Two new families of g-positive integers
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Abstract. Let n,p and k be three non negative integers. We prove that the apparently rational fractions

of ¢:
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are actually polynomials of ¢ with positive integer coefficients. This generalizes a recent result of Lassalle
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(Ann. Comb. 6(2002), no. 3-4, 399-405), in the same way as the classical g-binomial coefficients refine
the ordinary binomial coefficients.
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1 Introduction

In [3] Lassalle introduced a new family of positive integers generalizing the classical binomial
coefficients. We refer the readers to [4] for some motivations from the study of Jack polynomials
and to [2] for some further results and extensions of these coefficients. In this paper we will
present a different generalization of Lassalle’s coefficients. More precisely, using basic hyperge-
ometric functions we will show that all the results of Lassalle [3] have natural g-analogues.

In order to present its g-analogues we need first to introduce some notations. Throughout
this paper ¢ is a complex variable such that |¢| < 1. For any integer k > 0, the ¢-raising factorial
is defined by

(a;q), = (1 —a)(1 —aq)...(1—ag"™") for k>1,

and (a;q)p = 1. We shall also use the concise notation (ai,...,as;q)r = (a1;9)k - .. (as; q)r for
s > 1. For any integer n (not necessary positive) the g-binomial coefficients [Z]q are defined by
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So [Z]q = 0 if k£ > n. Furthermore we will use the standard notation for basic hypergeometric

series [1]:

a1,a9,...,0r
r¢s[

b17b27"'7bs

oo (a1, ceey Apg Q)k (14s—r)k (1+sfr)(k) z
iz =) S IR 5 ,
! ] ]gzzo (bla'“abs§Q)k( ) 1 (¢; )k

The g-binomial coefficients have two less obvious formulas as follows:

q P g "

q

g; q”“] = PPy, [

a; q] : (1)

Actually these expressions are obtained by specializing a = ¢?~", ¢ = ¢ in the celebrated ¢-Chu-
Vandermonde formula [1, p. 236]:
q; QI .

Of course using this relation as a definition of g-binomial coefficients would be rather tautolog-
ical. However, quite surprisingly, it is possible to define two new families of ¢-positive integers,
i.e., a polynomial of g with non negative integer coefficients, by slightly modifying the ¢-Chu-
Vandermonde formula. In fact there are two such g-analogues of Lassalle’s generalized binomial
coefficients.

In the next two sections we present the first g-analogue and its raison d’étre in the context of
linearization problem of g-binomial coefficients. In Section 4 we outline the second g-analogue.
At the end this paper we give the first values of our generalized g-binomial coefficients, which
seems to suggest some unimodal properties of the coefficients of these polynomials.
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2 The first g-analogue

For any non negative integers n,p and k, define the coefficient

1-k ,—p ,p—n
( n ) _ q(n_p)p |:TL:| 3¢2 q ,q ,q
p, k q k q q, qlin

Applying Sears’ transformation [1, p. 61, (3.2.5)]

. ] CLT [q /b

5 q?ab
g [P (¢ q)p d,q'Pa/c

a q] : (2)

q;bq/ 01 (3)

with a = ¢, b=¢" %, c=qand d = ¢! ", we get
( n ) m m " q P, ¢ """
= 302
p’k q k q p q qlfn’qfn

<n> =0 for k>n or p>n,
p.k/,

a; qlk] : (4)

It follows that
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and for p, k < n,

CD[«WQQ; Q&L‘m;

the last equations following directly from the g-Chu-Vandermonde formula.
Set [nly=1+q+ - +¢" = (1-¢"/(1—q) for n > 0. We can rewrite (2) as follows:

(pflk) - % 3 m q [n ; p] q [Z - 77: B ﬂ qq(n—P)P-i-r(r—k)' (5)

1 >0

(ng:ﬁl’ (fngmﬂnﬂﬂ;

(2), = o] e,

For p > 0, we have also
n n
=0, — q(nfp)p nl,,
<p7 0) q ( ) ]‘) q [ ]q

(pr,l2> - q(np)p[gﬁ ([n = 1]y + [plgln — plg) -

Therefore

and

These results suggest that (p"k) are polynomials of ¢ with non negative integer coefficients.
K q

Indeed, it is not hard to see that they are polynomials with integer coefficients.
We can rewrite (4) as follows

(o) -So P P e e

Since

[n] [n—1i :1—q”_i+q”_i—q” n—i _ n—i +qnﬂ-n—i—l
=l i |, 1—gni i, i, i-1 ]

we see that (p"k) is a g-integer, i.e., a polynomial of ¢ with integer coefficients.
g

Two generating functions for (p”k)1 were published in [3]. We consider their g-analogues
below.

Theorem 1. There holds

3 ( nk>qu@ e

0<k,p<n 7’

= (- q)n(—x;Q)nzﬂ[nfi} — ()i . (7)
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Proof. Using (6) one has

> ( 7k>qqu<s>ykq<s>

0<k,p<n

S et il il (el PC WD
0<k,p<n i>0 —a gL v JqlP =014

- ST g [ O [ e
i>0 —4 k>0 q o LP Tty

C1—qg" ‘ 5
= Z(_l)zixl(_y;Q)nfi(_quQQ)n—%ql Y

>0 7"
which yields (7).

Remark. When ¢ = 1, since

Z<n;k>nﬁkzk: (1+¢214rﬁ>"+<1—¢214rﬁ>"7

k<n

setting z = m, the above generating functions can be written as follows:

0<k,p<n

The following is the g-analogue of Lassalle’s recurrence relation in [3, Lemma 3.2].

Proposition 1. For k# 0 and 0 < p < n, we have

-, ) -0 (3) i),

2 [ nk] 1"“°pyk =21+ y) 1+ )" (A+VI+4)"+ (1 - VIF42)").

Proof. Indeed, up to the factor [n],/[k], and using (5), the left-hand side can be written as

02 G e o R Rt

r>0

_ (n—r—1 [p—=1] [n—p _ p—1] [n—p
— (1 =" 2t An=r p—1  n—2r+1
(1-q )Zq Lk —r—1], 1 A 1 R 1 r—1],[r—1

r>0

_ (p—1] [n—p _ n—r—1 n—=r—=2
— (1 _ g2t A|D p—1  n—k
(=4 );)q I P qq k—r—1], 1 k—r—2],
_ (1_qn—2p+1)qu_P—1 n—p| [n—r—2 qp—l

rol Lo lk—r—1], ’

r>0 -

where A =r(r — k) + (n —p)(p — 1). The result follows then from Equation (5).

n—p

r

)

(8)
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For the second generating function, we will further need the g-binomial formula [1, 236]:

Z (CL; Q)n 2" = (ax; Q)oo (9)

S @an (@30

Jackson’s ¢-Pfaff-Kummer transformation [1, p.241]:

a,b az; 00 G,C/b
201 Gz = (.761)2@ g bz, (10)
& (25 @)oo c,az
and another transformation of Sears [1, p. 61, (3.2.2)]:
qu’a’ b (C/CL' Q) qu’ a, d/b
cedgP Jab| = =2 iq| . 11
3¢2[ c,d a:cdq”/ ] (¢ q)p d,q'"Pa/c ¢4 (11)

Theorem 2. For 0 < p <n, we have

Z(pnk>qykq(g) = yqp(”"’)(—y;q)p[n]ngﬁl[ ,

E>1 ’ q

a —yq”_”] : (12)

Proof. By applying (3) to (2) and then applying (11) we get:

1-p. _ q
( n ) — P [n] wq(kl)(z)n):,)@[
q

1-k —-n 14+p
b

" q

P, k k] (¢t =™ q)k—1 gP~ kg

q; q"p]

_ n lfp; B B B 7]9; 3 ql—k:’ q1+p’ qn—p+1
— g p)p{ ](q1 Dk L (pmm)(=1) () Pt s

k| (¢' =™ q) k-1 (qP=F+1 @)1 2

q,q

4q; QI

a q] : (13)

¢ 7F,qP.q

[n]q3¢2 [ 9

n—p+1
1 () (=D (42)
_ (_1)k lq(n P)p 3

q,9

Hence

Z < n > ykzq(g) _ yqp(n—p)[n]q Z (qp+1§Q)l(qnp+1.;]l)lql Z(q_kSQ)l(_yq_l)k-

Y
= \p.k = (@aGalsa =

But the g-binomial formula (9) implies that

—k. N l (l) k—I+1, -1k _ (g:9)i
q 5 9)i(—yq = (—1)'q\2 q 1q)1(—yq = .
kzzl( . Py kZZZ( " ) (IT+yg )=y '¢*q)
Hence
n\ k) _ yat (@ ("5 g)id! y
2 pk) T T Ty T L T ) () a) (14)
k>1 M7 a 1>0 ) ; ;
Using the formula
(a;q)n = (a_l; q_l)n(—a)”q(g) (15)



and Jackson’s transformation, we can rewrite the above sum as follows:

n k p(n=p) ¢ PP B
1 W/ +yq a5 —yq
¢ P!
= y"" P (—y; @)plnlgacn ~ g -y
q
We then recover (12) by applying (15) again. O

Remark. When ¢ = 1, the above theorem reduces to Lassalle’s generating function [3], which
was proved by using induction and contiguous relation. One could give another proof of Theorem
2 by using Proposition 1.

The following result is crucial to prove that (p?k)q is a g-positive integer.

Corollary 1. We have

k—1 .
(”> _ Inlg [ n—p ] [”—P“} [ p } DR Hp)p,
pk), Wl S lk—1—dl,l i [ li+1],

)

Proof. Using the g-binomial formula we have
Pl
~vp=> [ .]yﬂq@-
=0t
Extracting the coefficient of * in (12) we obtain

k—1 .
( n > _ [n]q [ P ] [p + Z] [n - P} N GRN G
p.k/, [n—p]qizo k—1—4], [ @« [, li+1],

(]

As (pT,Lk‘)q = (n_T; k)q’ substituting p by n — p yields the desired identity. O

By applying

we can write

k—1 .
n _ Z n—p n—p+1 D (PP (1K)
p.k), —lk-1-if | i ], li+1],

k-1 .
n p PHU TP ep) (o D) (L)
k—1—id| | i | li+1], ’

~
I
o

which implies the following

Theorem 3. The polynomials (p”k)q 1S a q-positive integer.

Since ¢-binomial coefficients have various nice combinatorial interpretations, it would be

possible to derive a combinatorial interpretation for (p"k) from the above expression.
g



3 Further extensions

It is surprising that the general numbers c,(:) of Lassalle [3] have also a g-analogue, which are

also g-positive integers. We shall explain such a ¢g-analog in this section. Note that the ¢-Chu-

Vandermonde formula:
= 4 | a (16)
[ ko1, i]4lk—1],

>0

implies that

xT xT _ xT T1 r—T (Tlfk)(Tgfk)
[Tll{ﬁ]q [Tll,;) [’fL[W—qu

_ N ke[ TiT2—k H v ] 17

Set r = (ry,...,mn) and |r| =71 + - + rp,. Iterating (17) yields:
x x x
[ } [ } zzdz(r;q)[l] , (18)
Tlq 'mlq =0 q

where d;(r; q) are g-positive integers given by

di(r;q) = > { rtre =k }[ i+ ret+ry— ki — ko }
n Kt 250 ki,ri —ki,ra — ki) Lka,mi +ra — ki — ko, 13 — ko],
|: M4 ...+rmo—ki—...— kmn_3 :|
X oo X
km_g, 1+ ...+rm_3—ki—... —kmn_3,"m—2 — km_3 .
l T B
% ; 19
|:7”m:|q|:’r’—k‘l—...—k‘m_g—l]qq ( )

where
B = (r1—ki)(ra—ki)+ (r1 +ra— ki —k2)(rs — k2) + -
+(ritre ot rmea =k = = km—2)(rm—1 — km—2)
—I—(Z—Tm)(l—?“l—"'—?”m_l—l—kl—i-"'—i-km_Q).

In particular, for m = 2 we have

l r
cg) = gU=r)(l—r2) 1 2
di(r1,7m2;9) = ¢q [Tll L B rzL' (20)

On the other hand, identity (16) implies also

[ac + : - 1} - 3 [2 - ]ﬂ q m qqk(k—l)' (21)

k>0



From (18) and (21) we derive the following result.
ac—i—rl—l} [ac—l—rm—l} . [:):]
e = CI\T; .
[ no m >_alria) .

where .
~ T L
a(riq) = 2: quIh_J gD, (22)
=1

Theorem 4. The polynomial

— [l]q+ i)

a(r;q) =

1S a g-positive integer.
Proof. By (19) there is a polynomial P, (k;¢q) € N[g] such that

g
[km]q

Since d;(k; q) is symmetric with respect to k = (kq,. .., k), the above formula infers that there
is a polynomial P;(k;q) € NJg| for each j € {1,...,m} such that

di(k;q) =

P (ks q).

Therefore, using (3) we have
m .
[Tj]qm-i-'"-f-?“g—l
¢ (r; = = (1
(r;) ;[Tﬁ_ Ty o
= 1
_ qul+ i IZP k ‘q |: :| qkj(k —I)H |:Tz_ :| qk(k—l)’
j=1 kil i#j B 1,
which is clearly a g-positive integer. U
We can also derive a simpler formula for ¢;(r1,. .., rm; q) using the g-difference operator. Set
[z;4] = (¢" —1)/(q — 1) and
" " g
[ qln = [2;ql[z — L;q] -~ [t —n+15¢] = W

We define the g-difference operator A, by
Agf(x) = f(z), Ayt () = AY(E — ¢"I) f (=),
where If(z) = f(z) and Ef(x) = f(z + 1). Note that

ALf(w) = (E—q" ' I)(E =" 20) - (E - D) f(a).



By the ¢-Chu-Vandermonde formula, we have

n n .
Az f(a) = (1) [k] (@ fa+n—).
k=0 q
It’s easy to see that
A5 qlm = [ qln |23 @lim—ng" T,

We have also

A7p(0)
pla) =2 D
n>0
It follows from (24), (23) and (3) that
k .
Mk » _1
sy rmsa) = D (1) [ ] el | [‘7 o } .
=1 o 1=1 T q
Set r = (’I"l, . ,’r‘m) and
M+ Tl
lrig) = o ]qck(ﬁ’ e Tmiq)
[k]q
m i N |
e [Ti]q ki k (kij) it —1
— q’l"1+ +r;—1 (_1) j . q ;
= [k]q J; Jlq 11;11 T q
k .
= YY)
=1 j=1

XV—T [j—i—ri—l} ﬁ ['rl—i-i—l]'
J—1l K q1=1, 14 " e

Thus we have obtained another proof of the g-integrality of ck(r;q).
Finally, when r = (r1,r2), we have the following result.

Theorem 5. The coefficients (T;IL]?)(] satisfy
[w +r - 1} [w + 1y — 1} _ Z [K]gg" =D —rr (Tl + 7“2> [ﬂ
" q "2 ¢ iz [tk ruk oLkl
Proof. By (25) we have

1-k 1+7r1 1+7ro
_ k—1 q q q
= (DM ka2 see | T T gl
q,9
Comparing with (13) we see that ¢y (ry,ro; q) = ¢Fk—1—m172 (T}:}f)q.



4 The Second ¢-analogue

In this section, we give another new family of g-positive integers [p"k] , which have the similar
Klq

properties as (p”k)q. Since the proofs are similar we omit the details.

Definition 1. For any positive integers n,p, k, define

n n ql—k’q—p’qp—n
= 302 .
p,k q k q qg,q "

A PR P R

The definition (28) could be written as follows:

Rl =iy

a; qk“] : (28)

Obviously we have

Therefore

and
P e P

For p > 0, we have also

B R

Applying (11) to the definition (28), we get

i, - Rl L

The following two generating functions are obtained in the same way as for (p”k)q.

Theorem 6. There holds
3 Lﬂ } (3 g5
Lk
0<k,p<n q

1—q" [n—i

(—a)ig"
—— 1 . 2
g A (29)

i L(—y;q)i(—x;q)i(—xq"";q)z

= (42 Qn Y

120
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Theorem 7. For 0 < p < n, there holds
qp+1 qp*nJrl

k[p ]“ =y(-vd" >p[n1q2¢1[ 2

As (8) we get the recurrence relation

Proposition 2. For k # 0 and 0 < p <n, there holds

_ n| _ [ n—-1
1— qn p+1 |:p n :| —(1 = qp |: n :| — [ q 1— qn 2p+1 qk+p 1|:p :| . 31
( | e e I N e e ) RS
Corollary 2. We have

k—1 .
nq Z n—p+zt p i THP=n)(i+1=k)
k), . 1 — i i+, ‘

1=

—qu’} : (30)

As in the proof of Theorem 3, we can prove that [p”k]q is also a g-positive integer by using

)

the above Corollary.

5 Tables of the generalized ¢-binomial coefficients

° [om = (or,lk) = [Z]q for k >0,

Tables of (p?k)q

(p\e ] 1 [ 2 [ 3]
n=3 1 qz 3lq | 4l2]q13]q 3lq
’ 2 7 3la | 92]413]q 3lq
3 [3lq 3lq 1
[p\E [ 1] 2 | 3 | 4 ]
1 (13 4]q ‘12[3]q[4]q q[2]4[3 ]q( ) [4]q
n=4, 2 [ q"Me | O+¢H(T+3¢+2¢" +¢°) | 2l(1+¢*)(2+ q+q ) | Bl +4¢%)
3 7 4]q ‘12[3]q[4]q q[2]q[3] (1 + ) [4]q
4 [4]q (2]4[3]q [4]q 1
[p\E[ 1 | 2 | 3 | 4 [ 5
1 5]q [214[5]a(1 + ¢°) 3la[5]s (1 + %) [24[5]a(1 +4%) [5lq
n=>5 2 5lg | Bla(+a+2¢> +¢%) | Blal5la(1 +2¢°) | Bla(L+q+2¢° +2¢° +¢7) | [5lo(1+¢%)
’ 3 | [5lq | Bla(+a+2¢"+¢°) | BlaBla(1+2¢°) | [Bla(1+q+2¢° +2¢° +¢°) | Bla(1+4¢°)
4 dq [2]q[5]q (1 + ‘12) [3]4[5]q (1 + q2) [2]¢[5]q (1 + ‘12) [5]q
5 5)q 5q(1+qz) 5q(1+qz) [5lq 1




Tables of [z:k] .

n =z, 1 2q [2]q
2 2, | 1
(P[] 1 [ 2 [ 3 ]
n—3 T || Bl | 248l | Bla
’ 2 3, | 214[3]¢ | [8lq
3 Bl 3], 1
[P\ [ 1] 2 | 3 | 4 |
1 4]q [3]r1[4]q [Q]Q[?’]q(l""f) [4]q
n=4, [ 2 T[4, [O+AD0+2¢+37+¢") [ R0+ T+q+2¢°) | 1+¢)Bl
3 4]q [3]q[4]q [Q]q[g]q(l + qz) [4]q
4 4]q [3]q(1+q2) [4]q 1
(P\k ] 1 | 2 | 3 | 4 | 5
1 [ ¢'Bla [204[5]4 (1 + ¢°)¢° 3Ja5la (1 + ¢°)q° [2]4[5]4(1 + ¢ ) [5]q
n=>5 2 [ a'Bly [ Bl +20+¢+ )¢ | Blalle@+¢)q | Bla(l +20+2¢° +¢° +q))¢" [ Bl + )
’ 3 [ ¢°Ble | Bla(+29+¢*+¢°)¢° | Blalbla+q°)q” | [Bla(1+2g + 24 +q +4)q" | Bla(1+4¢°)
4 | d'Bly [204[5]4 (1 + ¢°)¢° 3]a[5la (1 + ¢°)q° [2]4[5]4(1 + ¢°)q [5]q
5 [5]q [5la (14 ¢%) [5la (1 + ¢%) [5]q 1

)

The above tables seem to suggest that the sequences of the coefficients in (p"k)q and [p"k]q

are unimodal for each fixed pair (n,p) or (n,k).

Remark H. Rosengren noticed that the algebraic expressions of our coefficients (p"k) and
g

[prfk] g e limit cases of his coefficients Ri: (see ” An elementary approach to 6j-symbols” available

at http://www.arxiv.org/abs/math.CA/0312310). It would be interesting to see whether it is
possible to obtain further (interesting) families of g-positive integers as degenerate cases of his
coefficients.
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