contained in the subpath of Q1 between vw and f . Then
(C ∪ P1 ∪ P2) − {ab, vw} contains a path P from {a, b} to {v, w} through f and cd.

Note that the above cases can be checked in constant time, and in each case, P
can be found in O(|G|) time.

Case 3. cd /∈ E(C) and vw /∈ E(C). Let Q1 and Q2 denote the components
of C − {ab, f}. By Lemma 3.5, there are disjoint paths P1 and P2 in G from c, d
to c′, d′ ∈ V (C), respectively, which are also disjoint from C − {c′, d′} (and can be
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found in O(|G|) time). We may assume that {c′, d′} �⊆ V (Qi) for i = 1, 2; otherwise,
C ∪ P1 ∪ P2 contains a cycle through ab, cd, f and, as in Cases 1 and 2, we can find
the desired path in O(|G|) time. Thus, by symmetry, we may assume that c′ ∈ V (Q1)
and d′ ∈ V (Q2).

If vw ∈ E(P1 ∪ P2), then (C ∪ P1 ∪ P2) − {ab, vw} contains a path P from {a, b}
to {v, w} through f and cd, which can be found in O(|G|) time. So assume that
vw /∈ E(P1 ∪ P2). Therefore, by Lemma 3.5, we can find, in O(|G|) time, disjoint
paths R1, R2 from v, w to v′, w′ ∈ V (C ∪P1∪P2), respectively, which are also disjoint
from (C ∪ P1 ∪ P2) − {v′, w′}.

By similar arguments, we may assume that {v′, w′} �⊆ V (Qi) (or we go back to
Case 1 or Case 2) and {v′, w′} �⊆ V (Pi) for any i ∈ {1, 2} (or we could have chosen
P1, P2 to include vw and have gone back to the case in the previous paragraph).

Subcase 3.1. {v′, w′} �= {c′, d′}. First assume {v′, w′} ⊆ V (P1 ∪ P2). Then cd
belongs to the subpath of (P1 ∪ P2) + cd between v′ and w′. We see that there is a
path P in ((C − ab) ∪ P1 ∪ P2 ∪ R1 ∪ R2) + cd ⊆ G− {ab, vw} from {a, b} to {v, w}
through both f and cd.

Now assume {v′, w′} ⊆ V (Q1 ∪ Q2). Then by symmetry, we may assume that
v′ ∈ V (Q1), w

′ ∈ V (Q2), and w′ �= d′. If f, w′, d′, ab occur on C in cyclic order, then
there is a path P from {a, b} to {v, w} through f and cd in ((C−ab)∪P1 ∪P2 ∪R1 ∪
R2)+cd ⊆ G−{ab, vw}. If f, d′, w′, ab occur on C in cyclic order, then there is a path
P from {a, b} to {c, d} through both f and vw in ((C−ab)∪P1∪P2∪R1∪R2)+vw ⊆
G− {ab, cd}.

Thus we may assume by symmetry that v′ ∈ (V (P1) ∪ V (P2)) − {c′, d′} and
w′ ∈ (V (Q1)∪V (Q2))−{c′, d′}. It is easy to see that ((C−ab)∪P1∪P2∪R1∪R2)+vw ⊆
G− {ab, cd} contains a path P from {a, b} to {c, d} through both f and vw.

The above three cases can be checked in O(|G|) time, and in all cases, P can be
found in O(|G|) time.

Subcase 3.2. {v′, w′} = {c′, d′}. Let S1 and S2 denote the paths between c′ and
d′ in C containing f and ab, respectively. Since G is 3-connected, there is a path S
from some s ∈ V (R1 ∪ R2 ∪ S2) − {c′, d′} to s′ ∈ V (P1 ∪ P2 ∪ S1) − {c′, d′}, which
is also disjoint from (C ∪ P1 ∪ P2 ∪ R1 ∪ R2) − {s, s′}. Note that S can be found in
O(|G|) time.

If s ∈ V (S2), then ((C − ab) ∪ P1 ∪ P2 ∪ R1 ∪ R2 ∪ S) + cd ⊆ G − {ab, vw}
contains a path P from {a, b} to {v, w} through both f and cd. If s′ ∈ V (S1), then
((C−ab)∪P1∪P2∪R1∪R2∪S)+vw ⊆ G−{ab, cd} contains a path P from {a, b} to
{c, d} through both f and vw, or ((C−ab)∪P1∪P2∪R1∪R2∪S)+cd ⊆ G−{ab, vw}
contains a path P from {a, b} to {v, w} through both f and cd.

Assume that s ∈ V (R1 ∪ R2) − {c′, d′} and s′ ∈ V (P1 ∪ P2) − {v′, w′}. Then
((C − ab)∪P1 ∪P2 ∪R1 ∪R2 ∪S) + vw ⊆ G−{ab, cd} contains a path P from {a, b}
to {c, d} through both f and vw.

The above three cases can be checked in constant time, and in all cases, P can
be found in O(|G|) time.

Lemma 3.7. Let G be a 3-connected graph, let f ∈ E(G), let x ∈ V (G) which is
not incident with f , let cd, vw ∈ E(G)− {f}, and assume that {c, d} �= {v, w}. Then
there exists a path P in G from x to some z ∈ {c, d} ∪ {v, w} such that

(i) f ∈ E(P ),
(ii) cd ∈ E(P ) or vw ∈ E(P ), and
(iii) if cd ∈ E(P ) then z ∈ {v, w} and vw /∈ E(P ), and if vw ∈ E(P ), then

z ∈ {c, d} and cd /∈ E(P ).
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Moreover, such a path can be found in O(|G|) time.
Proof. The proof is the same as for Lemma 3.6, with ab replaced by x, and when

finding paths Pi, Ri, we apply Lemma 3.5 to G− x (which is 2-connected).

4. Cycles avoiding a vertex. In this section, we show how to reduce Theorem
2.1 (a) to (b) and/or (c) of the same theorem in linear time. First, we state the
reduction as a lemma.

Lemma 4.1. Let n ≥ 6 and d ≥ 3 be integers, let r = log2(d−1)2+1 2, and assume
that Theorem 2.1 holds for graphs with at most n− 1 vertices. Let G be a 3-connected
graph with n vertices, let xy ∈ E(G) and z ∈ V (G) − {x, y}, and let t denote the
number of neighbors of z distinct from x and y. Assume that the maximum degree of
G is at most d+ 1, and every vertex of degree d+ 1 in G (if any) is incident with the
edge zx or zy. Then there is a cycle C through xy in G−z such that |C| ≥ ( n

2t )
r +2.

Proof. We consider G − z. Since the vertices of G with degree d + 1 must be
incident with the edge yz or xz, the maximum degree of G− z is at most d. Since G
is 3-connected and by the assumption on degrees, we see that 1 ≤ t ≤ d− 1.

First, assume that G − z is 3-connected. Since n ≥ 6, |G − z| ≥ 5, and hence
Theorem 2.1 holds for G− z. By Theorem 2.1 (c), G− z contains a cycle C through
e such that

|C| ≥ (n− 1)r + 3

= ((n− 1)r + 1) + 2

≥ ((n− 1) + 1)r + 2 (by 3.1)

>
( n

2t

)r
+ 2.

Therefore, we may assume that G − z is not 3-connected. By Theorem 2.2, we
can decompose G − z into 3-connected components. Let H = H1 . . . Hh be a block
chain in G− z such that

(i) {x, y} ⊆ V (H1), and {x, y} �= V (H1) ∩ V (H2) when k �= 1,
(ii) Hh contains an extreme 3-block of G− z, and
(iii) subject to (i) and (ii), |H| is maximum.

Note that H1 . . . Hk can be found in O(|G|) time.
We claim that |H| ≥ n−1

t . Since G is 3-connected, each extreme 3-block of G− z
distinct from H1 contains a neighbor of z that is not incident with xy. Therefore,
there are at most t extreme 3-blocks of G − z different from H1. Thus there are at
most t different block chains in G−z starting with a 3-block or cycle chain containing
{x, y} and ending with an extreme 3-block of G−z or a cycle chain in G−z containing
an extreme 3-block. Since all such chains cover the whole graph G−z, it follows from
(iii) that |H| − 2 ≥ n−3

t , and thus |H| ≥ n−1
t .

Let V (Hi) ∩ V (Hi+1) = {xi, yi}, 1 ≤ i ≤ h− 1, and assume that the notation is
chosen so that Hi contains disjoint paths from xi−1, yi−1 to xi, yi, respectively, where
x0 = x and y0 = y. See Figure 6. Next, we show how to find the desired cycle in
G− z.

Case 1. There exists some 1 ≤ i ≤ h such that |Hi| ≥ n
2t . We choose Hi so that

|Hi| ≥ |Hj | for all 1 ≤ j ≤ h. Then |Hi| ≥ n
2t .

First, assume that |Hi| = 3. Then 3 ≥ n
2t . By the choice of Hi, |Hj | = 3 for all

1 ≤ j ≤ h. Since H does not contain two consecutive cycle chains, we have h = 1.
Hence G − z is a union of triangles which share the edge xy. Therefore, there are
exactly t triangles. Because n ≥ 6, we have t ≥ 3, and thus n = t + 3 ≤ 2t. Hence
C := Hi is a cycle through xy in G− z, and |C| = 3 ≥ ( n

2t )
r + 2.
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H1
H2 Hh

x = x0 x1 x2 xh−1

y = y0
y1 y2 yh−1

Fig. 6. Block chain H = H1 . . . Hh.

We may assume that |Hi| ≥ 4. If Hi = K4 or Hi is a cycle chain in G− z, then,
by Proposition 2.4, let Ci denote a Hamilton cycle through xi−1yi−1, xiyi in Hi. By
Lemma 3.2, |Ci| = |Hi| ≥ (|Hi|)r + 2 ≥ ( n

2t )
r + 2.

Thus assume that Hi is 3-connected and |Hi| ≥ 5. Since |Hi| < |G| and the
maximum degree of Hi is at most d, Theorem 2.1 holds for Hi. By Theorem 2.1 (c),
there is a cycle Ci through ei := xi−1yi−1 in Hi such that |Ci| ≥ |Hi|r +3 ≥ ( n

2t )
r +2.

We can obtain a cycle C in G by replacing virtual edges contained in Ci with
disjoint paths in G (in particular, replacing xi−1yi−1 by a path through xy in G).
Therefore, C is a cycle through xy in G, and |C| ≥ |Ci| ≥ ( n

2t )
r + 2.

Case 2. For each 1 ≤ i ≤ h, |Hi| < n
2t . Since |H| ≥ n−1

t > n
2t , we have h ≥ 2. We

will find a cycle Ci through xi−1yi−1 and xiyi in each Hi, where xhyh is an arbitrary
edge of Hh.

If Hi = K4 or Hi is a cycle chain in G− z, then, by Proposition 2.4, let Ci be a
Hamilton cycle through both xi−1yi−1 and xiyi in Hi. By Lemma 3.2, |Ci| = |Hi| ≥
( |Hi|
2(d−1) )

r + 2.

Assume that Hi �= K4 and Hi is not a cycle chain in G−z. Then |Hi| ≥ 5 and Hi

is a 3-connected graph with maximum degree d. Since |Hi| < n, Theorem 2.1 holds
for Hi. By Theorem 2.1 (b), there is a cycle Ci through xi−1yi−1 and xiyi in Hi such

that |Ci| ≥ ( |Hi|
2(d−1) )

r + 3.

Note that C1 − x1y1, Ch − xh−1yh−1, and Ci − {xi−1yi−1, xiyi}, 2 ≤ i ≤ h − 1,
are disjoint edges, and their union is a cycle C ′ through xy in H. By replacing the
virtual edges in C ′ with disjoint paths in G, we can produce a cycle C through e in

G− z such that |C| ≥ |C ′|. Hence |C| ≥ ( |H1|
2(d−1) )

r + · · · + ( |Hh|
2(d−1) )

r + 2.

Note that h ≥ 2 and the vertices in V (H1)∩V (H2) are counted twice in |H1|+. . .+
|Hh|. Hence |H1| + · · · + |Hh| > n−1

t + 1 ≥ n
t . Consider the function f(x1, · · · , xh) =

xr
1 + . . . + xr

h + 2, with x1 + · · · + xh ≥ n
2(d−1)t and 0 ≤ xi ≤ n

4(d−1)t . By the

convexity of f(x1, . . . , xh), the minimum of f(x1, · · · , xh) is achieved on the boundary
of its domain. In particular, the minimum is achieved when x1 = x2 = n

4(d−1)t and

x3 = · · · = xh = 0. Hence

f(x1, . . . , xh) ≥ f

(
n

4(d− 1)t
,

n

4(d− 1)t
, 0, . . . , 0

)

= 2

(
n

4(d− 1)t

)r

+ 2

>
( n

2t

)r
+ 2.

The final inequality follows from the fact that r = log2(d−1)2+1 2 and 2 = (2(d− 1)2 +
1)r. Therefore, |C| ≥ ( n

2t )
r + 2.

As we can see from the above proof, the desired cycle through xy in G − z can
be found either (1) directly, (2) by finding a long cycle through ei in some Hi with
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|Hi| ≥ n
2t , or (3) by finding long cycles through xj−1yj−1 and xjyj in Hj , 1 ≤ j ≤ h.

Next we show that the proof of Lemma 4.1 implies that this process can be done in
O(|G|) time.

Algorithm Avoidvertex. Let G be a 3-connected graph, e = xy ∈ E(G), and
z ∈ V (G) − {x, y}, satisfying the conditions of Lemma 4.1. The algorithm performs
the following steps.

1. Preprocessing. Replace G by a 3-connected spanning graph of G with O(|G|)
edges. (This can be done in O(|E(G)|) time using Lemma 3.4.)

2. Decompose G− z into 3-connected components. (This can be done in O(|G|)
time using Lemma 2.2.)

3. If there is only one 3-block of G−z, then G−z is 3-connected and we proceed
to find a cycle D through e = xy in G−z such that |D| ≥ (|G|−1)r +3. That
is, we reduce (a) for G, xy, z to (c) for G− z, xy. (Clearly, this reduction can
be done in constant time.)

4. If there are at least two 3-blocks of G − z, then G − z is not 3-connected.
We find a block chain H = H1 . . . Hk in G − z such that {x, y} ⊆ V (H1),
{x, y} �= V (H1)∩V (H2), and |H| ≥ n−1

t . Let V (Hi)∩V (Hi+1) = {xi, yi} for
1 ≤ i ≤ h−1. (Note that H can be found in O(|G|) time by a simple search.)

5. Either find some Hi with |Hi| ≥ n
2t , or certify that |Hi| < n

2t for all 1 ≤ i ≤ h.
(This can be done in O(|G|) time by a simple search.)

6. Suppose there exists some 1 ≤ i ≤ h for which |Hi| ≥ n
2t .• If Hi = K4 or Hi is a cycle chain, then let Ci denote a Hamilton cycle

in Hi through the edge xi−1yi−1. Let C be a cycle in G obtained from
Ci by replacing virtual edges with paths in G, and make sure e ∈ E(C).
(Note that Ci can be found in O(|G|) time using Proposition 2.4, and
so C can be found in O(|G|) time.)

• If Hi is 3-connected and Hi �= K4, then to find the desired cycle in G−z
through e it suffices to find a cycle D in Hi through xi−1yi−1 such that
|D| ≥ |Hi|r + 3. Hence, we reduce (a) for G, e, z to (c) for Hi, xi−1yi−1.
(This can be done in constant time.)

7. Now assume that, for all 1 ≤ j ≤ h, |Hj | < n
2t . Then h ≥ 2. For each

1 ≤ j ≤ h, we perform the following:
• If Hj = K4 or Hj is a cycle chain in G − z, let Cj denote a Hamilton

cycle through both xj−1yj−1 and xjyj in Hj . (Note that Cj can be
found in O(|Hj |) time using Proposition 2.4.)

• If Hj is 3-connected and Hj �= K4, then it suffices to find a cycle D in

Hj through xj−1yj−1 and xjyj such that |D| ≥ (
|Hj |

2(d−1) )
r. Hence, we

reduce (a) for G, xy, z to (b) for Hj , xj−1yj−1, xjyj , for all Hj which are
not cycle chains and are not isomorphic to K4. (Clearly, this can done
in O(|G|) time. Moreover, any such Hj contains a vertex that does not
belong to any other Hk—this is why we want Hj �= K4, and it will be
used in the final complexity analysis.)

The correctness of the algorithm follows from the proof of Lemma 4.1. To sum-
marize, we have the following result.

Proposition 4.2. Let G, e = xy, z, t, d, r be as in Theorem 2.1 (a). Then, in
O(|E(G)|) time, we can either

(1) find a cycle C through e in G− z with |C| ≥ ( |G|
2t )r + 2,

(2) reduce (a) of Theorem 2.1 for G, xy, z to (c) of Theorem 2.1 for some 3-block

Hi of G− z that is 3-connected and |Hi| ≥ max{5, |G|
2t }, or
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(3) reduce (a) of Theorem 2.1 for G, xy, z to (b) of Theorem 2.1 for Hj , xj−1yj−1,
xjyj for some 3-connected 3-blocks Hj �= K4.

Moreover, in (3), each Hj contains a vertex that does not belong to any other Hk,
k �= j.

5. Cycles through two edges. In this section, we show how to reduce (b) of
Theorem 2.1 to (a) or (b) of the same theorem for smaller graphs. We will show that
such a reduction can be performed in linear time.

Lemma 5.1. Let n ≥ 6 and d ≥ 3 be integers, let r = log2(d−1)2+1 2, and assume
that Theorem 2.1 holds for graphs with at most n − 1 vertices. Suppose G is a 3-
connected graph on n vertices and that the maximum degree of G is at most d. Then for
any {e, f} ⊆ E(G) there is a cycle C through e, f in G such that |C| ≥ ( n

2(d−1) )
r +3.

Proof. First, assume that e is incident with f . Let e = xz and f = yz, and let
G′ := G + xy. Then G′ is a 3-connected graph with maximum degree at most d + 1,
and the possible vertices of degree d + 1 in G′ are x and y, which are incident with
the edge zx or zy. By applying Lemma 4.1 to G′, xy, z, there is a cycle C ′ through
xy in G′ − z such that |C ′| ≥ ( n

2t )
r + 2, where t is the number of neighbors of z in G′

distinct from x and y. Since zx, zy ∈ E(G), t ≤ d− 1. Now let C := C ′ −xy+ {e, f}.
Then |C| ≥ ( n

2t )
r + 3 ≥ ( n

2(d−1) )
r + 3, and C gives the desired cycle.

Therefore, we may assume that e and f are not incident. Let e = xy, and consider
G − y. Since y is not incident with f , f ∈ E(G − y). Since G is 3-connected, G − y
is 2-connected.

Suppose that G − y is 3-connected. Let y′ �= x be a neighbor of y. Then G′ :=
(G−y)+xy′ is a 3-connected graph with maximum degree at most d, and 5 ≤ |G′| < n.
Hence Theorem 2.1 holds for G′. By Theorem 2.1 (b), there is a cycle C ′ through xy′

and f in G′ such that |C ′| ≥ ( n−1
2(d−1) )

r + 3. Let C := (C ′ − xy′) + {y, xy, yy′}. Then

|C| = |C ′| + 1

≥
(

n− 1

2(d− 1)

)r

+ 3 + 1

≥
(

n− 1

2(d− 1)
+ 1

)r

+ 3 (by Lemma 3.1)

>

(
n

2(d− 1)

)r

+ 3.

Assume that G−y is not 3-connected. By Theorem 2.2, we can decompose G−y
into 3-connected components. Let H := H1 . . . Hh be a block chain in G − y such
that x ∈ V (Hh) − V (Hh−1), f ∈ E(H1), and f is not incident with both vertices in
V (H1)∩ V (H2). See Figure 7. Define V (Hs)∩ V (Hs+1) = {as, bs} for 1 ≤ s ≤ h− 1.

For each 1 ≤ s ≤ h we define As, which consists of vertices of Hs to be counted
when applying induction. If Hs is 3-connected, then let As := V (Hs). If h = 1 and
Hs = C1 . . . Ck is a cycle chain in G − y, then let As consist of the vertices incident
with f and the vertices in

⋃k−1
i=1 V (Ci ∩Ci+1). If h > 1 and H1 = C1 . . . Ck is a cycle

chain in G−y, then let A1 consist of those vertices of H1−{a1, b1} which are incident

with f or contained in
⋃k−1

i=1 V (Ci ∩Ci+1). If 1 < s < h and Hs = C1 . . . Ck is a cycle

chain, then let As := (
⋃k−1

i=1 V (Ci∩Ci+1))−({as−1, bs−1}∪{as, bs}). If 1 < s = h and

Hs = C1 . . . Ck is a cycle chain, then let As := (
⋃k−1

i=1 V (Ci ∩ Ci+1)) − {as−1, bs−1}.
Define σ(H) := |⋃h

s=1 As|. Intuitively, σ(H) consists of the vertices incident with
f , and those vertices which are of degree at least three in H (when viewed as a graph).
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H1
Ht Hu Hh

x

y

f

a1 at−1 at auau−1 ah−1

b1 bt−1 bt bubu−1 bh−1

p q v w

G1
G2

Fig. 7. Block chains H, I, and J .

We wish route our cycle through two large “parts” of G − y. For this purpose,
we consider chains I and J in G− y defined below.

Let I := I1 . . . Ii be a block chain in G− y such that (i) |V (I1) ∩ V (H)| = 2, (ii)
V (I)∩V (H) = V (I1)∩V (H), (iii) Ii is an extreme 3-block of G−y, and (iv) subject to
(i), (ii), and (iii), |V (I)| is maximum. When I is nonempty, let V (I1)∩V (H) = {p, q}.
In this case, {p, q, y} is a 3-cut of G, and we let G1 denote the subgraph of G by deleting
those components of G− {p, q, y} which contain an element of V (H). (Note that G1

can be defined in a more direct way; however, defining it from I is more natural for
our algorithm because we have all 3-blocks.) See Figure 7.

Since all degree two vertices in H are contained in some other 3-blocks of G−y or
are neighbors of y, G−y can be covered by at most d−1 block chains starting from a
3-block containing f and ending with an extreme 3-block (or a cycle chain containing
an extreme 3-block). Hence, we have the following.

Observation 1. If G1 �= ∅ then |G1| ≥ n−σ(H)
d−1 .

Let J := J1 . . . Jj be a block chain in G − y such that (i) |V (J1) ∩ (V (H) ∪
V (G1))| = 2, (ii) V (J ) ∩ (V (H) ∪ V (G1)) = V (J1) ∩ (V (H) ∪ V (G1)), (iii) Jj is an
extreme 3-block of G− y, and (iv) subject to (i), (ii), and (iii), |V (J )| is maximum.
When J is nonempty, let V (J ) ∩ (V (H) ∪ V (G1)) = {v, w}. By the choice of G1,
{v, w} �= {p, q} and {v, w} ⊆ V (H). In this case, {v, w, y} is a 3-cut of G, and we
let G2 denote the subgraph of G by deleting those components of G− {v, w, y} that
contain an element of V (G1)∪V (H). Note that V (G1)∩V (G2) ⊆ {p, q, y}∩{v, w, y}
and |V (G1) ∩ V (G2)| ≤ 2 (because {v, w} �= {p, q}). See Figure 7.

By the same reasoning as for Observation 1, we have following two observations.

Observation 2. If G2 �= ∅, then |G2| ≥ n−σ(H)−(|G1|−1)
d−2 .

Observation 3. If σ(H) ≥ |G2|, then σ(H) ≥ |G|
d−1 .

Next we distinguish two cases by comparing σ(H) and |G2|.
Case 1. σ(H) ≥ |G2|. In this case, it suffices to consider H and G1. Clearly, there

is some 1 ≤ t ≤ h such that {p, q} ⊆ V (Ht), and {p, q} �= {at−1, bt−1} when t �= 1.
Let a0, b0 be the vertices incident with f . We will find paths in Hs, 1 ≤ s ≤ h, and a
path in G1 to form the desired cycle.

(1) If s = 1 < t, then there is a path P1 from a1 to b1 in H1 such that f ∈ E(P1)

and |E(P1)| ≥ ( |As|
2(d−1) )

r + 1. If 1 < s < t, then there exists Ps ⊆ Hs, consisting of
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disjoint paths from {as−1, bs−1} to {as, bs}, such that |E(Ps)| ≥ ( |As|
2(d−1) )

r + 1.

Suppose Hs = K4 or Hs is a cycle chain. By Proposition 2.4, let Cs denote a
Hamilton cycle through as−1bs−1 and asbs in Hs. Since |Hs| ≥ 3 and by Lemma 3.2,

|Cs| = |Hs| ≥
( |Hs|

2(d− 1)

)r

+ 2 ≥
( |As|

2(d− 1)

)r

+ 2.

If s = 1, then P1 := C1−a1b1 gives the desired path for (1). Now assume 1 < s < t. If

|Hs| ≥ 4, then |Cs| = |Hs| ≥ ( |Hs|
2(d−1) )

r + 3, and if |Hs| = 3, then |As| = 0, and hence

|Cs| = |Hs| = ( |As|
2(d−1) )

r +3. Hence Ps := Cs−{as−1bs−1, asbs} gives the desired path

for (1).
Now suppose Hs is 3-connected and Hs �= K4. Then 5 ≤ |Hs| < n, and hence

Theorem 2.1 holds for Hs. By Theorem 2.1 (b), there is a cycle Cs through as−1bs−1

and asbs in Hs such that |Cs| = ( |Hs|
2(d−1) )

r + 3 ≥ ( |As|
2(d−1) )

r + 3.

When s �= 1, then Ps := Cs − {as−1bs−1, asbs} is as desired, and when s = 1,
then Ps := Cs − asbs gives the desired path for (1).

(2) Next we find Pt ⊆ Ht, and to do so, we consider three subcases.

(2a) First, assume that 1 = t = h. We will find a path Pt from x to {p, q} such

that f ∈ E(Pt), pq /∈ E(Pt) unless pq = f , and |E(Pt)| ≥ ( σ(H)
2(d−1) )

r + 1.

If Ht is a cycle chain, then by Proposition 2.8, let Pt denote a path from x to
{p, q} in Ht such that f ∈ E(Pt), pq /∈ E(Pt) unless pq = f , and At ⊆ V (Pt). When

Ht consists of only one 3-block of G − y, then |E(Pt)| ≥ 2 = |At| > ( |At|
2(d−1) )

r + 1 =

( σ(H)
2(d−1) )

r + 1 (by Lemma 3.2). When Ht has at least two 3-blocks of G − y, then

|At| ≥ 3 and |E(Pt)| ≥ |At| − 1 ≥ ( |At|
2(d−1) )

r + 1 = ( σ(H)
2(d−1) )

r + 1 (by Lemma 3.2). So

Pt gives the desired path for (2a).
If Ht = K4, then σ(H) = 4. Let Pt denote a Hamilton path from x to {p, q} in Ht

such that f ∈ E(Pt), and pq /∈ E(Pt) unless pq = f . Then |E(Pt)| = 3 ≥ ( σ(H)
2(d−1) )

r+2.

Hence, Pt gives the desired path for (2a).
Now assume that Ht is not a cycle chain and Ht �= K4.
If x ∈ {p, q}, then f �= pq since x is not incident with f . Since 5 ≤ |Ht| < n,

Theorem 2.1 holds for Ht. By Theorem 2.1 (b), there exists a cycle Ct in Ht such

that pq, f ∈ E(Pt) and |Ct| ≥ ( |Ht|
2(d−1) )

r + 3 = ( σ(H)
2(d−1) )

r + 3. Hence Pt := Ct − pq

gives the desired path.
Assume x /∈ {p, q}.
Suppose f �= pq. Let H ′

t be obtained from Ht by a T-transform at {x, pq}, and
let x′ denote the new vertex. By Lemma 3.3 and since x has degree at most d − 1
in Ht, H

′
t is a 3-connected graph with maximum degree at most d. Since G − y is

not 3-connected, |Ht| < n − 1. Hence 5 ≤ |H ′
t| < n, and Theorem 2.1 holds for

H ′
t. By Theorem 2.1 (b), there exists a cycle Ct in H ′

t such that f, xx′ ∈ E(Ct) and

|Ct| ≥ ( |Ht|
2(d−1) )

r + 3 = ( σ(H)
2(d−1) )

r + 3. Hence Pt := Ct − x′ gives the desired path for

(2a).
Finally, assume that f = pq. Let H ′

t := Ht + {px, qx}. Then H ′
t is a 3-connected

graph with maximum degree at most d + 1, and all vertices of degree d + 1 must be
incident with px or pq. By Theorem 2.1, we can find a cycle Ct in H ′

t − p through xq

such that |Ct| ≥ ( |Ht|
2t )r +2 = (σ(H)

2t )r +2, where t ≤ d−1 is the number of neighbors
of p distinct from x and q. Hence Pt := (Ct − qx) + {p, pq} gives the desired path for
(2a).
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(2b) Now assume that 1 ≤ t < h. If t = 1, we will find a path Pt from {at, bt} to

{p, q} in Ht such that f ∈ E(Pt), pq /∈ E(Pt) unless pq = f , and |E(Pt)| ≥ ( |At|
2(d−1) )

r.

If t �= 1, we will find Pt ⊆ Ht, consisting of disjoint paths from {p, q} and {at, bt} to

{at−1, bt−1} such that |E(Pt)| ≥ ( |At|+2
2(d−1) )

r − 1.

Suppose Ht is a cycle chain. If {at, bt} = {p, q}, then by Proposition 2.4 let Ct

denote a Hamilton path in Ht from at to bt through f . If {at, bt} �= {p, q}, then by
Proposition 2.7, let Ct denote a path in Ht − atbt from {at, bt} to {p, q} such that
at−1bt−1 ∈ E(Ct), pq /∈ E(Ct), and At ⊆ V (Ct). From the definition of At and since
t < h, at /∈ At and bt /∈ At. Also note that if t �= 1, then at−1 /∈ At or bt−1 /∈ At. So
if t = 1, then |E(Ct)| ≥ |At|, and if t �= 1, then |E(Ct)| ≥ |At| + 1. Let Pt := Ct if
t = 1, and let Pt := Ct − at−1bt−1 if t �= 1. Then Pt is as desired for (2b).

If Ht = K4, then let Ct denote a Hamilton path in Ht−{pq, atbt} from {at, bt} to

{p, q} through at−1bt−1. Then |E(Ct)| = 3 > ( |At|
2(d−1) )

r+1, and so Pt := Ct−at−1bt−1

is as desired for (2b).

Now assume that Ht is not a cycle and Ht �= K4.

Suppose {at, bt} = {p, q}. Since 5 ≤ |Ht| < n, Theorem 2.1 holds for Ht. By
Theorem 2.1 (b), there is a cycle Ct through at−1bt−1 and atbt in Ht such that

|Ct| ≥ ( |Ht|
2(d−1) )

r + 3 = ( |At|
2(d−1) )

r + 3. If t = 1 then Pt := Ct − atbt gives the desired

path, and if t �= 1 then Pt := Ct − {at−1bt−1, atbt} is as desired for (2b).

Now assume that {at, bt} �= {p, q}. Let H ′
t be obtained from Ht by an H-transform

at {atbt, pq}, and let a′, b′ denote the new vertices. By Lemma 3.3, H ′
t is a 3-connected

graph with maximum degree at most d. Since G − y is not 3-connected and since I
is nonempty (when {p, q} is defined), we have |Ht| ≤ n − 3. Hence 5 ≤ |H ′

t| < n.
Hence Theorem 2.1 holds for H ′

t. By Theorem 2.1 (b), there is a cycle Ct through

a′b′ and at−1bt−1 in H ′
t such that |Ct| ≥ (

|H′
t|

2(d−1) )
r + 3 = ( |At|+2

2(d−1) )
r + 3. If t = 1 then

Pt := Ct−{a, a′} gives the desired path, and if t �= 1 then Pt := Ct−{a, a′, at−1bt−1}
is as desired for (2b).

(2c) Finally, assume 1 < t = h. We will find Pt ⊆ Ht, consisting of disjoint paths

from x and {p, q} to {at−1, bt−1}, such that |E(Pt)| ≥ ( |At|
2(d−1) )

r.

If Ht is a cycle chain, then by Proposition 2.8, let Ct denote a path in Ht from x to
{p, q} such that at−1bt−1 ∈ E(Ct), pq /∈ E(Pt), and At ⊆ V (Pt). Since x, at−1, bt−1 /∈
At, |E(Ct)| ≥ |At| + 1 > ( |At|

2(d−1) )
r + 1. Hence Pt := Ct − at−1bt−1 is as desired for

(2c).

If Ht = K4, then let Ct denote a Hamilton path in Ht−pq from x to {p, q} through

at−1bt−1. Then |E(Ct)| = 3 ≥ ( |Ht|
2(d−1) )

r+2 = ( |At|
2(d−1) )

r+2. Hence Pt := Ct−at−1bt−1

is as desired for (2c).

Now assume that Ht is not a cycle chain and Ht �= K4.

Suppose x ∈ {p, q}. Since 5 ≤ |Ht| < n, Theorem 2.1 holds for Ht. By Theorem

2.1 (b), there is a cycle Ct through at−1bt−1 and pq in Ht such that |Ct| ≥ ( |Ht|
2(d−1) )

r +

3 = ( |At|
2(d−1) )

r + 3. Then Pt := Ct − {pq, at−1bt−1} is as desired.

Now assume that x /∈ {p, q}. Recall that {p, q} �= {at−1, bt−1}. Let H ′
t be obtained

from Ht by a T-transform {x, pq} and let c′ denote the new vertex. By Lemma 3.3,
H ′

t is a 3-connected graph with maximum degree at most d (because the degree of
x in Ht is at most d − 1). Since G − y is not 3-connected, |Ht| ≤ n − 2, and so,
5 ≤ |H ′

t| < n. Hence Theorem 2.1 holds for H ′
t. By Theorem 2.1 (b), there is a cycle

Ct through xc′ and at−1bt−1 in H ′
t such that |Ct| ≥ (

|H′
t|

2(d−1) )
r + 3 > ( |At|

2(d−1) )
r + 3.
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Hence Pt := Ct − {c′, at−1bt−1} is as desired for (2c).

(3) For each t + 1 ≤ s ≤ h, we will find a path Ps ⊆ Hs such that |E(Ps)| ≥
( |As|
2(d−1) )

r when s �= h, |E(Ps)| ≥ ( |As|
2(d−1) )

r + 1 when s = h, and
⋃h

s=t+1 Ps is a path

from x to the end of Pt contained in {at, bt} and is otherwise disjoint from Pt.

We find Ps in the order s = t + 1, . . . , h.

Suppose Ps−1 is found, and the notation of {as−1, bs−1} is chosen so that as−1

is an end of Ps−1, and assume that the notation of {as, bs} is chosen so that as /∈
{as−1, bs−1}.

First, assume that Hs is a cycle chain. If s �= h, then by Proposition 2.5, let Ps

denote a path in Hs − {as−1bs−1, asbs} from as−1 to {as, bs} such that As ⊆ V (Ps).

Since as−1, bs−1, as, bs /∈ As, we have that |E(Ps)| ≥ |As|+1 ≥ ( |As|
2(d−1) )

r+1. If s = h,

then by Proposition 2.6 let Ps be a path from x to as−1 in Hs − as−1bs−1 such that

As ⊆ V (Ps). Since x, as−1, bs−1 /∈ As, we have that |E(Ps)| ≥ |As|+1 > ( |As|
2(d−1) )

r+1.

Now assume Hs = K4. If s �= h, then let Ps denote a path in Hs−{as−1bs−1, asbs}
from as−1 to as with |E(Ps)| ≥ 1 ≥ ( |As|

2(d−1) )
r. If s = h, then let Ps be a path in

Hs − as−1bs−1 from as−1 to x with |E(Ps)| ≥ 2 > ( |As|
2(d−1) )

r + 1.

Assume that Hs is not a cycle chain and Hs �= K4.

Suppose s �= h. If bs−1 = bs, then let H ′
s := Hs + as−1as. Clearly, H ′

s is 3-
connected with maximum degree at most d+ 1, and the vertices of degree d+ 1 must
be incident with as−1bs−1 or asbs−1. Thus by Theorem 2.1 (a), there is a cycle Cs in

H ′
s− bs−1 such that as−1as ∈ E(Cs) and |Cs| ≥ (

|H′
s|

2(d−1) )
r +2. Let Ps := Cs−as−1as.

Then |E(Ps)| ≥ ( |As|
2(d−1) )

r+1. So assume bs−1 �= bs. Let H ′′
s be obtained from Hs by a

T-transform at {bs−1, asbs}, and let a′ denote the new vertex. Let H ′
s := H ′′

s +as−1a
′.

Since G − y is not 3-connected, |H ′′
s | ≤ n − 2, and so 5 ≤ |H ′

s| < n. By Lemma 3.3,
H ′′

s is a 3-connected graph with maximum degree at most d + 1, and the vertices of
degree d + 1 must be incident with bs−1a

′ or bs−1as−1. Thus H ′
s, as−1a

′, bs−1 satisfy
the conditions Theorem 2.1 (a). By Theorem 2.1 (a), there is a cycle Cs through

as−1a
′ in H ′

s − bs−1 such that |Cs| ≥ (
|H′

s|
2(d−1) )

r + 2. Let Ps := Cs − a′. Then

|E(Ps)| ≥ ( |As|
2(d−1) )

r.

Now assume s = h. Let H ′
s := Hs + {xbs−1, xas−1}. Then H ′

s is a 3-connected
graph, the vertices x, as−1, bs−1 have degree at most d + 1, and all other vertices of
H ′

s have degree at most d. Thus H ′
s, as−1x, bs−1 satisfy the conditions of Theorem 2.1

(a). By Theorem 2.1 (a), there is a cycle C ′
s through as−1x in H ′

s − bs−1 such that

|C ′
s| ≥ (

|H′
s|

2(d−1) )
r + 2. Let Ps := C ′

s − as−1x. Then Ps is a path from as−1 to x and

|E(Ps)| ≥ (
|H′

s|
2(d−1) )

r + 1 ≥ ( |As|
2(d−1) )

r + 1.

It is easy to see that
⋃h

s=t+1 Ps is a path from x to the end of Pt in {at, bt} and
is otherwise disjoint from Pt.

(4) Let P :=
⋃h

s=1 Ps. We claim that P is a path from x to {p, q}, f ∈ E(P ),

pq /∈ E(P ) unless pq = f , and |E(P )| ≥ ( σ(H)
2(d−1) )

r + 1.

This is obvious if h = 1 (by (2a)). So assume that h ≥ 2.

Suppose t �= 1. Then |E(Ps)| ≥ ( |As|
2(d−1) )

r + 1 for 1 ≤ s ≤ t − 1 (by (1)),

|E(Pt)| ≥ ( |At|+2
2(d−1) )

r − 1 when t �= h (by (2b)), |E(Pt)| ≥ ( |At|
2(d−1) )

r when t = h (by

(2c)), |E(Ps)| ≥ ( |As|
2(d−1) )

r when t + 1 ≤ s < h (by (3)), and |E(Ph)| ≥ ( |Ah|
2(d−1) )

r) + 1
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when t < h (by (3)). Hence we have

|E(P )| =
h∑

s=1

|E(Ps)|

≥
(

h∑
s=1

( |As|
2(d− 1)

)r
)

+ 1

≥
(∑h

s=1 |As|
2(d− 1)

)r

+ 1 (by Lemma 3.1)

≥
(

σ(H)

2(d− 1)

)r

+ 1.

Now suppose t = 1. Then |E(Pt)| ≥ ( |At|
2(d−1) )

r (by (2b)), |E(Ps)| ≥ ( |As|
2(d−1) )

r for

2 ≤ s ≤ h − 1 (by (3)), and |E(Ph)| ≥ ( |Ah|
2(d−1) )

r + 1 (by (3)). Hence by the same

argument as in the above paragraph, we have |E(P )| ≥ ( σ(H)
2(d−1) )

r + 1. Thus, we have

(4).

By (4), we may assume that the notation of {p, q} is chosen so that P is from x
to p.

(5) We claim that there is a path Q in G1 − q from p to y such that |E(Q)| ≥
( |G1|
2(d−1) )

r + 1.

Note that |G1| ≥ 4 and that G1 is not a cycle. Thus G′
1 := G1 + {yp, yq, pq} is a

3-connected graph.
If G′

1 = K4, then we can find a path Q in G′
1 − q from p to y such that |E(Q)| =

2 ≥ ( |G1|
2(d−1) )

r + 1.

Now assume that G′
1 �= K4. Then Theorem 2.1 holds for G′

1. Note that all
vertices of G′

1 have degree at most d, except possibly y, p, q, which have degree at
most d + 1. By Theorem 2.1 (a), there is a cycle C1 through py in G′

1 − q such that

|C1| ≥ ( |G1|
2(d−1) )

r + 2. Let Q := C1 − py. Then Q gives the desired path.

(6) Finally, let C := (P ∪Q) + xy. Then C is a cycle through e and f in G and,

by (4) and (5), |C| ≥ (( σ(H)
2(d−1) )

r + 1) + (( |G1|
2(d−1) )

r + 1) + 1 = ( σ(H)
2(d−1) )

r + ( |G1|
2(d−1) )

r + 3.

Recall that σ(H) ≥ |G2| and |G1| ≥ |G2|.
If σ(H) < |G1|, then

|C| ≥
(

σ(H)

2(d− 1)

)r

+

( |G1|
2(d− 1)

)r

+ 3

≥
(

(d− 1)σ (H) +
|G1|

2(d− 1)

)r

+ 3 (by Lemma 3.1 and since σ(H) < |G1|)

≥
(

n

2(d− 1)

)r

+ 3 (by Observation 3).

Otherwise, σ(H) ≥ |G1|. Hence,

|C| ≥
(

σ(H)

2(d− 1)

)r

+

( |G1|
2(d− 1)

)r

+ 3

≥
(

σ(H)

2(d− 1)
+ (d− 1)|G1|

)r

+ 3 (by Lemma 3.1 and since σ(H) ≥ |G1|)
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>

(
n

2(d− 1)

)r

+ 3 (by Observation 1).

Case 2. σ(H) ≤ |G2|. In this case G2 is nonempty. We will use G1 and G2 to
find the desired cycle. Let V (G2)∩V (H) = {v, w}. Then there exists some 1 ≤ u ≤ h
such that {v, w} ⊆ V (Hu), and {v, w} �= {au−1, bu−1} when u �= 1. Also there exists
some 1 ≤ t ≤ h such that {p, q} ⊆ V (Ht), and {p, q} �= {at−1, bt−1} when t �= 1.

(1) We claim that we can find, in O(|H|) time, a path P from x to some z ∈
{p, q} ∪ {v, w} in

⋃h
s=1 Hs for which

(i) f ∈ E(P ),
(ii) pq ∈ E(P ) or vw ∈ E(P ), and
(iii) if pq ∈ E(P ), then z ∈ {v, w}, and vw /∈ E(P ) unless vw = f , and if

vw ∈ E(P ), then z ∈ {p, q}, and pq /∈ E(P ) unless pq = f .

To prove (1), let us assume that t ≤ u; the case t ≥ u can be taken care of in
exactly the same way.

When t �= 1, we use Lemma 3.5 to find a cycle Q′ in
⋃t−1

s=1 Hs through at−1bt−1

and f . Let Q := Q′ − at−1bt−1, which is a path from at−1 to bt−1 through f . Let
Q = ∅ when t = 1. We distinguish two cases.

Subcase (1a). t < u. By choosing the notation of {at, bt}, we may assume that

(
⋃h

s=t+1 Hs) − bt contains a path X from at to x through vw.

If bt ∈ {p, q}, then we use Lemma 3.5 to find a cycle Ct through at−1bt−1 and
atbt in Ht. If pq /∈ E(Ct) or bt ∈ {at−1, bt−1}, let Pt := Ct − {at−1bt−1, atbt} when
t �= 1, and let Pt := Ct − atbt when t = 1. Then P := Q ∪X ∪ Pt gives the desired
path for (1) (with z = bt). So assume pq ∈ E(Ct) and bt /∈ {at−1, bt−1}. Then let
Pt := Ct − {at−1bt−1, bt} when t �= 1, and let Pt := Ct − bt when t = 1. Then
P := Q ∪X ∪ Pt gives the desired path for (1) (with z = p).

We may therefore assume that bt /∈ {p, q}.
Suppose Ht is not a cycle chain. Then Ht is 3-connected. Let H ′

t be obtained
from Ht by a T-transform at {at, pq} and let a′ denote the new vertex. Then H ′

t−bt is
2-connected. By Lemma 3.5, we find a cycle C ′

t through at−1bt−1 and a′at in H ′
t − bt.

If t = 1, then let Pt := C ′
t − a′, and if t �= 1, then let Pt := C ′

t − {a′, at−1bt−1}. Then
P := Q ∪ Pt ∪X gives the desired path for (1).

Now assume that Ht is a cycle chain. By the structure of a cycle chain, we can,
in O(|Ht|) time, either find a path Ct in Ht−atbt from at to {p, q} through at−1bt−1,
or find a path C ′

t in Ht from at to bt through at−1bt−1 and pq.

If we find Ct, then let Pt := Ct − at−1bt−1 when t �= 1 and Pt := Ct when t = 1.
In this case, P := Q ∪ Pt ∪X gives the desired path for (1).

Assume that we find C ′
t. In this case, we cannot use X. Let Pt := C ′

t if t = 1,

and otherwise let Pt := C ′
t − at−1bt−1. Let H :=

⋃h
s=t+1 Hs. If x ∈ {v, w}, then

find a cycle C ′ in H through atbt and vw, and so P := Q ∪ Pt ∪ (C ′ − {atbt, vw})
gives the desired path for (1). So assume that x /∈ {v, w}. Let H ′ be obtained from
H by a T-transform at {x, vw}, and let x′ denote the new vertex. Then H ′ is a
2-connected graph. By Lemma 3.5, we find a cycle C ′ through atbt and xx′. Now
P := Q ∪ Pt ∪ (C ′ − {x′, atbt}) gives the desired path for (1).

Subcase (1b). t = u. Recall that {p, q} �= {v, w}.
First, assume that t �= h. We claim that there is a path Qt in Ht from {at, bt}

to some z ∈ {p, q} ∪ {v, w} such that (i) at−1bt−1 ∈ E(Qt), (ii) pq ∈ E(Qt) or
vw ∈ E(Qt), and (iii) if pq ∈ E(Qt), then z ∈ {v, w}, and vw /∈ E(Qt) unless vw =
at−1bt−1, and if vw ∈ E(Qt), then z ∈ {p, q}, and pq /∈ E(Qt) unless pq = at−1bt−1.
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This is easy to see if Ht is a cycle chain, and otherwise, it follows from Lemma 3.6.
Assume without loss of generality that at ∈ V (Qt). In (

⋃h
s=t+1 Hs) − bt, we find a

path R from at to x. Now P := Q ∪Qt ∪R gives the desired path for (1).
Now assume that t = h. We note that there is a path Qt in Ht from x to

z ∈ {p, q} ∪ {v, w} such that (i) at−1bt−1 ∈ E(Qt), (ii) pq ∈ E(Qt) or vw ∈ E(Qt),
and (iii) if pq ∈ E(Qt), then z ∈ {v, w}, and vw /∈ E(Qt) unless vw = at−1bt−1, and
if vw ∈ E(Qt), then z ∈ {p, q}, and pq /∈ E(Qt) unless pq = at−1bt−1. This is easy to
see if Ht is a cycle chain, and otherwise, it follows from Lemma 3.7. Now P := Q∪Qt

gives the desired path for (1).
Assume that vw ∈ E(P ) in (1) (the case pq ∈ E(P ) is similar), and assume p is

an end of P .
(2) Note that G′

1 := G1 + {yp, yq, pq} is a 3-connected graph, vertices y, p, q have
degree at most d + 1 in G′

1, and all other vertices of G′
1 have degree at most d. If

G′
1 = K4, then we can find a path P1 from p to y in G′

1 − q such that |E(P1)| = 2 ≥
( |G1|
2(d−1) )

r +1. If G′
1 �= K4, then Theorem 2.1 holds for G′

1. By Theorem 2.1 (a), there

is a cycle C1 through py in G′
1−q such that |C1| ≥ ( |G1|

2t1
)r +2, where t1 is the number

of neighbors of q in G′
1 distinct from p and y. Let P1 := C1 − py. Then P1 is a path

from p to y in G′
1 − q. Since t1 ≤ d− 1, we have |E(P1)| ≥ ( |G1|

2(d−1) )
r + 1.

(3) Note that G′
2 := G2 + {yv, yw, vw} is a 3-connected graph, vertices y, v, w

have degree at most d + 1 in G′
2, and all other vertices of G′

2 have degree at most d.
If G′

2 = K4, then we can find a path P2 from v to w in G′
2 − y such that |E(P2)| =

2 ≥ ( |G2|
2(d−1) )

r + 1. If G′
2 �= K4, then Theorem 2.1 holds for G′

2. By Theorem 2.1 (a),

there is a cycle C2 through vw in G′
2 − y such that |C2| ≥ (

|G′
2|

2t2
)r + 2, where t2 is the

number of neighbors of y in G′
2 distinct from v and w. Let P2 := C2 − vw. Then P2

is a path from v to w in G′
2 − y. Since t2 ≤ d− 1, we have |E(P2)| ≥ ( |G2|

2(d−1) )
r + 1.

Let C := ((P − vw) ∪ P1 ∪ P2) + e. Then C is a cycle through e and f in G and

|C| = |E(P )| + |E(P1)| + |E(P2)| + 1

≥
( |G1|

2(d− 1)

)r

+

( |G2|
2(d− 1)

)r

+ 3 (by (2) and (3))

≥
( |G1|

2(d− 1)
+ (d− 1)|G2|

)r

+ 3 (by Lemma 3.1 and since |G1| ≥ |G2|)

≥
(

n

2(d− 1)

)r

+ 3,

where the final inequality holds because of Observation 2 and since |G2| ≥ σ(H).
Next we show that the above proof gives an O(|G|) algorithm which reduces

Theorem 2.1 (b) to (a) and (b) of the same theorem (for smaller graphs).
Algorithm Twoedge. Let n, d, r,G, e, f be as in Lemma 5.1.
1. Preprocessing Replace G with a 3-connected spanning subgraph of G with

O(|G|) edges. (This can be done in O(|E(G)|) time by 3.4.)
2. If e is adjacent to f , then let e = xz and f = yz. It suffices to find a cycle

C ′ through xy in G′ := (G + xy) − z such that |C ′| ≥ ( |G
′|

2t )r + 2, where
t is the number of neighbors of z in G′ distinct from x and y. That is, we
reduce Theorem 2.1 (b) for G, e, f to Theorem 2.1 (a) for G′, xy, z. We apply
Algorithm Avoidvertex to G′, xy, z. (By Proposition 4.2, we can, in O(|G|)
time, either find the desired cycle C ′ or reduce it to (a) or (c) for smaller
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graphs. Moreover, each smaller graph contains a vertex that does not belong
to any other smaller graph.)

3. Now assume that e is not adjacent to f , and let e = xy. Decompose G−y into
3-connected components. (This can be done in O(|G|) time using Theorem
2.2.)

4. Suppose there is only one 3-connected component of G − y. Then G − y is
3-connected, and let y′ denote a neighbor of y distinct from x. Let G′ :=
(G− y)+xy′ and e′ = xy′. To find the desired cycle through e and f in G, it

suffices to find a cycle C ′ through e′ and f in G′ such that |C ′| ≥ ( |G′|
2(d−1) )

r+3.

Thus we reduce Theorem 2.1 (b) for G, e, f to Theorem 2.1 (b) for G′, e′, f ,
with |G′| < |G|. (This reduction can be done in constant time.)

5. Now assume that G − y has at least two 3-connected components. Find the
block chain H = H1 . . . Hh such that f ∈ E(H1), x ∈ V (Hh)−V (Hh−1), and
f is not incident with both vertices in V (H1) ∩ V (H2). Find G1 and G2 as
in the proof Lemma 5.1. (This can be done in O(|G|) time.)

6. Suppose σ(H) > |G2|.
• Assume 1 ≤ s ≤ t−1. We need to find Ps as in (1) of Case 1 in the proof

of 5.1. If Hs = K4 or Hs is a cycle chain then we find Ps, and otherwise,
we need to find a cycle Cs through as−1bs−1 and asbs in Hs such that

|Cs| ≥ ( |Hs|
2(d−1) )

r + 3. So either we find Ps in O(|Hs|) time or we reduce

the problem of finding Ps to Theorem 2.1 (b) for Hs, as−1bs−1, asbs in
constant time.

• We need to find Pt ⊆ Ht as in (2) of Case 1 in the proof of Lemma 5.1.
If Ht is a cycle chain or Ht = K4 then we find Pt ⊆ Ht as in (2) of
Case 1 in the proof of Lemma 5.1. (This can be done in O(|Ht|) time.)
If Ht is not a cycle chain and Ht �= K4, then we reduce the problem
of finding Pt to the following:Theorem 2.1 (b) for Ht, f, pq or H ′

t, f, xx
′;

Theorem 2.1 (a) for H ′
t, px, q (as in (2a) of Case 1); Theorem 2.1 (b) for

Ht, at−1bt−1, atbt or H ′
t, at−1bt−1, a

′b′ (as in (2b) of Case 1); Theorem
2.1 (b) for Ht, at−1bt−1, pq or H ′

t, at−1bt−1, xc
′ (as in (2c) of Case 1).

(This reduction can be done in constant time.)
• Suppose t + 1 ≤ s ≤ h. We need to find Ps as in (3) of Case 1 in

the proof of Lemma 5.1. If Hs = K4 or Hs is a cycle chain, we find
a path Ps. (This can be done in O(|Hs|) time.) If Hs �= K4 and Hs

is not a cycle chain, then we reduce the problem of finding Ps to the
following: Theorem 2.1 (a) for H ′

s, as−1as, bs−1, or H ′
s, as−1a

′, bs−1, or
H ′

s, as−1x, bs−1. (This reduction can be done in constant time.)
• Let G′

1 := G1 + {yp, yq, pq}. We need to find a path Q in G′
1 as in (5)

of Case 1 in the proof of Lemma 5.1. If G′
1 = K4, we find a path Q

in O(|G1|) time, and otherwise, we reduce the problem of finding Q to
Theorem 2.1 (a) for G′

1, py, q, in constant time.
(The operations in step 6 can be done in O(|G|) time. Also each 3-connected
graph reduced to from Hs’s or G1 contains a vertex which does not belong
to any other 3-connected graphs reduced to from Hs’s or G1.)

7. Now assume σ(H) ≤ |G2|.
• First, we find Ht and Hu such that {p, q} ⊆ V (Ht), {p, q} �= {at−1, bt−1}

when t �= 1, {v, w} ⊆ V (Hu), and {v, w} �= {au−1, bu−1} when u �= 1.
(This can be done in O(|G|) time by searching the 3-connected compo-
nents of G− y.)
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• Assume that t ≤ u (u ≥ t can be treated similarly). Find a path P in⋃t
s=1 Hs from x to {p, q} (or {v, w}) to {v, w} (or {p, q}) through f and

vw (or pq). (This can be done in O(|G|) time as in (1) of Case 2 in the
proof of Lemma 5.1.)

• Assume P is from x to p and through f and vw. If G′
1 = K4, then we

find a path P1 in G′
1 − q from p to y of length 2. If G′

1 �= K4, then we
need to apply Theorem 2.1 (a) to G′

1, yp, q. (This reduction can be done
in constant time, as in (2) of Case 2 in the proof of Lemma 5.1.)

• If G′
2 = K4, then find a path P2 in G′

2 − y from v to w of length 2. If
G′

2 �= K4, then we need to apply Theorem 2.1 (a) to G′
2, vw, y. (Again,

this can be done in constant time, as in (3) of Case 2 in the proof of
Lemma 5.1.)

To summarize, we have the following.
Proposition 5.2. Given G, e, f, n, d, r as in Lemma 5.1, we can, in O(|E(G)|)

time, either

(1) find a cycle C through e and f in G such that |C| ≥ ( |G|
2(d−1) )

r + 3, or

(2) reduce Theorem 2.1 (b) for G, e, f to Theorem 2.1 (a) or (b) for smaller 3-
connected graphs.

Moreover, any smaller graph in (2) comes from a 3-connected 3-block of G − y that
is not K4. Hence, any smaller graph in (2) contains a vertex that does not belong to
any other smaller graph in (2).

6. Cycles through one edge. In this section, we show how to reduce Theorem
2.1 (c), in linear time, to Theorem 2.1 (a), (b), or (c) of 2.1 for smaller graphs. As in
the previous two sections, we state the reduction as a lemma.

Lemma 6.1. Let n ≥ 6 and d ≥ 3 be integers, let r = log2(d−1)2+1 2, and assume
that Theorem 2.1 holds for graphs with at most n− 1 vertices. Let G be a 3-connected
graph on n vertices, and assume that the maximum degree of G is at most d. Then
for any e ∈ E(G) there is a cycle C through e in G such that |C| ≥ nr + 3.

Proof. Let e = xy ∈ E(G), and consider G− y.
If G − y is 3-connected, then let y′ be a neighbor of y other than x. Clearly,

G′ := (G − y) + xy′ is a 3-connected graph with maximum degree at most d. Since
5 ≤ |G′| < n, Theorem 2.1 holds for G′. By Theorem 2.1 (c), there is a cycle C ′

through xy′ in G′ such that |C ′| ≥ (n−1)r +3. Now let C := (C ′−xy′)+{y, xy, yy′}.
Then C is a cycle through xy in G and

|C| = |C ′| + 1

≥ (n− 1)r + 1 + 3

≥ nr + 3 (by Lemma 3.1).

Therefore, we may assume that G− y is not 3-connected. Since G is 3-connected,
G − y is 2-connected. By Theorem 2.2, we can decompose G − y into 3-connected
components.

First, let us consider the case where all 3-blocks of G − y are cycles. Let I =
I1 . . . Ii be a block chain in G − y such that (i) x ∈ V (I1) − V (I2), (ii) Ii is an
extreme 3-block of G − y, and (iii) subject to (i) and (ii), |V (I)| is maximum. For

convenience, let B := I1. Then |V (I)| ≥ (n−1)−|B|
t−1 + |B| = n+(t−2)|B|−1

t−1 , where t
is the number of extreme 3-blocks of G − y distinct from I1. So n ≥ t + 4 (since
|B| ≥ 3) and t ≤ d− 1. It is easy to see that there is some y′ ∈ V (I)− {x} such that⋃i

s=1 Is contains a Hamilton path P from x to y′ and G has a path Q from y′ to y
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L1 Lt Li

c1 ct−1 ct c�−1

x

d1 dt−1
dt d�−1

a0

a1

ah−1

y′

b0

b1

bh−1

H1

Hh

Fig. 8. Block chains L and H.

disjoint from V (I) − {y}. (Note that P and y′ can be found in O(|G|) time.) Let

C := (P ∪Q)+ {y, xy, yy′}. Then |C| ≥ |V (I)|+1 ≥ n+(t−2)|B|−1
t−1 +1. Next we show

that |C| − 3 ≥ nr. Note that |C| − 3 ≥ n+(t−2)|B|−1
t−1 − 2 ≥ n+t−5

t−1 (since |B| ≥ 3).

One can prove that x+t−5
t−1 − xr is an increasing function when x ≥ 2(d − 1)2 + 1.

Hence when n ≥ 2(d − 1)2 + 1, n+t−5
t−1 ≥ nr. Now if t + 4 ≤ n ≤ 2(d − 1)2, then

n+t−5
t−1 > 2 > nr. Therefore, |C| − 3 ≥ nr, and so |C| ≥ nr + 3.

Hence, we may assume that some 3-block of G− y is 3-connected. Let L denote
a 3-connected 3-block of G− y with |L| maximum. Then |L| ≥ 4. Let L := L1 . . . L�

denote a block chain in G − y such that L1 = L and x ∈ V (L�) − V (L�−1), where
� ≥ 1. See Figure 8.

Let V (Li)∩V (Li+1) = {ci, di} for 1 ≤ i ≤ �− 1. For each 1 ≤ i ≤ �, we define Bi

as follows: if Li is 3-connected, then Bi := V (Li); if i < � and Li = C1 . . . Ck is a cycle

chain, then Bi = (
⋃k−1

i=1 V (Ci ∩ Ci+1)) − ({ci−1, di−1} ∪ {ci, di}); if L� = C1 . . . Ck

is a cycle chain, then B� consists of x and the vertices in (
⋃k−1

i=1 V (Ci ∩ Ci+1)) −
{c�−1, d�−1}. Define σ(L) := |⋃�

s=1 Bs|.
If V (L) = V (G) − {y}, then let H = ∅. Otherwise, let H := H1 . . . Hh denote a

block chain in G − y such that (i) |V (H) ∩ V (L)| = 2, (ii) V (H) ∩ V (L) = V (H1) ∩
V (L) �= V (H1) ∩ V (H2), (iii) Hh is an extreme 3-block of G − y. See Figure 8.
Let V (Hi) ∩ V (Hi+1) = {ai, bi}, 1 ≤ i ≤ h − 1. Let a0, b0 denote the vertices in
V (H) ∩ V (L). If H = ∅, then let y′ denote a neighbor of y distinct from x and let
a0 = b0 = y′. If H �= ∅, then let y′ be a neighbor of y in V (Hh) − {ah−1, bh−1}. For
each 1 ≤ s ≤ h, we define As as follows: if Hs is 3-connected, then As := V (Hs); if

h = 1 and H1 = C1 . . . Ck is a cycle chain, then A1 := (
⋃k−1

i=1 V (Ci∩Ci+1))∪{a0, b0}; if
h > 1 and H1 = C1 . . . Ck is a cycle chain, then A1 consists of a0, b0 and those vertices
in (
⋃k−1

i=1 V (Ci∩Ci+1))−{a1, b1}; if 1 < s < h and Hs = C1 . . . Ck is a cycle chain, then

As = (
⋃k−1

i=1 V (Ci∩Ci+1))−{as−1, bs−1, as, bs}; if h > 1 and Hh = C1 . . . Ck is a cycle

chain, then Ah consists of y′ and those vertices in (
⋃k−1

i=1 V (Ci∩Ci+1))−{ah−1, bh−1}.
Define σ(H) := |⋃h

s=1 As|.
We choose H = H1 . . . Hh so that, subject to (i)–(iii), σ(H) is maximum. Without

loss of generality, we may assume that, for some 1 ≤ t ≤ �, a0, b0 ∈ V (Lt) and
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{a0, b0} �= {ct−1, dt−1} (or y′ /∈ {ct−1, dt−1} if a0 = b0 = y′) when t ≥ 2.

Note that each vertex in (
⋃�

i=1(V (Li)−Bi))∪(
⋃h

s=1(V (Hs)−As)) either appears
in some other block chain in G − y or is adjacent to y. By the choice of H and
since there are at most d − 1 extreme blocks of G − y not containing x, we have

σ(H) ≥ (n−1)−σ(L)
d−1 . Hence we have the following.

Observation. σ(L) + (d− 1)σ(H) ≥ n− 1.
We consider three cases.
Case 1. � = 1. In this case, σ(L) = |L1| (because L1 is not a cycle chain). Since

G− y is not 3-connected, H �= ∅.
(1) First, we find a path P in L − a0b0 from x to {a0, b0} such that |E(P )| ≥

(σ(L) + 1)r + 1.
If L1 = K4, then we can find a Hamilton path P from x to {a0, b0} in L1 − a0b0.

Hence by Lemma 3.2, |E(P )| = 3 ≥ |L1|r + 2 = (σ(L) + 1)r + 1. So assume that
L1 �= K4.

If x ∈ {a0, b0}, then by Theorem 2.1 (c), there is a cycle C1 through a0b0 in L1

such that |C1| ≥ |L1|r + 3. Now P := C1 − a0b0 is a path from x to {a0, b0} in
L1 − a0b0 and |E(P )| ≥ (σ(L)r + 2(σ(L) + 1)r + 1 (by Lemma 3.1).

Assume x /∈ {a0, b0}. Let L′
1 denote the graph obtained from L1 by a T-transform

at {x, a0b0}, and let x′ denote the new vertex. By Lemma 3.3 and because x has degree
at most d−1 in L1, L

′
1 is a 3-connected graph with maximum degree at most d. Note

that 5 ≤ |L′
1| < n. Thus Theorem 2.1 holds for L′

1. By Theorem 2.1 (c), there is
a cycle C1 through xx′ in L′

1 such that |C ′
1| ≥ |L′

1|r + 3 = (|L1| + 1)r + 3. Now
P := C1 − x′ gives the desired path.

Without loss of generality, we may assume that the path P found in (1) is from
x to a0.

(2) For i = 1, . . . , h− 1, we find paths Qi from {ai−1, bi−1} to {ai, bi} in Hi such
that

(i)
⋃h−1

i=1 Qi is a path from a0 to {ah−1, bh−1},
(ii) if Hi is 3-connected, then |E(Qi)| ≥ ( |Ai|

2(d−1) )
r,

(iii) if H1 is a cycle chain, then |A1| ≥ 2 and |E(Q1)| ≥ |A1|, and
(iv) if 1 < i < h and Hi is a cycle chain, then |E(Qi)| ≥ |Ai| + 1.
Suppose that, for some 1 ≤ i ≤ h−1, we have found paths Qj , 1 ≤ j ≤ i−1, from

{aj−1, bj−1} to {aj , bj} in Hj such that
⋃i−1

j=1 Qj is a path from a0 to {ai−1, bi−1} and
(ii)–(iv) above are satisfied for Hj , Qj , Aj . For ease of presentation, we may assume

that ai−1 is an end of
⋃i−1

j=1 Qj .
If Hi = K4, then we find a path Qi in Hi − bi−1 from ai−1 to {ai, bi} such that

|E(Qi)| ≥ 2. Clearly, |E(Qi)| ≥ 2 ≥ ( |Ai|
2(d−1) )

r.

If Hi is a cycle chain, then by Proposition 2.5 let Qi be a path in Hi−{ai−1bi−1, aibi}
from ai−1 to {ai, bi} such that Ai ⊆ V (Qi). If i = 1, then since a0, b0 ∈ A1 and
({a1, b1} − {a0, b0}) ∩ A1 = ∅, we have |A1| ≥ 2 and |E(Qi)| ≥ |Ai|. If i �= 1, then
since ({ai−1, bi−1} ∪ {ai, bi}) ∩Ai = ∅, we have |E(Qi)| ≥ |Ai| + 1.

Now assume that Hi is not a cycle chain and Hi �= K4.
If bi−1 ∈ {ai, bi}, then assume bi−1 = bi (by choosing the notation of {ai, bi}),

and let H ′
i := Hi + ai−1ai. Clearly, H ′

i is 3-connected with maximum degree at
most d + 1, and the possible vertices of degree d + 1 are incident with ai−1bi−1 or
aibi−1. By Theorem 2.1 (a), there is a cycle Di through ai−1ai in H ′

i − bi−1 such that

|E(Di)| ≥ ( |Ai|
2ti

)r + 2, where ti is the number of neighbors of bi−1 in H ′
i distinct from

ai−1 and ai. So ti ≤ d− 1. Let Qi := Di − ai−1ai. Then |E(Qi)| ≥ ( |Ai|
2(d−1) )

r + 1.
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Hence, assume bi−1 /∈ {ai, bi}. Let H ′′
i be obtained from Hi by a T-transform at

{bi−1, aibi}, and let a denote the new vertex. By Lemma 3.3, H ′′
i is a 3-connected

graph. Let H ′
i := H ′′

i + ai−1a. Then 5 ≤ |H ′
i| < n. Also ai−1, bi−1, a have degrees at

most d+1 in H ′
i, and all other vertices have degree at most d in H ′

i. Thus by Theorem

2.1 (a), there is a cycle Di through ai−1a in H ′
i − bi−1 such that |Di| ≥ (

|H′
i|

2ti
)r + 2,

where ti is the number of neighbors of bi−1 in H ′
i distinct from a and ai−1. Thus

ti ≤ d−1. Let Qi := Di−a. Then Qi is a path in Hi−bi−1 between ai−1 and {ai, bi}
and |E(Qi)| ≥ ( |Hi|

2(d−1) )
r.

(3) We find a path Qh in Hh from {ah−1, bh−1} to y′ such that

(i)
⋃h

i=1 Qi is a path from a0 to y′,
(ii) if Hh is 3-connected, then |E(Qh)| ≥ ( |Ah|

2(d−1) )
r + 1,

(iii) if h = 1 and Hh is a cycle chain, then |Ah| ≥ 2 and |E(Qh)| ≥ |Ah|, and
(iv) if h �= 1 and Hh is a cycle chain, then |E(Qh)| ≥ |Ah| + 1.

For ease of presentation, let us assume that
⋃h−1

i=1 Qi is from a0 to ah−1.
If Hh is a cycle chain, then by Proposition 2.6, let Qh denote a path from ah−1 to

y′ in Hh − bh−1 such that Ah ⊆ V (Qh). If h = 1, then since a0, b0 ∈ Ah and y′ /∈ Ah,
we have (iii). If h �= 1, then ah−1, bh−1, y

′ /∈ Ah, and so we have (iv).
If Hh = K4, then let Qh be a Hamilton path from ah−1 to y′ in Hh − bh−1. Then

|E(Qh)| = 2 ≥ ( |Hh|
2(d−1) )

r + 1 = ( |Ah|
2(d−1) )

r + 1, and (ii) holds.

Now assume that Hh is not a cycle chain and Hh �= K4. Let H ′
h := Hh +

{ah−1y
′, bh−1y

′}. Then H ′
h is 3-connected, the vertices ah−1, bh−1, y

′ have degree at
most d+1 in H ′

h, and all other vertices have degree at most d in H ′
h. By Theorem 2.1

(a), there is a cycle Dh through ah−1y
′ in H ′

h − bh−1 such that |Dh| ≥ ( |Hh|
2(d−1) )

r + 2.

Let Qh := Dh − ah−1y
′. Then |E(Qh)| ≥ ( |Ah|

2(d−1) )
r + 1, and we have (ii).

(4) Let C := (P ∪ (
⋃h

i=1 Qi)) + {y, xy, yy′}. Now C is a cycle in G through xy
and, by (1)–(3), we have

|C| ≥ (σ(L) + 1)r + 1 +
(∑

|Ai|
)

+

(∑( |Ai|
2(d− 1)

)r)
+ 2,

where the first summation is over all cycle chains Hi and the second summation is
over all 3-connected Hi. Note that each |Ai| in the first summation can be written
as 1r + · · · + 1r (|Ai| times), and this allows us to apply Lemma 3.1 in the following
inequalities. Hence

|C| ≥
(
σ(L) + 1 + (d− 1)

h∑
i=1

|Ai|
)r

+ 3 (by Lemma 3.1)

= (σ(L) + 1 + (d− 1)σ(H))r + 3

≥ nr + 3 (by Observation).

Case 2. 1 = t < �. Recall that if H = ∅, then a0 = b0 = y′, and {a0, b0} = {y′}.
(1) We find a path P1 from {a0, b0} to {c1, d1} in L1 = L such that |E(P1)| ≥

(|B1| + 2)r. (Note that |B1| = |L1| by definition.)
If L1 = K4, then we can find a Hamilton path P1 from {a0, b0} to {c1, d1} in

L1 − {a0b0, c1d1} (or in L1 − c1d1 when H = ∅). Thus, |E(P1)| = 3 ≥ |L1|r + 1 =
|B1|r + 1 > (|B1| + 2)r (by Lemma 3.1).
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Now assume that L1 �= K4. If {a0, b0} ⊆ {c1, d1}, then by Theorem 2.1 (c) there is
a cycle C1 through c1d1 in L1 such that |C1| ≥ |L1|r +3. Let P1 := C1−c1d1; then P1

is a path between c1 and d1 ∈ {a0, b0}, and |E(P1)| ≥ |L1|r+2 = |B1|r+2 > (|B1|+2)r

(by Lemma 3.1).

Assume that {a0, b0} �⊆ {c1, d1}. If H = ∅, then let L′
1 be obtained from L1 by

a T-transform at {y′, c1d1}, and let c denote the new vertex. Of H �= ∅ then let L′
1

be obtained from L1 by an H-transform at {a0b0, c1d1}, and let a, c denote the new
vertices with a adjacent to a0 and b0 and c adjacent to c1 and d1. By Lemma 3.3, L′

1

is a 3-connected graph with maximum degree at most d. Since 5 ≤ |L′
1| < n, Theorem

2.1 holds for L′
1. By Theorem 2.1 (c), there is a cycle C1 in L′

1 through ac such that
|C1| ≥ |L′

1|r +3. If H = ∅, let P1 := C1− c; then P1 is a path from {a0, b0} to {c1, d1}
in L1 and |E(P1)| ≥ |L′

1|r +1 = (|L1|+1)r +1 ≥ (|L1|+2)r = (|B1|+2)r (by Lemma
3.1). If H �= ∅ let P1 := C1 − {a, c}; then P1 is a path from {a0, b0} to {c1, d1} in L1

and |E(P1)| ≥ |L′
1|r = (|L1| + 2)r = (|B1| + 2)r.

Without loss of generality, assume that the notation of {a0, b0} and {c1, d1} is
chosen so that P1 is between c1 and a0.

(2) For i = 2, . . . , �− 1, we find paths Pi from {ci−1, di−1} to {ci, di} in Li such
that

(i)
⋃�−1

i=2 Pi is a path from c1 to {c�−1, d�−1},
(ii) if Li is 3-connected, then |E(Pi)| ≥ ( |Bi|

2(d−1) )
r, and

(iii) if Li is a cycle chain, then |E(Pi)| ≥ |Bi| + 1.

Assume that, for some 2 ≤ i ≤ �− 1, we have found paths Pj , 1 ≤ j ≤ i− 1, from

{cj−1, dj−1} to {cj , dj} in Lj such that
⋃i−1

j=2 Pj is a path from c1 to {ci−1, di−1} and
(ii) and (iii) are satisfied for Lj , Bj , Pj . Without loss of generality, assume that ci−1

is an end of
⋃i−1

j=2 Pj other than c1.

If Li is a cycle chain, then by Proposition 2.5 let Pi be a path from ci−1 to {ci, di}
in Li − {ci−1di−1, cidi} such that Bi ⊆ V (Pi). Then, since ci−1, di−1, ci, di /∈ Bi, we
see that |E(Pi)| ≥ |Bi| + 1, and we have (iii).

Now assume that Li is not a cycle chain.

If ci−1 ∈ {ci, di}, then, by choosing the notation of {ci, di}, we may assume
ci /∈ {ci−1, di−1}. If Li = K4, then let Pi be a path from ci−1 to ci in Li − di−1 such

that |E(Pi)| = 2 ≥ ( |Bi|
2(d−1) )

r. If Li �= K4, then let L′
i := Li + cidi−1. By Theorem 2.1

(a), there is a cycle Ci through ci−1ci in L′
i − di−1 such that |Ci| ≥ (

|L′
i|

2(d−1) )
r + 2 =

( |Bi|
2(d−1) )

r + 2. Let Pi := Ci − cici−1; then Pi is a path from ci−1 to ci in Li − di−1,

|E(Pi)| ≥ ( |Bi|
2(d−1) )

r + 1, and we have (iii).

Assume that ci−1 /∈ {ci, di}. Let L′′
i be obtained from Li by a T-transform at

{ci−1, cidi}, and let c denote the new vertex. Let L′
i := L′′

i + di−1c. By Lemma 3.3,
L′
i is 3-connected. Note that c, ci, di−1 have degree at most d+ 1 in L′

i, and all other
vertices have degree at most d in L′

i. By Theorem 2.1 (a), there is a cycle Ci through

ci−1c in L′
i − di−1 such that |Ci| ≥ (

|L′
i|

2(d−1) )
r + 2. Let Pi := Ci − c′i−1. Then Pi is a

path from ci−1 to {ci, di} in Li − di−1 and |E(Pi)| ≥ ( |Bi|
2(d−1) )

r, and we have (iii).

(3) We find a path P� from {c�−1, d�−1} to x in L� such that

(i)
⋃�

i=2 Pi is a path from c1 to x,

(ii) if L� is 3-connected, then |E(P�)| ≥ ( |B�|
2(d−1) )

r + 1, and

(iii) if L� is a cycle chain, then |B�| ≥ 1 and |E(P�)| ≥ |B�|.
By choosing the notation of {c�−1, d�−1}, we may assume that

⋃�−1
i=2 Pi is between
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c1 and c�−1.
If L� is a cycle chain, then by Proposition 2.6 let P� be a path from x to c�−1 in

L� such that B� ⊆ V (P�). Since c�−1, d�−1 /∈ B�, we have |E(P�)| ≥ |B�|. Note that
|B�| = 1 only if L� is a cycle and B� = {x}.

If L� = K4, then we can find a path P� from x to c�−1 in L�−d�−1 with |E(P�)| =

2 ≥ ( |L�|
2(d−1) )

r + 1 = ( |B�|
2(d−1) )

r + 1.

Now assume that L� is not a cycle chain and that L� �= K4. Let L′
� := L� +

{xc�−1, xd�−1}. Then L′
� is a 3-connected graph, the vertices x, c�−1, d�−1 have degree

at most d+1 in L′
�, and all other vertices of L′

� have degree at most d. So by Theorem

2.1 (a), there is a cycle C� through xc�−1 in L′
� − d�−1 such that |C�| ≥ ( |L�|

2(d−1) )
r + 2.

Now P� := C� − xc�−1 gives the desired path for (ii).

(4) Let P :=
⋃�

i=1 Pi. Clearly P is a path in
⋃�

i=1 Li from x to a0. We claim that
|E(P )| ≥ (σ(L) + 1)r + 1.

By (2), we have

|E(P )| ≥ |E(P1)| +
(∑

|Bi|
)

+

(∑( |Bi|
2(d− 1)

)r)
+ |E(P�)|,

where the first summation is over all cycle chains Li and the second is over all 3-
connected Li. Note that each Bi in the first summation can be written as 1r + · · ·+1r

(|Bi| times), and this allows the application of Lemma 3.1 in the following argument.
If L� is 3-connected, then by (1) and (3),

|E(P )| ≥ (|B1| + 2)r +
(∑

|Bi|
)

+

(∑( |Bi|
2(d− 1)

)r)
+

(( |B�|
2(d− 1)

)r

+ 1

)

≥
(

2 +

�∑
i=1

|Bi|
)r

+ 1 (by Lemma 3.1)

> (σ(L))r + 1.

If L� is a cycle chain, then by (1) and (3),

|E(P )| ≥ (|B1| + 2)r +
(∑

|Bi|
)

+

(∑( |Bi|
2(d− 1)

)r)
+ (|B�| − 1) + 1

≥
(

1 +

�∑
i=1

|Bi|
)r

+ 1 (by Lemma 3.1)

= (σ(L) + 1)r + 1.

(5) For i = 1, . . . , h − 1, we find paths Qi from {ai−1, bi−1} to {ai, bi} in Hi, as
in (2) of Case 1.

(6) We find a path Qh in Hh as in (3) of Case 1.

(7) Let C := (P ∪ (
⋃h

i=1 Qi)) + {y, xy, yy′}. Now C is a cycle in G through xy
and

|C| ≥ ((σ(L) + 1)r + 1) +
(∑

|Ai|
)

+

(∑( |Ai|
2(d− 1)

)r)
+ 2,

where the first summation is over all cycle chains Hi and the second is over all 3-
connected Hi. Again, when we apply Lemma 3.1 in the following argument, each |Ai|
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in the first summation may be written as 1r + · · · + 1r. Since σ(L) ≥ |L1| ≥ |Ai| for
all 3-connected Hi, we have

|C| ≥
(
σ(L) + 1 + (d− 1)

h∑
i=1

|Ai|
)
r + 3 (by Lemma 3.1)

= (σ(L) + 1 + (d− 1)σ(H))r + 3

≥ nr + 3 (by Observation).

Case 3. 1 < t ≤ �. Note that in this case there exist y′′ ∈ V (L1) − {c1, d1} and a
path Y in G from y to y′′ disjoint from (V (L) − {y′′}) ∪ V (H). For convenience, let
S := (

⋃t
i=2 Bi)− (B1 ∪Bt+1). We consider two subcases by comparing σ(H) and |S|.

Subcase 3.1. |S| < σ(H). Then H �= ∅ and a0 �= b0. Since
∑h

i=1 |Ai| = σ(H) and
there are at most d − 2 extreme 3-blocks of G − y containing neither x nor y′′, we
have the following inequality:

σ(L) − |S| + (d− 1)

h∑
i=1

|Ai| ≥ n− 1.

(1) First, we find a path P1 from c1 to d1 in L1 such that |E(P1)| ≥ (|B1|+1)r+1.
If L1 = K4, then let P1 be a Hamilton path from c1 to d1 in L1. Hence |E(P1)| =

3 ≥ (|L1|+ 1)r + 1 = (|B1|+ 1)r + 1. If L1 �= K4 then 5 ≤ |L1| < n. By Theorem 2.1
(c), there is a cycle C1 through c1d1 in L1 such that |C1| ≥ |L1|r + 3 = |B1|r + 3 >
(|B1| + 1)r + 1. Then P1 := C1 − c1d1 gives the desired path.

(2) Next, we find Q ⊆ (
⋃t

i=2 Li)−{a0b0, ctdt} such that (1) P1∪Q is a path from
{a0, b0} to {ct, dt} when t �= �, and (2) P1 ∪Q is a path from {a0, b0} to x when t = �.

Let K :=
⋃t

i=2 Li. First, assume that t �= �. If {a0, b0} = {ct, dt}, then by Lemma
3.5 we find a cycle D through a0b0 and c1d1 in K, and Q := D − {a0b0, c1d1} is as
desired. If {a0, b0} �= {ct, dt}, then let K ′ be obtained from K by an H-transform at
{a0b0, ctdt}, and let a, c denote the new vertices. By Lemma 3.5, we find a cycle D′

through ac and c1d1, and Q := D′ − {a, c, c1d1} is as desired.
Now assume that t = �. If x ∈ {a0, b0}, then by Lemma 3.5 there is a cycle D in

K through a0b0 and c1d1, and Q := D − {a0b0, c1d1} is as desired. So assume that
x /∈ {a0, b0}. Let K ′ be obtained from K by a T-transform at {x, a0b0}, and let a
denote the new vertex. By Lemma 3.5, there is a cycle D in K ′ through xa and c1d1.
Now Q := D − {a, c1d1} is as desired.

We choose the notation of {a0, b0} and {ct, dt} so that P1 ∪Q is from a0 to ct.
(3) For each t+1 ≤ i ≤ �−1, we find a path Pi in Li from {ci−1, di−1} to {ci, di}

exactly as in (2) of Case 2 such that (i) (
⋃�−1

i=t+1 Pi)∪P1∪Q is a path from {c�−1, d�−1}
to {a0, b0}, (ii) |E(Pi)| ≥ ( |Bi|

2(d−1) )
r when Li is 3-connected, and (iii) |E(Pi)| ≥ |Bi|+1

when Li is a cycle chain.
(4) If t �= �, we find a path P� between {c�−1, d�−1} and x exactly as in (3) of

Case 2 such that (i) (
⋃�

i=t+1 Pi) ∪ P1 ∪Q is a path from {a0, b0} to x, (iii) |E(P�)| ≥
( |B�|
2(d−1) )

r+1 when L� is 3-connected, and (iii) |E(P�)| ≥ |B�| when L� is a cycle chain.

(5) For i = 1, . . . , h−1, we find paths Qi from {ai−1, bi−1} to {ai, bi} in Hi−bi−1,

as in (2) of Case 1, such that (i)
⋃h−1

i=1 Qi is a path from a0 to {ah−1, bh−1}, (ii)

|E(Qi)| ≥ ( |Ai|
2(d−1) )

r when Hi is 3-connected, (iii) |E(Q1)| ≥ |A1| ≥ 2 when H1 is a

cycle chain, and (iv) |E(Qi)| ≥ |Ai| + 1 when 1 < i < h and Hi is a cycle chain.
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(6) We find a path Qh exactly as in (3) of Case 1 such that (i)
⋃h

i=1 Qi is a path

from a0 to y′, (ii) |E(Qh)| ≥ ( |Ah|
2(d−1) )

r + 1 when Hh is 3-connected, (iii) |E(Qh)| ≥
|Ah| ≥ 2 when h = 1 and Hh is a cycle chain, and (iv) |E(Qh)| ≥ |Ah|+1 when h > 1
and Hh is a cycle chain.

(7) Let C := (P1 ∪Q∪ (
⋃�

i=t+1 Pi)∪ (
⋃h

i=1 Qi)) + {y, xy, yy′}. Then C is a cycle
in G through xy and, by (1)–(6), we have

|C| ≥ (|L|+1)r+
(∑

|Bi|
)
+

(∑( |Bi|
2(d− 1)

)r)
+
(∑

|Ai|
)
+

(∑( |Ai|
2(d− 1)

)r)
+3,

where the first sum is taken over all cycle chains Li for t + 1 ≤ i ≤ �, the second is
over all 3-connected Li for t+ 1 ≤ i ≤ �, the third is over all cycle chains Hi, and the
fourth is over all 3-connected Hi. Because σ(L) ≥ |Ai| for all 3-connected Hi, and
σ(L) ≥ |Bj | for all 3-connected Lj , we have

|C| ≥
(
σ(L) + 1 − |S| + (d− 1)

h∑
i=1

|Ai|
)r

+ 3 (by Lemma 3.1)

≥ nr + 3.

The second inequality follows from the inequality in the first paragraph of this subcase.
Subcase 3.2. |S| ≥ σ(H). As in the previous subcase, we deduce the following

inequality:

|B1| + (d− 1)

�∑
i=2

|Bi| ≥ n− 1.

(1) First, we find a path P1 from y′′ to {c1, d1} in L1 − c1d1 such that |E(P1)| ≥
(|B1| + 1)r + 1.

Let L′
1 denote the graph obtained from L1 by a T-transform at {y′′, c1d1}, and

let y∗ denote the new vertex. By Lemma 3.3 and since y′′ has degree at most d− 1 in
L1, L

′
1 is a 3-connected graph with maximum degree at most d. Since 5 ≤ |L′

1| < n,
Theorem 2.1 holds for L′

1. By Theorem 2.1 (c), L′
1 has a cycle C1 through y∗y′′ such

that |C1| ≥ |L′
1|r + 3 = (|B1|+ 1)r + 3. Then P1 := C1 − y∗ gives the desired path for

(1).
We may choose the notation of {c1, d1} so that P1 is between y′′ and c1.
(2) For each 2 ≤ i ≤ � − 1, we find a path Pi in Li as in (2) of Case 2 such

that (i)
⋃�−1

i=2 Pi is a path from c1 to {a�−1, b�−1}, (ii) |E(Pi)| ≥ ( |Bi|
2(d−1) )

r when Li is

3-connected, and (iii) |E(Pi)| ≥ |Bi| + 1 when Li is a cycle chain.

(3) We find a path P� as in (3) of Case 2 such that (i)
⋃�

i=2 Pi is a path from

c1 to x, (ii) |E(P�)| ≥ ( |B�|
2(d−1) )

r + 1 when L� is 3-connected, and (iii) |E(P�)| ≥ |B�|
when L� is a cycle chain.

(4) Let C := (Y ∪ (
⋃�

i=1 Pi)) + xy. Then C is a cycle in G through xy and

|C| ≥ (|B1|r + 1) +
(∑

|Bi|
)

+

(∑( |Bi|
2(d− 1)

)r)
+ 2,

where the first sum is over all Li which are cycle chains and the second is over all
3-connected Li. Again, we may view |Bi| in the first summation as 1r + · · · 1r (|Bi|
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times). Since |B1| ≥ |Bi| for all 3-connected Li, we have

|C| ≥
(
|B1| + 1 + (d− 1)

�∑
i=2

|Bi|
)r

+ 3 (by Lemma 3.1)

≥ nr + 3.

The second inequality follows from the inequality in the first paragraph of this
case.

Next we show that the above proof gives rise to an O(|G|) algorithm which reduces
Theorem 2.1 (c) to Theorem 2.1 (a), (b), and (c) for smaller graphs.

Algorithm Oneedge. Let n, d, r,G, e, be as in Lemma 6.1.

1. Preprocessing. Replace G by a 3-connected spanning subgraph of G with
O(|G|) edges. (This can be done in O(|E(G)|) time using Lemma 3.4.)

2. Let e = xy. Decompose G − y into 3-connected components. (This can be
done in O(|G|) time using Theorem 2.2.)

3. If there is only one 3-connected component of G−y, then G−y is 3-connected.
Let y′ denote a neighbor of y other than x, and let G′ := (G − y) + xy′

and e′ = xy′. It suffices to to find a cycle C ′ through e′ in G′ such that
|C ′| ≥ |G′|r + 3. So reduce Theorem 2.1 (c) for G, e to Theorem 2.1 (c) for
G′, e′, with |G′| < |G|. (Note that this reduction takes constant time.)

4. Now assume that G − y has at least two 3-connected components. If all
3-blocks of G − y are cycles, find a cycle chain I = I1 . . . Ii such that (i)
x ∈ V (I1) − V (I2), (ii) Ii is an extreme 3-block of G − y, and (iii) subject
to (i) and (ii), |V (I)| is maximum. (This can be done in O(|G|) time by a
simple search.) Then, find a neighbor y′ ∈ V (I)−{x} of y, a Hamilton path
P in I from x to y′, and a path Q from y to y′ disjoint from V (I) − {y′},
so that (P ∪ Q) + {y, xy, yy′} gives the desired cycle. (These paths can be
computed in O(|G|) time as in the proof of Lemma 6.1.)

5. Now assume that G − y has at least two 3-blocks, and at least one is 3-
connected. We choose a 3-connected 3-block L of G − y such that |L| is
maximum. Find the block chain L = L1 . . . L� such that L1 = L and x ∈
V (L�) − V (L�−1). Find a block chain H = H1 . . . Hh in G− y with y′ ∈ Hh,
and define ai, bi, Ai, cj , dj , Bj for i = 1, . . . h and j = 1, . . . , � as in the
proof of Lemma 6.1. (All these can be done in O(|G|) time by searching the
3-blocks of G− y.)

6. Suppose � = 1.
• First, we need to find a path P in L from x to {a0, b0} as in (1) of Case

1. We either find the desired P or reduce the problem of finding P to
Theorem 2.1 (c) for L1, a0b0 or L′

1, xx
′, both are smaller graphs. (From

(1) of Case 1 in the proof of 6.1, this can be done in constant time.)
• For each 1 ≤ i ≤ h− 1, we want to find a path Qi from {ai−1, bi−1} to

{ai, bi} in Hi as in (2) of Case 1 in the proof of Lemma 6.1. We either
find the desired Qi or reduce the problem of finding Qi to Theorem 2.1
(a) for H ′

i, ai−1ai, bi−1 or H ′
i, ai−1a, bi−1. (From (2) of Case 1 in the

proof of Lemma 6.1, this can be done in O(|Hi|) time.)
• We need to find a path Qh in Hh from ah−1 to y′ as in (3) of Case 1.

We either find the desired Qh or reduce the problem of finding Qh to
Theorem 2.1 (a) for H ′

h, ah−1y
′, bh−1. (From (3) of Case 1 in the proof

of Lemma 6.1, this can be done in O(|Hh|) time.)
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• Since
∑h

i=1(|Hi| − 2) = |V (H)| − 2, we see that this step takes O(|G|)
time.

7. Suppose 1 = t < �.
• First, we need to find a path P1 from {a0, b0} to {c1, d1} in L1, as in (1)

of Case 2 in the proof of Lemma 6.1. We either find the desired P1 or
reduce the problem of finding P1 to Theorem 2.1 (c) for either L1, c1d1

or L′
1, ac. (From (1) of Case 2 in the proof of Lemma 6.1, this can be

done in constant time.)
Assume that the notation is chosen so that P1 is a path from a0 to c1.

• For each 2 ≤ i ≤ � − 1, we need to find a path Pi from {ci−1, di−1} to
{ci, di} in Li as in (2) of Case 2 in the proof of Lemma 6.1. We either
find the desired Pi or reduce the problem of finding Pi to Theorem 2.1
(a) for either L′

i, ci−1ci, di−1 or L′
i, ci−1c, di−1. (From (2) of Case 2 in

the proof of Lemma 6.1, this can be done in O(|Li|) time.)
• We need to find a path P� from {c�−1, d�−1} to x in L�, as in (3) of

Case 2 in the proof of Lemma 6.1. We either find the desired path P� or
reduce the problem of finding P� to Theorem 2.1 (a) for L′

�, xc�−1, d�−1.
(From (3) of Case 2 in the proof of Lemma 6.1, this can be done in
O(|L�|) time.)

• Next we need to find paths Qi, 1 ≤ i ≤ h. This is taken care of exactly
as in step 6 above.
(Since

∑h
i=1(|Hi| − 2) = |V (H)| − 2 and

∑�
i=1(|Li| − 2) = |V (L)| − 2,

we see that all operations in this step can be done in O(|G|) time.)
8. Suppose 1 < t ≤ �. First, find a path Y from y to y′′ ∈ V (L1) − V (L2) such

that Y −y′′ is disjoint from V (L)∪V (H). Define S := (
⋃t

i=2 Bi)−(B1∪Bt+1).
(Note that Y and all Bi’s can be found in O(|G|) time, as in Case 3 in the
proof of Lemma 6.1.)

9. Suppose |S| < σ(H).
• We need to find a path P1 from c1 to d1 in L1, as in (1) of Subcase

3.1 in the proof of Lemma 6.1. We either find the desired P1 or reduce
the problem of finding P1 to Theorem 2.1 (c) for L1, c1d1. (From (1)
of Subcase 3.1 in the proof of Lemma 6.1, this can be done in O(|L1|)
time.)

• Find Q ⊆ (
⋃t

i=2 Li) − {a0b0, ctdt} as in (2) of Subcase 3.1 in the proof
of Lemma 6.1. (From (2) of Subcase 3.1 in the proof of Lemma 6.1, this
can be done in O(|G|) time.)

• For each t + 1 ≤ i ≤ � − 1, we need to find a path Pi from {ci−1, di−1}
to {ci, di}, as in (3) of Subcase 3.1 in the proof of Lemma 6.1. (This can
be done as in step 7 above, and hence in O(|G|) time.)

• Next, we need to find a path P� from {c�−1, d�−1} to x in L� as in (4)
of Subcase 3.1 in the proof of Lemma 6.1. (This can be done as in step
7 above, and hence in O(|L�|) time.)

• For each 1 ≤ i ≤ h − 1, we want to find a path Qi as in (5) of Subcase
3.1 in the proof of Lemma 6.1. (This can be done as in step 6 above,
and hence in O(|Hi|) time.)

• Finally, we find a Qh in Hh from {ah−1, bh−1} to y′ as in (6) of Subcase
3.1 in the proof of Lemma 6.1. (This can be done as in step 6 above,
and hence in O(|Hh|) time.)

(Since
∑h

i=1(|Hi| − 2) = |V (H)| − 2 and
∑�

i=1(|Li| − 2) = |V (L)| − 2,
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we see that all operations in this step can be done in O(|G|) time.)
10. Suppose |S| ≥ σ(H).

• First, we need to find a path P1 from y′′ to {c1, d1} in L1, as in (1) of
Subcase 3.2 in the proof of Lemma 6.1. We either find the desired P1 or
reduce the problem of finding P1 to Theorem 2.1 (c) for L′

1, y
∗y′′. (From

(1) of Subcase 3.2 in the proof of Lemma 6.1, this can be done in O(|L1|)
time.)

• For each 2 ≤ i ≤ �− 1, we need to find a Pi as in (2) of Subcase 3.2 in
the proof of Lemma 6.1. (This can be done as in step 7 above for each
i, and hence, in O(|Li|) time.)

• Next, we want to find a path P� from {c�−1, d�−1} to x in L� as in (3)
of Subcase 3.2 in the proof Lemma 6.1. (This can be done as in step 7
above, and hence, in O(|L�|) time.)

(All operations in this step can be done in O(|G|) time since
∑�

i=1(|Li|−
2) = |V (L)| − 2.)

We summarize the above procedure as follows.
Proposition 6.2. Given G, e, n, d, r as in Lemma 6.1, we can, in O(|E(G)|)

time, either
(1) find a cycle C through e in G such that |C| ≥ |G|r + 3, or
(2) reduce Theorem 2.1 (c) of for G, e to Theorem 2.1 (a) or (b) or (c) for smaller

3-connected graphs.
Moreover, any smaller graph in (2) results from a 3-connected 3-block of G− y which
is not K4. Hence, any smaller graph in (2) contains a vertex that does not belong to
any other smaller graph in (2).

7. Conclusions. We now complete the proof of Theorem 2.1. Let n, d, r,G be
given as in the theorem. We will prove te conclusions by applying induction on n.
When n = 5, then G is isomorphic to one the following three graphs: K5, K5 minus
an edge, or the wheel on five vertices. In each case, we can verify that Theorem 2.1
holds. So assume that n ≥ 6 and that Theorem 2.1 holds for all 3-connected graphs
with at most n− 1 vertices. Then (a) holds by Lemma 4.1, (b) holds by Lemma 5.1,
and (c) holds by Lemma 6.1. This completes the proof of Theorem 2.1.

Algorithm Cycle. Let G be a 3-connected graph with maximum degree at
most d, let e = xy ∈ E(G), and assume |G| ≥ 5. The following procedure finds a
cycle C through e in G with |C| ≥ |G|r + 3.

1. Preprocessing Replace G with a 3-connected spanning subgraph of G with
O(|G|) edges.

2. Apply Algorithm Oneedge to G, e. We either find the desired cycle C or we
reduce the problem to Theorem 2.1 (a), (b), or (c) of 2.1 for some 3-connected
graphs Gi, for which |Gi| < |G| and each Gi contains a vertex which does not
belong to any other Gi.

3. Replace each Gi with a 3-connected spanning subgraph of Gi with O(|Gi|)
edges.

4. Apply Algorithm Avoidvertex to those Gi for which Theorem 2.1 (a) needs
to be applied. Apply Algorithm Twoedge to those Gi for which (Theorem
2.1 (b) needs to be applied. Apply Algorithm Oneedge to those Gi for which
Theorem 2.1 (c) needs to be applied.

5. Repeat steps 3 and 4 for new 3-connected graphs.
6. In the final output, replace all virtual edges by paths in G to complete the

desired cycle C.
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Note that step 1 takes O(|E(G)|) time by Lemma 3.4 and step 2 takes O(|E(G)|)
time by Proposition 4.2.

By Lemma 3.4, step 3 spends O(|E(Gi)|) time for each Gi from step 2. Note that
each Gi in step 2 contains a vertex which does not belong to any other Gi. By Theorem
2.2 and since each Gi contributes at most three additional edges due to T-transform
or H-transform, the total number of edges in step 2 is at most 3|E(G)| − 6 + 3|V (G)|.
Hence step 3 takes O(|E(G)|) time.

From Propositions 4.2, 5.2, and 6.2, we see that step 4 spends O(|E(Gi)|) time
for each Gi from step 2. By Theorem 2.2 and since each Gi contributes at most three
additional edges due to T-transform or H-transform, the total number of edges in step
4 is at most

∑
i(3|E(Gi)| − 6 + 3|V (Gi)|). Since each Gi in step 2 contains a vertex

which does not belong to any other Gi, Step 4 takes O(|G|2) time.
Since there are at most |G| iterations, we see that Algorithm Cycle takes O(|G|3)

time.
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