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Abstract

Let G be a 4-connected graph. For an edge e of G, we do the following
operations on G: first, delete the edge e from G, resulting the graph G − e;
second, for all the vertices x of degree 3 in G− e, delete x from G− e and then
completely connect the 3 neighbors of x by a triangle. If multiple edges occur,
we use single edges to replace them. The final resultant graph is denoted by
G ª e. If G ª e is still 4-connected, then e is called a removable edge of G. In
this paper, we investigate the problem on how many removable edges there are
in a cycle of a 4-connected graph, and give examples to show that our results
are in some sense best possible.

Key Words: 4-Connected graph, Removable edge, Edge-vertex-cut fragment,
Edge-vertex-cut atom
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1 Introduction

All graphs considered here are simple and finite. For notations and terminology not
given here, we refer the reader(s) to [1]. In this paper we shall study the removable
edges in a cycle of a 4-connected graph. First of all, we give the definition of a
removable edge for a 4-connected graph. Let G be a 4-connected graph and e an
edge of G. Consider the graph G − e obtained by deleting the edge e from G. If
G − e has vertices of degree 3, we do the following operations on G − e. For all
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vertices x of degree 3 in G − e, delete x from G − e and then completely connect
the three neighbors of x by a triangle. If multiple edges occur, we use single edges
to replace them. The final resultant graph is denoted by G ª e. Note that if there
is no vertex of degree 3 in G− e, then Gª e is simply the graph G− e.

Definition 1.1. For a 4-connected graph G and an edge e of G, if G ª e is still
4-connected, then the edge e is called removable; otherwise, it is called unremovable.
The set of all removable edges of G is denoted by ER(G); whereas the set of unre-
movable edges of G is denoted by EN (G).

Definition 1.2. A 2-cyclic graph G of order n is defined to be the square of the
cycle Cn, namely, G can be obtained from Cn by adding edges between all pairs of
vertices of Cn which are at distance 2 in Cn.

The aim to introduce the concept of removable edges in 4-connected graphs is
to find new method to construct 4-connected graphs and to prove some properties
of 4-connected graphs inductively. In [2], Yin proved that there always exist re-
movable edges in 4-connected graphs G unless G is a 2-cyclic graph of order 5 or
6. He showed that a 4-connected graph can be obtained from a 2-cyclic graph by
the following four operations: (i) adding edges, (ii) splitting vertices, (iii) adding
vertices and removing edges, and (iv) extending vertices. He also obtained a lower
bound for the number of removable edges and contractible edges in a 4-connected
graph G. In this paper we shall investigate how many removable edges there are in
a cycle of a 4-connected graph G, and give examples to show that our results are
best possible in some sense.

For convenience we introduce the following notations. Without specific state-
ment, in the sequel G always denotes a 4-connected graph. The vertex set and edge
set of G is denoted, respectively, by V (G) and E(G). The order and size of G is
denoted, respectively, by |G| and |E(G)|. For x ∈ V (G), we simply write x ∈ G.
The neighborhood of x ∈ G is denoted by ΓG(x) and the degree of x is denoted
by d(x). If x and y are the two end-vertices of an edge e, we write e = xy. For a
nonempty subset F of E(G), or N of V (G), the induced subgraph by F or N in G
is denoted by [F ] or [N ]. Let A,B ⊂ V (G) such that A 6= Ø 6= B and A

⋂
B = Ø,

define [A,B] = {xy ∈ E(G) | x ∈ A, y ∈ B}. If H is a subgraph of G, we say that G
contains H. For a subset S of V (G), G− S denotes the graph obtained by deleting
all the vertices in S from G together with all the incident edges. If G− S is discon-
nected, we say that S is a vertex-cut of G. If |S| = s for such an S, we say that S is
an s-vertex-cut. For e = xy ∈ E(G) and S ⊂ V (G) such that |S| = 3, if G−e−S has
exactly two (connected) components, say A and B, such that |A| ≥ 2 and |B| ≥ 2,
then we say that (e, S) is a separating pair and (e, S;A,B) is a separating group, in
which A and B are called the edge-vertex-cut fragments. If, moreover, |A| = 2, then
A is called an edge-vertex-cut atom. For an edge-vertex-cut atom A, let A = {x, z}
and S = {a, b, c}, if ax, bx ∈ E(G), cx /∈ E(G), then A is called a 1-edge-vertex-cut
atom; whereas if ax, bx, cx ∈ E(G), then A is called a 2-edge-vertex-cut atom. It is
easy to see that if A is an edge-vertex-cut atom, then A is either a 1-edge-vertex-cut
atom or a 2-edge-vertex-cut atom. Let E0 ⊂ EN (G) such that E0 6= Ø and let
(xy, S; A,B) be a separating group of G such that x ∈ A and y ∈ B. If xy ∈ E0,
then A and B are called E0-edge-vertex-cut fragments. An E0-edge-vertex-cut frag-
ment is called an E0-edge-vertex-cut end-fragment of G if it does not contain any
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other E0-edge-vertex-cut fragment of G as a proper subset. It is easy to see that
any E0-edge-vertex-cut fragment of G contains a such end-fragment. Similarly, if
|A| = 2, then A is called an E0-edge-vertex-cut atom.

2 Some Known Results

In the sequel we shall use the following results on the existence of removable edges
in 4-connected graphs, which were obtained by Yin in [2].

Theorem 2.1. Let G be a 4-connected graph with |G| ≥ 7. An edge e of G is
unremovable if and only if there is a separating pair (e, S), or a separating group
(e, S;A,B) in G.

Theorem 2.2. Let G be a 4-connected graph with |G| ≥ 8 and let (xy, S; A,B) be
a separating group of G such that x ∈ A, y ∈ B and |A| ≥ 3. Then, every edge in
[{x}, S] is removable.

Corollary 2.3. Let G be a 4-connected graph with |G| ≥ 8. Then, every 3-cycle of
G contains at least one removable edge.

Theorem 2.4. Let G be a 4-connected graph with |G| ≥ 7. If for an unremovable
edge xy, i.e., xy ∈ EN (G), there is a separating group (xy, S; A,B), then all the
edge in E([S]) are removable, i.e., E([S]) ⊂ ER(G).

3 Notations and Terminology for Subgraphs With Spe-
cial Structures

For convenience we introduce the following definitions for subgraphs of G with spe-
cial structures.

Definition 3.1. Let G be a 4-connected graph and H a subgraph of G such that
V (H) = {a, x1, x2, x3, x4, v1, v2, v3, v4} and E(H) = {ax1, ax2, ax3, ax4, x1x2, x2x3,
x3x4, x4x1, x1v1, x2v2, x3v3, x4v4}. If H satisfies the following conditions

(i) d(a) = d(xi) = 4 for i = 1, 2, 3, 4,

(ii) ax1, ax2, ax3, ax4 ∈ EN (G) and x1x2, x2x3, x3x4, x4x1 ∈ ER(G),

then H is called a helm. The vertices a, xi for i = 1, 2, 3, 4 of a helm H are called
inner vertices of H.

Definition 3.2. Let G be a 4-connected graph and H a subgraph of G such that
V (H) = {a, b, x1, x2, · · · , xl+3} and E(H) = {x1x2, x2x3, · · · , xl+2xl+3, ax2, ax3, · · ·,
axl+2, bx2, bx3, · · · , bxl+2, where l ≥ 1. If H satisfies the following conditions

(i) xixi+1 ∈ EN (G) for i = 1, 2, · · · , l + 2,

(ii) axj , bxj ∈ ER(G) for j = 2, 3, · · · , l + 2,

(iii) d(xj) = 4 for j = 2, 3, · · · , l + 2,
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then H is called an l-bi-fan.

An l-bi-fan H is said to be maximal if ΓG(x1) 6= {a, b, x2, u} and ΓG(xl+3) 6=
{a, b, xl+2, v} for any u, v ∈ G. The vertices of an l-bi-fan or a maximal l-bi-fan H
satisfying the condition (iii) are called inner vertices of H.

Definition 3.3. Let G be a 4-connected graph and H a subgraph of G such
that V (H) = {x1, x2, · · · , xl+2, y1, y2, · · · , yl+2} and E(H) = E1(H) ∪ E2(H) where
E1(H) = {x1x2, x2x3, · · · , xl+1xl+2, y1y2, y2y3, · · · , yl+1yl+2} and E2(H) = {y1x2,
x2y2, y2x3, · · · , ylxl+1, xl+1yl+1, yl+1xl+2}. Then, H is called an l-belt if the follow-
ing conditions are satisfied

(i) E1(H) ⊂ EN (H) and E2(H) ⊂ ER(H),

(ii) d(xi) = d(yj) = 4 for i = 2, 3, · · · , l + 1; j = 2, 3, · · · l + 1.

An l-belt H is said to be maximal if ΓG(y1) 6= {x1, x2, y2, u} and ΓG(xl+2) 6=
{xl+1, yl+1, yl+2, v} for any u, v ∈ G. The vertices of an l-belt or a maximal l-belt
H satisfying the condition (ii) are called inner vertices of H.

Definition 3.4. Let G be a 4-connected graph and H a subgraph of G such that
V (H) = {x1, x2, · · · , xl+2, xl+3, y1, y2, · · · , yl+2} and E(H) = E1(H) ∪ E2(H) where
E1(H) = {x1x2, x2x3, · · · , xl+1xl+2, xl+2xl+3, y1y2, y2y3, · · · , yl+1yl+2} and E2(H) =
{y1x2, x2y2, y2x3, · · · , ylxl+1, xl+1yl+1, yl+1xl+2, xl+2yl+2}. Then, H is called an l-co-
belt if the following conditions are satisfied

(i) E1(H) ⊂ EN (H) and E2(H) ⊂ ER(H),

(ii) d(xi) = d(yj) = 4 for i = 2, 3, · · · , l + 1, l + 2; j = 2, 3, · · · l + 1.

An l-co-belt H is said to be maximal if ΓG(y1) 6= {x1, x2, y2, u} and ΓG(yl+2) 6=
{xl+2, yl+1, xl+3, v} for any u, v ∈ G. The vertices of an l-co-belt or a maximal l-co-
belt H satisfying the condition (ii) are called inner vertices of H.

Definition 3.5. Let G be a 4-connected graph and H a subgraph of G such that
V (H) = {x1, x2, x3, y1, y2, y3, y4} and E(H) = {x1x2, x2x3, y1y2, y2y3, y3y4, x1y2,
x2y2, x2y3, x3y3}. Then, H is called a W -framework if the following conditions are
satisfied

(i) xixi+1 ∈ EN (G) for i = 1, 2,

(ii) d(x2) = d(y2) = d(y3) = 4,

(iii) y2y3, x1y2, x2y2, x2y3, x3y3 ∈ ER(G).

The vertex x2 of a W -framework H is called the inner vertex of H.

Definition 3.6. Let G be a 4-connected graph and H a subgraph of G such that
V (H) = {x1, x2, x3, y1, y2, y3, y4} and E(H) = {x1x2, x2x3, x1x3, y1y2, y2y3, y3y4,
x1y2, x2y2, x2y3, x3y3}. Then, H is called a W ′-framework if the following condi-
tions are satisfied

(i) xixi+1 ∈ EN (G) for i = 1, 2,
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(ii) d(x2) = d(x3) = d(y2) = d(y3) = 4 and d(x1) ≥ 5,

(iii) y2y3, x1y2, x2y3, x3y3, x1x3 ∈ ER(G), x2y2 ∈ EN (G).

The vertices x2, x3 of a W ′-framework H are called inner vertices of H.

After we have done the above preparations, we can state and prove our main
results in the next section.

4 The Main Results

In this section we shall consider the problem on how many removable edges there
are in a cycle of a 4-connected graph G. Before we give our main results, we need
to show some lemmas.

Lemma 4.1. Let G be a 4-connected graph, (xy, S; A,B) be a separating group
of G such that x ∈ A, y ∈ B, S = {a, b, c} and A be a 1-edge-vertex atom, say,
A = {x, z}. Then, one of the following conclusions holds:

(i) ax, bx, zx ∈ ER(G).

(ii) ax ∈ EN (G), d(x) = d(z) = 4, bx, zx, az ∈ ER(G), zc ∈ EN (G).

(iii) ax ∈ EN (G), ay ∈ ER(G). And, if d(a) = 4, d(y) ≥ 5, then az, zb, zx, by, ay ∈
ER(G), bx ∈ EN (G). If d(a) ≥ 5, d(y) = 4, then by, bx, bz, az ∈ ER(G), zx ∈ EN (G).
If d(a) = d(y) = 4, then az, bz, by ∈ ER(G), bx, zx ∈ EN (G). If d(a) ≥ 5, d(y) ≥ 5,
then az, zx, bx, by ∈ ER(G).

(iv) ax, bx, ac, bc ∈ ER(G), zx, zc ∈ EN (G), {za, zb} ∩ EN (G) 6= Ø, d(x) = d(c) =
d(z) = 4. If za ∈ EN (G), then the following conclusion holds: d(b) = 4, and if
d(a) = 4, then bz ∈ EN (G); if d(a) ≥ 5, then bz ∈ ER(G) holds. If bz ∈ EN (G),
then the following conclusion holds: d(a) = 4, and if d(b) = 4, then az ∈ EN (G); if
d(b) ≥ 5, then az ∈ ER(G).

(v) ax, bx, az, bz ∈ ER(G), xz ∈ EN (G), d(x) = d(z) = 4.

(vi) bx ∈ EN (G), by ∈ ER(G). And, if d(a) = 4, d(y) ≥ 5, then bz, za, zx, ay, by ∈
ER(G), ax ∈ EN (G). If d(b) ≥ 5, d(y) = 4, then ay, ax, az, bz ∈ ER(G), zx ∈ EN (G).
If d(b) = d(y) = 4, then bz, az, ay ∈ ER(G), ax, zx ∈ EN (G). If d(b) ≥ 5, d(y) ≥ 5,
then bz, zx, ax, ay ∈ ER(G).

Proof. If ax, bx, zx ∈ ER(G), then the conclusion (i) holds. So, we may assume that
{ax, bx, zx} ∩ EN (G) 6= Ø. Next we will distinguish the following cases to proceed
the proof.

Case 1. ax ∈ EN (G).

Then, we take the corresponding separating group (ax, T ;C,D) such that x ∈
C, a ∈ D, and so, x ∈ A ∩ C, y ∈ B ∩ (C ∪ T ). Let

X1 = (C ∩ S) ∪ (S ∩ T ) ∪ (A ∩ T ),
X2 = (A ∩ T ) ∪ (S ∩ T ) ∪ (S ∩D),
X3 = (D ∩ S) ∪ (S ∩ T ) ∪ (B ∩ T ),
X4 = (B ∩ T ) ∪ (S ∩ T ) ∪ (C ∩ S).
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Subcase 1.1. y ∈ B ∩ C.

Since |A| = 2 and A is a connected subgraph of G, we have that A ∩ D = Ø.
First, we claim that A ∩ T 6= Ø. Otherwise, A ∩ T = Ø, and so |A ∩ C| = 2.
Since a ∈ S ∩D, we have that |X1| ≤ 2. Then, X1 ∪ {x} is a vertex-cut of G with
cardinality less than 4, a contradiction. Hence, A∩ T = {z}. Second, we claim that
S ∩ T = Ø. Otherwise, S ∩ T 6= Ø, and a contradiction will be deduced as follows.
If B ∩ T = Ø, since B is a connected subgraph of G, then we have that B ∩D = Ø.
Then, B = B ∩C, and so |S ∩T | = 2. Noticing that a ∈ S ∩D and |S| = 3, we have
that S ∩ C = Ø. From |B| ≥ 2 we know that |B ∩ C| ≥ 2. Then, it is easy to see
that {y} ∪ (S ∩ T ) is a vertex-cut of G with cardinality less than 4, a contradiction.
So, B ∩T 6= Ø, and so |S ∩T | = 1. Noticing that |T | = 3, we have that |B ∩T | = 1.
Since X4 is a vertex-cut of G−xy, we have that |X4| ≥ 3, and so, |S∩C| ≥ 1. Since
S ∩D 6= Ø, by noticing that |S| = 3, we have that |S ∩D| = 1, i.e., S ∩D = {a}.
Note that |X3| = 3. Since G is 4-connected, we have that B ∩ D = Ø. Hence,
D = {a}, which contradicts to that |D| ≥ 2. Therefore, S ∩ T = Ø. Note that
|B ∩ T | = 2. If |S ∩ D| = 1, by a similar argument we can get that D = {a}, a
contradiction. So, |S ∩D| ≥ 2. Since |X4| ≥ 3, we have that |S ∩C| ≥ 1. Therefore,
|S ∩ C| = 1 and |S ∩ D| = 2. Since bx ∈ E(G), obviously we have b ∈ X1, and
so S ∩ C = {b}. Then, S ∩ D = {a, c},ΓG(x) = {a, b, y, z}, ΓG(z) = {x, a, b, c}.
We claim that xz ∈ ER(G). Otherwise, xz ∈ EN (G), and we take the corre-
sponding separating group (xz, S′; A′, B′) such that x ∈ A′, z ∈ B′. Since xzax
is a 3-cycle of G, we have that a ∈ S′ and ax ∈ EN (G). From Theorem 2.2 we
know that |A′| = 2, say A′ = {x, v1}. Then, we have that axv1a is a 3-cycle of
G and v1 6= z, which is impossible to hold in G, and so, xz ∈ ER(G). We claim
that az ∈ ER(G). Otherwise, az ∈ EN (G), and we take the corresponding sepa-
rating group (az, S′; A′, B′) such that a ∈ A′, z ∈ B′. Obviously, x ∈ S′. Since
ax ∈ EN (G), from Theorem 2.2 we have that |A′| = 2, say A′ = {a, v1}. Then,
axv1a is a 3-cycle of G and v1 6= z, which is impossible to hold in G, and so,
az ∈ ER(G). Let S′ = {x} ∪ (B ∩ T ), A′ = C ∩ (B ∪ S), B′ = G − bz − S′ − A′,
then (bz, S′; A′, B′) is a separating group of G, and so bz ∈ EN (G). We claim that
bx ∈ ER(G). Otherwise, bx ∈ EN (G), and we take the corresponding separating
group (bx, S′; A′, B′) such that b ∈ A′, x ∈ B′. Since bxzb is a 3-cycle of G, we have
that z ∈ S′. Since bz ∈ EN (G), we have that |A′| = 2, say A′ = {b, v1}. Then,
bv1zb is a 3-cycle of G, and v1 6= x, which is impossible to hold in G, and hence
bx ∈ ER(G). Let S1 = {a, b, y}, then (zc, S1) is a separating pair of G, and so,
zc ∈ EN (G). Obviously, d(x) = d(z) = 4. Hence, the conclusion (ii) holds.

Subcase 1.2. y ∈ B ∩ T .

Since xy ∈ EN (G), from Theorem 2.2 we have that |C| = 2. If |A ∩ C| = 2,
then we have that A = A ∩ C = C. Since B ∩ T 6= Ø 6= S ∩ D, we have that
|S ∩ T | ≤ 2. It is easy to see that {x} ∪X1 is a vertex-cut of G with cardinality less
than 4, a contradiction. So, A ∩ C = {x}. Since A and C are connected subgraphs
of G, we have that |S ∩ C| = |A ∩ T | = 1 and B ∩ C = Ø = A ∩D. We claim that
S ∩T = Ø. Otherwise, |S ∩T | = 1, and so |B∩T | = 1. Note that |X3| = 3. Since G
is 4-connected, we have that B∩D = Ø, and so B = B∩T = {y}, which contradicts
to that |B| ≥ 2. Therefore, S ∩ T = Ø, and so |B ∩ T | = |S ∩ D| = 2. From
ΓG(x) = {z, b, a, y} we know that S ∩C = {b}, and so S ∩D = {a, c}, A ∩ T = {z}.
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Let B ∩ T = {u, y}. Next we will discuss the following subsubcases.

Subsubcase 1.2.1. If ay 6∈ E(G), we claim that xz ∈ ER(G). Otherwise,
xz ∈ EN (G), and we take the corresponding separating group (xz, S′; A′, B′) such
that z ∈ A′, x ∈ B′. Since azxa is a 3-cycle of G, we have that a ∈ S′. Since
ax ∈ EN (G), from Theorem 2.2 we have that |B′| = 2, say B′ = {x, v1}. Then,
axv1a is a 3-cycle of G. However, ay /∈ E(G) and v1 6= z, which is impossible to
hold in G. Hence, xz ∈ ER(G). By symmetry, we can show that bx ∈ ER(G). We
claim that az ∈ ER(G). Otherwise, az ∈ EN (G), and we take the corresponding
separating group (az, S′; A′, B′) such that a ∈ A′, z ∈ B′. Since azxa is a 3-cycle of
G, we have that x ∈ S′. Since ax ∈ EN (G), we have that |A′| = 2, say A′ = {a, v1}.
Then, axv1a is a 3-cycle of G, an analogous argument can lead to a contradiction.
So, az ∈ ER(G). By symmetry, we have that by ∈ ER(G). Let S′ = {a, b, y}. Obvi-
ously, (zc, S′) is a separating pair of G, and so zc ∈ EN (G). Hence, the conclusion
(ii) holds.

Subsubcase 1.2.2. If ay ∈ E(G), then from Corollary 2.3 we know that ay ∈
ER(G). Then, we consider the following cases.

(1.) If d(a) ≥ 5 and d(y) ≥ 5, we claim that xz ∈ ER(G). Otherwise, xz ∈ EN (G),
and we take the corresponding separating group (xz, S′; A′, B′) such that x ∈ A′, z ∈
B′. Since azxa is a 3-cycle of G, we have that a ∈ S′. Since ax ∈ EN (G), from
Theorem 2.2 we know that |A′| = 2, say A′ = {x, v1}. Then, axv1a is a 3-cycle of
G. Noticing that d(v1) = 4 and d(y) ≥ 5, we have that v1 6= y, which is impossible
to hold in G. Hence, xz ∈ ER(G). By symmetry, we can show that bx ∈ ER(G).
We claim that az ∈ ER(G). Otherwise, az ∈ EN (G), and we take the corresponding
separating group (az, S′; A′, B′). Obviously, x ∈ S′, and an analogous argument can
lead to a contradiction. So, az ∈ ER(G). By symmetry, we have that by ∈ ER(G).
Hence, the conclusion (iii) holds.

(2.) If d(a) = 4 and d(y) ≥ 5, we let ΓG(a) = {x, y, z, v}. Let A′ = {a, x}, S′ =
{v, z, y}, B′ = G−bx−S′−A′, then (bx, S′; A′, B′) is a separating group of G, and so
bx ∈ EN (G). We claim that bz ∈ ER(G). Otherwise, bz ∈ EN (G), and we take the
corresponding separating group (bz, S′; A′, B′) such that b ∈ A′, z ∈ B′. Noticing
that bzxb is a 3-cycle of G, we have x ∈ S′. Since bx ∈ EN (G), from Theorem 2.2
we have that |A′| = 2, say, A′ = {b, v1}. Then, bxv1b is a 3-cycle of G. Noticing that
d(y) ≥ 5 and d(v1) = 4, we have that v1 6= y, which is impossible to hold in G. There-
fore, bz ∈ ER(G). We claim that az ∈ ER(G). Otherwise, az ∈ EN (G), and we take
the separating group (az, S′; A′, B′) such that a ∈ A′, z ∈ B′. Obviously, x ∈ S′.
Since ax ∈ EN (G), from Theorem 2.2 we have that |A′| = 2, say A′ = {a, v1}. Then,
axv1a is a 3-cycle of G and v1 6= z. Note that d(v1) = 4, d(y) ≥ 5, and so, v1 6= y,
which is impossible to hold in G. So, az ∈ ER(G). By an analogous argument we
can show that zx ∈ ER(G). We claim that by ∈ ER(G). Otherwise, by ∈ EN (G),
and we take the separating group (by, S′; A′, B′) such that b ∈ A′, y ∈ B′. Obvi-
ously, x ∈ S′. Since xy ∈ EN (G), from Theorem 2.2 we have that |B′| = 2, say
B′ = {y, v1}. Then, xyv1x is a 3-cycle of G. It is easy to see that this is true only
if v1 = a. From ΓG(a) = {x, y, z, v} we know that S′ = {x, z, v}. Since d(y) ≥ 5,
we have yz ∈ E(G), which is impossible to hold in G. So, by ∈ ER(G). Hence, the
conclusion (iii) holds.

(3.) If d(a) ≥ 5 and d(y) = 4. By an analogous argument used in (2.) we can show
that the conclusion (iii) holds.
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(4.) If d(a) = d(y) = 4, we let ΓG(a) = {x, y, z, v}, A1 = {a, x}, S1 = {z, y, v}, B1 =
G − bx − S1 − A1. Then, (bx, S1;A1, B1) is a separating group of G, and so,
bx ∈ EN (G). By symmetry, we have that ax, xy, zx ∈ EN (G). From Corollary
2.3 we have that az, by, bz ∈ ER(G). Hence, the conclusion (iii) holds.

If bx ∈ EN (G), we may employ a similar argument to show that the conclusion
(iv) holds. So, next we may assume that ax, bx ∈ ER(G).

Case 2. xz ∈ EN (G).

We take the corresponding separating group (xz, T ;C,D) such that x ∈ C, z ∈ D.
Then, we have that x ∈ A ∩ C, z ∈ A ∩D. Since xzax, xzbx are two 3-cycles of G,
we have that a, b ∈ S ∩ T . Since A ∩D = {z} and D is a connected subgraph of G
as well as |D| ≥ 2, we can get that S ∩ D 6= Ø. Since S = {a, b, c}, we have that
S ∩D = {c}. Obviously, |B ∩ T | = 1.

Subcase 2.1. If az ∈ EN (G), from Theorem 2.2 we have that |D| = 2, and so
D = {z, c}. It is easy to see that ac, bc ∈ E(G). From Theorem 2.4 we have that
ac, bc ∈ ER(G). Obviously, d(x) = d(c) = d(z) = 4 and ΓG(x) = {z, b, a, y}. Let
A1 = {x, z}, S1 = {y, a, b}, B1 = G−zc−S1−A1, then (zc, S1; A1, B1) is a separating
group of G, and so zc ∈ EN (G). We take the separating group (az, S′; A′, B′) such
that a ∈ A′, z ∈ B′. Obviously, x ∈ S′. Since xz ∈ EN (G), we have that |B′| = 2,
say B′ = {z, v1}. Then, xzv1x is a 3-cycle of G, which is true only if v1 = b, and so
d(b) = 4. Here, if d(a) = 4, let ΓG(a) = {x, z, c, v}, A1 = {a, z}, S1 = {c, x, v} and
B1 = G − bz − S1 − B1. Then (bz, S1;A1, B1) is a separating group of G, and so
bz ∈ EN (G). If d(a) ≥ 5, we claim that bz ∈ ER(G). Otherwise, bz ∈ EN (G), then
we take the corresponding separating group (bz, S1; A1, B1) such that b ∈ A1, z ∈ B1.
Obviously, x ∈ S1. Since xz ∈ EN (G), from Theorem 2.2 we have |B1| = 2, say
B1 = {z, v1}. Then xv1zx is a 3-cycle of G. Note that d(a) ≥ 5, d(v1) = 4, and so
v1 6= a. Which is impossible to hold in G. So, bz ∈ ER(G). Hence, the conclusion
(iv) holds.

Subcase 2.2. If bz ∈ EN (G), we may employ a similar argument used in Subcase
2.1 to show that the conclusion (iv) holds.

Therefore, we may assume that az, bz ∈ ER(G). Obviously, d(x) = d(z) = 4, and
so the conclusion (v) holds. The proof is now complete.2

Corollary 4.2. Let G be a 4-connected graph and (xy, S; A,B) be a separating
group of G such that x ∈ A, y ∈ B, S = {a, b, c}. Let A be a 1-edge-vertex-cut
atom, say A = {x, z}, If {xa, xb, xz} ∩EN (G) 6= Ø, then we have that x is an inner
vertex of one of the following subgraphs in G: helm, co-belt, belt, W ′-framework,
W -framework or bi-fan.

Lemma 4.3. Let G be a 4-connected graph, (xy, S; A,B) be a separating group
of G, and A be a 2-edge-vertex-cut atom, say A = {x, z} and S = {a, b, c}. Then,
ax, bx, cx, xz ∈ ER(G).

Proof. By contradiction. We consider the following cases.

(1.) If ax ∈ EN (G), we take the corresponding separating group (ax, T ;C,D) such
that x ∈ C, a ∈ D. Then, x ∈ A∩C, a ∈ S∩D. Let X = (D∩S)∪ (S∩T )∪ (B∩T ).
Since bx, cx ∈ E(G), we can get that b, c ∈ S ∩ (C ∪ T ), and so |S ∩ D| = 1. We
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claim that A ∩ T 6= Ø. Otherwise, A ∩ T = Ø. Since |A| = 2 and A is a connected
subgraph of G, we have that A∩C = {x, z}. It is easy to see that {b, c, x} would be
a 3-vertex-cut of G, a contradiction. Therefore, A∩T = {z}, A∩D = Ø. Obviously,
|X| ≥ 3. Since |S ∩D| = 1 and |D| ≥ 2, we have that B ∩D 6= Ø, and so |X| ≥ 4.
However, by noticing that |A ∩ T | = 1, we have that |(S ∪ B) ∩ T | = 2, and so
|X| = 3, a contradiction.

If bx ∈ EN (G) or cx ∈ EN (G), we may employ a similar argument. So, next we
may assume that bx, cx ∈ ER(G).

(2.) If xz ∈ EN (G), we take the corresponding separating group (xz, T ;C, D)
such that x ∈ C, z ∈ D. Then, we have that x ∈ A ∩ C, z ∈ A ∩ D. It is
easy to see that a, b, c ∈ S ∩ T . Since |T | = 3, we have that y ∈ B ∩ C. Let
X = (D ∩ S) ∪ (S ∩ T ) ∪ (B ∩ T ), and so |X| = 3. Then, we have that B ∩D = Ø.
Noticing that D∩S = Ø, we have that D = A∩D = {z}, which contradicts to that
|D| ≥ 2. Therefore, xz ∈ ER(G).

From the above arguments, we know that the lemma holds. 2

Now we present our main results. For convenience we denote by < the set of all
helms, maximal l-bi-fans, maximal l-belts, maximal l-co-belts, W -frameworks and
W ′-frameworks of a graph G.

Definition 4.4. Let C be a cycle of a 4-connected graph G and H a subgraph of
G belonging to <. If C contains an inner vertex of H, then we say that C passes
through H.

Theorem 4.5. Let G be a 4-connected graph and C a cycle of G. If C does not
pass through any subgraph of G belonging to <, then there are least two removable
edges of G in C.

Proof. By contradiction. Assume that C does not pass through any subgraph
of G belonging to <, and there is at most one removable edge of G in C. Let
F = E(C)∩ER(G), then |F | ≤ 1. Denote E(C)−F by E0. We take the separating
group (uw, S′; A′, B′) such that u ∈ A′, w ∈ B′ and uw ∈ E0. From |F | ≤ 1 we
know that (E(A′) ∪ ([A′, S′]) ∩ F = Ø or (E(B′) ∪ ([S′, B′]) ∩ F = Ø. Without
loss of generality, we may assume that (E(A′) ∪ ([A′, S′]) ∩ F = Ø. Since A′ is an
E0-edge-vertex-cut fragment, A′ must contain an E0-edge-vertex-cut end-fragment
as its subgraph, say A. Then, we have that (E(A)∪ ([A, S])∩F = Ø, and we take a
separating group (xy, S; A,B) such that x ∈ A, y ∈ B with xy ∈ E0. Next, we will
consider |A| by cases.

Case 1. |A| = 2. Then, A is a 1-edge-vertex-cut atom or a 2-edge-vertex-cut atom,
say, A = {x, z}. Let S = {a, b, c}.
Subcase 1.1. If A is a 2-edge-vertex-cut atom, since xy ∈ E(C) and C is a cycle
of G, we have that {xa, xb, xc, xz} ∩ E(C) 6= Ø. From Lemma 4.3 we know that
{xa, xb, xc, xz} ⊂ ER(G), which contradicts to that (E(A) ∪ [A,S]) ∩ F = Ø.

Subcase 1.2. If A is a 1-edge-vertex-cut atom, by noticing that C is a cycle of G and
([E(A)∪ [A,S])∩F = Ø, then obviously {xa, xb, xz}∩EN (G) 6= Ø. From Corollary
4.2 we know that x is an inner vertex of one of the subgraphs of G belonging to <.
Since xy ∈ E(C), this contradicts to that C does not pass through any subgraph of
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G belonging to <.

Case 2. |A| ≥ 3. Then, we will discuss the following subcases.

Subcase 2.1. If there exists an xz ∈ E0 ∩ E(A ∪ [A, S]), then obviously z 6∈ S;
otherwise, we would have |A| = 2, a contradiction to that |A| ≥ 3. We take the
separating group (xz, S1; A1, B1) such that x ∈ A1, z ∈ B1. Then, we have that
x ∈ A ∩A1, z ∈ A ∩B1. Let

X1 = (A1 ∩ S) ∪ (S ∩ S1) ∪ (A ∩ S1),
X2 = (A ∩ S1) ∪ (S ∩ S1) ∪ (B1 ∩ S),
X3 = (B1 ∩ S) ∪ (S ∩ S1) ∪ (B ∩ S1),
X4 = (B ∩ S1) ∪ (S ∩ S1) ∪ (A1 ∩ S).

If y ∈ B ∩ S1, from Theorem 2.2 we have that |A1| = 2, say A1 = {x, v1}. We claim
that A1 is a 1-edge-vertex-cut atom; otherwise, A1 is a 2-edge-vertex-cut atom, and
then, from Lemma 4.3 we have xy ∈ ER(G), a contradiction. From Corollary 4.2 we
know that x is an inner vertex of some subgraph of G belonging to <, a contradiction
to the assumption. Therefore, y /∈ B ∩S1, and so y ∈ A1 ∩B. Since A∩B1 6= Ø, we
have that X2 is a vertex-cut of G−xz, and so |X2| ≥ 3. By an analogous argument,
we can deduce that |X4| ≥ 3. Since |X2| + |X4| = |S| + |S1| = 6, we can get that
|X2| = |X4| = 3, and so |A1 ∩ S| = |A ∩ S1|, |B ∩ S1| = |B1 ∩ S|. We claim that
A∩B1 = {z}. Otherwise, |A∩B1| ≥ 2. Then, (xz, X2; A∩B1, A1 ∪B) is a separat-
ing group of G and xz ∈ E0. It is easy to see that A ∩ B1 is an E0-edge-vertex-cut
fragment contained in A, which contradicts to that A is an E0-edge-vertex-cut end-
fragment of G. Therefore, A ∩ B1 = {z}. Since |B1| ≥ 2 and B1 is a connected
subgraph of G, we have that B1 ∩ S 6= Ø.

Subsubcase 2.1.1. If |B1 ∩ S| = |B ∩ S1| = 3, then |X1| = 0, and so {z, y} would
be 2-vertex-cut of G, a contradiction.

Subsubcase 2.1.2. If |B1∩S| = |B∩S1| = 2, since X1 is a vertex-cut of G−xy−xz,
then |X1| ≥ 2. Noticing that |S| = |S1| = 3, we have that |A ∩ S1| = |A1 ∩ S| =
1, S ∩ S1 = Ø. We claim that A ∩ A1 = {x}. Otherwise, |A ∩ A1| ≥ 2. Then,
{x} ∪X1 would be a 3-vertex-cut of G, a contradiction. Let A∩S1 = {a}, A1 ∩S =
{b}, S∩B1 = {v1, v2}. From A∩B1 = {z} we can get that ΓG(z) = {x, a, v1, v2}. We
claim that ab ∈ E(G). Otherwise, {x, v1, v2} would be a 3-vertex-cut of G, a contra-
diction. We claim that av1, av2 ∈ E(G). Otherwise, without loss of generality, we
may assume that av1 6∈ E(G). Let A′ = {x, a}, S′ = {b, z, v2}, B′ = G−xy−S′−A′,
then (xy, S′; A′, B′) is a separating group of G. Since xy ∈ E0, A′ is an E0-edge-
vertex-cut fragment contained in A, which contradicts to that A is an E0-edge-
vertex-cut end-fragment. So, av1, av2 ∈ E(G), and hence ΓG(a) = {x, z, b, v1, v2}.
Let S0 = {x, v1, v2}, A0 = {a, z}, B0 = G − ab − S0 − A0, then (ab, S0; A0, B0) is a
separating group of G, and so ab ∈ EN (G).

We claim that az ∈ ER(G). Otherwise, az ∈ EN (G), and we take the correspond-
ing separating group (az, S′; A′, B′) such that a ∈ A′, z ∈ B′. Since axza, av1za, av2za
are 3-cycles of G, we have that x, v1, v2 ∈ S′. Since xz ∈ EN (G), from Theorem
2.2 we have that |B′| = 2, say B′ = {z, u}. Then, uzxu is a 3-cycle of G, which is
impossible to hold in G, and so az ∈ ER(G).
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Since (E(A)∪([A,S]))∩F = Ø and C is a cycle of G, we can get that {zv1, zv2}∩
EN (G) 6= Ø. Without loss of generality, we may assume that zv1 ∈ EN (G). We
take the separating group (zv1, T ;C ′, D′) such that z ∈ C ′, v1 ∈ D′. Then, we have
that z ∈ C ′ ∩B1, v1 ∈ B1 ∩D′. Obviously, a ∈ S1 ∩ T . Let

Y1 = (A1 ∩ T ) ∪ (S1 ∩ T ) ∪ (C ′ ∩ S1),
Y2 = (C ′ ∩ S1) ∪ (S1 ∩ T ) ∪ (B1 ∩ T ),
Y3 = (B1 ∩ T ) ∪ (S1 ∩ T ) ∪ (S1 ∩D′),
Y4 = (D′ ∩ S1) ∪ (S1 ∩ T ) ∪ (A1 ∩ T ).

(1.) If x ∈ A1 ∩ C ′, then Y1 is a vertex-cut of G − xz, and so |Y1| ≥ 3. By a
similar argument, we have that |Y3| ≥ 3. Since |Y1| + |Y3| = |S1| + |T | = 6, we can
conclude that |Y1| = |Y3| = 3 and |A1 ∩ T | = |S1 ∩D′|, |S1 ∩ C ′| = |B1 ∩ T |. Since
a ∈ S1, from Theorem 2.4 we know that b 6∈ T ∪ S1. Since bx, zv2 ∈ E(G), we have
that b ∈ A1 ∩ C ′ and v2 6∈ D′ ∩ B1. From ΓG(a) = {v1, v2, z, x, b}, we know that
ΓG(a) ∩ (B1 ∩D′) = {v1}. Then, we have that |A1 ∩ T | = |S1 ∩D′| = 0, 1 or 2.

(1.1.) If |A1 ∩ T | = |D′ ∩ S1| = 2, then |S1 ∩C ′| = |B1 ∩ T | = 0. Since zv2 ∈ E(G),
we have v2 ∈ B1 ∩C ′, and hence {a, z} would be 2-vertex-cut of G, a contradiction.

(1.2.) If |A1 ∩ T | = |D′ ∩ S1| = 1, then |S1 ∩ T | ≤ 2. First, we claim that
B1∩D′ = {v1}. Otherwise, |B1∩D′| ≥ 2. Then, from ΓG(a)∩ (B1∩D′) = {v1}, we
can conclude that {v1} ∪ (Y3 − {a}) would be a 3-vertex-cut of G, a contradiction.
So, B1∩D′ = {v1}. Let D′∩S1 = {u1}. If A1∩D′ 6= Ø, from ΓG(a) = {x, z, b, v1, v2}
we can get that A1 ∩ D′ ∩ ΓG(a) = Ø, and so Y4 − {a} would be a vertex-cut of
G with cardinality less than 4, a contradiction. Therefore, A1 ∩ D′ = Ø. Then,
au1 ∈ E(G). However, it is easy to see that u1 6∈ {x, z, b, v1, v2}, a contradiction.

(1.3.) If |D′ ∩ S1| = |A1 ∩ T | = 0, since D′ is a connected subgraph of G, we have
that A1 ∩D′ = Ø. Then, |D′| = |D′ ∩B1| ≥ 2. Since ΓG(a) ∩ (B1 ∩D′) = {v1}, by
noticing that |Y3| = 3, we have that {v1} ∪ (Y3−{a}) would be a 3-vertex-cut of G,
a contradiction.

(2.) If x ∈ A1∩T , from Theorem 2.2 we have that |C ′| = 2. Since C ′ is a connected
subgraph of G, we have that A1 ∩ C ′ = Ø. If S1 ∩ C ′ 6= Ø, since a ∈ S1 ∩ T , then
|D′∩S1| ≤ 1. Noticing that Y3 is a vertex-cut of G−zv1, we have that |Y3| ≥ 3, and
so |B1 ∩ T | = 1, A1 ∩ T = {x}. Obviously, |Y4| = 3, and hence A1 ∩D′ = Ø, and so
A1 = {x}, which contradicts to that |A1| ≥ 2. So, we have that S1 ∩C ′ = Ø, and so
|B1 ∩ C ′| = 2. Since A1 ∩ T 6= Ø, obviously, {z} ∪ (T − {x}) would be a vertex-cut
with cardinality less than 4, a contradiction.

From the above arguments, we can conclude that Subsubcase 2.1.2 does not oc-
cur.

Subsubcase 2.1.3. If |B1 ∩ S| = |B ∩ S1| = 1, then |S ∩ S1| ≤ 2. We claim that
|S ∩ S1| < 2. Otherwise, |S ∩ S′| = 2. Then, A ∩ S1 = Ø = S ∩A1. If |A ∩ A′| ≥ 2,
then {x} ∪ (S ∩ S1) would be a vertex-cut of G with cardinality less than 4, a con-
tradiction, and so A ∩ A1 = {x}. Note that |X2| = 3. If |A ∩ B1| ≥ 2, then by an
argument similar to that used in Subcase 2.1, A ∩ B1 would be an E0-edge-vertex-
cut fragment contained in A, which contradicts to that A is an E0-edge-vertex-cut
end-fragment. Hence, A ∩ B1 = {z}, and so |A| = 2, which contradicts to that
|A| ≥ 3. Therefore, |S ∩ S1| ≤ 1, and then |X3| ≤ 3, and so B ∩ B1 = Ø. Since

11



A ∩ B1 = {z}, we have that |B1| = 2 and B1 is a 1-edge-vertex-cut atom of G, say
B1 = {z, u}. Since C is a cycle and (E(A) ∪ [A,S]) 6= Ø, we have that z is incident
with at least two unremovable edges. From Corollary 4.2 we know that z is an inner
vertex of some subgraph of G belong to <, which contradicts to that C does not
pass through any subgraph of G belonging to <. The proof is now complete. 2

Theorem 4.6. Let G be a 4-connected graph and C a cycle of G. If C passes
through only one subgraph of G belonging to <, then there exists at least one re-
movable edge of G in C.

Proof. By contradiction. Assume that E(C) ⊂ EN (G). Let C pass through the
subgraph H of G that belongs to <, see the definitions of H in Definitions 3.1
through 3.6. If H is a maximal l-belt, from the assumption, it is easy to see that
{x2x1, ylyl+1} ∩ E(C) 6= Ø. If x2x1 ∈ E(C), by letting S = {yl+2, xl+2, y1}, e =
x2x1, B = {x2, · · · , xl+1, y2, · · · , yl+1}, A = G − e − S − B, then (e, S;A, B) is a
separating group of G such that A does not contain any inner vertex of the maxi-
mal l-belt (l ≥ 1); if ylyl+1 ∈ E(C), by letting S = {x1, y1, xl+2}, e = yl+1yl+2, B =
{x2, · · · , xl+1, y2, · · · , yl+1}, A = G−e−S−B, then (e, S; A,B) is a separating group
of G such that A does not contain any inner vertex of the maximal l-belt (l ≥ 1). If
H is a maximal l-co-belt, similarly, we have that {x1x2, y1y2}∩E(C) 6= Ø, if x1x2 ∈
E(C), by letting S = {yl+2, xl+3, y1}, e = x2x1, B = {x2, · · · , xl+2, y2, · · · , yl+1}, A =
G − e − S − B, then (e, S;A,B) is a separating group of G such that A does not
contain any inner vertex of the maximal l-co-belt (l ≥ 1); if y1y2 ∈ E(C), by letting
S = {yl+2, xl+3, x2}, e = y2y1, B = {x3, · · · , xl+2, y2, · · · , yl+1}, A = G − e − S − B,
then (e, S; A,B) is a separating group of G such that A does not contain any in-
ner vertex of the maximal l-co-belt (l ≥ 1). If H is a maximal l-bi-fan (l ≥ 1),
by letting S = {a, b, xl+3}, e = x2x1, B = {x2, · · · , xl+2}, A = G − e − S − B,
then (e, S; A,B) is a separating group of G such that A does not contain any
inner vertex of the maximal l-bi-fan. If H is a helm, by letting e = x1v1, S =
{v2, v3, v4}, B = {a, x1, x2, x3, x4}, A = G − e − S − B, then (e, S; A,B) is a sepa-
rating group of G such that A does not contain any inner vertex of the helm. If H
is a W -framework, then C must pass through x1x2, x2x3. In this case, by letting
e = x2x1, S = {x3, x4, y2}, B = {x2, y3}, A = G − e − S − B, then (e, S;A, B) is
a separating group of G such that A does not contain any inner vertex of the W -
framework. If H is a W ′-framework, by noticing that {x1x2, x2y2}∩E(C) 6= Ø, then
if x1x2 ∈ E(C), by letting S = {y2, x3, y4}, B = {x2, y3}, A = G − x1x2 − S − B,
then (x1x2, S; A,B) is a separating group of G such that A does not contain any
inner vertex of the W ′-framework; if x2y2 ∈ E(C), by letting S = {x1, y3, v} such
that v ∈ ΓG(x3), B = {x2, x3}, A = G − x2y2 − S − B, then the separating group
(x2y2, S; A,B) is a separating group of G such that A does not contain any inner
vertex of the W ′-framework.

Let E0 = E(C), then A is an E0-edge-vertex-cut fragment of G such that it does
not contain any inner vertex of H. Obviously, A contains an E0-edge-vertex-cut
end-fragment as its subgraph, say A′. It is easy to see that A′ does not contain any
inner vertex of H. Finally, by an argument analogous to that used in the proof of
Theorem 4.5, we can show that A′ contains an inner vertex of some subgraph of G
belonging to <, which contradicts to that A′ does not contain any inner vertex of
any subgraph of G belonging to <. The proof is now complete. 2

12



Finally, to end this paper we construct examples to show that the lower bounds
for the numbers of removable edges of G that a cycle of G can contain in Theorems
4.5 and 4.6 are in some sense best possible, and we also construct an example to
show that the conditions, i.e., the numbers of subgraphs of G belonging to < that
a cycle of G can pass through in Theorems 4.5 and 4.6 are in some sense best possible.

Let F be a maximal k-bi-fan such that V (F ) = {a, b, z1, z2, · · · , zk+3} and E(F ) =
{z1z2, z2z3, · · · , zk+2zk+3, az2, az3, · · · , azk+2, bz2, · · · , bzk+2} where k ≥ 1. Let L be
a maximal l-belt such that V (L) = {x1, x2, · · · , xl+2, y1, y2, · · · , yl+2} and E(H) =
E1(H) ∪ E2(H) where E1(H) = {x1x2, x2x3, · · · , xl+1xl+2, y1y2, y2y3, · · · , yl+1yl+2}
and E2(H) = {y1x2, x2y2, y2x3, · · · , ylxl+1, xl+1yl+1, yl+1xl+2}, in which l ≥ 1.

Example 1. Identify the vertex a with x1, vertex b with yl+2, vertex zk+3 with
xl+2, vertex z1 with y1, respectively. Denote the resulting graph by G1. Let
G = G1 + ab + y1xl+2. It is easy to see that G is a 4-connected graph. First,
let A = {x3, x4, · · · , xl+1, y2, y3, · · · , yl+1}, S = {x2, xl+2, y1}, B = G− byl+1−S−A,
then (byl+1, S;A,B) is a separating group of G, and so byl+1 ∈ EN (G). Since
y1xl+2 ∈ E([S]), from Theorem 2.4 we have that y1xl+2 ∈ ER(G). Obviously,
(xl+2zk+2, S1) is a separating pair such that S1 = {a, b, z2}, and (z2y1, S2) is also a
separating pair such that S2 = {a, b, xl+2}. It is easy to see that zizi+1 ∈ EN (G)
where i = 2, · · · , k + 1. Pick up the cycle C1 = y1xl+2zk+2zk+1zk · · · z2y1. Then,
C1 only passes through one subgraph of G belonging to <, and C1 has only one
removable edge y1xl+2 of G. This shows that the result of Theorem 4.6 is in some
sense best possible.

Example 2. First, delete the vertices z1, zk+3 from F . Then, identify vertex z2

with x1, vertex zk+2 with yl+2, respectively. Denote the resulting graph by G2. Let
G = G2 + ab + ay1 + bxl+2 + y1xl+2. It is easy to see that G is a 4-connected graph.
Let A = {x3, · · · , xl+1, y2, · · · , yl+1}, S = {y1, xl+2, x2}, B = G − zk+2yl+1 − S − A,
then (zk+2yl+1, S; A,B) is a separating group of G, and so zk+2yl+1 ∈ EN (G).
Since y1xl+2 ∈ E([S]), from Theorem 2.4 we have that y1xl+2 ∈ ER(G). Obvi-
ously, (z2x2, S1) is a separating group of G such that S1 = {a, b, zk+2}, and so
z2x2 ∈ EN (G). By a similar argument, we can get that ay1, bxl+2 ∈ EN (G). Since
ab ∈ E([S1]), we have ab ∈ ER(G). Pick up the cycle C2 = abxl+2y1a. Then, C2

does not pass through any subgraph of G belonging to <, and C2 has exactly two
removable edges ab, y1xl+2 of G . This shows that the result of Theorem 4.5 is in
some sense best possible.

The following example shows that if a cycle C of G passes through two subgraphs
of G belonging to <, then it may not contain any removable edge of G.

Example 3. First, delete the vertices zk+3 from F . Then, identify the vertex a
with x1, vertex b with xl+2, vertex zk+2 with yl+2, vertex z1 with y1, respectively.
Denote the resulting graph by G3. Let G = G3 + ab + y1xl+2. It is easy to see
that G is a 4-connected graph. Pick up the cycle C3 = y1y2 · · · yl+2zl+2zl+1 · · · z2y1.
Then, C3 passes through two subgraphs of G belonging to <. It is easy to see that
E(C3) ⊂ EN (G), and so C3 does not contain any removable edge of G. This in some
sense shows that the conditions of Theorems 4.5 and 4.6 are best possible.
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