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1. INTRODUCTION AND NOTATION

In 1931, Whitney [8] proved that every finite 4-connected planar triangulation
contains a Hamilton cycle. In 1956, Tutte [7] proved that every finite 4-connected
planar graph contains a Hamilton cycle. It is natural to ask if this result can be
extended to infinite graphs. A 1-way infinite path is a graph which is isomorphic
to the graph with vertex set {v; : i = 1,2, - -} and edge set {v;v;1 : i =1,2,---},
and a 2-way infinite path is a graph which is isomorphic to the graph w1th vertex
set {v;:i=---,-2,—-1,0,1,2,---} and edge set {v;v;1; :i="---,-2,—1,0,1,
2,---}. Nash-Williams ([2,3], also see [5]) conjectured that an infinite 4-
connected planar graph G contains a spanning 1-way infinite path if, and only if,
for every finite X C V(G), G — X has exactly one infinite component. This
conjecture was verified by Dean, Thomas, and Yu [1]. Nash-Williams ([2,3]) also
conjectured the following.

Conjecture 1.1. An infinite 4-connected planar graph G contains a spanning 2-
way infinite path if, and only if, for every finite X C V(G), G — X has at most two
infinite components.

For a positive integer k, a graph G is k-indivisible if, for every finite
X C V(G), G — X has at most k — 1 infinite components. (Note that for locally
finite graphs, G is k-indivisible if, and only if, G has at most k — 1 ends.) In [1]
(Theorem (2.3)), it is shown that an infinite 2-indivisible 4-connected planar
graph either has a “radial net” or has a subgraph admitting a “‘ladder net.”” These
structures are then used in [1] to find spanning 1-way infinite paths in infinite 2-
indivisible 4-connected planar graphs. The main objective of this paper is to
prove Conjecture 1.1 for graphs which admit radial nets.

Theorem 1.1. Let G be a 3-indivisible infinite 4-connected planar graph having
a radial net. Then, G contains a 2-way infinite spanning path.

By the Jordan curve theorem, each cycle C in an infinite plane graph G divides
the plane into two closed regions (whose intersection is C). If exactly one of these
two closed regions, say R, contains only finitely many vertices and edges of G,
then we use /(C) to denote the subgraph of G consisting of the vertices and
edges of G contained in R. Note that I(C) is a finite subgraph of G. If there is no
confusion, we use /(C) instead of I;(C). Note that C C I(C), and if I(C) = C
then C is a facial cycle.

Definition 1.1. A radial net in an infinite plane graph G is a sequence
N = (Cy,Cy,--+) of cycles in G such that 1(C;) is defined for all i > 1, and the
following properties are satisfied:

(1) I(C;) CI(Ciyy) forall i > 1,
2) UL 1(Ci) = G, and
(3) C;iNC; =0 forall i #j.
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Radial nets are first introduced in ([1], p. 165) along with ladder nets. If G is
an infinite plane graph with a radial net N = (C;, C,...), then for any cycle C
in G, C C I(C;) for all sufficiently large i (by (1) and (2) in Definition 1.1), and
s0, Ig(C) is defined. For the same reason, if G is an infinite plane graph with
a radial net, then every vertex of G has finite degree (that is, G is locally finite).
To prove Conjecture 1.1 for graphs with radial nets, we shall prove a stronger
result.

Theorem 1.2. Let G be a 4-connected plane graph which admits a radial net,
let C be a facial cycle of G, and let e be an edge of C. Then G has a spanning
2-way infinite path through e.

In this paper, we consider only simple graphs. We organize the paper as
follows. In the remainder of this section we introduce notation and terminology
necessary for stating and proving results. In Section 2, we study “Tutte paths™
in planar graphs. Tutte paths will be defined later, but we remark here that in
4-connected graphs Tutte paths become spanning paths. The objective of Section
2 is to show that one can construct a graph G’ from a graph G in a special way
such that a Tutte path in G’ can be extended to a Tutte path in G. This
construction is used in Section 3 to find an infinite sequence of finite “‘forward”
Tutte paths. We then use the “forward” property to show that these finite paths
“converge’ to a 2-way infinite Tutte path. Because the graph G in Theorem 1.2 is
4-connected, a 2-way infinite Tutte path in G is in fact a spanning path.

We use () to denote both the empty set and the empty graph. Let G be a graph
and let X C E(G). Then, G — X denotes the subgraph of G with V(G —X) =
V(G) and E(G — X) = E(G) — X. The subgraph of G induced by X is the graph
whose edge set is X and whose vertex set consists of the vertices of G incident
with edges in X. Let u;,v; € V(G) with u; # v;, where i€l for some
I C{1,2,---}; then G+ {u;v; : i € I} denotes the graph with vertex set V(G)
and edge set E(G) U {u;v; : i € I}. For x,y € V(G), we use G + xy instead of
G+ {xy}.

Let P be a path and let x, y be distinct vertices of P; then we use xPy to denote
the finite subpath of P between x and y. For a cycle C in a plane graph and for
distinct vertices x,y of C, we use xCy to denote the subpath of C from x to y in
clockwise order. If G is a finite 2-connected plane graph, then the boundary of
each face of G is a cycle, and the cycle of G bounding its infinite face is called the
outer cycle of G.

For convenience, we use A := B to rename B as A or to define A as B.

2. TUTTE PATHS

The aim of this section is to introduce the concept of a Tutte path and to prove a
technical result on Tutte paths. This result will be used in Section 3 to find finite
“forward” Tutte paths which are then used to produce a 2-way infinite Tutte path.



4 JOURNAL OF GRAPH THEORY

Definition 2.1. Let G be a graph and let P be a path in G. A P-bridge of G is a
subgraph of G which either (1) is induced by a single edge in E(G) — E(P) with
both incident vertices in V(P) or (2) is induced by the edges contained in a
component of G — V(P) and the edges from this component to P. If B is a P-
bridge of G, then the vertices in V(P) N'V(B) are called the attachments of B on
P. We say that P is a Tutte path in G if every P-bridge of G is finite and has at
most three attachments. For any given subgraph C in G, we say that P is a C-
Tutte path in G if P is a Tutte path in G and every P-bridge of G containing an
edge of C has at most two attachments.

In [7], Tutte proved that every 2-connected planar graph G has a cycle C so
that every C-bridge of G has at most three attachments. Thus, if G is 4-connected,
such a cycle can have no bridge with a vertex not in C, since such a vertex does
not have four internally disjoint paths to a vertex of C. Such cycles in 2-connected
graphs have since been referred to as “Tutte cycles” and their path-analogs are
called “Tutte paths.”

We shall use Tutte paths to prove Theorem 1.1. For our purpose, we need two
known results on Tutte paths in finite graphs. The first is due to Thomassen ([6],
Main Theorem). In [6], a P-bridge is called a ““P-component.”

Lemma 2.1. Let G be a finite 2-connected plane graph with a facial cycle C.
Assume that u € V(C), e € E(C), and v € V(G) — {u}. Then, G contains a
C-Tutte path P from u to v and through e.

Lemma 2.1 implies that in a finite 4-connected planar graph there is a spanning
path between any two given vertices. The next result is due to Thomas and Yu
([4], Lemma (2.6)). In [4], a C-Tutte path is called an “E(C)-snake.”

Lemma 2.2. Let G be a finite 2-connected plane graph with a facial cycle C.
Let u,v € V(C) be distinct, let e,f € E(C), and assume that u, v, e,f occur on C
in this clockwise order. Then G contains a vCu-Tutte path P from u to v and
through both e and f.

It is easy to see that the edges e and f in the above lemmas can be replaced
with vertices. Hence, when these lemmas are applied, we allow e or f or both to
be vertices.

Now let us turn our attention to the main result of this section. Suppose we are
given an infinite plane graph G, a facial cycle C of G, and an edge e of C. We
wish to construct an infinite plane graph G/, a facial cycle C’ of G, and an edge ¢
of C’ such that if G’ has a C’-Tutte path through ¢’ then G has a C-Tutte path
through e. Intuitively, G’ is obtained from an infinite block H of G — V(C) by
adding a vertex v of C and some edges from ¢’ to H. Although the statement of
this result is a bit technical, it becomes natural after one reads the construction
part in the beginning of the proof. (For example, conclusions (1-4) are obvious
consequences of the construction.) Also, this statement allows us to avoid
repeating the lengthy description of the construction process. We refer the readers
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FIGURE 1. Plane representations of /g(G*) and g (G*¥).

to Figures 1 and 2 for illustrations. For ease of arguments, we also add a
connectivity condition.

Let G be a plane graph and let C be a facial cycle of G. We say that G is (4, C)-
connected if G is 2-connected and, for any k-cut X of G with k < 3, every
component of G — X contains a vertex of C. Clearly, if G is 4-connected then G is
(4, C)-connected.

Theorem 2.1. Let G be an infinite 2-connected plane graph, let C be a facial
cycle of G, and let uv be an edge of C. Assume that G is (4, C)-connected and
assume that there is a cycle C* in G such that C N\ C* = (), Ig(C*) is defined,
and C C I(C*). Then, there exist an infinite plane graph G', a facial cycle C' of
G', and a path W'v'w' in C' such that

(1) G is (4,C")-connected and G' — V' is 2-connected,
(2) G —{u'V,vW} C G, and no edge of G joins a vertex of G' — V(C') to a
vertex of G — V(G'),

u = wy

G- (V(G) - X) X
FIGURE 2. Xand G—(VG) — X.
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3) (G+{uV, vW}) — (V(G') — V(C) is finite and has a plane representa-
tion with C and C' as facial cycles,

4) v #£vand (C'—v)NC =1, and

(5) for any subgraph X of G' with C' C X, and for any C'-Tutte path P’ in X
through W'v' and W', there is a C-Tutte path P in G — (V(G') — V(X))
through uv such that P'—v C P and, for any z € V(P)— V(P),
either ¢ V(X) or z € V(Z) for some P'-bridge Z of X containing an
edge of C'.

Proof. The first half of the proof is devoted to the construction of
G,C'u,v,w satisfying (1-4), and the second half of the proof deals with
(5). For convenience, we draw I5(C*) in the plane so that C* is the outer cycle of
I(C*) and C is a facial cycle of I5(C*). Hence, we can speak of the clockwise
order of cycles in I5(C*) (see Fig. 1).

Since C N C* = (), there exists a block H of G — V(C) containing C*. Then
I(C*) N H is a finite 2-connected plane graph. So let D be the cycle bounding
the face of I¢(C*) N H containing C. Note that D is a also a facial cycle of H,
I6(D) is defined, and C C I5(D). (see Fig. 1). Since H is a block of G — V(C),
any (H U C)-bridge of G has at most one attachment on H. By planarity, all
attachments on H of (H U C)-bridges of G are contained in V(D).

So let wy,---,wp be the attachments on D of (H U C)-bridges of G, and
assume that wy,...,w, occur on D in this clockwise order. For each
JjeA{l,...,b}, let pj,gi € V(C) such that (a) {p;,w;} is contained in an
(H U C)-bridge of G and {gj, w;} is contained in an (H U C)-bridge of G, (b) any
(HU C)-bridge of G containing some w; with w; # w; contains no vertex of
piCq; — {pj,q;}, and (c) subject to (a) and (b), pjCqg; is maximal (see Fig. 1).
Since G is a plane graph and because G is (4, C)-connected, p; and g; are well
defined, and py, g1, p2, g2, - - ., Py, q» Occur on C in the clockwise order listed. Let
Jj denote the union of p;Cp;; and those (H U C)-bridges of G whose attachments
are all contained in V(p;Cpj.1) U {w;}.

Without loss of generality, assume that uv € E(J) for some positive integer &,
and py, u, v, pr1 occur on C in this clockwise order. Choose w; such that p; # py
and, subject to this, w;Dwy is minimal. In Figure 1, J; and J; are marked with
dotted curves.

We claim that p; # prr1 (Where ppyq := p1). Suppose on the contrary that
Pk = Pr+1. Since uv € E(J), C C Ji. Hence, {py,wi} is a 2-cut of G and
G — {pk, wi} has a component containing no vertex of C. This contradicts the
assumption that G is (4, C)-connected.

Note that if w; € V(w;Dwy) — {w;, wi }, then by the choice of w;, p; = g; = px
(in particular, p; | = pi). Hence, since G is (4, C)-connected, J; is a subgraph of
G induced by the edge pyw; for each w; € V(wDwy) — {w;, wi}.

Let ' = w;, v = pi, and w' = wy. Let G’ denote the graph obtained from H
by adding ¢' and edges v'w; for all w; € V(w;Dwy), and let C’ denote the cycle
obtained from w'Du’ by adding v/ and edges u/v' and v'w'. This completes the
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description of G',C’,u/,v' and w'. See Figure 1 for a plane representation of
I(C*). This finishes the description of the construction.

Clearly by the above construction, G’ — v' = H is 2-connected. To prove (1),
we need to show that G’ is (4, C’)-connected. Suppose for a contradiction that G’
has a k-cut S with k < 3 and G’ — S has a component K not containing any vertex
of C'. Then by planarity, S is a k-cut of G and K is a component of G — S not
containing any vertex of C, contradicting the assumption that G is (4,C)-
connected. Thus (1) holds.

From the above construction, we see that G’ is obtained from H C G by adding
v = pi and by adding edges v'w; for all w; € V(w;Dwy). We already noted above
that J; is a subgraph of G induced by v'w; for all w; € V(wiDwy) — {wi, w;}. So
G' — {u'v,vw'} C G. By planarity, no edge of G joins a vertex of G’ — V(C') =
H — V(wiDw)) to a vertex of G — V(G') = G — (V(H) U {p«}). So we have (2).

Because G — (V(G') — V(C')) is contained in I5(C*), we see that G —
(V(G") = Vv(C")) is a finite graph. Moreover, it is easy to see that (G +
{'v,vw'}) — (V(G') — V(C')) has a plane representation such that C and C’ are
its facial cycles. So we have (3).

By the above construction, (C' — v') N C = (). Since py, u, v, py.1 occur on C
in this clockwise order and p; # pi.1, we have v/ # v. So (4) holds.

Now let us turn our attention to (5). Let X be a subgraph of G’ with C' C X,
and let P’ be a C'-Tutte path in X through '+’ and w'. We wish to find a C-Tutte
path P in G — (V(G') — V(X)) through uv such that P — ¢/ C P and, for any
z€ V(P)—V(P'), either z¢ V(X) or z € V(Z) for some P-bridge Z of X
containing an edge of C’. Note that G — (V(G’) — X) is the union of C, X —
{u/v',v'w'}, and those (H U C)-bridges of G whose attachments are all contained
in V(wgDw;) U V(C) (see Fig. 2).

Let W denote the set of attachments on w;Dw; of (H U C)-bridges of G.
(Hence, W C {wy,...,w;,}.) We define an equivalence relation on W as follows.
For w,w' € W, we say w ~ w' if w = w' or there is a P’-bridge B of X such that
{w,w'} CV(B)—V(P'). Let W, W,,---, W, denote the equivalence classes
of W with respect to ~. Thus, |W;| =1 if W; CV(P'). If W; € V(P'), then
W;=(V(B;)) = V(P'))NW for some P-bridge B; of X. Without loss of
generality, let W, = {w;} and W,, = {w;} (because wy,w; € V(P')), and assume
that Wi, W,, ..., W,, occur on D in this clockwise order.

Foreachi € {1,...,m},lets; t; € V(C) such that (a) p, s;, t;, p; occur on C in
this clockwise order, (b) there is some w; € W; such that {s;, w,} is contained in
an (H U C)-bridge of G, and there is some w, € W; such that {#;, w,} is contained
in an (H U C)-bridge of G, and (c) subject to (a) and (b), 5;Ct; is maximal. Then
s1=px =V, 55 =prs1, and s, = p; (see Fig. 2). Moreover, s1,11,52,t2, .., Sm,
t,, occur on C in the clockwise order listed.

For each i € {2,...,m — 1}, let T; denote the union of #Cs;;; and those
(H U C)-bridges of G whose attachments are all contained in V(#;Cs;;1). See
Figure 3 (without the dashed edge). Note that if |V(7;)| > 3 then #; # s5;4 and
{t;,si11} is a 2-cut of G.
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Si+1 t;

FIGURE 3. T+ tisi1.

Foreachi € {2,...,m — 1},let B; = W; if W; C V(P’) (in this case, |W;| = 1);
and otherwise, let B; denote the P’-bridge of X such that W; = (V(B;)—
V(P')) N W. Let U; denote the union of s;Ct;, B;, and those (H U C)-bridges of G
whose attachments are all contained in V(s;Ct;) UW,;. Then |V(U;) NV (P')| =
|V(B;) N V(P')| < 2. See Figure 4 (without the dashed edges).

Note that U, NC=s;Ct; and T;NC =¢tCs;iy;. Also note that
U — (V(C)UV(P)), T, —V(C), i=2,...,m— 1, are pair-wise disjoint.

We shall construct the desired path P in (5) by finding the following paths: a
path Q; in J; through uv which is from w' = wy to s = piy1 (When w'v' € E(P'))
or from v = p; to s, = pry1 (when w'o' ¢ E(P")), a path Q,, in J; — ¢/ from
W =w, to s, =p;, a path Q; in U;— V(P') from s; to t; for each i€
{2,...,m— 1}, and a path R; in T; from ¢; to s;4; for each i € {2,...,m — 1}.
First, we prove the following statement.

(A) If w'v' € E(P') then there is a (Jx N C)-Tutte path Q; from w' to s, and
through both v/ and uwv; if u'v' ¢ E(P’) then there is a path Q; in Jy —w' from ¢/
to s, such that every (Q; U {w'})-bridge of J; has at most three attachments, and
every (Q; U {w'})-bridge of J; containing an edge of J; N C has just two
attachments.

Since G is 2-connected, any cut vertex of J; must separate v from s, or
separate w' from ¢'Cs,. Since {w’,v'} is contained in an (H U C)-bridge of
G, Ji := Ji + w's; is 2-connected. We may add the edge w's, so that v/Cs, and
w's, are contained in the outer cycle C of Ji and w', s, v, u, v/ occur on Cy in this
clockwise order (see Fig. 5). Note that J, N C = 5,C v/ = v/Cs,.

W, ={y} C V(P W; € V(P)

FIGURE 4. U, +yt;and U; + {s;y t}.
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/
82 = Pk+1 VU =51 = Pk

FIGURE 5. JE

If wv € E(P'), then we apply Lemma 2.2 (with Ji¥, Cy,w', so,uv, v as
G,C,u,v,e,f in Lemma 2.2, respectively) to find an s, Cyw’-Tutte path Q; in Jj
from w' to s, and through ¢" and uv. Note that w'sy ¢ E(Q,). Hence, Q; gives the
desired path for (A).

Now assume that w'v' ¢ E(P'). We apply Lemma 2.2 (with Ji¥, Cy, v/, w/,
w'sy,uv as G, C,u, v,e,f in Lemma 2.2, respectively) to find a w'Cyv/-Tutte path
Q) in J§ from v’ to w' and through both uv and w's,; and let Q; := Q| — w'. Note
that Q; is a path in J; — w' from ¢ to s, and through uv. Also note that every
(01 U {w'})-bridge of J; is a Q}-bridge of Jj¥, except possibly the subgraph of G
induced by the edge w's. So Q; gives the desired path for (A).

(B) We claim that J; — ¢/ has a path Q,, from «’ = w; to s,, such that every
(Qm U {v'})-bridge of J; has at most three attachments, and every (Q,, U {v'})-
bridge of J; containing an edge of J; N C has just two attachments.

Let J§ := J; + u/v'. By the same argument as in (A) for Ji¥, we can show that J#
is 2-connected. We may add the edge u'v' so that s,,Cv' and 't/ are contained
in the outer cycle C; of J¥, and /', v/, s,, occur on C; in this clockwise order (see
Fig. 6). Note that J, N C = v'C;s,, = 5,C.

We apply Lemma 2.1 (with J§,C;, v/, s, u'v as G,C,u,v,e in Lemma 2.1,
respectively) to find a C;-Tutte path Q! in J;* from ¢/ to s,, through u/v/; and let
On = Q. — v'. Note that Q,, is a path in J; — ¢ from ' = w; to s,,. Also note
that every (Q, U {v'})-bridge of J; is a Q/ -bridge of Jf, except possibly the
subgraph of G induced by the edge u'v'. Hence, Q,, gives the desired path for (B).

(C) For eachi € {2,...,m — 1}, there is a t;Cs;;;-Tutte path R; in T; from #; to
Sit1-

Sm = DI

FIGURE 6. J}
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If |V(#;Cs;iy1)| < 2, then R; := 1;,Cs;,; gives the desired path. Now assume that
|V(;Csi+1)| > 3. Note that T; N D = (), and every cut vertex of 7; must separate f;
from s;4; (since G is 2-connected). Hence, T7 := T; + f;5;4) is 2-connected. We
may add the edge #;5; so that C; := 1;Cs; + t;5;4+1 is the outer cycle of 7] (see
Fig. 3). By Lemma 2.1 (with T!,C; t;,s:+1 as G,C,u,v in Lemma 2.1,
respectively), we find a C;-Tutte path R; in Ti’ from #; to s;;; and through an
edge of #;Cs;;;. It is easy to see that #;5,.1 ¢ E(R;), and so, R; gives the desired
path in 7;.

(D) We claim that, for each i € {2,...,m — 1}, U; — V(P') contains a path Q;
from s; to #; such that every (Q; U (U; N P'))-bridge of U; has at most three
attachments, and any (Q; U (U; N P’))-bridge of U; containing an edge of U; N C
has just two attachments.

Recall that U; N C = s5;Ct; and |V(U;) N V(P')]| < 2.

If s; = t;, then let Q; := 5;Ct;. In this case, |V(U;) N V(C)| = 1. Hence, since
|V(U;) NV(P')| <2, Q; gives the desired path. So, we may assume that s; # t;.
We consider two cases.

First, assume W; C V(P'). Then |W;| = 1. Let y be the only vertex in W;. Then
U; N P' consists of the vertex y (see Fig. 4). Since G is 2-connected, any cut
vertex of U; must separate y from s;Ct;. Hence, U] := U; + t;y is 2-connected. We
add the edge t;y so that s;Ct; and t;y are contained in the outer cycle C; of U{ . By
Lemma 2.1 (with U/, C;, s;,y,t;y as G, C,u, v,e in Lemma 2.1, respectively), we
find a C;-Tutte path Q! in U] from s; to y and through #y; and let Q; :== Q! — y.
Then Q; C U; — V(P'). Since U; N C = 5;Ct; and because U; N P’ consists of y
only, it is easy to check that Q; is the desired path.

Now assume that W;  V(P’). Then W; = (V(B;) — V(P")) N W for some P'-
bridge B; of X containing an edge of C’. Hence, B; has two attachments on P’, say
y and y'. Note that U; N P" consists of y and y' (see Fig. 4). Without loss of
generality, we may assume that w',y,y’,u’ occur on C’ in this clockwise order.
Since G is 2-connected, any cut vertex of U; either separates s;Ct; from B; or
separates y from y'. Hence, U! := U; + {s;y,y't;} is 2-connected. We add the
edges s;y and y't; so that s5;Ct;, s;y, y't; are contained in the outer cycle C; of U;.
By applying Lemma 2.2 (with U}, Ci,y,y’,y't;, siy as G, C,u, v, e,f in Lemma 2.2,
respectively), we find a y'C;y-Tutte path Q} in U! from y to y" and through both s;y
and y't;. Let Q; := Q! — {y,y'}. Then Q; C U; — V(P'). Since U; N C = 5;Ct; and
because U; N P’ consists of y and y/, it is easy to check that Q; gives the desired
path.

(E) Finally, let us construct the desired path P. If w'v' € E(P’) then Q) is a path
in J; from w' to s, and through both v/ and wuwv, and in this case we let
P=(U",0)UUS R)U(P — ). IEw ¢ E(P') then Q; is a path in J;, —
w' from v’ to s, and through wv, and in this case we let P:= (J", Q;)U
(U:":_zl R)U (P —u'tv'). Note that u'v' ¢ E(P), and if ov'w' ¢ E(G) then
vw' ¢ E(P). It is clear that P is a path in G — (V(G') — V(X)) through uv.

To prove that P is a C-Tutte path in G — (V(G') — V(X)), let B be a P-bridge
of G — (V(G') — V(X)). It is straightforward to check that one of the following
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holds: B is induced by a single edge in E(G) — E(P) with both incident vertices in
V(P); or B is a P'-bridge of X such that (V(B) — V(P")) N {wy,...,wy} = 0; or B
is obtained from a P’-bridge B’ of X with (V(B') — V(P"))N{wy,...,wp} C
V(w;Dwy) by adding v' and v'w; for all w; € V(B') — V(P'); or B is a Q;-bridge
of Jx when w'v' € E(P'); or B is a (Q; U {w'})-bridge of J;y when w'v/ ¢ E(P)
(because w' € V(P')); or B is a (Q,U{v'})-bridge of J;; or B is a
(Q; U (U;NP"))-bridge of U; for some i € {2,...,m — 1}; or B is a R;-bridge
of T; for some i € {2,...,m — 1}. Hence, it is easy to see that B has at most three
attachments on P, and if B contains an edge of C then B has just two attachments
on P. Therefore, P is a C-Tutte path in G through uwv.

Clearly, P' — v/ C P. To complete the proof of (5), let z € V(P) — V(P'). Then
either z ¢ V(X) or z € V(B;) — V(P') for some i € {2,...,m — 1}. Recall that
Z := B; is a P'-bridge of X containing an edge of C'. Thus, P gives the desired
path. ]

3. 2-WAY INFINITE PATHS

In this section, we prove Theorem 1.2. In fact, we prove a slightly stronger result.
First, we prove the following result which allows us to “construct” a 2-way
infinite path from a sequence of finite paths. We say that a sequence of finite paths
{P,} converges to a path P if for any given u,v € V(P), uPv = uP, v for all
sufficiently large ny.

Lemma 3.1. Let G be an infinite locally finite graph with e € E(G). Suppose
{P,} is an infinite sequence of finite paths through e such that for all n > 1, the
length of each component of P, — e is strictly larger than the length of any
component of P, — e. Then {P,} has an infinite subsequence {P,, } converging to
a 2-way infinite path P through e.

Proof. LetZ™ ={1,2,3,...} and let e = xy. Because G is locally finite and
since the length of components of P, — e increases with n, there exist xx,
y1y € E(G) and an infinite set A; C Z" such that for every n € Aj, xjxyy; is a
subpath of P,. By the same reason, there exist x,x1,y,y; € E(G) and an infinite
set Ay C A such that for every n € Ay, xpx;xyy;y; is a subpath of P,. Continuing
this process, we produce a 2-way infinite path P :=---xx;xyy1y,--- and an
infinite sequence of infinite sets A; D A, D Asz--- such that for any given
keZb, xi---xjxyy; -y is a subpath of P, for all n € A;.

Let ny € Ay such that the sequence {n;} increases; this can be done because
each A; is infinite. Therefore, {P,, } is a subsequence of {P,}. Let u, v be two
distinct vertices on P. Then u, v € V(x;Py;) for some sufficiently large /. Then
uPv C P,, for all kK > . Hence, {P,,} converges to P. n

In later proofs, we need to find a sequence of finite Tutte paths which converge
to a 2-way infinite Tutte path. For this reason, we need those finite Tutte paths to
be “forward.”
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Definition 3.1. Let N = (Cy,Cy,...) be a radial net in an infinite plane graph
G. We say that a path P in G is N-forward or (Cy, Ca, . ..)-forward if, for every
i > 1 and for any distinct x,y,z € V(P) withy € V(xPz), {x,z} C V(C;) implies
that y ¢ V(C;) for all j > i+ 2.

Intuitively, “P is (Cy, Cy, .. .)-forward” means that if P starts from C;, then
(for each i) after P hits C;,,, P never comes back to C; again. Next, we show how
finite forward Tutte paths converge to a 2-way infinite Tutte path.

Lemma 3.2. Let G be an infinite 2-connected plane graph with a radial net
N = (Cy,Cy,...), let C be a facial cycle of G with C C I(Cy), and let e be an
edge of C. Suppose that, for all n > 1, there exists a C-Tutte path P, in I(C,)
between two vertices of C,, and through e such that each component of P,, — e is
an N-forward path in G. Then {P,} has a subsequence {P,,} converging to a
2-way infinite C-Tutte path P in G through e.

Proof. Since G admits a radial net, G is locally finite. Since 1(C;) C I(Ciy1)
and C; N C;yq = (), and because P, is between two vertices of C, and through
e, {P,} contains a subsequence {P, } such that the length of each component
of P, —e increases. By Lemma 3.1, {P, } contains a subsequence {P, }
converging to a 2-way infinite path P through e. We need to prove that P is a
C-Tutte path in G. First, we claim that

(1) for any given integer [ > 1, P, NI(C;) =P NI(C;) for all sufficiently
large ny.

Let yi,» € V(P) N V(I(Cl)) with y; Py, maximal. Then P N I(C[) =y Py, N
I(C)). Since {P,,} converges to P, y,P,y, = y1Py, for all sufficiently large ny.
HCHCC, PN I(CZ) = y]Py2 N I(C[) = yanky2 N I(C]) Q Pnk n I(Cl) for all suffi-
ciently large ny.

It remains to show that P,, N I(C;) C P NI(C;) for all sufficiently large ny. Let
x,y € V(P) N V(CLy2) such that x and y are contained in different components of
P — e. Since {P,, } converges to P, xPy = xP,,y for all sufficiently large n.

We claim that for each sufficiently large ny, if z € V(P,,) — V(xP,,y) then
z¢ V(I(Cy)). Suppose for a contradiction that z € V(I(C;)). By symmetry
between x and y, we may assume that z and y are contained in the same com-
ponent L of P, — e. Then, zP,,y contains a vertex 7 of some C;, i <l Since
e € E(I(Cy)), there is a vertex x" in the subpath of P,, between e and y such that
x' e V(C). Since z € V(Py,) — V(xP,y), X #7 and y € V(¥'L7). Since L is
(C1,Cy,...)-forward and because x',z" € V(C;), y ¢ V(C;) for all j>i+2,
contradicting the assumption that y € V(Cyy2).

Thus, for all sufficiently large ng, P, NI(C;) = xP,yNI(C;) =xPyn
I(C;) C PNI(C)). This completes the proof of (1).

Now let B be a P-bridge of G. We claim that

(2) B is finite.
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Suppose that B is infinite. Since G (and hence B — V(P)) is locally finite and
B — V(P) is connected, B — V(P) contains an infinite path. Hence, B — V(P)
contains a path R from V(C;) to V(C;) for some i and j with j — i > 4. Since R is
finite, R C I(C;) for some I. By (1), RN P, = 0 for all sufficiently large ny.
Hence, R is contained in a Py, -bridge B,, of I(C,,) for some sufficiently large ny.
Since RN C; # 0 and P,, N Cy # O for all s with i < s <j, B, has at least four
attachments on P, , contradicting the fact that P,, is a C-Tutte path in I(C,,).
Hence B is finite. This completes the proof of (2).

By (2), B CI(C;) for some I. By (1), B is a P, -bridge of I(C,,) for all
sufficiently large n;. Therefore, B has at most three attachments on P, and if B
contains an edge of C then B has just two attachments on P. Hence, P is a 2-way
infinite C-Tutte path in G. [}

We now state and prove the main result of this section which immediately
implies Theorem 1.2.

Theorem 3.1. Let G be an infinite 2-connected plane graph with a radial net,
let C be a facial cycle of G, and let e € E(C). Assume that G is (4, C)-connected.
Then G contains a 2-way infinite C-Tutte path through e.

Proof. First, we use Theorem 2.1 to construct an infinite sequence ((G;, C;,
u, vi,wi) 1i=1,2,...). Let Gy =G, C, =C, let u;,v; be the vertices of G
incident with e, and let w; be the neighbor of v; in C with w; # u;. (Note that
w; does not play any role in this proof, and it is defined only for the sake
of consistency.) Suppose we have constructed (G;, C;, u;, v;, w;) for some posi-
tive integer i > 1, where G; is an infinite plane graph with a radial net, C; is
a facial cycle of G;, w;u;w; is a path in C;, and G; is (4, C;)-connected.
Since G; admits a radial net, there is a cycle C;* in G; such that C;NC¥ = ()
and C; C I;,(C¥). By applying Theorem 2.1 (with G;,Ci,u;,v; as G,C,u,v
in Theorem 2.1, respectively), we find G;, Cii1,uis1, vii1,wir1 (as G, C',
u',v',w' in Theorem 2.1, respectively). More precisely, there exist a plane
graph G;;1, a facial cycle Ci; of Giy1, and a path u; v, w;y) in Ciyp such
that

(1) Giy1 is (4,Cip1)-connected and Giy — iy is 2-connected,

(2) Git1 — {uit1Vis1, Vis1wis1 } C G, and no edge of G; joins a vertex of
Giy — V(CH_]) to a vertex of G; — V(G,‘.H),

3) (G; + {uis1vis1, vieiwiz1}) — (V(Gisq) — V(Ciyq)) is finite and has a
plane representation with C; and C;y; as facial cycles,

(4) Vi1 75 Vi and (Ci+1 — Ui+1) N Ci = @, and

(5) for any subgraph X of G;; with Ciy; C X, and for any C;,;-Tutte path
P;y in X through u;, v+, and w;y;, there is a C;-Tutte path P; of G, —
(V(Giy1) — V(X)) through u;v; such that P;yy — vy C P; and, for any
z € V(P;) — V(Pit1), either z ¢ V(X) or z € V(Z) for some P;-bridge Z
of X containing an edge of Ci.
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Since G; admits a radial net and because G; — V(G ) is finite, it is easy to see
that G;,; also admits a radial net. Therefore, by (1), the above construction can be
continued with i 4+ 1 replacing i, and we produce the desired infinite sequence
((G,‘, C,', uj, vj, W,‘) ti= 1, 2, oo )

Let G' = G + {u;v;, viw; : i = 1,2,...}. By the first part of (2), G’ = U2, G..
By (4), C;N Ciyp =0 for all i > 1. By (3), for each i > 1, we can draw (G; +
{Uis10i11, Vigiwiz1}) — (V(Gig1) — V(Ciy)) as a plane graph so that Cip is its
outer cycle and C; is a facial cycle. Therefore, G’ has a plane representation and
admits a radial net N = (Cy, C3,Cs, . . .).

For 1<i<mn, let F,;=G;— (V(G,) —V(C,)). Note that F,; — {uv;,
vwi} CGC G, and F,; CGCG'. We will show that for every n> 1,
F, contains a Tutte path P, through uv such that each component of P, ; is
an N-forward path in G. To do so, we need to prove a more general result
about F,;. For convenience, let D;:= Cy_; for j=1,2,..., and so, N =
(D1,D,,Ds,...).

Claim. For all integers n and i withn > i > 1, F,; contains a C;-Tutte path P, ;
between two vertices of C, and through u;v; such that (i) {u,, vy, wn} C V(Pn,),
and if n>i+1 then {uj,vj,w;j:j=i+1,...,n} CV(P,;), and (ii) each
component of P,; — u;v; is an N-forward path in G'.

We use induction on n — i. First, assume n — i = 0. Then F,; = C; = C,. Let
f€E(C; —v), and let P,; = C; — f. Then P,; is a path in F,; between two
vertices of C, and through u;v; = u,v, and w,. Hence, {u,, v,, w,} C V(P,;), and
so, (i) holds. Note that P, ; is a C;-Tutte path in F,; (because F,; has only one
P, ;-bridge which is induced by the edge f). Since P,; C C;, each component of
P,; — u;v; is (trivially) an N-forward path in G'. Hence (ii) holds.

Now assume that n —i >0 and let P,;r; be a Cii-Tutte path in F,
between two vertices of C, and through u;y v, such that (i) {uy, vy, w,} C
V(Pn,l'-‘rl)’ and if n > i + 2 then {I/tj, Vj, Wj ] =i+ 2, e ,I/l} - V(P,u‘_,_]), and (11)
each component of P, ;| — u; v, is an N-forward path in G’. We wish to apply
(5) above. So let X :=F,;;; then F,; = G; — (V(Giy1) — V(X)). Note that
Wit1 € V(Pp,it1). (For otherwise, w;y; is contained in a P,;;-bridge of F,
with just two attachments, and one of these attachments is v; 1. But then F), ;11 —
vj4+1 18 not 2-connected, and so, G;;; — v;4] 18 not 2-connected, contradicting (1).)
Therefore, by (5) (with P, ; 1, P,; as Pi.1, P; in (5), respectively), we see that F,, ;
contains a C;-Tutte path P,; through wu;v; such that P,; ;1 — viy1 € P,; and,
for any z € V(P,;) — V(Pyit1), either z ¢ V(F, 1) or z € V(Z) — V(P,;41) for
some P, ;,1-bridge Z of F, ;1. Hence P, ; is a path in F,, ; between two vertices of
C, and through u;v;. Clearly, (i) holds.

It remains to show that each component of P,; — u;v; is an N-forward path in
G'. Let L be a component of P,; — u;v;. Let a,b,c € V(L) such that b € V(aLc)
and {a,c} C V(Dy) = V(Cy-1) for some integer k > 0. We need to show that
b¢ V(Dj) =V(Cy-,) for all j>k+2. Let L' denote the component of
Py it1 — it such that L' — v C L.
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If {a,c} CV(Pyit1) —{vit1}, then {a,c} C V(L'). Hence, b ¢ V(D) for all
Jj >k + 2 because L' is an N-forward path in G’ (by induction hypothesis).

If {a,c} - V(P,“') — (V(Pn,i-H) — {U,'_H}), then alc - Pn.i — (V(Pn,i+l) —
{vit+1}). Hence, {a,c} C V(C;) or {a,c} CV(Cis1), and so, Dy =C; or
Dy = Ciy1. Also b= v;. or b ¢ V(P,u'_»,_l). If b = vj1q, then by (4), b ¢ V(CZ)
forall [ > i+ 2, and so, b ¢ V(Cyj—1) = V(D;) for all j > k + 2. So assume that
b ¢ V(P,i+1). Then by (5), either b ¢ V(F, ;1) or b € V(Z) for some P, ;.-
bridge Z of F, ;1 containing an edge of Ci;. If b ¢ V(F, ;1) then b ¢ V(C;) for
all [ >i+2; and if b € V(Z) then by planarity, b ¢ V(C;) for all [ > i+ 2.
Again, b ¢ V(Cyj—1) = V(D)) for all j > k + 2.

So assume by symmetry that a ¢ V(P,;+1) —{vit1} and ¢ € V(Ppi1) —
{vit1}. Hence ¢ ¢ V(C;), and so, a ¢ V(C;). Because a ¢ V(P,;11) and by (5),
either a ¢ V(F, ;1) ora € V(Z) for some P, ;;-bridge Z of F,;,; containing an
edge of C;1, and so, a ¢ V(C;) forall I > i + 2. Hence {a,c} C V(Ciy), and so,
Dy = Ciyy. Suppose b ¢ V(Ppi+1) — {vit1}. Then by (5), either b ¢ V(F,;+1), or
b = vy, or b € V(Z) for some P, ;, -bridge Z of F,;,; containing an edge of
Cit1. Hence b ¢ V(C;) for all [ >i+2, and so, b ¢ V(Cy_;) = V(D;) for all
j>k+2. So assume that b€ V(P,;y1) —{vit1}. Hence, there is some
b € V(Ciy1) NV(L') such that b € V(cL'D'). Therefore, {b',c} C V(Ciz1) =
V(Dy). Since L' is an N-forward path in G', b ¢ V(Cy_;) = V(D;) for all
j>k+2.

Therefore, L is an N-forward path in G'. Hence, P,; gives the desired path in
the claim.

By the above claim, F,; contains a C;-Tutte path P, := P, ; between two
vertices of C, and through e = ujv; such that each component of P, — e is an
N-forward path in G'. (Note that P, C G because F,; CG.) Since
{uj, viyw;j :i=2,...,n} CV(P,) for all n > 1, Py,_; is also a C;-Tutte path
in Ig/(Con—1) = Iz (D,) between two vertices of D, and through e. Hence, by
Lemma 3.2, {P,,_} has a subsequence {P,, } converging to a 2-way infinite C,-
Tutte path P in G’ through e. Since P,, C G for all ng, P is a 2-way infinite C-
Tutte path in G through e. [ |
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