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Abstract. Let n, p and k be three non negative integers. We prove that the apparently rational fractions
of q: [

n

k

]
q
3φ2

[
q1−k, q−p, qp−n

q, q1−n

∣∣∣∣∣ q; qk+1

]
and q(n−p)p

[
n

k

]
q

3φ2

[
q1−k, q−p, qp−n

q, q1−n

∣∣∣∣∣ q; q
]

are actually polynomials of q with positive integer coefficients. This generalizes a recent result of Lassalle
(Ann. Comb. 6(2002), no. 3-4, 399-405), in the same way as the classical q-binomial coefficients refine
the ordinary binomial coefficients.
Keywords: q-binomial coefficients, q-integers, Basic hypergeometric functions,
MR Subject Classifications: Primary 05A30; Secondary 33D15;

1 Introduction

In [3] Lassalle introduced a new family of positive integers generalizing the classical binomial
coefficients. We refer the readers to [4] for some motivations from the study of Jack polynomials
and to [2] for some further results and extensions of these coefficients. In this paper we will
present a different generalization of Lassalle’s coefficients. More precisely, using basic hyperge-
ometric functions we will show that all the results of Lassalle [3] have natural q-analogues.

In order to present its q-analogues we need first to introduce some notations. Throughout
this paper q is a complex variable such that |q| < 1. For any integer k ≥ 0, the q-raising factorial
is defined by

(a; q)k = (1 − a)(1 − aq) . . . (1 − aqk−1) for k ≥ 1,

and (a; q)0 = 1. We shall also use the concise notation (a1, . . . , as; q)k = (a1; q)k . . . (as; q)k for
s ≥ 1. For any integer n (not necessary positive) the q-binomial coefficients

[
n
k

]
q

are defined by

[
n

k

]
q

=
(qn−k+1; q)k

(q; q)k
.

1corresponding author.
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So
[n
k

]
q

= 0 if k > n. Furthermore we will use the standard notation for basic hypergeometric
series [1]:

rφs

[
a1, a2, . . . , ar

b1, b2, . . . , bs

∣∣∣∣∣ q; z
]

=
∞∑

k=0

(a1, . . . , ar; q)k
(b1, . . . , bs; q)k

(−1)(1+s−r)kq(1+s−r)(k
2) zk

(q; q)k
.

The q-binomial coefficients have two less obvious formulas as follows:

[
n

p

]
q

= 2φ1

[
q−p, qp−n

q

∣∣∣∣∣ q; qn+1

]
= qp(p−n)

2φ1

[
q−p, qp−n

q

∣∣∣∣∣ q; q
]

. (1)

Actually these expressions are obtained by specializing a = qp−n, c = q in the celebrated q-Chu-
Vandermonde formula [1, p. 236]:

(c/a; q)p
(c; q)p

= 2φ1

[
q−p, a

c

∣∣∣∣∣ q; cqp/a

]
= a−p

2φ1

[
q−p, a

c

∣∣∣∣∣ q; q
]

.

Of course using this relation as a definition of q-binomial coefficients would be rather tautolog-
ical. However, quite surprisingly, it is possible to define two new families of q-positive integers,
i.e., a polynomial of q with non negative integer coefficients, by slightly modifying the q-Chu-
Vandermonde formula. In fact there are two such q-analogues of Lassalle’s generalized binomial
coefficients.

In the next two sections we present the first q-analogue and its raison d’être in the context of
linearization problem of q-binomial coefficients. In Section 4 we outline the second q-analogue.
At the end this paper we give the first values of our generalized q-binomial coefficients, which
seems to suggest some unimodal properties of the coefficients of these polynomials.

2 The first q-analogue

For any non negative integers n, p and k, define the coefficient

(
n

p, k

)
q

= q(n−p)p

[
n

k

]
q

3φ2

[
q1−k, q−p, qp−n

q, q1−n

∣∣∣∣∣ q; q
]

. (2)

Applying Sears’ transformation [1, p. 61, (3.2.5)]

3φ2

[
q−p, a, b

c, d

∣∣∣∣∣ q; q
]

=
(c/a; q)p
(c; q)p

ap
3φ2

[
q−p, a, d/b

d, q1−pa/c

∣∣∣∣∣ q; bq/c
]

(3)

with a = qp−n, b = q1−k, c = q and d = q1−n, we get

(
n

p, k

)
q

=
[
n

k

]
q

[
n

p

]
q
3φ2

[
q−p, qp−n, qk−n

q1−n, q−n

∣∣∣∣∣ q; q1−k

]
. (4)

It follows that (
n

p, k

)
q

= 0 for k > n or p > n,
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and for p, k ≤ n, (
n

p, k

)
q

=
(

n

n − p, k

)
q

,

(
n

p, n

)
q

=
[
n

p

]
q

,

the last equations following directly from the q-Chu-Vandermonde formula.
Set [n]q = 1 + q + · · · + qn−1 = (1 − qn)/(1 − q) for n ≥ 0. We can rewrite (2) as follows:(

n

p, k

)
q

=
[n]q
[k]q

∑
r≥0

[
p

r

]
q

[
n − p

r

]
q

[
n − r − 1
k − r − 1

]
q

q(n−p)p+r(r−k). (5)

Therefore (
n

0, k

)
q

=
[
n

k

]
q

,

(
n

1, k

)
q

= [k]qqn−k

[
n

k

]
q

,

and (
n

2, k

)
q

= q2n−3−k[k]q

[
n

k

]
q

+ q2(n−k) [n]q[n − 3]q
[2]q

[
n − 2
k − 2

]
q

.

For p > 0, we have also (
n

p, 0

)
q

= 0,
(

n

p, 1

)
q

= q(n−p)p[n]q,

(
n

p, 2

)
q

= q(n−p)p [n]q
[2]q

([n − 1]q + [p]q[n − p]q) .

These results suggest that
( n
p,k

)
q

are polynomials of q with non negative integer coefficients.
Indeed, it is not hard to see that they are polynomials with integer coefficients.

We can rewrite (4) as follows(
n

p, k

)
q

=
∑
i≥0

(−1)i
[
n − i

k

]
q

[n]
[n − i]

[
n − i

i

]
q

[
n − 2i
p − i

]
q

qi(i−1)/2. (6)

Since

[n]
[n − i]

[
n − i

i

]
q

=
1 − qn−i + qn−i − qn

1 − qn−i

[
n − i

i

]
q

=
[
n − i

i

]
q

+ qn−i

[
n − i − 1

i − 1

]
q

,

we see that
( n
p,k

)
q

is a q-integer, i.e., a polynomial of q with integer coefficients.

Two generating functions for
(

n
p,k

)
1

were published in [3]. We consider their q-analogues
below.

Theorem 1. There holds

∑
0≤k,p≤n

(
n

p, k

)
q

xpq(
p
2)ykq(

k
2)

= (−y; q)n(−x; q)n
∑
i≥0

1 − qn

1 − qn−i

[
n − i

i

]
q

(−x)iqi2−i

(−yqn−i; q)i(−x; q)i(−xqn−i; q)i
. (7)
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Proof. Using (6) one has

∑
0≤k,p≤n

(
n

p, k

)
q

xpq(
p
2)ykq(

k
2)

=
∑

0≤k,p≤n

n∑
i≥0

(−1)i
1 − qn

1 − qn−i

[
n − i

k

]
q

[
n − i

i

]
q

[
n − 2i
p − i

]
q

q(
i
2)ykq(

k
2)xpq(

p
2)

=
∑
i≥0

(−1)i
1 − qn

1 − qn−i
xi
∑
k≥0

[
n − i

k

]
q

ykq(
k
2)
∑
p≥0

[
n − 2i
p − i

]
q

(xqi)p−iq(
p−i
2 )qi2−i

=
∑
i≥0

(−1)i
1 − qn

1 − qn−i
xi(−y; q)n−i(−xqi; q)n−2iq

i2−i,

which yields (7).

Remark. When q = 1, since

∑
k<n

(
n − k

k

)
n

n − k
zk =

(
1 +

√
1 + 4z
2

)n

+
(

1 −√
1 + 4z
2

)n

,

setting z = −x
(1+x)2(1+y) , the above generating functions can be written as follows:

∑
0≤k,p≤n

[
n

p, k

]
1

xpyk = 2−n[(1 + y)(1 + x)]n
(
(1 +

√
1 + 4z)n + (1 −√

1 + 4z)n
)
.

The following is the q-analogue of Lassalle’s recurrence relation in [3, Lemma 3.2].

Proposition 1. For k �= 0 and 0 ≤ p ≤ n, we have

(1 − qn−p+1)
(

n

p − 1, k

)
q

− (1 − qp)
(

n

p, k

)
q

=
[n]q

[n − 1]q
qp−1(1 − qn−2p+1)

(
n − 1

p − 1, k

)
q

. (8)

Proof. Indeed, up to the factor [n]q/[k]q and using (5), the left-hand side can be written as

∑
r≥0

qA

[
n − r − 1
k − r − 1

]
q

(
(1 − qn−p+1)qp−1

[
p − 1

r

]
q

[
n − p + 1

r

]
q

− (1 − qp)qn−p

[
p

r

]
q

[
n − p

r

]
q

)

= (1 − qn−2p+1)
∑
r≥0

qA

[
n − r − 1
k − r − 1

]
q

(
qp−1

[
p − 1

r

]
q

[
n − p

r

]
q

− qn−2r+1

[
p − 1
r − 1

]
q

[
n − p

r − 1

]
q

)

= (1 − qn−2p+1)
∑
r≥0

qA

[
p − 1

r

]
q

[
n − p

r

]
q

qp−1

([
n − r − 1
k − r − 1

]
q

− qn−k

[
n − r − 2
k − r − 2

]
q

)

= (1 − qn−2p+1)
∑
r≥0

qA

[
p − 1

r

]
q

[
n − p

r

]
q

[
n − r − 2
k − r − 1

]
q

qp−1,

where A = r(r − k) + (n − p)(p − 1). The result follows then from Equation (5).
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For the second generating function, we will further need the q-binomial formula [1, 236]:

∑
n≥0

(a; q)n
(q; q)n

xn =
(ax; q)∞
(x; q)∞

, (9)

Jackson’s q-Pfaff-Kummer transformation [1, p.241]:

2φ1

[
a, b

c

∣∣∣∣∣ q; z
]

=
(az; q)∞
(z; q)∞

2φ2

[
a, c/b

c, az

∣∣∣∣∣ q; bz
]

, (10)

and another transformation of Sears [1, p. 61, (3.2.2)]:

3φ2

[
q−p, a, b

c, d

∣∣∣∣∣ q; cdqp/ab

]
=

(c/a; q)p
(c; q)p

3φ2

[
q−p, a, d/b

d, q1−pa/c

∣∣∣∣∣ q; q
]

. (11)

Theorem 2. For 0 ≤ p ≤ n, we have

∑
k≥1

(
n

p, k

)
q

ykq(
k
2) = yqp(n−p)(−y; q)p[n]q 2φ1

[
qp+1, qp−n+1

q2

∣∣∣∣∣ q;−yqn−p

]
. (12)

Proof. By applying (3) to (2) and then applying (11) we get:

(
n

p, k

)
q

= q(n−p)p

[
n

k

]
(q1−p; q)k−1

(q1−n; q)k−1
q(k−1)(p−n)

3φ2

[
q1−k, qp−n, q1+p

qp−k+1; q

∣∣∣∣∣ q; qn−p

]

= q(n−p)p

[
n

k

]
(q1−p; q)k−1

(q1−n; q)k−1
q(p−n)(k−1) (q−k; q)k−1

(qp−k+1; q)k−1
3φ2

[
q1−k, q1+p, qn−p+1

q, q2

∣∣∣∣∣ q; q
]

= (−1)k−1q(n−p)p− (k−1)(k+2)
2 [n]q3φ2

[
q1−k, q1+p, qn−p+1

q, q2

∣∣∣∣∣ q; q
]

. (13)

Hence

∑
k≥1

(
n

p, k

)
q

ykq(
k
2) = yqp(n−p)[n]q

∑
l≥0

(qp+1; q)l(qn−p+1; q)l
(q2; q)l(q; q)l(q; q)l

ql
∑
k≥l

(q−k; q)l(−yq−1)k.

But the q-binomial formula (9) implies that

∑
k≥l

(q−k; q)l(−yq−1)k = (−1)lq(
l
2)
∑
k≥l

(qk−l+1; q)l(−yq−l−1)k =
(q; q)l

(1 + yq−1)(−y−1q2; q)l
.

Hence ∑
k≥1

(
n

p, k

)
q

ykq(
k
2) =

yqp(n−p)

1 + yq−1
[n]q

∑
l≥0

(qp+1; q)l(qn−p+1; q)lql

(−y−1q2; q)l(q2; q)l(q; q)l
. (14)

Using the formula

(a; q)n = (a−1; q−1)n(−a)nq(
n
2) (15)
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and Jackson’s transformation, we can rewrite the above sum as follows:

∑
k≥1

(
n

p, k

)
q

ykq(
k
2) =

yqp(n−p)

1 + yq−1
[n]q2φ2

[
q−1−p, qp−n−1

q−2,−yq−2

∣∣∣∣∣ q−1;−yqn−2

]

= yqp(n−p)(−y; q)p[n]q2φ1

[
q−1−p, qp−n−1

q−2

∣∣∣∣∣ q−1;−yqp−1

]
.

We then recover (12) by applying (15) again.

Remark. When q = 1, the above theorem reduces to Lassalle’s generating function [3], which
was proved by using induction and contiguous relation. One could give another proof of Theorem
2 by using Proposition 1.

The following result is crucial to prove that
( n
p,k

)
q

is a q-positive integer.

Corollary 1. We have(
n

p, k

)
q

=
[n]q
[p]q

k−1∑
i=0

[
n − p

k − 1 − i

]
q

[
n − p + i

i

]
q

[
p

i + 1

]
q

q(i+1)(i+1−k)+(n−p)p.

Proof. Using the q-binomial formula we have

(−y; q)p =
p∑

j=0

[
p

j

]
yjq(

j
2).

Extracting the coefficient of yk in (12) we obtain(
n

p, k

)
q

=
[n]q

[n − p]q

k−1∑
i=0

[
p

k − 1 − i

]
q

[
p + i

i

]
q

[
n − p

i + 1

]
q

q(n−p)p+(i+1)(i+1−k).

As
(

n
p,k

)
q

=
(

n
n−p,k

)
q
, substituting p by n − p yields the desired identity.

By applying (
n

p, k

)
q

=
[p]q
[n]q

(
n

p, k

)
q

+ qp [n − p]q
[n]q

(
n

n − p, k

)
q

,

we can write(
n

p, k

)
q

=
k−1∑
i=0

[
n − p

k − 1 − i

]
q

[
n − p + i

i

]
q

[
p

i + 1

]
q

q(n−p)p+(i+1)(i+1−k)

+
k−1∑
i=0

[
p

k − 1 − i

]
q

[
p + i

i

]
q

[
n − p

i + 1

]
q

q(n−p)(p+1)+(i+1)(i+1−k),

which implies the following

Theorem 3. The polynomials
( n
p,k

)
q

is a q-positive integer.

Since q-binomial coefficients have various nice combinatorial interpretations, it would be
possible to derive a combinatorial interpretation for

( n
p,k

)
q

from the above expression.
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3 Further extensions

It is surprising that the general numbers c
(r)
k of Lassalle [3] have also a q-analogue, which are

also q-positive integers. We shall explain such a q-analog in this section. Note that the q-Chu-
Vandermonde formula: [

n + m

k

]
q

=
∑
i≥0

[
n

i

]
q

[
m

k − i

]
q

q(n−i)(k−i) (16)

implies that [
x

r1

]
q

[
x

r2

]
q

=
[

x

r1

]
q

∑
k≥0

[
r1

k

]
q

[
x − r1

r2 − k

]
q

q(r1−k)(r2−k)

=
∑
k≥0

q(r1−k)(r2−k)

[
r1 + r2 − k

k, r1 − k, r2 − k

]
q

[
x

r1 + r2 − k

]
q

. (17)

Set r = (r1, . . . , rm) and |r| = r1 + · · · + rm. Iterating (17) yields:[
x

r1

]
q

· · ·
[

x

rm

]
q

=
∑
l≥0

dl(r; q)
[
x

l

]
q

, (18)

where dl(r; q) are q-positive integers given by

dl(r; q) =
∑

k1,...,km−2≥0

[
r1 + r2 − k1

k1, r1 − k1, r2 − k1

]
q

[
r1 + r2 + r3 − k1 − k2

k2, r1 + r2 − k1 − k2, r3 − k2

]
q

× · · · ×
[

r1 + . . . + rm−2 − k1 − . . . − km−3

km−3, r1 + . . . + rm−3 − k1 − . . . − km−3, rm−2 − km−3

]
q

×
[

l

rm

]
q

[
rm

|r| − k1 − . . . − km−2 − l

]
q

qB , (19)

where

B = (r1 − k1)(r2 − k1) + (r1 + r2 − k1 − k2)(r3 − k2) + · · ·
+(r1 + r2 + · · · + rm−2 − k1 − · · · − km−2)(rm−1 − km−2)

+(l − rm)(l − r1 − · · · − rm−1 + k1 + · · · + km−2).

In particular, for m = 2 we have

dl(r1, r2; q) = q(l−r1)(l−r2)

[
l

r1

]
q

[
r1

l − r2

]
q

. (20)

On the other hand, identity (16) implies also[
x + r1 − 1

r1

]
q

=
∑
k≥0

[
r1 − 1
r1 − k

]
q

[
x

k

]
q

qk(k−1). (21)

7



From (18) and (21) we derive the following result.[
x + r1 − 1

r1

]
q

· · ·
[
x + rm − 1

rm

]
q

=
∑
l≥0

c̃l(r; q)
[
x

l

]
q

.

where

c̃l(r; q) =
∑
k

dl(k; q)
m∏

i=1

[
ri − 1
ki − 1

]
q

qki(ki−1). (22)

Theorem 4. The polynomial

cl(r; q) =
[r1 + . . . + rm]q

[l]q
c̃l(r; q)

is a q-positive integer.

Proof. By (19) there is a polynomial Pm(k; q) ∈ N[q] such that

dl(k; q) =
[l]q

[km]q
Pm(k; q).

Since dl(k; q) is symmetric with respect to k = (k1, . . . , km), the above formula infers that there
is a polynomial Pi(k; q) ∈ N[q] for each j ∈ {1, . . . ,m} such that

dl(k; q) =
[l]q
[kj ]q

Pj(k; q).

Therefore, using (3) we have

cl(r; q) =
m∑

j=1

[rj ]qr1+···+rj−1

[r1 + · · · + rm]
cl(r; q)

=
m∑

j=1

qr1+···+rj−1
∑
k

Pi(k; q)
[
rj

kj

]
q

qkj(kj−1)
∏
i�=j

[
ri − 1
ki − 1

]
q

qki(ki−1),

which is clearly a q-positive integer.

We can also derive a simpler formula for c̃j(r1, . . . , rm; q) using the q-difference operator. Set
[x; q] = (qx − 1)/(q − 1) and

[x; q]n = [x; q][x − 1; q] · · · [x − n + 1; q] =
(qx−n+1; q)n

(1 − q)n
.

We define the q-difference operator ∆q by

∆0
qf(x) = f(x), ∆n+1

q f(x) = ∆n
q (E − qnI)f(x),

where If(x) = f(x) and Ef(x) = f(x + 1). Note that

∆n
q f(x) = (E − qn−1I)(E − qn−2I) · · · (E − I)f(x).

8



By the q-Chu-Vandermonde formula, we have

∆n
q f(x) =

n∑
k=0

(−1)k
[
n

k

]
q

q(
k
2)f(x + n − k). (23)

It’s easy to see that
∆n

q [x; q]m = [m; q]n[x; q]m−nqn(x+n−m).

We have also

p(x) =
∑
n≥0

∆n
q p(0)
[n]!

[x; q]n. (24)

It follows from (24), (23) and (3) that

c̃k(r1, . . . , rm; q) =
k∑

j=1

(−1)k−j

[
k

j

]
q

q(
k−j
2 )

m∏
l=1

[
j + rl − 1

rl

]
q

. (25)

Set r = (r1, . . . , rm) and

ck(r; q) =
[r1 + . . . + rm]q

[k]q
c̃k(r1, . . . , rm; q)

=
m∑

i=1

qr1+···+ri−1
[ri]q
[k]q

k∑
j=1

(−1)k−j

[
k

j

]
q

q(
k−j
2 )

m∏
l=1

[
j + rl − 1

rl

]
q

=
m∑

i=1

k∑
j=1

(−1)k−jqr1+···+ri−1+(k−j
2 )

×
[
k − 1
j − 1

]
q

[
j + ri − 1

ri

]
q

m∏
l=1, l �=j

[
rl + i − 1

rl

]
q

. (26)

Thus we have obtained another proof of the q-integrality of ck(r; q).
Finally, when r = (r1, r2), we have the following result.

Theorem 5. The coefficients
(r1+r2

r1,k

)
q

satisfy

[
x + r1 − 1

r1

]
q

[
x + r2 − 1

r2

]
q

=
∑
k≥1

[k]qqk(k−1)−r1r2

[r1 + r2]q

(
r1 + r2

r1, k

)
q

[
x

k

]
q

. (27)

Proof. By (25) we have

ck(r1, r2; q) =
[r1 + r2]q

[k]q

k∑
j=0

(−1)k−j

[
k

j

]
q

q(
k−j
2 )
[
j + r1 − 1

r1

]
q

[
j + r2 − 1

r2

]
q

= (−1)k−1[r1 + r2]qq(
k−1
2 )

3φ2

[
q1−k, q1+r1 , q1+r2

q, q2

∣∣∣∣∣ q; q
]

.

Comparing with (13) we see that ck(r1, r2; q) = qk(k−1)−r1r2
(r1+r2

r1,k

)
q
.
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4 The Second q-analogue

In this section, we give another new family of q-positive integers
[ n
p,k

]
q
, which have the similar

properties as
( n
p,k

)
q
. Since the proofs are similar we omit the details.

Definition 1. For any positive integers n, p, k, define

[
n

p, k

]
q

=
[
n

k

]
q

3φ2

[
q1−k, q−p, qp−n

q, q1−n

∣∣∣∣∣ q; qk+1

]
. (28)

Obviously we have [
n

p, k

]
q

=
[

n

n − p, k

]
q

,

[
n

p, n

]
q

=
[
n

p

]
q

.

The definition (28) could be written as follows:[
n

p, k

]
q

=
[n]q
[k]q

∑
r≥0

[
p

r

]
q

[
n − p

r

]
q

[
n − r − 1
k − r − 1

]
q

qr2
.

Therefore [
n

0, k

]
q

=
[
n

k

]
q

,

[
n,

1, k

]
q

= [k]q

[
n

k

]
q

,

and [
n

2, k

]
q

= [k]q

[
n

k

]
q

+ q2 [n]q[n − 3]q
[2]q

[
n − 2
k − 2

]
q

.

For p ≥ 0, we have also[
n

p, 0

]
q

= 0,
[

n

p, 1

]
q

= [n]q,
[

n

p, 2

]
q

=
[n]q
[2]q

([n − 1]q + [p]q[n − p]q).

Applying (11) to the definition (28), we get[
n

p, k

]
q

=
∑
r≥0

(−1)i
[
n − i

k

]
q

[n]
[n − i]

[
n − i

i

]
q

[
n − 2i
p − i

]
q

qi(i−1)/2+ki.

The following two generating functions are obtained in the same way as for
( n
p,k

)
q
.

Theorem 6. There holds

∑
0≤k,p≤n

[
n

p, k

]
q

xpq(
p
2)ykq(

k
2)

= (−y; q)n(−x; q)n
∑
i≥0

1 − qn

1 − qn−i

[
n − i

i

]
q

(−x)iqi2−i

(−y; q)i(−x; q)i(−xqn−i; q)i
. (29)
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Theorem 7. For 0 ≤ p ≤ n, there holds∑
k≥1

[
n

p, k

]
q

ykq(
k
2) = y(−yqn−p; q)p[n]q 2φ1

[
qp+1, qp−n+1

q2

∣∣∣∣ q;−yqn−p

]
. (30)

As (8) we get the recurrence relation

Proposition 2. For k �= 0 and 0 ≤ p ≤ n, there holds

(1 − qn−p+1)
[

n

p − 1, k

]
q

− (1 − qp)
[

n

p, k

]
q

=
[n]q

[n − 1]q
(1 − qn−2p+1)qk+p−1

[
n − 1

p − 1, k

]
q

. (31)

Corollary 2. We have[
n

p, k

]
q

=
[n]q
[p]q

k−1∑
i=0

[
n − p

k − 1 − i

]
q

[
n − p + i

i

]
q

[
p

i + 1

]
q

q(i+1+p−n)(i+1−k).

As in the proof of Theorem 3, we can prove that
[ n
p,k

]
q

is also a q-positive integer by using
the above Corollary.

5 Tables of the generalized q-binomial coefficients

• [ n
0,k

]
q

=
( n
0,k

)
q

=
[n
k

]
q

for k ≥ 0,

• [ n
p,0

]
q

=
( n
p,0

)
q

= 0, for p ≥ 0.

• n = 1,
[ n
1,1

]
q

=
( n
1,1

)
q

= 1.

Tables of
( n
p,k

)
q

n = 2
p\k 1 2

1 q[2]q [2]q
2 [2]q 1

n = 3,

p\k 1 2 3

1 q2[3]q q[2]q [3]q [3]q
2 q2[3]q q[2]q [3]q [3]q
3 [3]q [3]q 1

n=4,

p\k 1 2 3 4

1 q3[4]q q2[3]q [4]q q[2]q [3]q(1 + q2) [4]q
2 q4[4]q (1 + q2)(1 + 3q + 2q2 + q3) [2]q(1 + q2)(2 + q + q2) [3]q(1 + q2)

3 q3[4]q q2[3]q [4]q q[2]q [3]q(1 + q2) [4]q
4 [4]q [2]q [3]q [4]q 1

n=5,

p \ k 1 2 3 4 5

1 [5]q [2]q [5]q(1 + q2) [3]q [5]q(1 + q2) [2]q [5]q(1 + q2) [5]q
2 [5]q [5]q(1 + q + 2q2 + q3) [3]q [5]q(1 + 2q2) [5]q(1 + q + 2q2 + 2q3 + q4) [5]q(1 + q2)

3 [5]q [5]q(1 + q + 2q2 + q3) [3]q [5]q(1 + 2q2) [5]q(1 + q + 2q2 + 2q3 + q4) [5]q(1 + q2)

4 [5]q [2]q [5]q(1 + q2) [3]q [5]q(1 + q2) [2]q [5]q(1 + q2) [5]q
5 [5]q [5]q(1 + q2) [5]q(1 + q2) [5]q 1
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Tables of
[ n
p,k

]
q

n = 2,
p\k 1 2

1 [2]q [2]q
2 [2]q 1

n = 3,

p\k 1 2 3

1 [3]q [2]q [3]q [3]q
2 [3]q [2]q [3]q [3]q
3 [3]q [3]q 1

n = 4,

p\k 1 2 3 4

1 [4]q [3]q [4]q [2]q [3]q(1 + q2) [4]q
2 [4]q (1 + q2)(1 + 2q + 3q2 + q3) [2]q(1 + q2)(1 + q + 2q2) (1 + q2)[3]q
3 [4]q [3]q [4]q [2]q [3]q(1 + q2) [4]q
4 [4]q [3]q(1 + q2) [4]q 1

n = 5,

p \ k 1 2 3 4 5

1 q4[5]q [2]q [5]q(1 + q2)q3 [3]q [5]q(1 + q2)q2 [2]q [5]q(1 + q2)q [5]q
2 q6[5]q [5]q(1 + 2q + q2 + q3)q5 [3]q [5]q(2 + q2)q4 [5]q(1 + 2q + 2q2 + q3 + q4)q2 [5]q(1 + q2)

3 q6[5]q [5]q(1 + 2q + q2 + q3)q5 [3]q [5]q(2 + q2)q4 [5]q(1 + 2q + 2q2 + q3 + q4)q2 [5]q(1 + q2)

4 q4[5]q [2]q [5]q(1 + q2)q3 [3]q [5]q(1 + q2)q2 [2]q [5]q(1 + q2)q [5]q
5 [5]q [5]q(1 + q2) [5]q(1 + q2) [5]q 1

The above tables seem to suggest that the sequences of the coefficients in
(

n
p,k

)
q

and
[

n
p,k

]
q

are unimodal for each fixed pair (n, p) or (n, k).

Remark H. Rosengren noticed that the algebraic expressions of our coefficients
( n
p,k

)
q

and[
n

p,k

]
q

are limit cases of his coefficients Rl
k (see ”An elementary approach to 6j-symbols” available

at http://www.arxiv.org/abs/math.CA/0312310). It would be interesting to see whether it is
possible to obtain further (interesting) families of q-positive integers as degenerate cases of his
coefficients.
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