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THE COMPLEXITY FOR PARTITIONING GRAPHS BY
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Let G be an edge-colored graph. We show in this paper that it is NP-hard to find the minimum number of vertex
disjoint monochromatic trees which cover the vertices of the graph G. We also show that there is no constant factor
approximation algorithm for the problem unless P = NP. The same results hold for the problem of finding the
minimum number of vertex disjoint monochromatic cycles (paths, respectively) which cover the vertices of the
graph.
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1 INTRODUCTION

Many combinatorial problems can be described as finding a partition of the vertices of a
given graph into subsets satisfying certain properties. Many graph partition problems and
their corresponding computational complexity problems have been well studied [1–5], most
of which are shown to be NP-complete. MacGillivray and Yu [6] considered a general graph
partition problem, the (H, C)-partition problem, which contains some well-known graph par-
tition problems as special cases. Feder et al. [7] introduced a parameterized family of graph
problems, which also includes several well-known graph partition, problems as special cases.
A list of graph partition problems can be found in the Ref. [4].

Some researchers also focused on the graph partition problems in edge-colored graphs.
The aim is to find some kind of vertex disjoint monochromatic subgraphs (e.g. trees, cycles
or paths) to cover all the vertices of the given graph. Gyárfás [8] considered the problem
of covering edge-colored graphs by vertex disjoint monochromatic paths and cycles. Erdös
et al. [9] showed that if the edges of a finite complete graph are colored with r colors, then
the vertex set of the graph can be covered by at most cr2log r vertex disjoint monochromatic
cycles, where c is a constant. Haxell and Kohayakawa [10] proved that at most r vertex
disjoint monochromatic trees are needed to cover the vertex set of the complete graph Kn for
n large enough, if the edges of the finite complete graph are colored with r colors. Haxell [11]
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considered the analog problem in edge-colored complete bipartite graphs, whereas Kaneko
et al. [12] considered the analog problem in two-edge-colored complete multipartite graphs.

Motivated by the results in Refs. [9–12], in this paper we consider the following optimal
problems: Given an edge-colored graph G, find the minimum number of vertex disjoint
monochromatic trees, cycles and paths, respectively, which cover the vertices of G. For
convenience, we simply call the three problems the PGMT, PGMC and PGMP problems,
respectively. By transforming the set cover problem to each of the problems in polynomial
time, we show that all the three problems are NP-hard. And we show that there does not exist
constant factor approximation algorithm for any of the three problems unless P = NP.

We will see in Sections 2 and 3 that the previously defined problems contain several well-
known problems as special cases. A more general graph partition problem is to find the
minimum number of some kind of vertex disjoint monochromatic subgraphs which cover
the vertices of G, which is a very hard problem in general. Some recent publications on the
edge-colored graphs can be found in Refs. [13, 14].

2 MONOCHROMATIC TREES

In this section we focus on the PGMT problem. The corresponding decision version is defined
formally as follows.

THE PGMT PROBLEM

INSTANCE: An edge-colored graph G and a positive integer k.
QUESTION: Are there k or less vertex disjoint monochromatic trees which cover the vertices

of the graph G?

Note that the PGMT problem looks like the problem of partitioning a graph into induced
forests [4]. But actually it is not the case. The following facts are easily seen. If G is colored
properly, i.e. adjacent edges receive different colors, the PGMT problem is equivalent to the
maximum matching problem, which can be solved in polynomial time [4, 5]. If G is colored
with one color, the PGMT problem is equivalent to the spanning tree problem, and can be
solved in polynomial time. However, in general, by transforming the set cover problem to the
PGMT problem in polynomial time, we have the following result.

THEOREM 2.1 The PGMT problem is NP-complete.

Proof The problem is clearly in NP, since a nondeterministic algorithm needs only to guess
a set of trees and to check in polynomial time that the trees in the set are vertex disjoint
monochromatic ones and cover the vertices of the given graph.

Now we transform the set cover problem to the PGMT problem. Let an arbitrary instance
of the set cover problem be given by the set S = {v1, v2, . . . , vn} and subsets C1, C2, . . . , Cm

of S. Here we construct an edge-colored graph G such that there are k or less subsets of
S which cover all the elements of S if and only if G contains k + 1 or less vertex disjoint
monochromatic trees which cover the vertices of G.

The graph G is constructed as follows. The vertex set of G is V (G) =
{v1, v2, . . . , vn, C1, C2, . . . , Cm, v}. The edge set of G consists of the edges vCi, 1 ≤ i ≤ m,
and the edges viCj if and only if vi ∈ Cj , 1 ≤ i ≤ n, 1 ≤ j ≤ m. Color the edges of G by
m + 1 colors c0, c1, c2, . . . , cm as follows. At first, color all the edges vCi, 1 ≤ i ≤ m, by the
same color c0. Next, color all other edges incident to the vertex Cj with the color cj . It is easy
to show that the construction can be accomplished in polynomial time. We claim that there
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are k or less subsets of S which cover all the elements of S if and only if G contains k + 1 or
less vertex disjoint monochromatic trees which cover the vertices of G.

If there are k subsets Ci1 , Ci2 , . . . , Cik of S which cover all the elements of S, it is easy to
find that G contains k + 1 or less vertex disjoint monochromatic trees which cover the vertices
of G.

Suppose that G contains k + 1 vertex disjoint monochromatic trees, denoted by � =
{T1, T2, . . . , Tk+1}, which cover the vertices of G. If k ≥ m, the claim is true, since⋃i=m

i=1 Ci = S. So, we assume k < m.
Let Ti , i = 1, 2, . . . , t , t ≤ k < m, be the trees, each of which contains an edge vpCq for

some 1 ≤ p ≤ n and 1 ≤ q ≤ m. Without loss of generality, we can assume that Ci ∈ Ti ,
i = 1, 2, . . . , t . If for any 1 ≤ j ≤ k + 1, Tj is not composed of a single vertex vr for some
1 ≤ r ≤ n, then it is easy to see that Ci, i = 1, 2, . . . , t cover the set S. Suppose that Tt+i ,
i = 1, 2, . . . , t ′, is composed a single vertex. Without loss of generality, we can assume that
Tt+i = vi , i = 1, 2, . . . , t ′. Then t + t ′ ≤ k < m, since v cannot lie in any Tj for 1 ≤ j ≤
t + t ′. For each vi , 1 ≤ i ≤ t ′, find a subset Cpi

such that vi ∈ Cpi
. It is easy to see that the

subsets C1, C2, . . . , Ct , Cpi
, i = 1, 2, . . . , t ′ form a cover of S. This completes the proof. �

From the transformation described in the proof of Theorem 2.1, we see that the graph G

constructed in the above-mentioned proof is bipartite. Therefore, we have the following result
as a corollary.

COROLLARY 2.2 The PGMT problem remains to be NP -complete for edge-colored bipartite
graphs.

Similarly, we can show that to find a good approximate optimal solution for the PGMT
problem is also an NP-hard problem.

THEOREM 2.3 There is no constant factor approximation algorithm for the PGMT problem
unless P = NP.

Proof Assume that there exists an approximation algorithm � of constant factor for the
PGMT problem. Let α be the exact constant. Denote by OPTI the optimal solution of the
instance I .

Let I be an arbitrary instance of the set cover problem given by a set S and its subsets
C1, C2, . . . , Cm. Without loss of generality, we can assume that S = ⋃i=m

i=1 Ci . As in the proof
of Theorem 2.1, we can construct an instance I ′ of the PGMT problem in polynomial time,
where I ′ is given by the edge-colored graph G. And we have that there are k or less given
subsets of S which cover all the elements of S if and only if G contains k + 1 or less vertex
disjoint monochromatic trees which cover the vertices of G. Then OPTI ′ = OPTI + 1. When
running the algorithm � on I ′, � finds a solution s ′ ≤ α · OPTI ′ ≤ 2αOPTI . Thus, we obtain
a 2α-approximation algorithm for the instance I . This contradicts to the fact that there is no
constant factor approximation algorithm for the set cover problem unlessP = NP [16, 17]. �

3 MONOCHROMATIC CYCLES AND PATHS

In this section we focus on the PGMC and PGMP problems. The corresponding decision
versions are defined formally as follows.
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THE PGMT (PGMP) PROBLEM

INSTANCE: An edge-colored graph G and a positive integer k.
QUESTION: Are there k or less vertex disjoint monochromatic cycles (paths) which cover

the vertices of the graph G?

If G is colored with only one color, the PGMC problem and the PGMP problem is equivalent
to the problem of finding minimum number of vertex disjoint cycles and paths, respectively,
to cover the vertices of G. Moreover, by setting k = 1, the PGMC problem and the PGMP
problem is equivalent to the Hamiltonian cycle problem and the Hamiltonian path problem,
respectively, which are NP-hard problems. If G is colored properly, i.e. adjacent edges receive
different colors, the PGMP problem is equivalent to the maximum matching problem, which
can be solved in polynomial time [4, 15]. However, in general, by transforming the set cover
problem to each of the two problems in polynomial time, we have the following results.

THEOREM 3.1 The PGMC problem is NP -complete.

Proof The problem is clearly in NP, since a nondeterministic algorithm needs only to guess
a set of cycles and to check in polynomial time that the cycles in the set are vertex disjoint
monochromatic ones and cover the vertices of the given graph.

Now we transform the set cover problem to the PGMC problem. Let an arbitrary instance of
the set cover problem be given by the set S = {v1, v2, . . . , vn} and its subsets C1, C2, . . . , Cm.
Here we construct an edge-colored multiple graph G such that there are k or less subsets of
S which cover all the elements of S if and only if G contains k + 1 or less vertex disjoint
monochromatic cycles which cover the vertices of G.

Construct the multiple graph G and color its edges by m + 1 colors c1, c2, . . . , cm, c as
follows. The vertex set of G is V (G) = {v1, v2, . . . , vn, v

∗
1 , v

∗
2 , . . . , v

∗
n, v

∗∗
1 , v∗∗

2 , . . . , v∗∗
n , C1,

C2, . . . , Cm, u, v, w}. The edges of G and their colors are defined as follows.

(1) If vi ∈ Cj , 1 ≤ i ≤ n, 1 ≤ j ≤ m, then each of the vertices vi, v
∗
i and v∗∗

i is connected to
Cj , and color the three edges by the color cj .

(2) If vi ∈ Cj , construct a triangle on the three vertices vi, v
∗
i , and v∗∗

i , and color the three edges
with the color cj . Note that if the element vi also belongs to another subset Cr , then we
double the edges of the triangle on the three vertices vi, v

∗
i , and v∗∗

i , and color its edges by
the color cr . If vi belongs to more subsets, we simply construct more copies of triangles with
different colors according to the subsets. So, in general what we constructed is a multiple
graph.

(3) If vi, vr ∈ Cj , connect each of the vertices vi, v
∗
i and v∗∗

i to each of the vertices vr, v
∗
r and

v∗∗
r , and color the edges with the color cj .

(4) The vertices {C1, C2, . . . , Cm, u, v, w} form a complete graph and color all its edges by a
same color c.

It is easy to show that the construction can be accomplished in polynomial time. We claim
that there are k or less subsets of S, which cover all the elements of S if and only if G contains
k + 1 or less vertex disjoint monochromatic cycles which cover the vertices of G.

If there are k subsets Ci1 , Ci2 , . . . , Cik of S, which cover all the elements of S, it is easy
to find that G contains k + 1 or less vertex disjoint monochromatic cycles which cover the
vertices of G.

Suppose that G contains k + 1 vertex disjoint monochromatic cycles, denoted by � =
{T1, T2, . . . , Tk+1}, which cover the vertices of G. If k ≥ m, the claim is true, since S =⋃i=m

i=1 Ci . So, we assume k < m.
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Let Ti , i = 1, 2, . . . , t , be the cycles containing some edges vpCq , v∗
pCq or v∗∗

p Cq . From
the construction we have that none of u, v and w can lie in any Ti , i = 1, 2, . . . , t and
each Ti , i = 1, 2, . . . , t , contains a unique vertex of some Cq . Without loss of generality,
we can assume that Ci ∈ Ti , i = 1, 2, . . . , t . If Tj contains no vertex of {v1, v2, . . . , vn} for
any t + 1 ≤ j ≤ k + 1, then it is easy to see that Cis, i = 1, 2, . . . , t cover the set S. So,
assume that Tt+i , i = 1, 2, . . . , t ′, are the cycles, each of which only contains vertices of
{v1, v2, . . . , vn, v

∗
1 , v

∗
2 , . . . , v

∗
n, v

∗∗
1 , v∗∗

2 , . . . , v∗∗
n }. It is easy to see that t + t ′ ≤ k, since none

of u, v and w can lie in any Tt+i , i = 1, 2, . . . , t ′. Consider the cycle Tt+i , i = 1, 2, . . . , t ′.
Denote the color of the cycleTt+i by cri

, i = 1, 2, . . . , t ′. Let Ii = {j |Tt+i ∩ {vj , v
∗
j , v

∗∗
j } �= ∅}.

Then {vj |j ∈ Ii} ⊆ Cri
. It is easy to see that the subsets C1, C2, . . . , Ct , Cri

, i = 1, 2, . . . , t ′
form a cover of S. This completes the proof. �

Similarly, we can show that to find a good approximate optimal solution for the PGMC
problem is also an NP-hard problem.

THEOREM 3.2 There is no constant factor approximation algorithm for the PGMC problem
unless P = NP .

Proof Assume that there exists an approximation algorithm � of constant factor for the
PGMC problem. Let α be the exact constant. By similar analysis as in the proof of Theorem 2.3,
we obtain a 2α-approximation algorithm for the set cover problem, which also contradicts to
the fact that there is no constant factor approximation algorithm for the set cover problem
unless P = NP [16, 17] �

Though the PGMP problem is equivalent to the Hamiltonian path problem if G is colored
with only one color and k = 1, using the analog technique in the proof of Theorem 3.1, we
can show that it remains to be NP-complete if k ≥ 2. We have the following result and the
detailed proof is omitted.

THEOREM 3.3 The PGMP problem is NP -complete.

Similarly, we can show that to find a good approximate optimal solution for the PGMP
problem is also an NP -hard problem. We have the following result and the detailed proof is
omitted.

THEOREM 3.4 There is no constant factor approximation algorithm for the PGMP problem
unless P = NP .

One can think about other kind of monochromatic subgraphs in a edge-colored graph G to
cover the vertices of G. For example, the same proof as for Theorem 2.1 can be employed to
show that to find the minimum number of vertex disjoint monochromatic stars to cover the
vertices of G is NP-hard, and there does not exist any constant factor approximation algorithm
for the problem.

4 CONCLUSIONS

In this paper, we show that to find the minimum number of vertex disjoint monochromatic
trees, cycles and paths, respectively, in an edge-colored graph G which covers the vertices of
G is NP-hard. We also show that there does not exist constant factor approximation algorithm
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for any of the problems unless P = NP. A more general graph partition problem is to find
the minimum number of some kind of vertex disjoint monochromatic subgraphs in an edge-
colored graph G, which cover the vertices of G. We believe that most of them are NP-hard.
Though there is no constant factor approximation algorithm for any of the PGMT, PGMC
and PGMP problems, to find heuristic procedures with fixed performance guarantee is an
interesting problem for further research. For some special edge-colorings or some special
graphs, for example, G is colored by 2 or c colors where c is a constant, or each color class
has at most 2 colors, or G is complete or multipartite complete, the computational complexity
of the problems remains open.
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