Infinite Paths in Planar Graphs I, Graphs with Radial Nets

Xingxing Yu ${ }^{1,2}$

${ }^{1}$ SCHOOL OF MATHEMATICS GEORGIA INSTITUTE OF TECHNOLOGY
 ATLANTA, GA

${ }^{2}$ CENTER FOR COMBINATORICS
NANKAI UNIVERSITY
TIANJIN 300071, CHINA
E-mail: yu@math.gatech.edu

Received May 14, 2002; Revised January 12, 2004

Published online 00 Month 2003 in Wiley InterScience(www.interscience.wiley.com). DOI 10.1002/jgt. 20028

Abstract

Let G be an infinite 4-connected planar graph such that the deletion of any finite set of vertices from G results in exactly one infinite component. Dean et al. proved that either G admits a radial net or a special subgraph of G admits a ladder net, and they used these nets to show that G contains a spanning 1 -way infinite path. In this paper, we show that if G admits a radial net, then G also contains a spanning 2-way infinite path. This is a step towards a conjecture of Nash-Williams. © 2004 Wiley Periodicals, Inc. J Graph Theory 00: 1-16, 2004

Keywords: $x \underline{x} \underline{ }^{Q 1}$

Contract grant sponsor: NSF; Contract grant numbers: DMS-9970527, DMS0245530; Contract grant sponsor: NSA; Contract grant number: MDA-904-03-10052.
© 2004 Wiley Periodicals, Inc.

1. INTRODUCTION AND NOTATION

In 1931, Whitney [8] proved that every finite 4-connected planar triangulation contains a Hamilton cycle. In 1956, Tutte [7] proved that every finite 4-connected planar graph contains a Hamilton cycle. It is natural to ask if this result can be extended to infinite graphs. A 1-way infinite path is a graph which is isomorphic to the graph with vertex set $\left\{v_{i}: i=1,2, \cdots\right\}$ and edge set $\left\{v_{i} v_{i+1}: i=1,2, \cdots\right\}$, and a 2-way infinite path is a graph which is isomorphic to the graph with vertex set $\left\{v_{i}: i=\cdots,-2,-1,0,1,2, \cdots\right\}$ and edge set $\left\{v_{i} v_{i+1}: i=\cdots,-2,-1,0,1\right.$, $2, \cdots\}$. Nash-Williams ([2,3], also see [5]) conjectured that an infinite 4connected planar graph G contains a spanning 1-way infinite path if, and only if, for every finite $X \subseteq V(G), G-X$ has exactly one infinite component. This conjecture was verified by Dean, Thomas, and Yu [1]. Nash-Williams ([2,3]) also conjectured the following.

Conjecture 1.1. An infinite 4-connected planar graph G contains a spanning 2way infinite path if, and only if, for every finite $X \subseteq V(G), G-X$ has at most two infinite components.

For a positive integer k, a graph G is k-indivisible if, for every finite $X \subseteq V(G), G-X$ has at most $k-1$ infinite components. (Note that for locally finite graphs, G is k-indivisible if, and only if, G has at most $k-1$ ends.) In [1] (Theorem (2.3)), it is shown that an infinite 2 -indivisible 4 -connected planar graph either has a "radial net" or has a subgraph admitting a "ladder net." These structures are then used in [1] to find spanning 1-way infinite paths in infinite 2indivisible 4 -connected planar graphs. The main objective of this paper is to prove Conjecture 1.1 for graphs which admit radial nets.

Theorem 1.1. Let G be a 3-indivisible infinite 4-connected planar graph having a radial net. Then, G contains a 2-way infinite spanning path.

By the Jordan curve theorem, each cycle C in an infinite plane graph G divides the plane into two closed regions (whose intersection is C). If exactly one of these two closed regions, say \mathcal{R}, contains only finitely many vertices and edges of G, then we use $I_{G}(C)$ to denote the subgraph of G consisting of the vertices and edges of G contained in \mathcal{R}. Note that $I_{G}(C)$ is a finite subgraph of G. If there is no confusion, we use $I(C)$ instead of $I_{G}(C)$. Note that $C \subset I(C)$, and if $I(C)=C$ then C is a facial cycle.

Definition 1.1. A radial net in an infinite plane graph G is a sequence $N=\left(C_{1}, C_{2}, \cdots\right)$ of cycles in G such that $I\left(C_{i}\right)$ is defined for all $i \geq 1$, and the following properties are satisfied:
(1) $I\left(C_{i}\right) \subseteq I\left(C_{i+1}\right)$ for all $i \geq 1$,
(2) $\bigcup_{i=1}^{\infty} I\left(C_{i}\right)=G$, and
(3) $C_{i} \cap C_{j}=\emptyset$ for all $i \neq j$.

Radial nets are first introduced in ([1], p. 165) along with ladder nets. If G is an infinite plane graph with a radial net $N=\left(C_{1}, C_{2}, \ldots\right)$, then for any cycle C in $G, C \subset I_{G}\left(C_{i}\right)$ for all sufficiently large i (by (1) and (2) in Definition 1.1), and so, $I_{G}(C)$ is defined. For the same reason, if G is an infinite plane graph with a radial net, then every vertex of G has finite degree (that is, G is locally finite). To prove Conjecture 1.1 for graphs with radial nets, we shall prove a stronger result.

Theorem 1.2. Let G be a 4-connected plane graph which admits a radial net, let C be a facial cycle of G, and let e be an edge of C. Then G has a spanning 2-way infinite path through e.

In this paper, we consider only simple graphs. We organize the paper as follows. In the remainder of this section we introduce notation and terminology necessary for stating and proving results. In Section 2, we study "Tutte paths" in planar graphs. Tutte paths will be defined later, but we remark here that in 4 -connected graphs Tutte paths become spanning paths. The objective of Section 2 is to show that one can construct a graph G^{\prime} from a graph G in a special way such that a Tutte path in G^{\prime} can be extended to a Tutte path in G. This construction is used in Section 3 to find an infinite sequence of finite "forward" Tutte paths. We then use the "forward" property to show that these finite paths "converge" to a 2-way infinite Tutte path. Because the graph G in Theorem 1.2 is 4-connected, a 2-way infinite Tutte path in G is in fact a spanning path.

We use \emptyset to denote both the empty set and the empty graph. Let G be a graph and let $X \subseteq E(G)$. Then, $G-X$ denotes the subgraph of G with $V(G-X)=$ $V(G)$ and $E(G-X)=E(G)-X$. The subgraph of G induced by X is the graph whose edge set is X and whose vertex set consists of the vertices of G incident with edges in X. Let $u_{i}, v_{i} \in V(G)$ with $u_{i} \neq v_{i}$, where $i \in I$ for some $I \subseteq\{1,2, \cdots\}$; then $G+\left\{u_{i} v_{i}: i \in I\right\}$ denotes the graph with vertex set $V(G)$ and edge set $E(G) \cup\left\{u_{i} v_{i}: i \in I\right\}$. For $x, y \in V(G)$, we use $G+x y$ instead of $G+\{x y\}$.

Let P be a path and let x, y be distinct vertices of P; then we use $x P y$ to denote the finite subpath of P between x and y. For a cycle C in a plane graph and for distinct vertices x, y of C, we use $x C y$ to denote the subpath of C from x to y in clockwise order. If G is a finite 2 -connected plane graph, then the boundary of each face of G is a cycle, and the cycle of G bounding its infinite face is called the outer cycle of G.

For convenience, we use $A:=B$ to rename B as A or to define A as B.

2. TUTTE PATHS

The aim of this section is to introduce the concept of a Tutte path and to prove a technical result on Tutte paths. This result will be used in Section 3 to find finite "forward" Tutte paths which are then used to produce a 2-way infinite Tutte path.

Definition 2.1. Let G be a graph and let P be a path in G. A P-bridge of G is a subgraph of G which either (1) is induced by a single edge in $E(G)-E(P)$ with both incident vertices in $V(P)$ or (2) is induced by the edges contained in a component of $G-V(P)$ and the edges from this component to P. If B is a P bridge of G, then the vertices in $V(P) \cap V(B)$ are called the attachments of B on P. We say that P is a Tutte path in G if every P-bridge of G is finite and has at most three attachments. For any given subgraph C in G, we say that P is a C Tutte path in G if P is a Tutte path in G and every P-bridge of G containing an edge of C has at most two attachments.

In [7], Tutte proved that every 2 -connected planar graph G has a cycle C so that every C-bridge of G has at most three attachments. Thus, if G is 4 -connected, such a cycle can have no bridge with a vertex not in C, since such a vertex does not have four internally disjoint paths to a vertex of C. Such cycles in 2-connected graphs have since been referred to as "Tutte cycles" and their path-analogs are called "Tutte paths."

We shall use Tutte paths to prove Theorem 1.1. For our purpose, we need two known results on Tutte paths in finite graphs. The first is due to Thomassen ([6], Main Theorem). In [6], a P-bridge is called a " P-component."

Lemma 2.1. Let G be a finite 2-connected plane graph with a facial cycle C. Assume that $u \in V(C)$, $e \in E(C)$, and $v \in V(G)-\{u\}$. Then, G contains a C-Tutte path P from u to v and through e.

Lemma 2.1 implies that in a finite 4 -connected planar graph there is a spanning path between any two given vertices. The next result is due to Thomas and Yu ([4], Lemma (2.6)). In [4], a C-Tutte path is called an " $E(C)$-snake."

Lemma 2.2. Let G be a finite 2-connected plane graph with a facial cycle C. Let $u, v \in V(C)$ be distinct, let e, $f \in E(C)$, and assume that u, v, e, f occur on C in this clockwise order. Then G contains a vCu-Tutte path P from u to v and through both e and f.

It is easy to see that the edges e and f in the above lemmas can be replaced with vertices. Hence, when these lemmas are applied, we allow e or f or both to be vertices.

Now let us turn our attention to the main result of this section. Suppose we are given an infinite plane graph G, a facial cycle C of G, and an edge e of C. We wish to construct an infinite plane graph G^{\prime}, a facial cycle C^{\prime} of G^{\prime}, and an edge e^{\prime} of C^{\prime} such that if G^{\prime} has a C^{\prime}-Tutte path through e^{\prime} then G has a C-Tutte path through e. Intuitively, G^{\prime} is obtained from an infinite block H of $G-V(C)$ by adding a vertex v^{\prime} of C and some edges from v^{\prime} to H. Although the statement of this result is a bit technical, it becomes natural after one reads the construction part in the beginning of the proof. (For example, conclusions (1-4) are obvious consequences of the construction.) Also, this statement allows us to avoid repeating the lengthy description of the construction process. We refer the readers

FIGURE 1. Plane representations of $I_{G}\left(G^{*}\right)$ and $I_{G^{\prime}}\left(G^{*}\right)$.
to Figures 1 and 2 for illustrations. For ease of arguments, we also add a connectivity condition.

Let G be a plane graph and let C be a facial cycle of G. We say that G is $(4, C)-$ connected if G is 2 -connected and, for any k-cut X of G with $k \leq 3$, every component of $G-X$ contains a vertex of C. Clearly, if G is 4 -connected then G is (4, C)-connected.

Theorem 2.1. Let G be an infinite 2-connected plane graph, let C be a facial cycle of G, and let uv be an edge of C. Assume that G is $(4, C)$-connected and assume that there is a cycle C^{*} in G such that $C \cap C^{*}=\emptyset, I_{G}\left(C^{*}\right)$ is defined, and $C \subseteq I_{G}\left(C^{*}\right)$. Then, there exist an infinite plane graph G^{\prime}, a facial cycle C^{\prime} of G^{\prime}, and a path $u^{\prime} v^{\prime} w^{\prime}$ in C^{\prime} such that
(1) G^{\prime} is $\left(4, C^{\prime}\right)$-connected and $G^{\prime}-v^{\prime}$ is 2-connected,
(2) $G^{\prime}-\left\{u^{\prime} v^{\prime}, v^{\prime} w^{\prime}\right\} \subseteq G$, and no edge of G joins a vertex of $G^{\prime}-V\left(C^{\prime}\right)$ to a vertex of $G-V\left(G^{\prime}\right)$,

FIGURE 2. $\quad X$ and $G-\left(V\left(G^{\prime}\right)-X\right)$.
(3) $\left(G+\left\{u^{\prime} v^{\prime}, v^{\prime} w^{\prime}\right\}\right)-\left(V\left(G^{\prime}\right)-V\left(C^{\prime}\right)\right)$ is finite and has a plane representation with C and C^{\prime} as facial cycles,
(4) $v^{\prime} \neq v$ and $\left(C^{\prime}-v^{\prime}\right) \cap C=\emptyset$, and
(5) for any subgraph X of G^{\prime} with $C^{\prime} \subseteq X$, and for any C^{\prime}-Tutte path P^{\prime} in X through $u^{\prime} v^{\prime}$ and w^{\prime}, there is a C-Tutte path P in $G-\left(V\left(G^{\prime}\right)-V(X)\right)$ through uv such that $P^{\prime}-v^{\prime} \subseteq P$ and, for any $z \in V(P)-V\left(P^{\prime}\right)$, either $z \notin V(X)$ or $z \in V(Z)$ for some P^{\prime}-bridge Z of X containing an edge of C^{\prime}.

Proof. The first half of the proof is devoted to the construction of $G^{\prime}, C^{\prime}, u^{\prime}, v^{\prime}, w^{\prime}$ satisfying (1-4), and the second half of the proof deals with (5). For convenience, we draw $I_{G}\left(C^{*}\right)$ in the plane so that C^{*} is the outer cycle of $I_{G}\left(C^{*}\right)$ and C is a facial cycle of $I_{G}\left(C^{*}\right)$. Hence, we can speak of the clockwise order of cycles in $I_{G}\left(C^{*}\right)$ (see Fig. 1).

Since $C \cap C^{*}=\emptyset$, there exists a block H of $G-V(C)$ containing C^{*}. Then $I_{G}\left(C^{*}\right) \cap H$ is a finite 2 -connected plane graph. So let D be the cycle bounding the face of $I_{G}\left(C^{*}\right) \cap H$ containing C. Note that D is a also a facial cycle of H, $I_{G}(D)$ is defined, and $C \subseteq I_{G}(D)$. (see Fig. 1). Since H is a block of $G-V(C)$, any $(H \cup C)$-bridge of G has at most one attachment on H. By planarity, all attachments on H of $(H \cup C)$-bridges of G are contained in $V(D)$.

So let w_{1}, \cdots, w_{b} be the attachments on D of $(H \cup C)$-bridges of G, and assume that w_{1}, \ldots, w_{b} occur on D in this clockwise order. For each $j \in\{1, \ldots, b\}$, let $p_{j}, q_{j} \in V(C)$ such that (a) $\left\{p_{j}, w_{j}\right\}$ is contained in an $(H \cup C)$-bridge of G and $\left\{q_{j}, w_{j}\right\}$ is contained in an $(H \cup C)$-bridge of G, (b) any $(H \cup C)$-bridge of G containing some w_{i} with $w_{i} \neq w_{j}$ contains no vertex of $p_{j} C q_{j}-\left\{p_{j}, q_{j}\right\}$, and (c) subject to (a) and (b), $p_{j} C q_{j}$ is maximal (see Fig. 1). Since G is a plane graph and because G is $(4, C)$-connected, p_{j} and q_{j} are well defined, and $p_{1}, q_{1}, p_{2}, q_{2}, \ldots, p_{b}, q_{b}$ occur on C in the clockwise order listed. Let J_{j} denote the union of $p_{j} C p_{j+1}$ and those $(H \cup C)$-bridges of G whose attachments are all contained in $V\left(p_{j} C p_{j+1}\right) \cup\left\{w_{j}\right\}$.

Without loss of generality, assume that $u v \in E\left(J_{k}\right)$ for some positive integer k, and p_{k}, u, v, p_{k+1} occur on C in this clockwise order. Choose w_{l} such that $p_{l} \neq p_{k}$ and, subject to this, $w_{l} D w_{k}$ is minimal. In Figure $1, J_{k}$ and J_{l} are marked with dotted curves.

We claim that $p_{k} \neq p_{k+1}$ (where $p_{b+1}:=p_{1}$). Suppose on the contrary that $p_{k}=p_{k+1}$. Since $u v \in E\left(J_{k}\right), C \subseteq J_{k}$. Hence, $\left\{p_{k}, w_{k}\right\}$ is a 2-cut of G and $G-\left\{p_{k}, w_{k}\right\}$ has a component containing no vertex of C. This contradicts the assumption that G is $(4, C)$-connected.

Note that if $w_{j} \in V\left(w_{l} D w_{k}\right)-\left\{w_{l}, w_{k}\right\}$, then by the choice of $w_{l}, p_{j}=q_{j}=p_{k}$ (in particular, $p_{l+1}=p_{k}$). Hence, since G is $(4, C)$-connected, J_{j} is a subgraph of G induced by the edge $p_{k} w_{j}$ for each $w_{j} \in V\left(w_{l} D w_{k}\right)-\left\{w_{l}, w_{k}\right\}$.

Let $u^{\prime}=w_{l}, v^{\prime}=p_{k}$, and $w^{\prime}=w_{k}$. Let G^{\prime} denote the graph obtained from H by adding v^{\prime} and edges $v^{\prime} w_{j}$ for all $w_{j} \in V\left(w_{l} D w_{k}\right)$, and let C^{\prime} denote the cycle obtained from $w^{\prime} D u^{\prime}$ by adding v^{\prime} and edges $u^{\prime} v^{\prime}$ and $v^{\prime} w^{\prime}$. This completes the
description of $G^{\prime}, C^{\prime}, u^{\prime}, v^{\prime}$ and w^{\prime}. See Figure 1 for a plane representation of $I_{G^{\prime}}\left(C^{*}\right)$. This finishes the description of the construction.

Clearly by the above construction, $G^{\prime}-v^{\prime}=H$ is 2 -connected. To prove (1), we need to show that G^{\prime} is $\left(4, C^{\prime}\right)$-connected. Suppose for a contradiction that G^{\prime} has a k-cut S with $k \leq 3$ and $G^{\prime}-S$ has a component K not containing any vertex of C^{\prime}. Then by planarity, S is a k-cut of G and K is a component of $G-S$ not containing any vertex of C, contradicting the assumption that G is $(4, C)$ connected. Thus (1) holds.

From the above construction, we see that G^{\prime} is obtained from $H \subseteq G$ by adding $v^{\prime}=p_{k}$ and by adding edges $v^{\prime} w_{j}$ for all $w_{j} \in V\left(w_{l} D w_{k}\right)$. We already noted above that J_{j} is a subgraph of G induced by $v^{\prime} w_{j}$ for all $w_{j} \in V\left(w_{l} D w_{k}\right)-\left\{w_{k}, w_{l}\right\}$. So $G^{\prime}-\left\{u^{\prime} v^{\prime}, v^{\prime} w^{\prime}\right\} \subseteq G$. By planarity, no edge of G joins a vertex of $G^{\prime}-V\left(C^{\prime}\right)=$ $H-V\left(w_{k} D w_{l}\right)$ to a vertex of $G-V\left(G^{\prime}\right)=G-\left(V(H) \cup\left\{p_{k}\right\}\right)$. So we have (2).

Because $G-\left(V\left(G^{\prime}\right)-V\left(C^{\prime}\right)\right)$ is contained in $I_{G}\left(C^{*}\right)$, we see that $G-$ $\left(V\left(G^{\prime}\right)-V\left(C^{\prime}\right)\right)$ is a finite graph. Moreover, it is easy to see that $(G+$ $\left.\left\{u^{\prime} v^{\prime}, v^{\prime} w^{\prime}\right\}\right)-\left(V\left(G^{\prime}\right)-V\left(C^{\prime}\right)\right)$ has a plane representation such that C and C^{\prime} are its facial cycles. So we have (3).

By the above construction, $\left(C^{\prime}-v^{\prime}\right) \cap C=\emptyset$. Since p_{k}, u, v, p_{k+1} occur on C in this clockwise order and $p_{k} \neq p_{k+1}$, we have $v^{\prime} \neq v$. So (4) holds.

Now let us turn our attention to (5). Let X be a subgraph of G^{\prime} with $C^{\prime} \subseteq X$, and let P^{\prime} be a C^{\prime}-Tutte path in X through $u^{\prime} v^{\prime}$ and w^{\prime}. We wish to find a C-Tutte path P in $G-\left(V\left(G^{\prime}\right)-V(X)\right)$ through $u v$ such that $P^{\prime}-v^{\prime} \subseteq P$ and, for any $z \in V(P)-V\left(P^{\prime}\right)$, either $z \notin V(X)$ or $z \in V(Z)$ for some P^{\prime}-bridge Z of X containing an edge of C^{\prime}. Note that $G-\left(V\left(G^{\prime}\right)-X\right)$ is the union of $C, X-$ $\left\{u^{\prime} v^{\prime}, v^{\prime} w^{\prime}\right\}$, and those $(H \cup C)$-bridges of G whose attachments are all contained in $V\left(w_{k} D w_{l}\right) \cup V(C)$ (see Fig. 2).

Let W denote the set of attachments on $w_{k} D w_{l}$ of $(H \cup C)$-bridges of G. (Hence, $W \subseteq\left\{w_{1}, \ldots, w_{b}\right\}$.) We define an equivalence relation on W as follows. For $w, w^{\prime} \in W$, we say $w \sim w^{\prime}$ if $w=w^{\prime}$ or there is a P^{\prime}-bridge B of X such that $\left\{w, w^{\prime}\right\} \subseteq V(B)-V\left(P^{\prime}\right)$. Let $W_{1}, W_{2}, \cdots, W_{m}$ denote the equivalence classes of W with respect to \sim. Thus, $\left|W_{i}\right|=1$ if $W_{i} \subseteq V\left(P^{\prime}\right)$. If $W_{i} \nsubseteq V\left(P^{\prime}\right)$, then $W_{i}=\left(V\left(B_{i}\right)-V\left(P^{\prime}\right)\right) \cap W$ for some P^{\prime}-bridge B_{i} of X. Without loss of generality, let $W_{1}=\left\{w_{k}\right\}$ and $W_{m}=\left\{w_{l}\right\}$ (because $w_{k}, w_{l} \in V\left(P^{\prime}\right)$), and assume that $W_{1}, W_{2}, \ldots, W_{m}$ occur on D in this clockwise order.

For each $i \in\{1, \ldots, m\}$, let $s_{i}, t_{i} \in V(C)$ such that (a) $p_{k}, s_{i}, t_{i}, p_{l}$ occur on C in this clockwise order, (b) there is some $w_{s} \in W_{i}$ such that $\left\{s_{i}, w_{s}\right\}$ is contained in an $(H \cup C)$-bridge of G, and there is some $w_{t} \in W_{i}$ such that $\left\{t_{i}, w_{t}\right\}$ is contained in an $(H \cup C)$-bridge of G, and (c) subject to (a) and (b), $s_{i} C t_{i}$ is maximal. Then $s_{1}=p_{k}=v^{\prime}, s_{2}=p_{k+1}$, and $s_{m}=p_{l}$ (see Fig. 2). Moreover, $s_{1}, t_{1}, s_{2}, t_{2}, \ldots, s_{m}$, t_{m} occur on C in the clockwise order listed.

For each $i \in\{2, \ldots, m-1\}$, let T_{i} denote the union of $t_{i} C s_{i+1}$ and those $(H \cup C)$-bridges of G whose attachments are all contained in $V\left(t_{i} C s_{i+1}\right)$. See Figure 3 (without the dashed edge). Note that if $\left|V\left(T_{i}\right)\right| \geq 3$ then $t_{i} \neq s_{i+1}$ and $\left\{t_{i}, s_{i+1}\right\}$ is a 2 -cut of G.

FIGURE 3. $\quad T_{i}+t_{i} s_{i+1}$.

For each $i \in\{2, \ldots, m-1\}$, let $B_{i}=W_{i}$ if $W_{i} \subseteq V\left(P^{\prime}\right)$ (in this case, $\left|W_{i}\right|=1$); and otherwise, let B_{i} denote the P^{\prime}-bridge of X such that $W_{i}=\left(V\left(B_{i}\right)-\right.$ $\left.V\left(P^{\prime}\right)\right) \cap W$. Let U_{i} denote the union of $s_{i} C t_{i}, B_{i}$, and those $(H \cup C)$-bridges of G whose attachments are all contained in $V\left(s_{i} C t_{i}\right) \cup W_{i}$. Then $\left|V\left(U_{i}\right) \cap V\left(P^{\prime}\right)\right|=$ $\left|V\left(B_{i}\right) \cap V\left(P^{\prime}\right)\right| \leq 2$. See Figure 4 (without the dashed edges).

Note that $U_{i} \cap C=s_{i} C t_{i} \quad$ and $\quad T_{i} \cap C=t_{i} C s_{i+1}$. Also note that $U_{i}-\left(V(C) \cup V\left(P^{\prime}\right)\right), T_{i}-V(C), i=2, \ldots, m-1$, are pair-wise disjoint.

We shall construct the desired path P in (5) by finding the following paths: a path Q_{1} in J_{k} through $u v$ which is from $w^{\prime}=w_{k}$ to $s_{2}=p_{k+1}$ (when $w^{\prime} v^{\prime} \in E\left(P^{\prime}\right)$) or from $v^{\prime}=p_{k}$ to $s_{2}=p_{k+1}$ (when $w^{\prime} v^{\prime} \notin E\left(P^{\prime}\right)$), a path Q_{m} in $J_{l}-v^{\prime}$ from $u^{\prime}=w_{l}$ to $s_{m}=p_{l}$, a path Q_{i} in $U_{i}-V\left(P^{\prime}\right)$ from s_{i} to t_{i} for each $i \in$ $\{2, \ldots, m-1\}$, and a path R_{i} in T_{i} from t_{i} to s_{i+1} for each $i \in\{2, \ldots, m-1\}$. First, we prove the following statement.
(A) If $w^{\prime} v^{\prime} \in E\left(P^{\prime}\right)$ then there is a $\left(J_{k} \cap C\right)$-Tutte path Q_{1} from w^{\prime} to s_{2} and through both v^{\prime} and $u v$; if $u^{\prime} v^{\prime} \notin E\left(P^{\prime}\right)$ then there is a path Q_{1} in $J_{k}-w^{\prime}$ from v^{\prime} to s_{2} such that every $\left(Q_{1} \cup\left\{w^{\prime}\right\}\right)$-bridge of J_{k} has at most three attachments, and every $\left(Q_{1} \cup\left\{w^{\prime}\right\}\right)$-bridge of J_{k} containing an edge of $J_{k} \cap C$ has just two attachments.

Since G is 2-connected, any cut vertex of J_{k} must separate v^{\prime} from s_{2} or separate w^{\prime} from $v^{\prime} C s_{2}$. Since $\left\{w^{\prime}, v^{\prime}\right\}$ is contained in an $(H \cup C)$-bridge of $G, J_{k}^{*}:=J_{k}+w^{\prime} s_{2}$ is 2-connected. We may add the edge $w^{\prime} s_{2}$ so that $v^{\prime} C s_{2}$ and $w^{\prime} s_{2}$ are contained in the outer cycle C_{k} of J_{k}^{*} and $w^{\prime}, s_{2}, v, u, v^{\prime}$ occur on C_{k} in this clockwise order (see Fig. 5). Note that $J_{k} \cap C=s_{2} C_{k} v^{\prime}=v^{\prime} C s_{2}$.

FIGURE 4. $U_{i}+y t_{i}$ and $U_{i}+\left\{s_{i} y t_{i}\right\}$.

FIGURE 5. J. ${ }^{*}$.

If $w^{\prime} v^{\prime} \in E\left(P^{\prime}\right)$, then we apply Lemma 2.2 (with $J_{k}^{*}, C_{k}, w^{\prime}, s_{2}, u v, v^{\prime}$ as G, C, u, v, e, f in Lemma 2.2, respectively) to find an $s_{2} C_{k} w^{\prime}$-Tutte path Q_{1} in J_{k}^{*} from w^{\prime} to s_{2} and through v^{\prime} and $u v$. Note that $w^{\prime} s_{2} \notin E\left(Q_{1}\right)$. Hence, Q_{1} gives the desired path for (A).

Now assume that $w^{\prime} v^{\prime} \notin E\left(P^{\prime}\right)$. We apply Lemma 2.2 (with $J_{k}^{*}, C_{k}, v^{\prime}, w^{\prime}$, $w^{\prime} s_{2}, u v$ as G, C, u, v, e, f in Lemma 2.2, respectively) to find a $w^{\prime} C_{k} v^{\prime}$-Tutte path Q_{1}^{\prime} in J_{k}^{*} from v^{\prime} to w^{\prime} and through both $u v$ and $w^{\prime} s_{2}$; and let $Q_{1}:=Q_{1}^{\prime}-w^{\prime}$. Note that Q_{1} is a path in $J_{k}-w^{\prime}$ from v^{\prime} to s_{2} and through $u v$. Also note that every ($Q_{1} \cup\left\{w^{\prime}\right\}$)-bridge of J_{k} is a Q_{1}^{\prime}-bridge of J_{k}^{*}, except possibly the subgraph of G induced by the edge $w^{\prime} s_{2}$. So Q_{1} gives the desired path for (A).
(B) We claim that $J_{l}-v^{\prime}$ has a path Q_{m} from $u^{\prime}=w_{l}$ to s_{m} such that every $\left(Q_{m} \cup\left\{v^{\prime}\right\}\right)$-bridge of J_{l} has at most three attachments, and every ($Q_{m} \cup\left\{v^{\prime}\right\}$)bridge of J_{l} containing an edge of $J_{l} \cap C$ has just two attachments.

Let $J_{l}^{*}:=J_{l}+u^{\prime} v^{\prime}$. By the same argument as in (A) for J_{k}^{*}, we can show that J_{T}^{*} is 2 -connected. We may add the edge $u^{\prime} v^{\prime}$ so that $s_{m} C v^{\prime}$ and $u^{\prime} v^{\prime}$ are contained in the outer cycle C_{l} of J_{l}^{*}, and $u^{\prime}, v^{\prime}, s_{m}$ occur on C_{l} in this clockwise order (see Fig. 6). Note that $J_{l} \cap C=v^{\prime} C_{l} s_{m}=s_{m} C v^{\prime}$.

We apply Lemma 2.1 (with $J^{*}, C_{l}, v^{\prime}, s_{m}, u^{\prime} v^{\prime}$ as G, C, u, v, e in Lemma 2.1, respectively) to find a C_{l}-Tutte path Q_{m}^{\prime} in $J_{l} *$ from v^{\prime} to s_{m} through $u^{\prime} v^{\prime}$; and let $Q_{m}:=Q_{m}^{\prime}-v^{\prime}$. Note that Q_{m} is a path in $J_{l}-v^{\prime}$ from $u^{\prime}=w_{l}$ to s_{m}. Also note that every $\left(Q_{m} \cup\left\{v^{\prime}\right\}\right)$-bridge of J_{l} is a Q_{m}^{\prime}-bridge of J_{l}^{*}, except possibly the subgraph of G induced by the edge $u^{\prime} v^{\prime}$. Hence, Q_{m} gives the desired path for (B).
(C) For each $i \in\{2, \ldots, m-1\}$, there is a $t_{i} C s_{i+1}$-Tutte path R_{i} in T_{i} from t_{i} to s_{i+1}.

FIGURE 6. J.

If $\left|V\left(t_{i} C s_{i+1}\right)\right| \leq 2$, then $R_{i}:=t_{i} C s_{i+1}$ gives the desired path. Now assume that $\left|V\left(t_{i} C s_{i+1}\right)\right| \geq 3$. Note that $T_{i} \cap D=\emptyset$, and every cut vertex of T_{i} must separate t_{i} from s_{i+1} (since G is 2 -connected). Hence, $T_{i}^{\prime}:=T_{i}+t_{i} s_{i+1}$ is 2 -connected. We may add the edge $t_{i} s_{i+1}$ so that $C_{i}:=t_{i} C s_{i+1}+t_{i} s_{i+1}$ is the outer cycle of T_{i}^{\prime} (see Fig. 3). By Lemma 2.1 (with $T_{i}^{\prime}, C_{i}, t_{i}, s_{i+1}$ as G, C, u, v in Lemma 2.1, respectively), we find a C_{i}-Tutte path R_{i} in T_{i}^{\prime} from t_{i} to s_{i+1} and through an edge of $t_{i} C s_{i+1}$. It is easy to see that $t_{i} s_{i+1} \notin E\left(R_{i}\right)$, and so, R_{i} gives the desired path in T_{i}.
(D) We claim that, for each $i \in\{2, \ldots, m-1\}, U_{i}-V\left(P^{\prime}\right)$ contains a path Q_{i} from s_{i} to t_{i} such that every $\left(Q_{i} \cup\left(U_{i} \cap P^{\prime}\right)\right)$-bridge of U_{i} has at most three attachments, and any $\left(Q_{i} \cup\left(U_{i} \cap P^{\prime}\right)\right)$-bridge of U_{i} containing an edge of $U_{i} \cap C$ has just two attachments.

Recall that $U_{i} \cap C=s_{i} C t_{i}$ and $\left|V\left(U_{i}\right) \cap V\left(P^{\prime}\right)\right| \leq 2$.
If $s_{i}=t_{i}$, then let $Q_{i}:=s_{i} C t_{i}$. In this case, $\left|V\left(U_{i}\right) \cap V(C)\right|=1$. Hence, since $\left|V\left(U_{i}\right) \cap V\left(P^{\prime}\right)\right| \leq 2, Q_{i}$ gives the desired path. So, we may assume that $s_{i} \neq t_{i}$. We consider two cases.

First, assume $W_{i} \subseteq V\left(P^{\prime}\right)$. Then $\left|W_{i}\right|=1$. Let y be the only vertex in W_{i}. Then $U_{i} \cap P^{\prime}$ consists of the vertex y (see Fig. 4). Since G is 2 -connected, any cut vertex of U_{i} must separate y from $s_{i} C t_{i}$. Hence, $U_{i}^{\prime}:=U_{i}+t_{i} y$ is 2-connected. We add the edge $t_{i} y$ so that $s_{i} C t_{i}$ and $t_{i} y$ are contained in the outer cycle C_{i} of U_{i}^{\prime}. By Lemma 2.1 (with $U_{i}^{\prime}, C_{i}, s_{i}, y, t_{i} y$ as G, C, u, v, e in Lemma 2.1, respectively), we find a C_{i}-Tutte path Q_{i}^{\prime} in U_{i}^{\prime} from s_{i} to y and through $t_{i} y$; and let $Q_{i}:=Q_{i}^{\prime}-y$. Then $Q_{i} \subset U_{i}-V\left(P^{\prime}\right)$. Since $U_{i} \cap C=s_{i} C t_{i}$ and because $U_{i} \cap P^{\prime}$ consists of y only, it is easy to check that Q_{i} is the desired path.

Now assume that $W_{i} \nsubseteq V\left(P^{\prime}\right)$. Then $W_{i}=\left(V\left(B_{i}\right)-V\left(P^{\prime}\right)\right) \cap W$ for some P^{\prime} bridge B_{i} of X containing an edge of C^{\prime}. Hence, B_{i} has two attachments on P^{\prime}, say y and y^{\prime}. Note that $U_{i} \cap P^{\prime}$ consists of y and y^{\prime} (see Fig. 4). Without loss of generality, we may assume that $w^{\prime}, y, y^{\prime}, u^{\prime}$ occur on C^{\prime} in this clockwise order. Since G is 2 -connected, any cut vertex of U_{i} either separates $s_{i} C t_{i}$ from B_{i} or separates y from y^{\prime}. Hence, $U_{i}^{\prime}:=U_{i}+\left\{s_{i} y, y^{\prime} t_{i}\right\}$ is 2 -connected. We add the edges $s_{i} y$ and $y^{\prime} t_{i}$ so that $s_{i} C t_{i}, s_{i} y, y^{\prime} t_{i}$ are contained in the outer cycle C_{i} of U_{i}^{\prime}. By applying Lemma 2.2 (with $U_{i}^{\prime}, C_{i}, y, y^{\prime}, y^{\prime} t_{i}, s_{i} y$ as G, C, u, v, e, f in Lemma 2.2, respectively), we find a $y^{\prime} C_{i} y$-Tutte path Q_{i}^{\prime} in U_{i}^{\prime} from y to y^{\prime} and through both $s_{i} y$ and $y^{\prime} t_{i}$. Let $Q_{i}:=Q_{i}^{\prime}-\left\{y, y^{\prime}\right\}$. Then $Q_{i} \subseteq U_{i}-V\left(P^{\prime}\right)$. Since $U_{i} \cap C=s_{i} C t_{i}$ and because $U_{i} \cap P^{\prime}$ consists of y and y^{\prime}, it is easy to check that Q_{i} gives the desired path.
(E) Finally, let us construct the desired path P. If $w^{\prime} v^{\prime} \in E\left(P^{\prime}\right)$ then Q_{1} is a path in J_{k} from w^{\prime} to s_{2} and through both v^{\prime} and $u v$, and in this case we let $P:=\left(\bigcup_{i=1}^{m} Q_{i}\right) \cup\left(\bigcup_{i=2}^{m-1} R_{i}\right) \cup\left(P^{\prime}-v^{\prime}\right)$. If $w^{\prime} v^{\prime} \notin E\left(P^{\prime}\right)$ then Q_{1} is a path in $J_{k}-$ w^{\prime} from v^{\prime} to s_{2} and through $u v$, and in this case we let $P:=\left(\bigcup_{i=1}^{m} Q_{i}\right) \cup$ $\left(\bigcup_{i=2}^{m-1} R_{i}\right) \cup\left(P^{\prime}-u^{\prime} v^{\prime}\right)$. Note that $u^{\prime} v^{\prime} \notin E(P)$, and if $v^{\prime} w^{\prime} \notin E(G)$ then $v^{\prime} w^{\prime} \notin E(P)$. It is clear that P is a path in $G-\left(V\left(G^{\prime}\right)-V(X)\right)$ through $u v$.

To prove that P is a C-Tutte path in $G-\left(V\left(G^{\prime}\right)-V(X)\right)$, let B be a P-bridge of $G-\left(V\left(G^{\prime}\right)-V(X)\right)$. It is straightforward to check that one of the following
holds: B is induced by a single edge in $E(G)-E(P)$ with both incident vertices in $V(P)$; or B is a P^{\prime}-bridge of X such that $\left(V(B)-V\left(P^{\prime}\right)\right) \cap\left\{w_{1}, \ldots, w_{b}\right\}=\emptyset$; or B is obtained from a P^{\prime}-bridge B^{\prime} of X with $\left(V\left(B^{\prime}\right)-V\left(P^{\prime}\right)\right) \cap\left\{w_{1}, \ldots, w_{b}\right\} \subseteq$ $V\left(w_{l} D w_{k}\right)$ by adding v^{\prime} and $v^{\prime} w_{j}$ for all $w_{j} \in V\left(B^{\prime}\right)-V\left(P^{\prime}\right)$; or B is a Q_{1}-bridge of J_{k} when $w^{\prime} v^{\prime} \in E\left(P^{\prime}\right)$; or B is a $\left(Q_{1} \cup\left\{w^{\prime}\right\}\right)$-bridge of J_{k} when $w^{\prime} v^{\prime} \notin E\left(P^{\prime}\right)$ (because $w^{\prime} \in V\left(P^{\prime}\right)$); or B is a $\left(Q_{m} \cup\left\{v^{\prime}\right\}\right)$-bridge of J_{l}; or B is a ($Q_{i} \cup\left(U_{i} \cap P^{\prime}\right)$)-bridge of U_{i} for some $i \in\{2, \ldots, m-1\}$; or B is a R_{i}-bridge of T_{i} for some $i \in\{2, \ldots, m-1\}$. Hence, it is easy to see that B has at most three attachments on P, and if B contains an edge of C then B has just two attachments on P. Therefore, P is a C-Tutte path in G through $u v$.

Clearly, $P^{\prime}-v^{\prime} \subseteq P$. To complete the proof of (5), let $z \in V(P)-V\left(P^{\prime}\right)$. Then either $z \notin V(X)$ or $z \in V\left(B_{i}\right)-V\left(P^{\prime}\right)$ for some $i \in\{2, \ldots, m-1\}$. Recall that $Z:=B_{i}$ is a P^{\prime}-bridge of X containing an edge of C^{\prime}. Thus, P gives the desired path.

3. 2-WAY INFINITE PATHS

In this section, we prove Theorem 1.2. In fact, we prove a slightly stronger result. First, we prove the following result which allows us to "construct" a 2-way infinite path from a sequence of finite paths. We say that a sequence of finite paths $\left\{P_{n}\right\}$ converges to a path P if for any given $u, v \in V(P), u P v=u P_{n_{k}} v$ for all sufficiently large n_{k}.

Lemma 3.1. Let G be an infinite locally finite graph with $e \in E(G)$. Suppose $\left\{P_{n}\right\}$ is an infinite sequence of finite paths through e such that for all $n \geq 1$, the length of each component of $P_{n+1}-e$ is strictly larger than the length of any component of $P_{n}-e$. Then $\left\{P_{n}\right\}$ has an infinite subsequence $\left\{P_{n_{k}}\right\}$ converging to a 2-way infinite path P through e.

Proof. Let $Z^{+}=\{1,2,3, \ldots\}$ and let $e=x y$. Because G is locally finite and since the length of components of $P_{n}-e$ increases with n, there exist $x_{1} x$, $y_{1} y \in E(G)$ and an infinite set $A_{1} \subseteq Z^{+}$such that for every $n \in A_{1}, x_{1} x y y_{1}$ is a subpath of P_{n}. By the same reason, there exist $x_{2} x_{1}, y_{2} y_{1} \in E(G)$ and an infinite set $A_{2} \subseteq A_{1}$ such that for every $n \in A_{2}, x_{2} x_{1} x y y_{1} y_{2}$ is a subpath of P_{n}. Continuing this process, we produce a 2 -way infinite path $P:=\cdots x_{2} x_{1} x y y_{1} y_{2} \cdots$ and an infinite sequence of infinite sets $A_{1} \supset A_{2} \supset A_{3} \cdots$ such that for any given $k \in Z^{+}, x_{k} \cdots x_{1} x y y_{1} \cdots y_{k}$ is a subpath of P_{n} for all $n \in A_{k}$.

Let $n_{k} \in A_{k}$ such that the sequence $\left\{n_{k}\right\}$ increases; this can be done because each A_{i} is infinite. Therefore, $\left\{P_{n_{k}}\right\}$ is a subsequence of $\left\{P_{n}\right\}$. Let u, v be two distinct vertices on P. Then $u, v \in V\left(x_{l} P y_{l}\right)$ for some sufficiently large l. Then $u P v \subseteq P_{n_{k}}$ for all $k \geq l$. Hence, $\left\{P_{n_{k}}\right\}$ converges to P.

In later proofs, we need to find a sequence of finite Tutte paths which converge to a 2-way infinite Tutte path. For this reason, we need those finite Tutte paths to be "forward."

Definition 3.1. Let $N=\left(C_{1}, C_{2}, \ldots\right)$ be a radial net in an infinite plane graph G. We say that a path P in G is N-forward or $\left(C_{1}, C_{2}, \ldots\right)$-forward if, for every $i \geq 1$ and for any distinct $x, y, z \in V(P)$ with $y \in V(x P z),\{x, z\} \subseteq V\left(C_{i}\right)$ implies that $y \notin V\left(C_{j}\right)$ for all $j \geq i+2$.

Intuitively, " P is $\left(C_{1}, C_{2}, \ldots\right)$-forward" means that if P starts from C_{1}, then (for each i) after P hits C_{i+2}, P never comes back to C_{i} again. Next, we show how finite forward Tutte paths converge to a 2 -way infinite Tutte path.

Lemma 3.2. Let G be an infinite 2-connected plane graph with a radial net $N=\left(C_{1}, C_{2}, \ldots\right)$, let C be a facial cycle of G with $C \subseteq I\left(C_{1}\right)$, and let e be an edge of C. Suppose that, for all $n \geq 1$, there exists a C-Tutte path P_{n} in $I\left(C_{n}\right)$ between two vertices of C_{n} and through e such that each component of $P_{n}-e$ is an N-forward path in G. Then $\left\{P_{n}\right\}$ has a subsequence $\left\{P_{n_{k}}\right\}$ converging to a 2-way infinite C-Tutte path P in G through e.

Proof. Since G admits a radial net, G is locally finite. Since $I\left(C_{i}\right) \subseteq I\left(C_{i+1}\right)$ and $C_{i} \cap C_{i+1}=\emptyset$, and because P_{n} is between two vertices of C_{n} and through $e,\left\{P_{n}\right\}$ contains a subsequence $\left\{P_{n_{s}}\right\}$ such that the length of each component of $P_{n_{s}}-e$ increases. By Lemma 3.1, $\left\{P_{n_{s}}\right\}$ contains a subsequence $\left\{P_{n_{k}}\right\}$ converging to a 2-way infinite path P through e. We need to prove that P is a C-Tutte path in G. First, we claim that
(1) for any given integer $l \geq 1, P_{n_{k}} \cap I\left(C_{l}\right)=P \cap I\left(C_{l}\right)$ for all sufficiently large n_{k}.

Let $y_{1}, y_{2} \in V(P) \cap V\left(I\left(C_{l}\right)\right)$ with $y_{1} P y_{2}$ maximal. Then $P \cap I\left(C_{l}\right)=y_{1} P y_{2} \cap$ $I\left(C_{l}\right)$. Since $\left\{P_{n_{k}}\right\}$ converges to $P, y_{1} P_{n_{k}} y_{2}=y_{1} P y_{2}$ for all sufficiently large n_{k}. Hence, $P \cap I\left(C_{l}\right)=y_{1} P y_{2} \cap I\left(C_{l}\right)=y_{1} P_{n_{k}} y_{2} \cap I\left(C_{l}\right) \subseteq P_{n_{k}} \cap I\left(C_{l}\right)$ for all sufficiently large n_{k}.

It remains to show that $P_{n_{k}} \cap I\left(C_{l}\right) \subseteq P \cap I\left(C_{l}\right)$ for all sufficiently large n_{k}. Let $x, y \in V(P) \cap V\left(C_{l+2}\right)$ such that x and y are contained in different components of $P-e$. Since $\left\{P_{n_{k}}\right\}$ converges to $P, x P y=x P_{n_{k}} y$ for all sufficiently large n_{k}.

We claim that for each sufficiently large n_{k}, if $z \in V\left(P_{n_{k}}\right)-V\left(x P_{n_{k}} y\right)$ then $z \notin V\left(I\left(C_{l}\right)\right)$. Suppose for a contradiction that $z \in V\left(I\left(C_{l}\right)\right)$. By symmetry between x and y, we may assume that z and y are contained in the same component L of $P_{n_{k}}-e$. Then, $z P_{n_{k}} y$ contains a vertex z^{\prime} of some $C_{i}, i \leq l$. Since $e \in E\left(I\left(C_{1}\right)\right)$, there is a vertex x^{\prime} in the subpath of $P_{n_{k}}$ between e and y such that $x^{\prime} \in V\left(C_{i}\right)$. Since $z \in V\left(P_{n_{k}}\right)-V\left(x P_{n_{k}} y\right), x^{\prime} \neq z^{\prime}$ and $y \in V\left(x^{\prime} L z^{\prime}\right)$. Since L is $\left(C_{1}, C_{2}, \ldots\right)$-forward and because $x^{\prime}, z^{\prime} \in V\left(C_{i}\right), y \notin V\left(C_{j}\right)$ for all $j \geq i+2$, contradicting the assumption that $y \in V\left(C_{l+2}\right)$.

Thus, for all sufficiently large $n_{k}, P_{n_{k}} \cap I\left(C_{l}\right)=x P_{n_{k}} y \cap I\left(C_{l}\right)=x P y \cap$ $I\left(C_{l}\right) \subseteq P \cap I\left(C_{l}\right)$. This completes the proof of (1).

Now let B be a P-bridge of G. We claim that
(2) B is finite.

Suppose that B is infinite. Since G (and hence $B-V(P)$) is locally finite and $B-V(P)$ is connected, $B-V(P)$ contains an infinite path. Hence, $B-V(P)$ contains a path R from $V\left(C_{i}\right)$ to $V\left(C_{j}\right)$ for some i and j with $j-i \geq 4$. Since R is finite, $R \subseteq I\left(C_{l}\right)$ for some l. By (1), $R \cap P_{n_{k}}=\emptyset$ for all sufficiently large n_{k}. Hence, R is contained in a $P_{n_{k}}$-bridge $B_{n_{k}}$ of $I\left(C_{n_{k}}\right)$ for some sufficiently large n_{k}. Since $R \cap C_{s} \neq \emptyset$ and $P_{n_{k}} \cap C_{s} \neq \emptyset$ for all s with $i \leq s \leq j, B_{n_{k}}$ has at least four attachments on $P_{n_{k}}$, contradicting the fact that $P_{n_{k}}$ is a C-Tutte path in $I\left(C_{n_{k}}\right)$. Hence B is finite. This completes the proof of (2).

By (2), $B \subseteq I\left(C_{l}\right)$ for some l. By (1), B is a $P_{n_{k}}$-bridge of $I\left(C_{n_{k}}\right)$ for all sufficiently large n_{k}. Therefore, B has at most three attachments on P, and if B contains an edge of C then B has just two attachments on P. Hence, P is a 2-way infinite C-Tutte path in G.

We now state and prove the main result of this section which immediately implies Theorem 1.2.

Theorem 3.1. Let G be an infinite 2-connected plane graph with a radial net, let C be a facial cycle of G, and let $e \in E(C)$. Assume that G is $(4, C)$-connected. Then G contains a 2-way infinite C-Tutte path through e.

Proof. First, we use Theorem 2.1 to construct an infinite sequence $\left(\left(G_{i}, C_{i}\right.\right.$, $\left.\left.u_{i}, v_{i}, w_{i}\right): i=1,2, \ldots\right)$. Let $G_{1}=G, C_{1}=C$, let u_{1}, v_{1} be the vertices of G incident with e, and let w_{1} be the neighbor of v_{1} in C with $w_{1} \neq u_{1}$. (Note that w_{1} does not play any role in this proof, and it is defined only for the sake of consistency.) Suppose we have constructed ($G_{i}, C_{i}, u_{i}, v_{i}, w_{i}$) for some positive integer $i \geq 1$, where G_{i} is an infinite plane graph with a radial net, C_{i} is a facial cycle of $G_{i}, u_{i} v_{i} w_{i}$ is a path in C_{i}, and G_{i} is $\left(4, C_{i}\right)$-connected. Since G_{i} admits a radial net, there is a cycle $C_{i}{ }^{*}$ in G_{i} such that $C_{i} \cap C_{i}^{*}=\emptyset$ and $C_{i} \subseteq I_{G_{i}}\left(C_{i}^{*}\right)$. By applying Theorem 2.1 (with $G_{i}, C_{i}, u_{i}, v_{i}$ as G, C, u, v in Theorem 2.1, respectively), we find $G_{i+1}, C_{i+1}, u_{i+1}, v_{i+1}, w_{i+1}$ (as G^{\prime}, C^{\prime}, $u^{\prime}, v^{\prime}, w^{\prime}$ in Theorem 2.1, respectively). More precisely, there exist a plane graph G_{i+1}, a facial cycle C_{i+1} of G_{i+1}, and a path $u_{i+1} v_{i+1} w_{i+1}$ in C_{i+1} such that
(1) G_{i+1} is $\left(4, C_{i+1}\right)$-connected and $G_{i+1}-v_{i+1}$ is 2-connected,
(2) $G_{i+1}-\left\{u_{i+1} v_{i+1}, v_{i+1} w_{i+1}\right\} \subseteq G_{i}$, and no edge of G_{i} joins a vertex of $G_{i+1}-V\left(C_{i+1}\right)$ to a vertex of $G_{i}-V\left(G_{i+1}\right)$,
(3) $\left(G_{i}+\left\{u_{i+1} v_{i+1}, v_{i+1} w_{i+1}\right\}\right)-\left(V\left(G_{i+1}\right)-V\left(C_{i+1}\right)\right)$ is finite and has a plane representation with C_{i} and C_{i+1} as facial cycles,
(4) $v_{i+1} \neq v_{i}$ and $\left(C_{i+1}-v_{i+1}\right) \cap C_{i}=\emptyset$, and
(5) for any subgraph X of G_{i+1} with $C_{i+1} \subseteq X$, and for any C_{i+1}-Tutte path P_{i+1} in X through $u_{i+1} v_{i+1}$ and w_{i+1}, there is a C_{i}-Tutte path P_{i} of $G_{i}-$ $\left(V\left(G_{i+1}\right)-V(X)\right)$ through $u_{i} v_{i}$ such that $P_{i+1}-v_{i+1} \subset P_{i}$ and, for any $z \in V\left(P_{i}\right)-V\left(P_{i+1}\right)$, either $z \notin V(X)$ or $z \in V(Z)$ for some P_{i+1}-bridge Z of X containing an edge of C_{i+1}.

Since G_{i} admits a radial net and because $G_{i}-V\left(G_{i+1}\right)$ is finite, it is easy to see that G_{i+1} also admits a radial net. Therefore, by (1), the above construction can be continued with $i+1$ replacing i, and we produce the desired infinite sequence $\left(\left(G_{i}, C_{i}, u_{i}, v_{i}, w_{i}\right): i=1,2, \ldots\right)$.

Let $G^{\prime}=G+\left\{u_{i} v_{i}, v_{i} w_{i}: i=1,2, \ldots\right\}$. By the first part of (2), $G^{\prime}=\bigcup_{i=1}^{\infty} G_{i}$. By (4), $C_{i} \cap C_{i+2}=\emptyset$ for all $i \geq 1$. By (3), for each $i \geq 1$, we can draw $\left(G_{i}+\right.$ $\left.\left\{u_{i+1} v_{i+1}, v_{i+1} w_{i+1}\right\}\right)-\left(V\left(G_{i+1}\right)-V\left(C_{i+1}\right)\right)$ as a plane graph so that C_{i+1} is its outer cycle and C_{i} is a facial cycle. Therefore, G^{\prime} has a plane representation and admits a radial net $N=\left(C_{1}, C_{3}, C_{5}, \ldots\right)$.

For $1 \leq i \leq n$, let $F_{n, i}=G_{i}-\left(V\left(G_{n}\right)-V\left(C_{n}\right)\right)$. Note that $F_{n, i}-\left\{u_{i} v_{i}\right.$, $\left.v_{i} w_{i}\right\} \subset G \subseteq G^{\prime}$, and $F_{n, 1} \subseteq G \subseteq G^{\prime}$. We will show that for every $n \geq 1$, $F_{n, 1}$ contains a Tutte path $P_{n, 1}$ through $u v$ such that each component of $P_{n, 1}$ is an N-forward path in G. To do so, we need to prove a more general result about $F_{n, i}$. For convenience, let $D_{j}:=C_{2 j-1}$ for $j=1,2, \ldots$, and so, $N=$ $\left(D_{1}, D_{2}, D_{3}, \ldots\right)$.
Claim. For all integers n and i with $n \geq i \geq 1, F_{n, i}$ contains a C_{i}-Tutte path $P_{n, i}$ between two vertices of C_{n} and through $u_{i} v_{i}$ such that (i) $\left\{u_{n}, v_{n}, w_{n}\right\} \subseteq V\left(P_{n, i}\right)$, and if $n \geq i+1$ then $\left\{u_{j}, v_{j}, w_{j}: j=i+1, \ldots, n\right\} \subseteq V\left(P_{n, i}\right)$, and (ii) each component of $P_{n, i}-u_{i} v_{i}$ is an N-forward path in G^{\prime}.

We use induction on $n-i$. First, assume $n-i=0$. Then $F_{n, i}=C_{i}=C_{n}$. Let $f \in E\left(C_{i}-v_{i}\right)$, and let $P_{n, i}=C_{i}-f$. Then $P_{n, i}$ is a path in $F_{n, i}$ between two vertices of C_{n} and through $u_{i} v_{i}=u_{n} v_{n}$ and w_{n}. Hence, $\left\{u_{n}, v_{n}, w_{n}\right\} \subseteq V\left(P_{n, i}\right)$, and so, (i) holds. Note that $P_{n, i}$ is a C_{i}-Tutte path in $F_{n, i}$ (because $F_{n, i}$ has only one $P_{n, i}$-bridge which is induced by the edge f). Since $P_{n, i} \subseteq C_{i}$, each component of $P_{n, i}-u_{i} v_{i}$ is (trivially) an N-forward path in G^{\prime}. Hence (ii) holds.

Now assume that $n-i>0$ and let $P_{n, i+1}$ be a C_{i+1}-Tutte path in $F_{n, i+1}$ between two vertices of C_{n} and through $u_{i+1} v_{i+1}$ such that (i) $\left\{u_{n}, v_{n}, w_{n}\right\} \subseteq$ $V\left(P_{n, i+1}\right)$, and if $n \geq i+2$ then $\left\{u_{j}, v_{j}, w_{j}: j=i+2, \ldots, n\right\} \subseteq V\left(P_{n, i+1}\right)$, and (ii) each component of $P_{n, i+1}-u_{i+1} v_{i+1}$ is an N-forward path in G^{\prime}. We wish to apply (5) above. So let $X:=F_{n, i+1}$; then $F_{n, i}=G_{i}-\left(V\left(G_{i+1}\right)-V(X)\right)$. Note that $w_{i+1} \in V\left(P_{n, i+1}\right)$. (For otherwise, w_{i+1} is contained in a $P_{n, i+1}$-bridge of $F_{n, i+1}$ with just two attachments, and one of these attachments is v_{i+1}. But then $F_{n, i+1}-$ v_{i+1} is not 2-connected, and so, $G_{i+1}-v_{i+1}$ is not 2-connected, contradicting (1).) Therefore, by (5) (with $P_{n, i+1}, P_{n, i}$ as P_{i+1}, P_{i} in (5), respectively), we see that $F_{n, i}$ contains a C_{i}-Tutte path $P_{n, i}$ through $u_{i} v_{i}$ such that $P_{n, i+1}-v_{i+1} \subseteq P_{n, i}$ and, for any $z \in V\left(P_{n, i}\right)-V\left(P_{n, i+1}\right)$, either $z \notin V\left(F_{n, i+1}\right)$ or $z \in V(Z)-V\left(P_{n, i+1}\right)$ for some $P_{n, i+1}$-bridge Z of $F_{n, i+1}$. Hence $P_{n, i}$ is a path in $F_{n, i}$ between two vertices of C_{n} and through $u_{i} v_{i}$. Clearly, (i) holds.

It remains to show that each component of $P_{n, i}-u_{i} v_{i}$ is an N-forward path in G^{\prime}. Let L be a component of $P_{n, i}-u_{i} v_{i}$. Let $a, b, c \in V(L)$ such that $b \in V(a L c)$ and $\{a, c\} \subseteq V\left(D_{k}\right)=V\left(C_{2 k-1}\right)$ for some integer $k \geq 0$. We need to show that $b \notin V\left(D_{j}\right)=V\left(C_{2 j-1}\right)$ for all $j \geq k+2$. Let L^{\prime} denote the component of $P_{n, i+1}-u_{i+1} v_{i+1}$ such that $L^{\prime}-v_{i+1} \subseteq L$.

If $\{a, c\} \subseteq V\left(P_{n, i+1}\right)-\left\{v_{i+1}\right\}$, then $\{a, c\} \subseteq V\left(L^{\prime}\right)$. Hence, $b \notin V\left(D_{j}\right)$ for all $j \geq k+2$ because L^{\prime} is an N-forward path in G^{\prime} (by induction hypothesis).

If $\{a, c\} \subseteq V\left(P_{n, i}\right)-\left(V\left(P_{n, i+1}\right)-\left\{v_{i+1}\right\}\right)$, then $a L c \subseteq P_{n, i}-\left(V\left(P_{n, i+1}\right)-\right.$ $\left.\left\{v_{i+1}\right\}\right)$. Hence, $\{a, c\} \subset V\left(C_{i}\right)$ or $\{a, c\} \subseteq V\left(C_{i+1}\right)$, and so, $D_{k}=C_{i}$ or $D_{k}=C_{i+1}$. Also $b=v_{i+1}$ or $b \notin V\left(P_{n, i+1}\right)$. If $b=v_{i+1}$, then by (4), $b \notin V\left(C_{l}\right)$ for all $l \geq i+2$, and so, $b \notin V\left(C_{2 j-1}\right)=V\left(D_{j}\right)$ for all $j \geq k+2$. So assume that $b \notin V\left(P_{n, i+1}\right)$. Then by (5), either $b \notin V\left(F_{n, i+1}\right)$ or $b \in V(Z)$ for some $P_{n, i+1^{-}}$ bridge Z of $F_{n, i+1}$ containing an edge of C_{i+1}. If $b \notin V\left(F_{n, i+1}\right)$ then $b \notin V\left(C_{l}\right)$ for all $l \geq i+2$; and if $b \in V(Z)$ then by planarity, $b \notin V\left(C_{l}\right)$ for all $l \geq i+2$. Again, $b \notin V\left(C_{2 j-1}\right)=V\left(D_{j}\right)$ for all $j \geq k+2$.

So assume by symmetry that $a \notin V\left(P_{n, i+1}\right)-\left\{v_{i+1}\right\}$ and $c \in V\left(P_{n, i+1}\right)-$ $\left\{v_{i+1}\right\}$. Hence $c \notin V\left(C_{i}\right)$, and so, $a \notin V\left(C_{i}\right)$. Because $a \notin V\left(P_{n, i+1}\right)$ and by (5), either $a \notin V\left(F_{n, i+1}\right)$ or $a \in V(Z)$ for some $P_{n, i+1}$-bridge Z of $F_{n, i+1}$ containing an edge of C_{i+1}, and so, $a \notin V\left(C_{l}\right)$ for all $l \geq i+2$. Hence $\{a, c\} \subseteq V\left(C_{i+1}\right)$, and so, $D_{k}=C_{i+1}$. Suppose $b \notin V\left(P_{n, i+1}\right)-\left\{v_{i+1}\right\}$. Then by (5), either $b \notin V\left(F_{n, i+1}\right)$, or $b=v_{i+1}$, or $b \in V(Z)$ for some $P_{n, i+1}$-bridge Z of $F_{n, i+1}$ containing an edge of C_{i+1}. Hence $b \notin V\left(C_{l}\right)$ for all $l \geq i+2$, and so, $b \notin V\left(C_{2 j-1}\right)=V\left(D_{j}\right)$ for all $j \geq k+2$. So assume that $b \in V\left(P_{n, i+1}\right)-\left\{v_{i+1}\right\}$. Hence, there is some $b^{\prime} \in V\left(C_{i+1}\right) \cap V\left(L^{\prime}\right)$ such that $b \in V\left(c L^{\prime} b^{\prime}\right)$. Therefore, $\left\{b^{\prime}, c\right\} \subset V\left(C_{i+1}\right)=$ $V\left(D_{k}\right)$. Since L^{\prime} is an N-forward path in $G^{\prime}, b \notin V\left(C_{2 j-1}\right)=V\left(D_{j}\right)$ for all $j \geq k+2$.

Therefore, L is an N-forward path in G^{\prime}. Hence, $P_{n, i}$ gives the desired path in the claim.

By the above claim, $F_{n, 1}$ contains a C_{1}-Tutte path $P_{n}:=P_{n, 1}$ between two vertices of C_{n} and through $e=u_{1} v_{1}$ such that each component of $P_{n}-e$ is an N-forward path in G^{\prime}. (Note that $P_{n} \subseteq G$ because $F_{n, 1} \subseteq G$.) Since $\left\{u_{i}, v_{i}, w_{i}: i=2, \ldots, n\right\} \subseteq V\left(P_{n}\right)$ for all $n \geq 1, P_{2 n-1}$ is also a C_{1}-Tutte path in $I_{G^{\prime}}\left(C_{2 n-1}\right)=I_{G^{\prime}}\left(D_{n}\right)$ between two vertices of D_{n} and through e. Hence, by Lemma 3.2, $\left\{P_{2 n-1}\right\}$ has a subsequence $\left\{P_{n_{k}}\right\}$ converging to a 2-way infinite C_{1} Tutte path P in G^{\prime} through e. Since $P_{n_{k}} \subseteq G$ for all n_{k}, P is a 2 -way infinite C Tutte path in G through e.

ACKNOWLEDGMENT

The author thank the referees for helpful suggestions. This study is partially supported by NSF grants DMS-9970527 and DMS-0245530 and NSA grant MDA-904-03-1-0052.

REFERENCES

[1] N. Dean, R. Thomas, and X. Yu, Spanning paths in infinite planar graphs, J Graph Theory 23 (1996), 163-174.
[2] C. St. J. A. Nash-Williams, Hamiltonian lines in infinite graphs with few vertices of small valency, Aequationes Math 7 (1971), 59-81.
[3] C. St. J. A. Nash-Williams, Unexplored and semi-explored territories in graph theory, New Directions in Graph Theory, F. Harary, (Editor), Academic Press, 1973, pp. 149-186. ${ }^{\text {Q3 }}$
[4] R. Thomas and X. Yu, 4-Connected projective-planar graphs are hamiltonian, J Combin Theory Ser B 62 (1994), 114-132.
[5] C. Thomassen, Infinite graphs, Selected Topics in Graph Theory, Vol. 2, Academic Press, 1983, pp. 129-160. ${ }^{\text {Q4 }}$
[6] C. Thomassen, A theorem on paths in planar graphs, J Graph Theory 7 (1983), 169-176.
[7] T. Tutte, A theorem on planar graphs, Trans Amer Math Soc 82 (1956), 99-116.
[8] H. Whitney, A theorem on graphs, Ann Math 32 (1931), 378-390.

Q1: Au: Please provide 3-5 keywords.
Q2: Au: Please check the short title.
Q3: Au: Please provide location of the publisher.
Q4: Au: Please provide location of the publisher.

