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Abstract

In this paper, we give graph-theoretic algorithms of linear time to the Minimum All-Ones
Problem for unicyclic and bicyclic graphs. These algorithms are based on a graph-theoretic
algorithm of linear time to the Minimum All-Ones Problem with Restrictions for trees.
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1 Introduction

The term All-Ones Problem was introduced by Sutner, see [10]. It has applications in linear cellular
automata, see [11] and the references therein. The problem is cited as follows: suppose each of
the square of an n × n chessboard is equipped with an indicator light and a button. If the button
of a square is pressed, the light of that square will change from off to on and vice versa; the same
happens to the lights of all the edge-adjacent squares. Initially all lights are off. Now, consider the
following questions: is it possible to press a sequence of buttons in such a way that in the end all
lights are on ? This is referred as the All-Ones Problem. If there is such a solution, how to find
a such way ? And finally, how to find such a way that presses as few buttons as possible ? This
is referred as the Minimum All-Ones Problem. All the above questions can be asked for arbitrary
graphs. Here and in what follows, we consider connected simple undirected graphs only. One can
deal with disconnected graphs component by component. For all terminology and notations on
graphs, we refer to [7]. An equivalent version of the All-Ones Problem was proposed by Peled in
[8], where it was called the Lamp Lighting Problem. The rule of the All-Ones Problem is called
σ+-rule on graphs, which means that a button lights not only its neighbors but also its own light.
If a button lights only its neighbors but not its own light, this rule on graphs is called σ-rule.

In graph-theoretic terminology, a solution to the All-Ones Problem with σ+-rule can be stated
as follows: given a graph G = (V,E), where V and E denotes the vertex-set and the edge-set of
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G, respectively. A subset X of V is a solution if and only if for every vertex v of G the number
of vertices in X adjacent to or equal to v is odd. Such a subset X is called an odd parity cover in
[11]. So, the All-Ones Problem can be formulated as follows: given a graph G = (V,E), does a
subset X of V exist such that for all vertex v ∈ V − X , the number of vertices in X adjacent to
v is odd, while for all vertex v ∈ X , the number of vertices in X adjacent to v is even ? If there
exists a solution, how to find a one with minimum cardinality ?

There have been many publications on the All-Ones Problem, see Sutner [12,13], Barua and
Ramakrishnan [1] and Dodis and Winkler [3]. Using linear algebra, Sutner [11] proved that it is
always possible to light every lamp in any graphs by σ+-rule. Lossers [6] gave another beautiful
proof also by using linear algebra. A graph-theoretic proof was given by Erikisson et al [4]. So, the
existence of solutions of the All-Ones Problem for general graphs was solved already. Sutner [10]
proposed the question whether there is a graph-theoretic method to find a solution to the All-Ones
Problem for trees. Galvin [5] solved this question by giving a graph-theoretic algorithm of linear
time. In [9], Sutner proved that the Minimum All-Ones Problem is NP-complete for arbitrary
graphs. So, it becomes an interesting problem to find graph-theoretic algorithms of polynomial
time to the Minimum All-Ones Problem for some special classes of graphs. In [2] we gave a
linear time algorithm for trees, which is based on the idea of Galvin algorithm [5] to the All-Ones
Problem for trees. In his algorithm, the nodes of a rooted tree, drawn like a family tree with the
root at the top, will be divided into three classes: outcasts, oddballs and rebels. The classification
is defined inductively, from the bottom up, as follows:

• All of the childless nodes or leaves are rebels.

• A node, other than a leaf, is called an rebel if it has no oddball children and an even number
of its children are rebels.

• A node is called an oddball if it has no oddball children and an odd number of its children
are rebels.

• A node is called an outcast if at least one of its children is an oddball.

We sometimes simply call a node r-type, b-type or o-type if it belongs to the rebel class, the
oddball class or the outcast class.

These notations and terminology will be used in the sequel.

2 Algorithm to the Minimum All-Ones Problem with Restrictions for
Trees

In order to solve the Minimum All-Ones Problems for unicyclic and bicyclic graphs, we need
to introduce and solve the Minimum All-Ones Problem with Restrictions for trees, which is an
interesting problem on its own. First we need to solve the following problem.

For a matrix M2×n = (mij)2×n, i ∈ {0, 1}, j ∈ {1, 2, · · · , n}, mij ∈ Z+ ∪ {∞}, the
Minimum Odd Sum Problem with Restrictions is defined as

min

n
∑

j=1

m0jx0j + m1jx1j
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∑n
j=1 x1j = 1 mod 2

x0j + x1j = 1, j = 1, 2, · · · , n

xij ∈ {0, 1}, i ∈ {0, 1}

Here we suppose that “∞” is bigger than any k ∈ Z+, and ∀k ∈ Z+, k + ∞ = ∞.

We omit the description and the proof of the algorithm for the Minimum Odd Sum Problem
with Restrictions. The time complexity of the algorithm is linear.

Replacing
∑n

j=1 x1j = 1 mod 2 in the Minimum Odd Sum Problem with Restrictions by
∑n

j=1 x1j = 0 mod 2, we then get a new problem, called the Minimum Even Sum Problem with
Restrictions. It can be solved in the same way as above. The details are omitted.

For convenience, we say that the truth value of a node u in G, denoted by tv(u), is 1, if it
belongs to the solution to the All-Ones Problem for G; and 0, otherwise.

The so-called “the Minimum All-Ones Problem with Restrictions for trees” is to find a solution
to the Minimum All-Ones Problem for trees under the condition that the truth values of some nodes
have been assigned. For this problem, our algorithm uses induction on the number of layers of a
tree and the algorithms for the Minimum Odd or Even Sum with Restrictions as subprocess. The
details are omitted.

3 Algorithm for Unicyclic Graphs

First, we recall that a unicyclic graph is a connected graph with a unique cycle. So, we can regard
a unicyclic graph as a cycle attached with each node a rooted tree, called a suspended tree. Note
that the depth of a suspended tree can be 0. For simplicity, we say that a node t in the cycle has the
same type as the type of the root t of the suspended tree. Based on the algorithm with restrictions
for trees in Section 2, we give a graph-theoretic algorithm of linear time to the Minimum All-Ones
Problem for unicyclic graphs.

Algorithm for Unicyclic Graphs

Case 1. If none of the nodes on the cycle with length q is an outcast then we use the following
way to get all the possible truth values of all nodes on the cycle.

(1) Fix an order on the cycle. Assume that the truth value of the 1st node is x, the truth value
of the 2nd node is y. x and y will be completely determined in the end.

(2) Suppose that the truth value of the i-th node is ai, a function of x and y. Next, determine
the truth value of the (i+1)-th node in two cases: If the i-th node is a rebel, then the truth value of
the (i + 1)-th node is ai+1 = (1 − ai − ai−1)mod 2; else, the truth value is ai+1 = ai−1. Repeat
this step until i = q.

(3) After we get the truth value of aq for the q-th node, the following equalities hold.

{

aq−1 = x if the q-th node is an oddball
aq−1 + aq + x = 1 mod 2 if the q-th node is a rebel
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{

aq = y if the 1-st node is an oddball
aq + x + y = 1 mod 2 if the 1-st node is a rebel

By solving these equalities, we get at most 4 possible values of x and y, which determine
all possible truth values of each node on the cycle. Suppose that all the possible k(1 ≤ k ≤ 4)
group of truth values of the nodes on the cycle are zj1, zj2, . . ., zjq, (1 ≤ j ≤ k). According
to each group of zj1, zj2, . . ., zjq, the unicyclic graph G has a solution to the All-Ones Problem.
Conversely, any solution to the All-Ones Problem for the unicyclic graph G has a restriction on the
nodes on the cycle, which must coincide with one of the t groups zj1, zj2, . . ., zjq, (1 ≤ j ≤ k).

Subcase 1.1 vi is a rebel. If zji = 1. Let Cj(Ti) be the minimum solution to the All-Ones Problem
for Ti. If zji = 0. Let Cj(Ti) be the minimum solution to the Quasi-All-Ones Problem for Ti.

Subcase 1.2 vi is an oddball. If zji = 1, then let Cj(Ti) be the minimum solution to the All-Ones
Problem for Ti with the restriction that the truth value of the root is 1. If zji = 0, then let Cj(Ti)
be the minimum solution to the All-Ones Problem for Ti with the restriction that the truth value of
the root is 0.

After getting all the Cj(Ti), 1 ≤ i ≤ q, we can see that

Cj(G) =
⋃

1≤i≤q

Cj(Ti), 1 ≤ j ≤ k

are all the possible minimum solutions to the All-Ones Problem for the unicyclic graph G. So the
minimum one in the k solutions is the minimum solution to the All-Ones Problem for G.

Case 2. There is at least one of the nodes on the cycle is an outcast. Suppose this outcast node is
u. We fix an order to the nodes on the cycle. Suppose the node before u on the cycle is v, the node
after u on the cycle is w. Then we cut the edges between u and v and u and w. The unicyclic graph
G will be changed into two trees. One has the root u, denoted by Tu, the other is the remaining
part of G excluding Tu, denoted by T ′

u. We can easily verify that the minimum solution to the
All-Ones Problem for G, denoted by C(G), must be one of the following four possible solutions:

C(T ′
u|tv(v) = i, tv(w) = j)

⋃

C[(i+j+1)mod 2](Tu), i, j ∈ {0, 1},

where C[1](Tu) means the minimum solution to the All-Ones Problem for the suspended tree Tu

with the root u, C[0](Tu) means the minimum solution to the Quasi-All-Ones Problem for Tu.

Then the minimum one of the four possible solutions will be the minimum solution to the
All-Ones Problem for unicyclic graphs.

Summing up the above, we get that the algorithm outputs a solution to the Minimum All-Ones
Problem for unicyclic graphs, and the time complexity is linear.

For bicyclic graphs, the analysis of the Minimum All-Ones Problem would be similar but
more detailed and complicated. As an abstract, we have to omit its details. We can use the same
technique for tricyclic graphs, quadrucyclic graphs, etc. But, unfortunately, we cannot employ it
efficiently for graphs with more and more cycles. We have point out that in [9], Sutner proved that
the Minimum All-Ones Problem is NP-complete for general graphs.
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