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Abstract

Let G be an (edge-)colored graph. A path (cycle) is called monochromatic if
all of its edges have the same color, and is called heterochromatic if all of its edges
have different colors. In this paper, some sufficient conditions for the existence
of (long) monochromatic paths and cycles, and those for the existences of long
heterochromatic paths and cycles are obtained. It is proved that the problem of
finding a path (cycle) with as few different colors as possible in a colored graph
is NP-hard. Several exact and approximation algorithms for finding a path with
the fewest colors are provided. The complexity of the exact algorithms and the
performance ratio of the approximation algorithms are analyzed. We also pose a
problem on the existence of paths and cycles with many different colors.
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1 Introduction

We use Bondy & Murty [2] for terminology and notations not defined here and consider
simple graphs only.

Let G = (V, E) be a graph. By an edge-coloring of G we will mean a function
C : E → N, the set of nonnegative integers. If G is assigned such a coloring, then
we say that G is a colored graph, denote the colored graph by (G,C), and call C(e)
the color of the edge e ∈ E. All edges with the same color form a color class of the
graph. We note that C is not necessarily a proper edge-coloring, i.e., two adjacent
edges may have the same color. For a subgraph H of G, we let C(H) = ∪e∈E(H){C(e)}
and c(H) = |C(H)|. For a vertex v of G, the color neighborhood CN(v) of v is defined
as the set {C(e) : e is incident with v} and the color degree dc(v) = |CN(v)|. A path
(cycle) is called monochromatic if all of its edges have the same color; and it is called
heterochromatic if all of its edges have different colors.

∗Supported by NSFC.
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If we regard an uncolored graph as a colored graph in which all edges have different
colors, then the number of colors of a subgraph is simply the number of its edges, and
the color degree of a vertex is the degree of it.

We are not aware of any papers dealing with the existence of paths and cycles with
special properties in general colored graphs. All existing results we could find deal
with colored complete graphs. In [9] Giraud studied the existence of monochromatic
triangles and heterochromatic triangles in colored complete graph. A problem on the
conditions for a colored complete graph to contain heterochromatic Hamilton cycles
was mentioned in [6] by Erdös, Nešetřil & Rödl. This problem was studied by Hahn
& Thomassen [10], Rödl & Winkler (see [7]), Frieze & Reed [7], and Albert, Frieze &
Reed [1]. Most of the results in these papers are proved by using probabilistic methods.

This paper contains some basic results on paths and cycles in general colored graphs.
In Sections 2 and 3, we give some sufficient conditions for the existence of (long)
monochromatic paths and cycles, and those for the existence of long heterochromatic
paths and cycles. In Section 4, we prove that the problem of finding a path (cycle)
with as few different colors as possible between two given vertices in a colored graph
is NP-hard and propose two exact algorithms and two approximation algorithms for
finding a path with the fewest colors. The complexity of the two exact algorithms and
the performance ratio of the approximation algorithms are analyzed. We also pose a
problem on the existence of paths and cycles with many different colors in Section 5.

2 Monochromatic paths and cycles

First, let us consider the problem under what conditions a colored graph contains a
monochromatic path or a monochromatic cycle. It is clear that every colored graph
contains at least one monochromatic path. Moreover, it is obvious that not every
colored graph contains monochromatic cycles.

The arboricity a(G) of a graph G is defined as the minimum number of edge-disjoint
forests into which G can be decomposed. Clearly, it is also the minimum number of
colors necessary to color the edges of G so that no cycle is monochromatic. So we have

Proposition 1 Let G be a colored graph. If c(G) < a(G), then G contains at least
one monochromatic cycle. ¥

The arboricity a(G) can be determined by applying the matroid partitioning algo-
rithm of Edmonds [11]. In [12] Picard & Queyranne showed that this parameter can be
determined in at most O(n4) operations, by using network flow methods. It is (almost)
trivial to check whether a colored graph contains a monochromatic cycle: for each color
class Ei check whether the induced subgraph G[Ei] contains a cycle.

The following result on the existence of monochromatic paths and cycles with a
prescribed length is obvious.

Proposition 2 Let G be a colored graph with color classes E1, E2, . . . , Ec. Then G
has a monochromatic path (cycle) of length at least l if and only if for some i with
1 ≤ i ≤ c, the induced subgraph G[Ei] has a path (cycle) of length at least l. ¥

If we regard an uncolored graph G as a colored graph (G,C) for which all edges
have the same color, then (G,C) contains a monochromatic path (cycle) of length at
least l if and only if G contains a path (cycle) of length at least l. Since the problem of
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deciding whether there is a path (cycle) of length at least l in an (uncolored) graph is
NP-complete, the problem of deciding whether there is a monochromatic path (cycle)
of length at least l in a colored graph is also NP-complete.

There are many results on the existence of long paths and cycles in (uncolored)
graphs. Here we list two of them.

Theorem A (Erdös & Gallai [5]) Let G be a graph of order n and size m. Then G

contains a path of length at least
2m

n
.

Theorem B (Erdös & Gallai [5]) Let G be a graph of order n and size m such that

m ≥ n. Then G contains a cycle of length at least
2m

n− 1
.

Using Theorems 2, A and B, it is not difficult to prove the following results:

Proposition 3 Suppose that G is a colored graph of order n and size m. Then G

contains a monochromatic path of length at least
2m

c(G)n
. ¥

Proposition 4 Suppose that G is a colored graph of order n and size m such that

m ≥ c(G)n. Then G contains a monochromatic cycle of length at least
2m

c(G)(n− 1)
. ¥

As it was shown in [5], Theorem A is best possible. Let pKr denote the disjoint

union of p copies of Kr. This graph has n = pr vertices and m =
pr(r − 1)

2
edges. It

is easy to check that
2m

n
= r − 1. On the other hand, pKr contains no path of length

greater than r− 1. Of course, this graph also shows that the result in Proposition 3 in
the case c(G) = 1 is best possible. This example can be extended to general cases to
show the sharpness of the result in Proposition 3.

Let G and H be two colored graphs. The colored Cartesian product of G and H is
the graph G×H with a coloring defined as follows: From the definition of the Cartesian
product of graphs, to every vertex u of G, there corresponds a subgraph Hu of G×H
such that Hu is isomorphic to H. To each edge e of Hu, assign the color of the edge
corresponding to e in H. Similarly, to every vertex v of H, there corresponds a subgraph
Gv of G×H such that Gv is isomorphic to G. To each edge e of Gv, assign the color of
the edge corresponding to e in G. The colored Cartesian product G1 ×G2 × · · · ×Gk

of k ≥ 2 colored graphs G1, G2 · · · , Gk can be defined inductively.
Let Gi (1 ≤ i ≤ c) be the colored graph Kr such that all the edges of Gi receive

the same color i. By Kc
r we denote the colored Cartesian product G1 ×G2 × · · · ×Gc.

It is not difficult to see that the colored graph Kc
r has n = rc vertices, m =

crc(r − 1)
2

edges and c colors. This implies that
2m

cn
= r − 1. On the other hand, the colored

graph Kc
r has no monochromatic path of length greater than r − 1. This shows that

the result in Proposition 3 is best possible. Clearly the disjoint union of some copies
of the colored graph Kc

r defined above can also be used to show the sharpness of the
result of Proposition 3.

Theorem B is also best possible. This can be shown by the graph Γp,r defined as
follows: The graph Γp,r is a connected graph which has exactly n = p(r−1)+1 vertices
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and each of the p blocks of it is a clique on r vertices. This graph has m =
pr(r − 1)

2
edges and clearly

2m

n− 1
= r. On the other hand, it has no cycle of length greater than

r. Of course this example also shows that the result of Proposition 4 is best possible
in the case c(G) = 1.

Let Gpi (1 ≤ i ≤ c) be the colored graph Γpi,r such that all the edges of it receive
the same color i. Denote by G the colored Cartesian product Gp1 × Gp2 × · · · × Gpc .
Then G has

n =
c∑

i=1

∑

1≤j1<j2<···<ji≤c

pj1pj2 · · · pji(r − 1)i + 1

vertices,

m =
r(r − 1)

2

c∑

i=1

i
∑

1≤j1<j2<···<ji≤c

pj1pj2 · · · pji(r − 1)i−1

edges, and c colors. Therefore,

2m

c(n− 1)
=

2× r(r − 1)
2

c∑

i=1

i
∑

1≤j1<j2<···<ji≤c

pj1pj2 · · · pji(r − 1)i−1

c(
c∑

i=1

∑
1≤j1<j2<···<ji≤c

pj1pj2 · · · pji(r − 1)i + 1− 1)

= r −

c−1∑
i=1

(c− i)
∑

1≤j1<j2<···<ji≤c
pj1pj2 · · · pji(r − 1)i−1

c
c∑

i=1

∑
1≤j1<j2<···<ji≤c

pj1pj2 · · · pji(r − 1)i−1

.

It is clear that d 2m

c(n− 1)
e = r. On the other hand, the colored graph G contains no

monochromatic cycle of length greater than r. This shows that the result in Proposition
4 is best possible.

3 Heterochromatic paths and cycles

If we regard an uncolored graph G as a colored graph (G,C) in which all edges have
different colors, then G contains a path (cycle) of length at least l if and only if (G,C)
contains a heterochromatic path (cycle) of length at least l. As we mentioned earlier,
the problem of deciding whether there is a path (cycle) of length at least l in an
(uncolored) graph is NP-complete. Therefore the problem of deciding whether there is
a heterochromatic path (cycle) of length at least l in a colored graph is NP-complete,
too. In this section we will consider under what conditions there is a heterochromatic
path (cycle) with a prescribed length in a colored graph.

Let G be a colored graph. By selecting precisely one edge from each color class of
G, we obtain a new colored graph G′, such that all the edges of G′ have different colors,
and c(G′) = c(G). Using Theorems A and B, it is easy to prove the following results.
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Proposition 5 Let G be a colored graph of order n. Then G contains a heterochromatic

path of length at least
2c(G)

n
. ¥

Proposition 6 Let G be a colored graph of order n such that c(G) ≥ n. Then G

contains a heterochromatic cycle of length at least
2c(G)
n− 1

. ¥

Clearly Propositions 5 and 6 generalize Theorems A and B, respectively.
Furthermore, we have the following two results on the existence of long heterochro-

matic paths.

Proposition 7 Let G be a colored graph and k an integer. Suppose that dc(v) ≥ k for
every vertex v of G. Then for every vertex z of G there exists a heterochromatic z-path

of length at least dk + 1
2

e.
Proof Choose a longest heterochromatic z-path P with length l. Denote the other
end-vertex of P as v. Then from the assumption of the proposition, we know that all
incident edges of v with the other end not on P have colors also appearing in E(P ).
Therefore, dc(v) ≤ l + (l − 1) = 2l − 1. On the other hand, dc(v) ≥ k, so we have

l ≥ dk + 1
2

e. ¥

Proposition 8 Let G be a colored graph and s an integer. Suppose that |CN(u) ∪
CN(v)| ≥ s > 1 for every pair of vertices u and v of G. Then G contains a heterochro-
matic path of length at least ds

3
e+ 1.

Proof Choose a longest heterochromatic path P with length l. Denote the end-
vertices of P as u and v. Then from the assumption of the proposition, we know that
all incident edges of u and v with the other end not on P have colors also appearing in
E(P ). Therefore, |CN(u)∪CN(v)| ≤ l + (l− 1) + (l− 2) = 3l− 3. On the other hand,
|CN(u) ∪ CN(v)| ≥ s, so we have l ≥ ds

3
e+ 1. ¥

In the following, we give a sufficient condition for the existence of heterochromatic
triangles or quadrilaterals.

Proposition 9 Let G be a colored graph of order n ≥ 4, such that |CN(u)∪CN(v)| ≥
n− 1 for every pair of vertices u and v of G. Then G contains at least one heterochro-
matic triangle or one heterochromatic quadrilateral.

Proof If |CN(u)| = n − 1 for every vertex u of G, then d(u) = n − 1, and G is a
complete graph. It is clear that every triangle of G is heterochromatic. So, we need
only consider the case that there is some vertex u ∈ V (G) with |CN(u)| < n− 1.

Suppose that G contains neither heterochromatic triangles nor heterochromatic
quadrilaterals. Without loss of generality, we can assume that V (G) = {x1, x2, . . . , xk, u
, v, yk+2, yk+3, . . . , yn−2, yn−1}, dc(u) = k + 1 < n − 1, C(uxi) = i for i = 1, 2, . . . , k,
C(uv) = k + 1 and C(vyj) = j for j = k + 2, . . . , n− 1.

First, consider the vertex u and a vertex xi ∈ {x1, x2, . . . , xk}. Since CN(v) ∪
(CN(xi)∩ {C(xix1), C(xix2), . . . , C(xixi−1), C(xixi+1), . . . , C(xixk), C(xiu)}) ⊆ {1, 2,
. . . , k + 1} and |CN(u) ∪ CN(xi)| ≥ n − 1, xi must be adjacent to each vertex yj ∈
{yk+2, yk+3, . . . , yn−1}, and C(xiyj) = j by our assumption that G contains neither
heterochromatic triangles nor heterochromatic quadrilaterals.
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Now consider the two vertices u and yn−1. Since CN(u)∪(CN(yn−1)∩{C(yn−1x1),
C(yn−1x2), . . . , C(yn−1xk)}) ⊆ {1, 2, . . . , k+1, n−1} and |CN(u)∪CN(yn−1)| ≥ n−1,
we have that yn−1yj ∈ E(G) and C(yn−1yj) = j for j = k + 2, . . . , n − 2 by our
assumption that G contains no heterochromatic triangles.

So, we have CN(u) ∪ (CN(yn−2) ∩ {C(yn−2x1), C(yn−2x2), . . . , C(yn−2xk),
C(yn−2u), C(yn−2v), C(yn−2yn−1)}) ⊆ {1, 2, . . . , k, k + 1, n − 2}. Therefore, |CN(u)
∪CN(yn−2)| ≤ |{1, 2, . . . , k, k + 1, n − 2}| + |{yk+2, yn+3, . . . , yn−3}| = (k + 2) + (n −
k − 4) = n− 2 < n− 1, a contradiction.

The proof of the result is complete. ¥
Although the proofs of the results in Propositions 7 to 9 are easy, it can be shown

that these results are best possible in the sense that there exist some graphs showing
that they cannot be improved. However, we think that perhaps much stronger results
are possible to obtain if one excludes some small counter-examples or simple classes
of counter-examples. The proof techniques we applied here do not seem to be strong
enough for obtaining such improvements. Maybe an approach using probabilistic proof
techniques could yield such improvements.

4 Paths and cycles with few colors

If we regard an (uncolored) graph G as a colored graph (G,C) for which all edges have
different colors, then a shortest path between two given vertices in G is a path between
the two vertices with the fewest colors in the colored graph (G,C). It is well-known
that the problem of finding a shortest path between two given vertices in a (weighted)
graph can be solved efficiently. There are many polynomial-time algorithms to solve
this problem. In this section, we will consider the complexity aspects of finding a path
between two given vertices with the fewest colors in a colored graph.

Problem 10
INSTANCE: Graph G = (V, E) with a coloring C : E → N and two given vertices s0

and t0, positive integer K ≤ c(G).

QUESTION: Is there a path P from s0 to t0 such that c(P ) ≤ K?

According to [8], the following problem is NP-complete.

3-SATISFIABILITY (3-SAT)
INSTANCE: Collection C = {C1, C2, . . . , Cm} of clauses on a finite set U of variables

such that |Ci| = 3 for 1 ≤ i ≤ m.

QUESTION: Is there a truth assignment for U that satisfies all the clauses in C?

In this section, we use this result to show that Problem 10 is NP-complete, too.

Theorem 11 Problem 10 is NP-complete.

Proof It is easy to see that Problem 10 is in NP. One way to see this is to observe
that a nondeterministic algorithm need only guess an (s0, t0)-path P in G, and check
in linear time whether c(P ) ≤ K.

We shall now show that 3-SAT can be polynomially transformed to Problem 10.
Given a Boolean formula F consisting of m clauses C1, C2, . . . , Cm (with three literals
per clause) and involving n variables x1, x2, . . . , xn, we shall construct a graph G =
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(V, E) with a coloring C : E → N and two vertices s0 and t0, such that G has an
(s0, t0)-path P with c(P ) ≤ n + 1 if and only if F is satisfiable.

First, for the variable xi (1 ≤ i ≤ n), we construct a subgraph Ai of G, where
V (Ai) = {si−1, ui1, ui2, si} and E(Ai) = {si−1ui1, ui1si, si−1ui2, ui2si}. Assign a special
color 0 to the edges si−1ui1 and si−1ui2, the color i to the edge ui1si and the color
i′ to the edge ui2si for i = 1, 2, . . . , n. Then we get a colored graph A = ∪n

i=1Ai.
For the clause Cj (1 ≤ j ≤ m), we construct a subgraph Bj of G, where V (Bj) =
{tj−1, vj1, vj2, vj3, tj} and E(Bj) = {tj−1vj1, tj−1vj2, tj−1vj3, vj1tj , vj2tj , vj3tj}. For
j = 1, 2, . . . , m and k = 1, 2, 3, assign the color 0 to the edge tj−1vjk, the color h to
the edge vjktj if the kth literal of Cj is xh and the color h′ to the edge vjktj if the kth
literal of Cj is x̄h. Then we get a colored graph B = ∪m

j=1Bj . The colored graph G is
obtained by connecting the two graphs A and B with an edge sntm and coloring this
edge with the color 0, see Figure 1. Clearly the construction of G can be accomplished
in polynomial time.
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2 n

n′

0

1

2′ 0

0

0

00

0

0

un1

v11

v13

t0
v12

vm3

vm1

tm

s0

u11

sn

un2u12

Figure 1: The graph in the proof of Theorem 11 in
the case C2 = x1x̄2x3.

It is not difficult to verify that there is an (s0, t0)-path P with c(P ) ≤ n + 1 if and
only if F is satisfiable. We leave the details to the reader. ¥

The following consequence of Theorem 11 is immediate.

Corollary 12 Finding a path with as few different colors as possible in a colored graph
is NP-hard. ¥
Remark 13 Broersma & Li [3] proved that the problem of finding a spanning tree
with as few colors as possible in a colored graph is NP-hard by using the minimum
dominating set problem. It is not difficult to see that the graph G we constructed in
the proof of Theorem 11 has a spanning tree with at most n + 1 colors if and only if F
is satisfiable. So, our technique also provides a new proof to Broersma & Li’s result.

The problem of finding a cycle with as few colors as possible in a colored graph is
also NP-hard. We consider the following decision problem.
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Problem 14
INSTANCE: 2-connected graph G = (V, E) with a coloring C : E → N and a given

vertex u, positive integer K ≤ c(G).

QUESTION: Is there a cycle C passing through u such that c(C) ≤ K?

Theorem 15 Problem 14 is NP-complete.

Proof Let G a connected colored graph. Construct a 2-connected colored graph G′ by
adding a new vertex u, connecting u to every vertex v of G with an edge and assigning
an extra color 0 to the new edges. Then G contains a path P such that c(P ) ≤ K if
and only if G′ contains a cycle C passing through u such that c(C) ≤ K + 1. It follows
from Corollary 12 that Problem 14 is NP-complete. ¥
Corollary 16 Finding a cycle with as few colors as possible in a 2-connected colored
graph is NP-hard. ¥

As we proved in Theorem 11, finding a path with as few colors as possible (minimum
path) between two given vertices in a colored graph is NP-hard. However, if c(G) is
much smaller than |V (G)|, say, c(G) = O(log2 |V (G)|), there will be some efficient
algorithm for solving this problem.

One approach to finding a minimum path between two given vertices s0 and t0
is to check whether there is an (s0, t0)-path in the graphs G[Ei1 ] with 1 ≤ i1 ≤ k,
G[Ei1 ∪ Ei2 ] with 1 ≤ i1, i2 ≤ k and i1 6= i2, . . . , and G[Ei1 ∪ Ei2 ∪ · · · ∪ Eid ] with
1 ≤ i1, i2, . . . , id ≤ k and ip 6= iq for 1 ≤ p 6= q ≤ k, where E1, E2, . . . , Ek are the color
classes, k = c(G), and d is the distance between s0 and t0. The complexity of such an
algorithm is

[(
k
1

)
+

(
k
2

)
+ · · ·+

(
k

min{d, k}
)]

O(|V (G)|)

= min{O(kd|V (G)|), O(2k|V (G)|)}.

Another approach is to transform the colored graph to a number of weighted
graphs and use Dijkstra’s Algorithm. Assign, e.g., the weights 1, |V (G)|, |V (G)|2,
. . . , |V (G)|k−1 to the edges of the colored graph such that all the edges with the same
color get equal weights. There are k! possibilities, so we get at most k! weighted graphs.
It is not difficult to see that a minimum path between two given vertices s0 and t0 can
be found by determining the shortest paths in each of these weighted graphs. The
complexity of such an algorithm is O(k!|V (G)|2).

It is also of interest to consider approximation algorithms for the minimum path
problem. If we use a shortest path between two vertices as an approximate solution for
a minimum path, the approximation ratio is c(G). We can also design an approximation
algorithm which is similar to Dijkstra’s Algorithm for finding a shortest path.

Algorithm 17
Step 1. Set C(s0) = ∅, C(S0) = 0, c(v) = ∞ for v 6= s0, S0 = {s0} and i = 0.

Step 2. For each v ∈ V \Si, replace C(v) by C(ui) ∪ {C(uiv)} if c(v) > |C(ui) ∪
{C(uiv)}| and set c(v) = |C(v)|. Compute min

v∈V \Si

{c(v)} and let ui+1 denote

a vertex for which this minimum is attained. Set Si+1 = Si ∪ {ui+1}.
Step 3. If ui+1 = t0, stop. Otherwise, replace i by i + 1 and go to Step 2.
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The approximation factor of this algorithm can get arbitrarily large. This can be
shown by the graph in Figure 2.

(m+n)(0)
sm

t′m

1(m) n(m)

1(0)

1(m−1) (n+1)(m−1)

1(0) 2(0) 2(0)

Hm Hm−1

1(1)

s′2 = t′1
s′1=t0

H0

t2 = s1

t1=s0

H1

H ′
1H ′

m−1H ′
m

(m+n−1)(1)

1(0)

2(0)

(m+n)(0)

(m+n)(0)

Figure 2

The graph in Figure 2 is constructed as follows. Let H0 be an (s0, t0)-path P0 with
m+n edges and assign the colors 1(0), 2(0), . . . , (m+n)(0) to the edges of P0, respectively.
For 1 ≤ i ≤ m, the graph Hi is obtained from Hi−1 by adding a new (si−1, ti−1)-path
Pi with m + n − i edges and assigning the colors 1(i), 2(i), . . . , (m + n − i)(i) to the
edges of Pi, respectively. We denote the two vertices si−1 and ti−1 of Hi by si and ti,
respectively. By denoting the vertices si by s′i and ti by t′i, we get a new graph H ′

i for
each i with 1 ≤ i ≤ m. The graph in Figure 2 is constructed from the graphs H0, Hi

and H ′
i (1 ≤ i ≤ m) by identifying the vertices t0 with s′1, the vertices si−1 with ti, and

the vertices s′i with t′i−1 for 1 ≤ i ≤ m.
It is easy to see that the minimum path between sm and t′m in the graph H is of

m + n colors. Whereas we will get an approximate result n(m + 1) +
m(m + 1)

2
if we

apply the above algorithm to the graph H. So the approximation factor is

|1−
n(m + 1) +

m(m + 1)
2

m + n
| =

mn +
m(m + 1)

2
m + n

→∞,

when m →∞ in the case n = 1 or n = m1+ε (ε > 0).
From Theorem 11, it is easy to see that the problem of finding a path with fewest

colors between two given vertices in a colored directed graph is also NP-complete. In
the following, we will give a further analysis on the approximation of this problem.

Let C = {C1, C2, · · · , Cm} be a set of boolean constraints over variables {x1, x2, · · · , xn}
such that each of the constraints is a boolean function over k variables. For each con-
strain Ci (1 ≤ i ≤ m), there corresponds a weight wi. In the Max k-CSP problem, we
seek for an assignment of truth value to the variables {x1, x2, · · · , xn} that maximize
the sum of the weights of the satisfied constraints.
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First of all, for each arc eij of a colored directed graph D, we assign a variable xij .
Then, for each vertex v of the digraph D there is a boolean constraint function Cv as
follows:

1. for the start vertex s of D,

Cs = {
∨

i∈N+(s)

[xsi

∧
(

∧

j∈N+(s),j 6=i

¬xsj)]}
∧
{

∧

i∈N−(s)

¬xis}.

2. for the terminal vertex t of D,

Ct = {
∨

i∈N−(t)

[xit

∧
(

∧

j∈N−(t),j 6=i

¬xjt)]}
∧
{

∧

i∈N+(t)

¬xti}.

3. for any other vertices v of D,

Cv = {{
∨

i∈N+(v)

[xvi

∧
(

∧

j∈N+(v),j 6=i

¬xvj)]}
∧
{

∨

i∈N−(v)

[xiv

∧

j∈N−(v),j 6=i

¬xjv]}}

∨
{[

∧

i∈N+(v)

¬xvi]
∧

[
∧

i∈N−(v)

¬xiv]}.

The above are the conditions for the subgraph induced by the set of arcs with truth
value ”1” to form a directed path from s to t in D. Now we introduce a clause Yi for
each color i = 1, 2, · · · , c as follows:

Yi =
∧
{¬xuv|euv is of color i}.

We assign a weight for each clauses Cs, Ct, Cv and Yi such that w(Cs) = w1,
w(Ct) = w1, w(Cv) = w2 for every v ∈ V (D) − {s, t} and w(Yi) = w3 for every
i = 1, 2, · · · , c. We assume that w1 À w2 À w3, say w3 = 1, w2 = c + 1 and
w1 = (n− 2)(c + 1) + 1, where n is the number of vertices of D and c is the number of
colors. Then, we conclude that the weighted maximum k CSP problem for the above
weighted boolean constraint functions Cs, Ct, Cv and Yi produces a directed path of D
from s to t with as many colors as possible that do not appear on the directed path.
Then, from the reference [13, 14] we can get a 21−k-approximate solution in polynomial
time, here k should be Maxv,i{d+

v + d−v , the number of arcs of color i}, i.e., a solution
S such that |S| ≥ 21−k|SOpt|.

Be careful, the term ”with as many colors as possible that do not appear on the
directed path” is different from the term ”with as few colors as possible that appear on
the directed path”. The latter term is exactly what we needed. So, we can formulate
another problem as follows:

Xs = ¬Cs, Xt = ¬Ct, Xv = ¬Cv, and Zi = ¬Yi =
∨{xij |eij is of color i}, where

Xs and Xt have a weight w1, Xv has a weight w2 and Zi has a weight w3, in which wi

is the same as defined above.
Then, we can see that the weighted minimum k CSP problem for these boolean

constraint functions produces a directed path of D from s to t with as few colors as
possible. However, unfortunately from reference [8] the weighted minimum k CSP
problem does not have any approximate solution of constant factor. So, it seems that
our transformation does not have any help for achieving an approximate solution of
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some factor to the original problem. The interesting thing here is that if we think
about the problem in the other way round, that is, to find a directed path such that
the number of not used colors achieves the maximum, then there is indeed a factor 21−k

approximate solution to this problem.

5 Paths and cycles with many colors

If we regard an uncolored graph as a colored graph in which all edges have different
colors, then the number of colors of a subgraph is just the number of edges of it. It is
well-known that the problem of finding a longest path or a longest cycle in a graph is
NP-hard. Therefore, the problem of finding a path or a cycle with as many colors as
possible in a colored graph are also NP-hard.

In the past decades, many sufficient conditions for the existence of long paths and
cycles have been derived. The oldest result of this type is due to Dirac.

Theorem C (Dirac [4]) Let G be graph and d an integer. If d(v) ≥ d for every vertex
v of G, then G contains (1) a path of length at least d, and (2) a cycle of length at least
d + 1 if d > 1.

It is an interesting problem to establish whether Theorem C admits a generalization
to colored graphs. This leads to the following problem.

Problem 18 Let G be a colored graph such that dc(v) ≥ d for every vertex v of G,
where d is an nonnegative integer. For what values p and c such that G contains a path
with at least p colors, and a cycle with at least c colors if d > 1?

There are some examples which show that in Problem 18, both p and c cannot be
greater than d− 1.

By imposing a higher connectivity, the bound on the cycle length in Theorem C
can be increased.

Theorem D (Dirac [4]) Let G be a 2-connected graph and d an integer. If d(v) ≥ d
for every vertex v of G, then G contains either a Hamilton cycle or a cycle of length
at least 2d.

Let Kn,n+1 be the complete bipartite graph with bipartition (X, Y ) such that |X| =
n and |Y | = n+1. Assign a coloring to Kn,n+1 as follows: first color the graph Kn,n+1−y
for some vertex y ∈ Y by a proper n-edge-coloring, then assign the same n colors of
Kn,n+1 to the n edges incident to y, respectively. It is easy to show that dc(v) ≥ n for
each vertex v of Kn,n+1, but Kn,n+1 contains neither a Hamilton cycle nor a cycle with
more than n colors. This shows that, different from Theorem D, imposing a higher
connectivity on the graphs in Conjecture 18 cannot guarantee the existence of cycles
with more colors.
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