
Author Proo

A
Infinite Paths in Planar
Graphs I, Graphs with
Radial Nets

Xingxing Yu1,2

1SCHOOL OF MATHEMATICS

GEORGIA INSTITUTE OF TECHNOLOGY

ATLANTA, GA

2CENTER FOR COMBINATORICS

NANKAI UNIVERSITY

TIANJIN 300071, CHINA

E-mail: yu@math.gatech.edu

Received May 14, 2002; Revised January 12, 2004

Published online 00 Month 2003 in Wiley InterScience(www.interscience.wiley.com).

DOI 10.1002/jgt.20028

Abstract: Let G be an infinite 4-connected planar graph such that the
deletion of any finite set of vertices from G results in exactly one infinite
component. Dean et al. proved that either G admits a radial net or a special
subgraph of G admits a ladder net, and they used these nets to show that G
contains a spanning 1-way infinite path. In this paper, we show that if G
admits a radial net, then G also contains a spanning 2-way infinite path. This
is a step towards a conjecture of Nash-Williams. ß 2004 Wiley Periodicals, Inc. J Graph

Theory 00: 1–16, 2004

Keywords: xxxQ1

——————————————————

Contract grant sponsor: NSF; Contract grant numbers: DMS-9970527, DMS-
0245530; Contract grant sponsor: NSA; Contract grant number: MDA-904-03-1-
0052.

ß 2004 Wiley Periodicals, Inc.

JGT 1786(20028) 1



Author Proo

A
1. INTRODUCTION AND NOTATION

In 1931, Whitney [8] proved that every finite 4-connected planar triangulation

contains a Hamilton cycle. In 1956, Tutte [7] proved that every finite 4-connected

planar graph contains a Hamilton cycle. It is natural to ask if this result can be

extended to infinite graphs. A 1-way infinite path is a graph which is isomorphic

to the graph with vertex set fvi : i ¼ 1; 2; � � �g and edge set fviviþ1 : i ¼ 1; 2; � � �g,
and a 2-way infinite path is a graph which is isomorphic to the graph with vertex

set fvi : i ¼ � � � ;ÿ2;ÿ1; 0; 1; 2; � � �g and edge set fviviþ1 : i ¼ � � � ;ÿ2;ÿ1; 0; 1;
2; � � �g. Nash-Williams ([2,3], also see [5]) conjectured that an infinite 4-

connected planar graph G contains a spanning 1-way infinite path if, and only if,

for every finite X � VðGÞ; Gÿ X has exactly one infinite component. This

conjecture was verified by Dean, Thomas, and Yu [1]. Nash-Williams ([2,3]) also

conjectured the following.

Conjecture 1.1. An infinite 4-connected planar graph G contains a spanning 2-

way infinite path if, and only if, for every finite X � VðGÞ; Gÿ X has at most two

infinite components.

For a positive integer k, a graph G is k-indivisible if, for every finite

X � VðGÞ; Gÿ X has at most k ÿ 1 infinite components. (Note that for locally

finite graphs, G is k-indivisible if, and only if, G has at most k ÿ 1 ends.) In [1]

(Theorem (2.3)), it is shown that an infinite 2-indivisible 4-connected planar

graph either has a ‘‘radial net’’ or has a subgraph admitting a ‘‘ladder net.’’ These

structures are then used in [1] to find spanning 1-way infinite paths in infinite 2-

indivisible 4-connected planar graphs. The main objective of this paper is to

prove Conjecture 1.1 for graphs which admit radial nets.

Theorem 1.1. Let G be a 3-indivisible infinite 4-connected planar graph having

a radial net. Then, G contains a 2-way infinite spanning path.

By the Jordan curve theorem, each cycle C in an infinite plane graph G divides

the plane into two closed regions (whose intersection is C). If exactly one of these

two closed regions, say R, contains only finitely many vertices and edges of G,

then we use IGðCÞ to denote the subgraph of G consisting of the vertices and

edges of G contained inR. Note that IGðCÞ is a finite subgraph of G. If there is no

confusion, we use IðCÞ instead of IGðCÞ. Note that C � IðCÞ, and if IðCÞ ¼ C

then C is a facial cycle.

Definition 1.1. A radial net in an infinite plane graph G is a sequence

N ¼ ðC1;C2; � � �Þ of cycles in G such that IðCiÞ is defined for all i � 1, and the

following properties are satisfied:

(1) IðCiÞ � IðCiþ1Þ for all i � 1,

(2)
S1

i¼1 IðCiÞ ¼ G, and

(3) Ci \ Cj ¼ ; for all i 6¼ j.
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Radial nets are first introduced in ([1], p. 165) along with ladder nets. If G is

an infinite plane graph with a radial net N ¼ ðC1;C2; . . .Þ, then for any cycle C

in G; C � IGðCiÞ for all sufficiently large i (by (1) and (2) in Definition 1.1), and

so, IGðCÞ is defined. For the same reason, if G is an infinite plane graph with

a radial net, then every vertex of G has finite degree (that is, G is locally finite).

To prove Conjecture 1.1 for graphs with radial nets, we shall prove a stronger

result.

Theorem 1.2. Let G be a 4-connected plane graph which admits a radial net,

let C be a facial cycle of G, and let e be an edge of C. Then G has a spanning

2-way infinite path through e.

In this paper, we consider only simple graphs. We organize the paper as

follows. In the remainder of this section we introduce notation and terminology

necessary for stating and proving results. In Section 2, we study ‘‘Tutte paths’’

in planar graphs. Tutte paths will be defined later, but we remark here that in

4-connected graphs Tutte paths become spanning paths. The objective of Section

2 is to show that one can construct a graph G0 from a graph G in a special way

such that a Tutte path in G0 can be extended to a Tutte path in G. This

construction is used in Section 3 to find an infinite sequence of finite ‘‘forward’’

Tutte paths. We then use the ‘‘forward’’ property to show that these finite paths

‘‘converge’’ to a 2-way infinite Tutte path. Because the graph G in Theorem 1.2 is

4-connected, a 2-way infinite Tutte path in G is in fact a spanning path.

We use ; to denote both the empty set and the empty graph. Let G be a graph

and let X � EðGÞ. Then, Gÿ X denotes the subgraph of G with VðGÿ XÞ ¼
VðGÞ and EðGÿ XÞ ¼ EðGÞ ÿ X. The subgraph of G induced by X is the graph

whose edge set is X and whose vertex set consists of the vertices of G incident

with edges in X. Let ui; vi 2 VðGÞ with ui 6¼ vi, where i 2 I for some

I � f1; 2; � � �g; then Gþ fuivi : i 2 Ig denotes the graph with vertex set VðGÞ
and edge set EðGÞ [ fuivi : i 2 Ig. For x; y 2 VðGÞ, we use Gþ xy instead of

Gþ fxyg.
Let P be a path and let x; y be distinct vertices of P; then we use xPy to denote

the finite subpath of P between x and y. For a cycle C in a plane graph and for

distinct vertices x; y of C, we use xCy to denote the subpath of C from x to y in

clockwise order. If G is a finite 2-connected plane graph, then the boundary of

each face of G is a cycle, and the cycle of G bounding its infinite face is called the

outer cycle of G.

For convenience, we use A :¼ B to rename B as A or to define A as B.

2. TUTTE PATHS

The aim of this section is to introduce the concept of a Tutte path and to prove a

technical result on Tutte paths. This result will be used in Section 3 to find finite

‘‘forward’’ Tutte paths which are then used to produce a 2-way infinite Tutte path.

INFINITE PATHS IN PLANAR GRAPHSQ2 3
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Definition 2.1. Let G be a graph and let P be a path in G. A P-bridge of G is a

subgraph of G which either (1) is induced by a single edge in EðGÞ ÿ EðPÞ with

both incident vertices in VðPÞ or (2) is induced by the edges contained in a

component of Gÿ VðPÞ and the edges from this component to P. If B is a P-

bridge of G, then the vertices in VðPÞ \ VðBÞ are called the attachments of B on

P. We say that P is a Tutte path in G if every P-bridge of G is finite and has at

most three attachments. For any given subgraph C in G, we say that P is a C-

Tutte path in G if P is a Tutte path in G and every P-bridge of G containing an

edge of C has at most two attachments.

In [7], Tutte proved that every 2-connected planar graph G has a cycle C so

that every C-bridge of G has at most three attachments. Thus, if G is 4-connected,

such a cycle can have no bridge with a vertex not in C, since such a vertex does

not have four internally disjoint paths to a vertex of C. Such cycles in 2-connected

graphs have since been referred to as ‘‘Tutte cycles’’ and their path-analogs are

called ‘‘Tutte paths.’’

We shall use Tutte paths to prove Theorem 1.1. For our purpose, we need two

known results on Tutte paths in finite graphs. The first is due to Thomassen ([6],

Main Theorem). In [6], a P-bridge is called a ‘‘P-component.’’

Lemma 2.1. Let G be a finite 2-connected plane graph with a facial cycle C.

Assume that u 2 VðCÞ; e 2 EðCÞ, and v 2 VðGÞ ÿ fug. Then, G contains a

C-Tutte path P from u to v and through e.

Lemma 2.1 implies that in a finite 4-connected planar graph there is a spanning

path between any two given vertices. The next result is due to Thomas and Yu

([4], Lemma (2.6)). In [4], a C-Tutte path is called an ‘‘EðCÞ-snake.’’

Lemma 2.2. Let G be a finite 2-connected plane graph with a facial cycle C.

Let u; v 2 VðCÞ be distinct, let e; f 2 EðCÞ, and assume that u; v; e; f occur on C

in this clockwise order. Then G contains a vCu-Tutte path P from u to v and

through both e and f .

It is easy to see that the edges e and f in the above lemmas can be replaced

with vertices. Hence, when these lemmas are applied, we allow e or f or both to

be vertices.

Now let us turn our attention to the main result of this section. Suppose we are

given an infinite plane graph G, a facial cycle C of G, and an edge e of C. We

wish to construct an infinite plane graph G0, a facial cycle C0 of G0, and an edge e0

of C0 such that if G0 has a C0-Tutte path through e0 then G has a C-Tutte path

through e. Intuitively, G0 is obtained from an infinite block H of Gÿ VðCÞ by

adding a vertex v0 of C and some edges from v0 to H. Although the statement of

this result is a bit technical, it becomes natural after one reads the construction

part in the beginning of the proof. (For example, conclusions (1–4) are obvious

consequences of the construction.) Also, this statement allows us to avoid

repeating the lengthy description of the construction process. We refer the readers
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Ato Figures 1 and 2 for illustrations. For ease of arguments, we also add a

connectivity condition.

Let G be a plane graph and let C be a facial cycle of G. We say that G is ð4;CÞ-
connected if G is 2-connected and, for any k-cut X of G with k � 3, every

component of Gÿ X contains a vertex of C. Clearly, if G is 4-connected then G is

ð4;CÞ-connected.

Theorem 2.1. Let G be an infinite 2-connected plane graph, let C be a facial

cycle of G, and let uv be an edge of C. Assume that G is ð4;CÞ-connected and

assume that there is a cycle C* in G such that C \ C* ¼ ;; IGðC*Þ is defined,

and C � IGðC*Þ. Then, there exist an infinite plane graph G0, a facial cycle C0 of

G0, and a path u0v0w0 in C0 such that

(1) G0 is ð4;C0Þ-connected and G0 ÿ v0 is 2-connected,

(2) G0 ÿ fu0v0; v0w0g � G, and no edge of G joins a vertex of G0 ÿ VðC0Þ to a

vertex of Gÿ VðG0Þ,

FIGURE 1. Plane representations of IG(G*) and IG0 (G*).

FIGURE 2. X and Gÿ (V(G0) ÿX).
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Author Proo

A
(3) ðGþ fu0v0; v0w0gÞ ÿ ðVðG0Þ ÿ VðC0ÞÞ is finite and has a plane representa-

tion with C and C0 as facial cycles,

(4) v0 6¼ v and ðC0 ÿ v0Þ \ C ¼ ;, and

(5) for any subgraph X of G0 with C0 � X, and for any C0-Tutte path P0 in X

through u0v0 and w0, there is a C-Tutte path P in Gÿ ðVðG0Þ ÿ VðXÞÞ
through uv such that P0 ÿ v0 � P and, for any z 2 VðPÞ ÿ VðP0Þ,
either z =2 VðXÞ or z 2 VðZÞ for some P0-bridge Z of X containing an

edge of C0.

Proof. The first half of the proof is devoted to the construction of

G0;C0; u0; v0;w0 satisfying (1–4), and the second half of the proof deals with

(5). For convenience, we draw IGðC*Þ in the plane so that C* is the outer cycle of

IGðC*Þ and C is a facial cycle of IGðC*Þ. Hence, we can speak of the clockwise

order of cycles in IGðC*Þ (see Fig. 1).

Since C \ C* ¼ ;, there exists a block H of Gÿ VðCÞ containing C*. Then

IGðC*Þ \ H is a finite 2-connected plane graph. So let D be the cycle bounding

the face of IGðC*Þ \ H containing C. Note that D is a also a facial cycle of H,

IGðDÞ is defined, and C � IGðDÞ. (see Fig. 1). Since H is a block of Gÿ VðCÞ,
any ðH [ CÞ-bridge of G has at most one attachment on H. By planarity, all

attachments on H of ðH [ CÞ-bridges of G are contained in VðDÞ.
So let w1; � � � ;wb be the attachments on D of ðH [ CÞ-bridges of G, and

assume that w1; . . . ;wb occur on D in this clockwise order. For each

j 2 f1; . . . ; bg, let pj; qj 2 VðCÞ such that (a) fpj;wjg is contained in an

ðH [ CÞ-bridge of G and fqj;wjg is contained in an ðH [ CÞ-bridge of G, (b) any

ðH [ CÞ-bridge of G containing some wi with wi 6¼ wj contains no vertex of

pjCqj ÿ fpj; qjg, and (c) subject to (a) and (b), pjCqj is maximal (see Fig. 1).

Since G is a plane graph and because G is ð4;CÞ-connected, pj and qj are well

defined, and p1; q1; p2; q2; . . . ; pb; qb occur on C in the clockwise order listed. Let

Jj denote the union of pjCpjþ1 and those ðH [ CÞ-bridges of G whose attachments

are all contained in VðpjCpjþ1Þ [ fwjg.
Without loss of generality, assume that uv 2 EðJkÞ for some positive integer k,

and pk; u; v; pkþ1 occur on C in this clockwise order. Choose wl such that pl 6¼ pk

and, subject to this, wlDwk is minimal. In Figure 1, Jk and Jl are marked with

dotted curves.

We claim that pk 6¼ pkþ1 (where pbþ1 :¼ p1). Suppose on the contrary that

pk ¼ pkþ1. Since uv 2 EðJkÞ, C � Jk. Hence, fpk;wkg is a 2-cut of G and

Gÿ fpk;wkg has a component containing no vertex of C. This contradicts the

assumption that G is ð4;CÞ-connected.

Note that if wj 2 VðwlDwkÞ ÿ fwl;wkg, then by the choice of wl; pj ¼ qj ¼ pk

(in particular, plþ1 ¼ pk). Hence, since G is ð4;CÞ-connected, Jj is a subgraph of

G induced by the edge pkwj for each wj 2 VðwlDwkÞ ÿ fwl;wkg.
Let u0 ¼ wl; v0 ¼ pk, and w0 ¼ wk. Let G0 denote the graph obtained from H

by adding v0 and edges v0wj for all wj 2 VðwlDwkÞ, and let C0 denote the cycle

obtained from w0Du0 by adding v0 and edges u0v0 and v0w0. This completes the

6 JOURNAL OF GRAPH THEORY



Author Proo

A
description of G0;C0; u0; v0 and w0. See Figure 1 for a plane representation of

IG0 ðC*Þ. This finishes the description of the construction.

Clearly by the above construction, G0 ÿ v0 ¼ H is 2-connected. To prove (1),

we need to show that G0 is ð4;C0Þ-connected. Suppose for a contradiction that G0

has a k-cut S with k � 3 and G0 ÿ S has a component K not containing any vertex

of C0. Then by planarity, S is a k-cut of G and K is a component of Gÿ S not

containing any vertex of C, contradicting the assumption that G is ð4;CÞ-
connected. Thus (1) holds.

From the above construction, we see that G0 is obtained from H � G by adding

v0 ¼ pk and by adding edges v0wj for all wj 2 VðwlDwkÞ. We already noted above

that Jj is a subgraph of G induced by v0wj for all wj 2 VðwlDwkÞ ÿ fwk;wlg. So

G0 ÿ fu0v0; v0w0g � G. By planarity, no edge of G joins a vertex of G0 ÿ VðC0Þ ¼
H ÿ VðwkDwlÞ to a vertex of Gÿ VðG0Þ ¼ Gÿ ðVðHÞ [ fpkgÞ. So we have (2).

Because Gÿ ðVðG0Þ ÿ VðC0ÞÞ is contained in IGðC*Þ, we see that G ÿ
ðVðG0Þ ÿ VðC0ÞÞ is a finite graph. Moreover, it is easy to see that ðG þ
fu0v0; v0w0gÞ ÿ ðVðG0Þ ÿ VðC0ÞÞ has a plane representation such that C and C0 are

its facial cycles. So we have (3).

By the above construction, ðC0 ÿ v0Þ \ C ¼ ;. Since pk; u; v; pkþ1 occur on C

in this clockwise order and pk 6¼ pkþ1, we have v0 6¼ v. So (4) holds.

Now let us turn our attention to (5). Let X be a subgraph of G0 with C0 � X,

and let P0 be a C0-Tutte path in X through u0v0 and w0. We wish to find a C-Tutte

path P in Gÿ ðVðG0Þ ÿ VðXÞÞ through uv such that P0 ÿ v0 � P and, for any

z 2 VðPÞ ÿ VðP0Þ, either z =2 VðXÞ or z 2 VðZÞ for some P0-bridge Z of X

containing an edge of C0. Note that Gÿ ðVðG0Þ ÿ XÞ is the union of C; X ÿ
fu0v0; v0w0g, and those ðH [ CÞ-bridges of G whose attachments are all contained

in VðwkDwlÞ [ VðCÞ (see Fig. 2).

Let W denote the set of attachments on wkDwl of ðH [ CÞ-bridges of G.

(Hence, W � fw1; . . . ;wbg.) We define an equivalence relation on W as follows.

For w;w0 2 W, we say w � w0 if w ¼ w0 or there is a P0-bridge B of X such that

fw;w0g � VðBÞ ÿ VðP0Þ. Let W1;W2; � � � ;Wm denote the equivalence classes

of W with respect to �. Thus, jWij ¼ 1 if Wi � VðP0Þ. If Wi 6� VðP0Þ, then

Wi ¼ ðVðBiÞ ÿ VðP0ÞÞ \W for some P0-bridge Bi of X. Without loss of

generality, let W1 ¼ fwkg and Wm ¼ fwlg (because wk;wl 2 VðP0Þ), and assume

that W1;W2; . . . ;Wm occur on D in this clockwise order.

For each i 2 f1; . . . ;mg, let si; ti 2 VðCÞ such that (a) pk; si; ti; pl occur on C in

this clockwise order, (b) there is some ws 2 Wi such that fsi;wsg is contained in

an ðH [ CÞ-bridge of G, and there is some wt 2 Wi such that fti;wtg is contained

in an ðH [ CÞ-bridge of G, and (c) subject to (a) and (b), siCti is maximal. Then

s1 ¼ pk ¼ v0; s2 ¼ pkþ1, and sm ¼ pl (see Fig. 2). Moreover, s1; t1; s2; t2; . . . ; sm;
tm occur on C in the clockwise order listed.

For each i 2 f2; . . . ;mÿ 1g, let Ti denote the union of tiCsiþ1 and those

ðH [ CÞ-bridges of G whose attachments are all contained in VðtiCsiþ1Þ. See

Figure 3 (without the dashed edge). Note that if jVðTiÞj � 3 then ti 6¼ siþ1 and

fti; siþ1g is a 2-cut of G.

INFINITE PATHS IN PLANAR GRAPHSQ2 7
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For each i 2 f2; . . . ;mÿ 1g, let Bi ¼ Wi if Wi � VðP0Þ (in this case, jWij ¼ 1);

and otherwise, let Bi denote the P0-bridge of X such that Wi ¼ ðVðBiÞÿ
VðP0ÞÞ \W . Let Ui denote the union of siCti;Bi, and those ðH [ CÞ-bridges of G

whose attachments are all contained in VðsiCtiÞ [Wi. Then jVðUiÞ \ VðP0Þj ¼
jVðBiÞ \ VðP0Þj � 2. See Figure 4 (without the dashed edges).

Note that Ui \ C ¼ siCti and Ti \ C ¼ tiCsiþ1. Also note that

Ui ÿ ðVðCÞ [ VðP0ÞÞ; Ti ÿ VðCÞ; i ¼ 2; . . . ;mÿ 1, are pair-wise disjoint.

We shall construct the desired path P in (5) by finding the following paths: a

path Q1 in Jk through uv which is from w0 ¼ wk to s2 ¼ pkþ1 (when w0v0 2 EðP0Þ)
or from v0 ¼ pk to s2 ¼ pkþ1 (when w0v0 =2 EðP0Þ), a path Qm in Jl ÿ v0 from

u0 ¼ wl to sm ¼ pl, a path Qi in Ui ÿ VðP0Þ from si to ti for each i 2
f2; . . . ;mÿ 1g, and a path Ri in Ti from ti to siþ1 for each i 2 f2; . . . ;mÿ 1g.
First, we prove the following statement.

(A) If w0v0 2 EðP0Þ then there is a ðJk \ CÞ-Tutte path Q1 from w0 to s2 and

through both v0 and uv; if u0v0 =2 EðP0Þ then there is a path Q1 in Jk ÿ w0 from v0

to s2 such that every ðQ1 [ fw0gÞ-bridge of Jk has at most three attachments, and

every ðQ1 [ fw0gÞ-bridge of Jk containing an edge of Jk \ C has just two

attachments.

Since G is 2-connected, any cut vertex of Jk must separate v0 from s2 or

separate w0 from v0Cs2. Since fw0; v0g is contained in an ðH [ CÞ-bridge of

G; Jk* :¼ Jk þ w0s2 is 2-connected. We may add the edge w0s2 so that v0Cs2 and

w0s2 are contained in the outer cycle Ck of Jk* and w0; s2; v; u; v
0 occur on Ck in this

clockwise order (see Fig. 5). Note that Jk \ C ¼ s2Ckv0 ¼ v0Cs2.

FIGURE 3. Ti þ tisiþ1.

FIGURE 4. Ui þyti and Ui þ {si y
0ti}.
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If w0v0 2 EðP0Þ, then we apply Lemma 2.2 (with Jk*;Ck;w

0; s2; uv; v0 as

G;C; u; v; e; f in Lemma 2.2, respectively) to find an s2Ckw0-Tutte path Q1 in Jk*

from w0 to s2 and through v0 and uv. Note that w0s2 =2 EðQ1Þ. Hence, Q1 gives the

desired path for (A).

Now assume that w0v0 =2 EðP0Þ. We apply Lemma 2.2 (with Jk*;Ck; v
0;w0;

w0s2; uv as G;C; u; v; e; f in Lemma 2.2, respectively) to find a w0Ckv0-Tutte path

Q01 in Jk* from v0 to w0 and through both uv and w0s2; and let Q1 :¼ Q01 ÿ w0. Note

that Q1 is a path in Jk ÿ w0 from v0 to s2 and through uv. Also note that every

ðQ1 [ fw0gÞ-bridge of Jk is a Q01-bridge of Jk*, except possibly the subgraph of G

induced by the edge w0s2. So Q1 gives the desired path for (A).

(B) We claim that Jl ÿ v0 has a path Qm from u0 ¼ wl to sm such that every

ðQm [ fv0gÞ-bridge of Jl has at most three attachments, and every ðQm [ fv0gÞ-
bridge of Jl containing an edge of Jl \ C has just two attachments.

Let Jl* :¼ Jl þ u0v0. By the same argument as in (A) for Jk*, we can show that Jl*

is 2-connected. We may add the edge u0v0 so that smCv0 and u0v0 are contained

in the outer cycle Cl of Jl*, and u0; v0; sm occur on Cl in this clockwise order (see

Fig. 6). Note that Jl \ C ¼ v0Clsm ¼ smCv0.
We apply Lemma 2.1 (with Jl*;Cl; v

0; sm; u
0v0 as G;C; u; v; e in Lemma 2.1,

respectively) to find a Cl-Tutte path Q0m in Jl* from v0 to sm through u0v0; and let

Qm :¼ Q0m ÿ v0. Note that Qm is a path in Jl ÿ v0 from u0 ¼ wl to sm. Also note

that every ðQm [ fv0gÞ-bridge of Jl is a Q0m-bridge of Jl*, except possibly the

subgraph of G induced by the edge u0v0. Hence, Qm gives the desired path for (B).

(C) For each i 2 f2; . . . ;mÿ 1g, there is a tiCsiþ1-Tutte path Ri in Ti from ti to

siþ1.

FIGURE 5. J*k.

FIGURE 6. J*l.
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If jVðtiCsiþ1Þj � 2, then Ri :¼ tiCsiþ1 gives the desired path. Now assume that

jVðtiCsiþ1Þj � 3. Note that Ti \ D ¼ ;, and every cut vertex of Ti must separate ti
from siþ1 (since G is 2-connected). Hence, T 0i :¼ Ti þ tisiþ1 is 2-connected. We

may add the edge tisiþ1 so that Ci :¼ tiCsiþ1 þ tisiþ1 is the outer cycle of T 0i (see

Fig. 3). By Lemma 2.1 (with T 0i ;Ci; ti; siþ1 as G;C; u; v in Lemma 2.1,

respectively), we find a Ci-Tutte path Ri in T 0i from ti to siþ1 and through an

edge of tiCsiþ1. It is easy to see that tisiþ1 =2 EðRiÞ, and so, Ri gives the desired

path in Ti.

(D) We claim that, for each i 2 f2; . . . ;mÿ 1g; Ui ÿ VðP0Þ contains a path Qi

from si to ti such that every ðQi [ ðUi \ P0ÞÞ-bridge of Ui has at most three

attachments, and any ðQi [ ðUi \ P0ÞÞ-bridge of Ui containing an edge of Ui \ C

has just two attachments.

Recall that Ui \ C ¼ siCti and jVðUiÞ \ VðP0Þj � 2.

If si ¼ ti, then let Qi :¼ siCti. In this case, jVðUiÞ \ VðCÞj ¼ 1. Hence, since

jVðUiÞ \ VðP0Þj � 2; Qi gives the desired path. So, we may assume that si 6¼ ti.

We consider two cases.

First, assume Wi � VðP0Þ. Then jWij ¼ 1. Let y be the only vertex in Wi. Then

Ui \ P0 consists of the vertex y (see Fig. 4). Since G is 2-connected, any cut

vertex of Ui must separate y from siCti. Hence, U0i :¼ Ui þ tiy is 2-connected. We

add the edge tiy so that siCti and tiy are contained in the outer cycle Ci of U0i . By

Lemma 2.1 (with U0i ;Ci; si; y; tiy as G;C; u; v; e in Lemma 2.1, respectively), we

find a Ci-Tutte path Q0i in U0i from si to y and through tiy; and let Qi :¼ Q0i ÿ y.

Then Qi � Ui ÿ VðP0Þ. Since Ui \ C ¼ siCti and because Ui \ P0 consists of y

only, it is easy to check that Qi is the desired path.

Now assume that Wi 6� VðP0Þ. Then Wi ¼ ðVðBiÞ ÿ VðP0ÞÞ \W for some P0-
bridge Bi of X containing an edge of C0. Hence, Bi has two attachments on P0, say

y and y0. Note that Ui \ P0 consists of y and y0 (see Fig. 4). Without loss of

generality, we may assume that w0; y; y0; u0 occur on C0 in this clockwise order.

Since G is 2-connected, any cut vertex of Ui either separates siCti from Bi or

separates y from y0. Hence, U0i :¼ Ui þ fsiy; y
0tig is 2-connected. We add the

edges siy and y0ti so that siCti; siy; y0ti are contained in the outer cycle Ci of U0i .
By applying Lemma 2.2 (with U0i ;Ci; y; y

0; y0ti; siy as G;C; u; v; e; f in Lemma 2.2,

respectively), we find a y0Ciy-Tutte path Q0i in U0i from y to y0 and through both siy

and y0ti. Let Qi :¼ Q0i ÿ fy; y0g. Then Qi � Ui ÿ VðP0Þ. Since Ui \ C ¼ siCti and

because Ui \ P0 consists of y and y0, it is easy to check that Qi gives the desired

path.

(E) Finally, let us construct the desired path P. If w0v0 2 EðP0Þ then Q1 is a path

in Jk from w0 to s2 and through both v0 and uv, and in this case we let

P :¼ ð
Sm

i¼1 QiÞ [ ð
Smÿ1

i¼2 RiÞ [ ðP0 ÿ v0Þ. If w0v0 =2 EðP0Þ then Q1 is a path in Jk ÿ
w0 from v0 to s2 and through uv, and in this case we let P :¼ ð

Sm
i¼1 QiÞ [

ð
Smÿ1

i¼2 RiÞ [ ðP0 ÿ u0v0Þ. Note that u0v0 =2 EðPÞ, and if v0w0 =2 EðGÞ then

v0w0 =2 EðPÞ. It is clear that P is a path in Gÿ ðVðG0Þ ÿ VðXÞÞ through uv.

To prove that P is a C-Tutte path in Gÿ ðVðG0Þ ÿ VðXÞÞ, let B be a P-bridge

of Gÿ ðVðG0Þ ÿ VðXÞÞ. It is straightforward to check that one of the following
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holds: B is induced by a single edge in EðGÞ ÿ EðPÞ with both incident vertices in

VðPÞ; or B is a P0-bridge of X such that ðVðBÞ ÿ VðP0ÞÞ \ fw1; . . . ;wbg ¼ ;; or B

is obtained from a P0-bridge B0 of X with ðVðB0Þ ÿ VðP0ÞÞ \ fw1; . . . ;wbg �
VðwlDwkÞ by adding v0 and v0wj for all wj 2 VðB0Þ ÿ VðP0Þ; or B is a Q1-bridge

of Jk when w0v0 2 EðP0Þ; or B is a ðQ1 [ fw0gÞ-bridge of Jk when w0v0 =2 EðP0Þ
(because w0 2 VðP0Þ); or B is a ðQm [ fv0gÞ-bridge of Jl; or B is a

ðQi [ ðUi \ P0ÞÞ-bridge of Ui for some i 2 f2; . . . ;mÿ 1g; or B is a Ri-bridge

of Ti for some i 2 f2; . . . ;mÿ 1g. Hence, it is easy to see that B has at most three

attachments on P, and if B contains an edge of C then B has just two attachments

on P. Therefore, P is a C-Tutte path in G through uv.

Clearly, P0 ÿ v0 � P. To complete the proof of (5), let z 2 VðPÞ ÿ VðP0Þ. Then

either z =2 VðXÞ or z 2 VðBiÞ ÿ VðP0Þ for some i 2 f2; . . . ;mÿ 1g. Recall that

Z :¼ Bi is a P0-bridge of X containing an edge of C0. Thus, P gives the desired

path. &

3. 2-WAY INFINITE PATHS

In this section, we prove Theorem 1.2. In fact, we prove a slightly stronger result.

First, we prove the following result which allows us to ‘‘construct’’ a 2-way

infinite path from a sequence of finite paths. We say that a sequence of finite paths

fPng converges to a path P if for any given u; v 2 VðPÞ; uPv ¼ uPnk
v for all

sufficiently large nk.

Lemma 3.1. Let G be an infinite locally finite graph with e 2 EðGÞ. Suppose

fPng is an infinite sequence of finite paths through e such that for all n � 1, the

length of each component of Pnþ1 ÿ e is strictly larger than the length of any

component of Pn ÿ e. Then fPng has an infinite subsequence fPnk
g converging to

a 2-way infinite path P through e.

Proof. Let Zþ ¼ f1; 2; 3; . . .g and let e ¼ xy. Because G is locally finite and

since the length of components of Pn ÿ e increases with n, there exist x1x;
y1y 2 EðGÞ and an infinite set A1 � Zþ such that for every n 2 A1; x1xyy1 is a

subpath of Pn. By the same reason, there exist x2x1; y2y1 2 EðGÞ and an infinite

set A2 � A1 such that for every n 2 A2; x2x1xyy1y2 is a subpath of Pn. Continuing

this process, we produce a 2-way infinite path P :¼ � � � x2x1xyy1y2 � � � and an

infinite sequence of infinite sets A1 � A2 � A3 � � � such that for any given

k 2 Zþ; xk � � � x1xyy1 � � � yk is a subpath of Pn for all n 2 Ak.

Let nk 2 Ak such that the sequence fnkg increases; this can be done because

each Ai is infinite. Therefore, fPnk
g is a subsequence of fPng. Let u; v be two

distinct vertices on P. Then u; v 2 VðxlPylÞ for some sufficiently large l. Then

uPv � Pnk
for all k � l. Hence, fPnk

g converges to P. &

In later proofs, we need to find a sequence of finite Tutte paths which converge

to a 2-way infinite Tutte path. For this reason, we need those finite Tutte paths to

be ‘‘forward.’’
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Definition 3.1. Let N ¼ ðC1;C2; . . .Þ be a radial net in an infinite plane graph

G. We say that a path P in G is N-forward or ðC1;C2; . . .Þ-forward if, for every

i � 1 and for any distinct x; y; z 2 VðPÞ with y 2 VðxPzÞ; fx; zg � VðCiÞ implies

that y =2 VðCjÞ for all j � iþ 2.

Intuitively, ‘‘P is ðC1;C2; . . .Þ-forward’’ means that if P starts from C1, then

(for each i) after P hits Ciþ2; P never comes back to Ci again. Next, we show how

finite forward Tutte paths converge to a 2-way infinite Tutte path.

Lemma 3.2. Let G be an infinite 2-connected plane graph with a radial net

N ¼ ðC1;C2; . . .Þ, let C be a facial cycle of G with C � IðC1Þ, and let e be an

edge of C. Suppose that, for all n � 1, there exists a C-Tutte path Pn in IðCnÞ
between two vertices of Cn and through e such that each component of Pn ÿ e is

an N-forward path in G. Then fPng has a subsequence fPnk
g converging to a

2-way infinite C-Tutte path P in G through e.

Proof. Since G admits a radial net, G is locally finite. Since IðCiÞ � IðCiþ1Þ
and Ci \ Ciþ1 ¼ ;, and because Pn is between two vertices of Cn and through

e; fPng contains a subsequence fPns
g such that the length of each component

of Pns
ÿ e increases. By Lemma 3.1, fPns

g contains a subsequence fPnk
g

converging to a 2-way infinite path P through e. We need to prove that P is a

C-Tutte path in G. First, we claim that

(1) for any given integer l � 1; Pnk
\ IðClÞ ¼ P \ IðClÞ for all sufficiently

large nk.

Let y1; y2 2 VðPÞ \ VðIðClÞÞ with y1Py2 maximal. Then P \ IðClÞ ¼ y1Py2 \
IðClÞ. Since fPnk

g converges to P; y1Pnk
y2 ¼ y1Py2 for all sufficiently large nk.

Hence, P \ IðClÞ ¼ y1Py2 \ IðClÞ ¼ y1Pnk
y2 \ IðClÞ � Pnk

\ IðClÞ for all suffi-

ciently large nk.

It remains to show that Pnk
\ IðClÞ � P \ IðClÞ for all sufficiently large nk. Let

x; y 2 VðPÞ \ VðClþ2Þ such that x and y are contained in different components of

Pÿ e. Since fPnk
g converges to P; xPy ¼ xPnk

y for all sufficiently large nk.

We claim that for each sufficiently large nk, if z 2 VðPnk
Þ ÿ VðxPnk

yÞ then

z =2 VðIðClÞÞ. Suppose for a contradiction that z 2 VðIðClÞÞ. By symmetry

between x and y, we may assume that z and y are contained in the same com-

ponent L of Pnk
ÿ e. Then, zPnk

y contains a vertex z0 of some Ci; i � l. Since

e 2 EðIðC1ÞÞ, there is a vertex x0 in the subpath of Pnk
between e and y such that

x0 2 VðCiÞ. Since z 2 VðPnk
Þ ÿ VðxPnk

yÞ; x0 6¼ z0 and y 2 Vðx0Lz0Þ. Since L is

ðC1;C2; . . .Þ-forward and because x0; z0 2 VðCiÞ; y =2 VðCjÞ for all j � iþ 2,

contradicting the assumption that y 2 VðClþ2Þ.
Thus, for all sufficiently large nk; Pnk

\ IðClÞ ¼ xPnk
y \ IðClÞ ¼ xPy\

IðClÞ � P \ IðClÞ. This completes the proof of (1).

Now let B be a P-bridge of G. We claim that

(2) B is finite.
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Suppose that B is infinite. Since G (and hence Bÿ VðPÞ) is locally finite and

Bÿ VðPÞ is connected, Bÿ VðPÞ contains an infinite path. Hence, Bÿ VðPÞ
contains a path R from VðCiÞ to VðCjÞ for some i and j with jÿ i � 4. Since R is

finite, R � IðClÞ for some l. By (1), R \ Pnk
¼ ; for all sufficiently large nk.

Hence, R is contained in a Pnk
-bridge Bnk

of IðCnk
Þ for some sufficiently large nk.

Since R \ Cs 6¼ ; and Pnk
\ Cs 6¼ ; for all s with i � s � j; Bnk

has at least four

attachments on Pnk
, contradicting the fact that Pnk

is a C-Tutte path in IðCnk
Þ.

Hence B is finite. This completes the proof of (2).

By (2), B � IðClÞ for some l. By (1), B is a Pnk
-bridge of IðCnk

Þ for all

sufficiently large nk. Therefore, B has at most three attachments on P, and if B

contains an edge of C then B has just two attachments on P. Hence, P is a 2-way

infinite C-Tutte path in G. &

We now state and prove the main result of this section which immediately

implies Theorem 1.2.

Theorem 3.1. Let G be an infinite 2-connected plane graph with a radial net,

let C be a facial cycle of G, and let e 2 EðCÞ. Assume that G is ð4;CÞ-connected.

Then G contains a 2-way infinite C-Tutte path through e.

Proof. First, we use Theorem 2.1 to construct an infinite sequence ððGi;Ci;
ui; vi;wiÞ : i ¼ 1; 2; . . .Þ. Let G1 ¼ G; C1 ¼ C, let u1; v1 be the vertices of G

incident with e, and let w1 be the neighbor of v1 in C with w1 6¼ u1. (Note that

w1 does not play any role in this proof, and it is defined only for the sake

of consistency.) Suppose we have constructed ðGi;Ci; ui; vi;wiÞ for some posi-

tive integer i � 1, where Gi is an infinite plane graph with a radial net, Ci is

a facial cycle of Gi; uiviwi is a path in Ci, and Gi is ð4;CiÞ-connected.

Since Gi admits a radial net, there is a cycle Ci* in Gi such that Ci \ Ci* ¼ ;
and Ci � IGi

ðCi*Þ. By applying Theorem 2.1 (with Gi;Ci; ui; vi as G;C; u; v
in Theorem 2.1, respectively), we find Giþ1;Ciþ1; uiþ1; viþ1;wiþ1 (as G0;C0;
u0; v0;w0 in Theorem 2.1, respectively). More precisely, there exist a plane

graph Giþ1, a facial cycle Ciþ1 of Giþ1, and a path uiþ1viþ1wiþ1 in Ciþ1 such

that

(1) Giþ1 is ð4;Ciþ1Þ-connected and Giþ1 ÿ viþ1 is 2-connected,

(2) Giþ1 ÿ fuiþ1viþ1; viþ1wiþ1g � Gi, and no edge of Gi joins a vertex of

Giþ1 ÿ VðCiþ1Þ to a vertex of Gi ÿ VðGiþ1Þ,
(3) ðGi þ fuiþ1viþ1; viþ1wiþ1gÞ ÿ ðVðGiþ1Þ ÿ VðCiþ1ÞÞ is finite and has a

plane representation with Ci and Ciþ1 as facial cycles,

(4) viþ1 6¼ vi and ðCiþ1 ÿ viþ1Þ \ Ci ¼ ;, and

(5) for any subgraph X of Giþ1 with Ciþ1 � X, and for any Ciþ1-Tutte path

Piþ1 in X through uiþ1viþ1 and wiþ1, there is a Ci-Tutte path Pi of Giÿ
ðVðGiþ1Þ ÿ VðXÞÞ through uivi such that Piþ1 ÿ viþ1 � Pi and, for any

z 2 VðPiÞ ÿ VðPiþ1Þ, either z =2 VðXÞ or z 2 VðZÞ for some Piþ1-bridge Z

of X containing an edge of Ciþ1.
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Since Gi admits a radial net and because Gi ÿ VðGiþ1Þ is finite, it is easy to see

that Giþ1 also admits a radial net. Therefore, by (1), the above construction can be

continued with iþ 1 replacing i, and we produce the desired infinite sequence

ððGi;Ci; ui; vi;wiÞ : i ¼ 1; 2; . . .Þ.
Let G0 ¼ Gþ fuivi; viwi : i ¼ 1; 2; . . .g. By the first part of (2), G0 ¼

S1
i¼1 Gi.

By (4), Ci \ Ciþ2 ¼ ; for all i � 1. By (3), for each i � 1, we can draw ðGiþ
fuiþ1viþ1; viþ1wiþ1gÞ ÿ ðVðGiþ1Þ ÿ VðCiþ1ÞÞ as a plane graph so that Ciþ1 is its

outer cycle and Ci is a facial cycle. Therefore, G0 has a plane representation and

admits a radial net N ¼ ðC1;C3;C5; . . .Þ.
For 1 � i � n, let Fn;i ¼ Gi ÿ ðVðGnÞ ÿ VðCnÞÞ. Note that Fn;i ÿ fuivi;

viwig � G � G0, and Fn;1 � G � G0. We will show that for every n � 1;
Fn;1 contains a Tutte path Pn;1 through uv such that each component of Pn;1 is

an N-forward path in G. To do so, we need to prove a more general result

about Fn;i. For convenience, let Dj :¼ C2jÿ1 for j ¼ 1; 2; . . ., and so, N ¼
ðD1;D2;D3; . . .Þ.
Claim. For all integers n and i with n � i � 1; Fn;i contains a Ci-Tutte path Pn;i

between two vertices of Cn and through uivi such that (i) fun; vn;wng � VðPn;iÞ,
and if n � iþ 1 then fuj; vj;wj : j ¼ iþ 1; . . . ; ng � VðPn;iÞ, and (ii) each

component of Pn;i ÿ uivi is an N-forward path in G0.

We use induction on nÿ i. First, assume nÿ i ¼ 0. Then Fn;i ¼ Ci ¼ Cn. Let

f 2 EðCi ÿ viÞ, and let Pn;i ¼ Ci ÿ f . Then Pn;i is a path in Fn;i between two

vertices of Cn and through uivi ¼ unvn and wn. Hence, fun; vn;wng � VðPn;iÞ, and

so, (i) holds. Note that Pn;i is a Ci-Tutte path in Fn;i (because Fn;i has only one

Pn;i-bridge which is induced by the edge f ). Since Pn;i � Ci, each component of

Pn;i ÿ uivi is (trivially) an N-forward path in G0. Hence (ii) holds.

Now assume that nÿ i > 0 and let Pn;iþ1 be a Ciþ1-Tutte path in Fn;iþ1

between two vertices of Cn and through uiþ1viþ1 such that (i) fun; vn;wng �
VðPn;iþ1Þ, and if n � iþ 2 then fuj; vj;wj : j ¼ iþ 2; . . . ; ng � VðPn;iþ1Þ, and (ii)

each component of Pn;iþ1 ÿ uiþ1viþ1 is an N-forward path in G0. We wish to apply

(5) above. So let X :¼ Fn;iþ1; then Fn;i ¼ Gi ÿ ðVðGiþ1Þ ÿ VðXÞÞ. Note that

wiþ1 2 VðPn;iþ1Þ. (For otherwise, wiþ1 is contained in a Pn;iþ1-bridge of Fn;iþ1

with just two attachments, and one of these attachments is viþ1. But then Fn;iþ1ÿ
viþ1 is not 2-connected, and so, Giþ1 ÿ viþ1 is not 2-connected, contradicting (1).)

Therefore, by (5) (with Pn;iþ1;Pn;i as Piþ1;Pi in (5), respectively), we see that Fn;i

contains a Ci-Tutte path Pn;i through uivi such that Pn;iþ1 ÿ viþ1 � Pn;i and,

for any z 2 VðPn;iÞ ÿ VðPn;iþ1Þ, either z =2 VðFn;iþ1Þ or z 2 VðZÞ ÿ VðPn;iþ1Þ for

some Pn;iþ1-bridge Z of Fn;iþ1. Hence Pn;i is a path in Fn;i between two vertices of

Cn and through uivi. Clearly, (i) holds.

It remains to show that each component of Pn;i ÿ uivi is an N-forward path in

G0. Let L be a component of Pn;i ÿ uivi. Let a; b; c 2 VðLÞ such that b 2 VðaLcÞ
and fa; cg � VðDkÞ ¼ VðC2kÿ1Þ for some integer k � 0. We need to show that

b =2 VðDjÞ ¼ VðC2jÿ1Þ for all j � k þ 2. Let L0 denote the component of

Pn;iþ1 ÿ uiþ1viþ1 such that L0 ÿ viþ1 � L.
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If fa; cg � VðPn;iþ1Þ ÿ fviþ1g, then fa; cg � VðL0Þ. Hence, b =2 VðDjÞ for all

j � k þ 2 because L0 is an N-forward path in G0 (by induction hypothesis).

If fa; cg � VðPn;iÞ ÿ ðVðPn;iþ1Þ ÿ fviþ1gÞ, then aLc � Pn;i ÿ ðVðPn;iþ1Þÿ
fviþ1gÞ. Hence, fa; cg � VðCiÞ or fa; cg � VðCiþ1Þ, and so, Dk ¼ Ci or

Dk ¼ Ciþ1. Also b ¼ viþ1 or b =2 VðPn;iþ1Þ. If b ¼ viþ1, then by (4), b =2 VðClÞ
for all l � iþ 2, and so, b =2 VðC2jÿ1Þ ¼ VðDjÞ for all j � k þ 2. So assume that

b =2 VðPn;iþ1Þ. Then by (5), either b =2 VðFn;iþ1Þ or b 2 VðZÞ for some Pn;iþ1-

bridge Z of Fn;iþ1 containing an edge of Ciþ1. If b =2 VðFn;iþ1Þ then b =2 VðClÞ for

all l � iþ 2; and if b 2 VðZÞ then by planarity, b =2 VðClÞ for all l � iþ 2.

Again, b =2 VðC2jÿ1Þ ¼ VðDjÞ for all j � k þ 2.

So assume by symmetry that a =2 VðPn;iþ1Þ ÿ fviþ1g and c 2 VðPn;iþ1Þÿ
fviþ1g. Hence c =2 VðCiÞ, and so, a =2 VðCiÞ. Because a =2 VðPn;iþ1Þ and by (5),

either a =2 VðFn;iþ1Þ or a 2 VðZÞ for some Pn;iþ1-bridge Z of Fn;iþ1 containing an

edge of Ciþ1, and so, a =2 VðClÞ for all l � iþ 2. Hence fa; cg � VðCiþ1Þ, and so,

Dk ¼ Ciþ1. Suppose b =2 VðPn;iþ1Þ ÿ fviþ1g. Then by (5), either b =2 VðFn;iþ1Þ, or

b ¼ viþ1, or b 2 VðZÞ for some Pn;iþ1-bridge Z of Fn;iþ1 containing an edge of

Ciþ1. Hence b =2 VðClÞ for all l � iþ 2, and so, b =2 VðC2jÿ1Þ ¼ VðDjÞ for all

j � k þ 2. So assume that b 2 VðPn;iþ1Þ ÿ fviþ1g. Hence, there is some

b0 2 VðCiþ1Þ \ VðL0Þ such that b 2 VðcL0b0Þ. Therefore, fb0; cg � VðCiþ1Þ ¼
VðDkÞ. Since L0 is an N-forward path in G0, b =2 VðC2jÿ1Þ ¼ VðDjÞ for all

j � k þ 2.

Therefore, L is an N-forward path in G0. Hence, Pn;i gives the desired path in

the claim.

By the above claim, Fn;1 contains a C1-Tutte path Pn :¼ Pn;1 between two

vertices of Cn and through e ¼ u1v1 such that each component of Pn ÿ e is an

N-forward path in G0. (Note that Pn � G because Fn;1 � G.) Since

fui; vi;wi : i ¼ 2; . . . ; ng � VðPnÞ for all n � 1; P2nÿ1 is also a C1-Tutte path

in IG0 ðC2nÿ1Þ ¼ IG0 ðDnÞ between two vertices of Dn and through e. Hence, by

Lemma 3.2, fP2nÿ1g has a subsequence fPnk
g converging to a 2-way infinite C1-

Tutte path P in G0 through e. Since Pnk
� G for all nk; P is a 2-way infinite C-

Tutte path in G through e. &
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