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1. Introduction

Computer simulations are used more and more frequently in the modern
technological society. This calls for a mathematical theory for simulations.
There are two elementary elements associated with a simulation: local rules
and dependency relations. In a simulation, there are many (maybe infinitely
many) entities and each entity has a state at a given time. The update of
states is determined by the local rules and the dependency relations. More-
over, there are two kinds of update schemes: parallel update and sequential
update. Both update schemes have been extensively studied in the literature.

We review the following model of discrete dynamical systems based on
a graph, which is called a dependency graph. An entity is represented by
a vertex of a graph. Two vertices are joined by an edge if they interfere
with each other in the update process. More specifically, an update is im-
plemented by local functions defined for each vertex. For a vertex v, the
local function depends on the state of the vertex v itself and the states of the
neighbors of v. If the states of the vertices are updated in a parallel man-
ner, the system is called a parallel dynamical system (PDS). If the update is
carried out in a sequential order, then the system is called a sequential dy-
namical system (SDS). In the sequential case, a permutation on the vertices
is used to specify the order of updates, see, for example, [1–5, 7–12].

In this paper, we are particularly concerned with the four kinds of dy-
namical systems: OR-PDS, OR-SDS, NOR-PDS and NOR-SDS. For each
of these systems, we present an evaluation theorem on the update of the
global state vectors. In fact, the state vectors are represented by subsets
of the vertex set of the dependency graph. Such evaluation schemes turn
out to be useful for the study of properties of the dynamical systems. We
demonstrate that many properties of the dynamical systems can be charac-
terized by the dependency graphs. For the AND and NAND functions, we
may construct the dynamical systems based on the OR and NOR systems,
thus, we do not need to consider systems with these two Boolean functions.

We prove that the state spaces of PDS [OR,G] and SDS [OR,G, π] have
2k components if G has k components; The width of PDS [OR,G] equals
to the diameter of G, where the width of a dynamical system on a graph
is defined to be the maximum distance from a transient state vector to
the nearest fixed state vector or periodic state vector; The width of SDS
[OR,G, π] does not exceed the diameter of G for any π ∈ Sn; Any orbit
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(limit cycle) of PDS [NOR,G] has length 2; There is a bijection between
the periodic points of SDS [NOR,G, π] and the independent sets of G;
The widths of PDS [NOR,G] and SDS [NOR,G, π] are both equal to 1.
The maximal in-degree in the state space of PDS [NOR,G] is equal to
the number of dominant sets of G, which is reached by the state vector
(0, 0, · · · , 0). Analogously, the maximal in-degree in the state space of SDS
[NOR,G, π] is reached by the state vector (0, 0, · · · , 0).

We also show that for forests that do not contain a single edge the number
of orientations equals the number of different OR-SDS.

2. Definitions and Notations

All the dynamical systems are assumed to be built on an undirected graph
G = (V,E), which is called the dependency graph. The graph G is supposed
to have vertex set V = {1, 2, · · · , n}. For each vertex 1 ≤ i ≤ n, there is a
state xi ∈ F2 = {0, 1}. For 1 ≤ i ≤ n and a subset W ⊆ V , we define

NG(i) = {j ∈ V |(i, j) ∈ E},

di = |NG(i)|,

NG(W ) =
⋃

i∈W

NG(i),

NG(i) = {i} ∪ NG(i).

For a dynamical system on G, there is a local function associated with each
vertex i. This is a function to update the state of the vertex i based on the
state of i itself and the states of the neighbors of i. We will be concerned
with the local functions that are symmetric on the input states. Under this
assumption, the update of the state of vertex i is determined by the states
of these vertices that are related to i, regardless of the order of the related
vertices. In fact, the local functions considered in this paper will be the
Boolean functions OR and NOR. As to the state vector X = (x1, x2, . . . , xn)
of the vertices V = {1, 2, . . . , n}, we can use a subset W of V to represent
the state vector X by taking the elements i for which xi = 1 into the subset
W .
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Definition 2.1 Let G be a graph on V = [n]. The following mapping

[F,G] : F
n
2 7→ F

n
2 ,

[F,G](x1, x2, · · · , xi, · · · , xn) = (y1, y2, · · · , yi, · · · , yn),

is called a parallel dynamical system (PDS) over G, where yi is the updated
state of vertex i by applying the local function of vertex i with respect to the
dependency graph G.

Let fi,G be a local update function of the vertex i with respect to the
dependency graph G, and let Fi,G be the update function on the global state
vector by applying the local function to update the state of vertex i, while
keeping other states unchanged. If we compose the functions Fi,G(1 ≤ i ≤ n)
according to a given order π ∈ Sn, where Sn is the set of permutations on
V , then we can get an update function from F

n
2 to F

n
2 .

Definition 2.2 Let G be a graph on V = [n] and π = π1π2 · · · πn ∈ Sn.
The mapping

[F,G, π] = Fπ1,GFπ2,G · · ·Fπn,G : F
n
2 7→ F

n
2

is called a sequential dynamical system (SDS) over G.

We note that in the above notation of composition of functions, we as-
sume that the function Fπ1,G is applied first, Fπ2,G is applied next, and so
on, namely,

Fπ1,GFπ2,G · · ·Fπn,G(x1, . . . , xn) = Fπn,G(· · ·Fπ1,G(x1, . . . , xn)).

We will usually use X to denote a state vector (x1, x2, . . . , xn), and use g
to denote the global update function of a dynamical system which acts on
state vectors. The set of all state vectors is called the state space. Given
a dynamical system with global update function g, we may describe the
following terminology.

1. If g(X) = X, then X is called a fixed point. The notation FIX[g] rep-
resents the set of all fixed points of the dynamical system with global
update function g.
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2. If there exists an integer m > 1 such that gm(X) = X and for any
integer 0 < l < m, gl(X) 6= X, then X is called a periodic point or
periodic state vector of g and m is called the period of X. We adopt
the notation PER[g] to denote the set of all periodic points of g.

3. If X /∈ FIX[g]∪PER[g], then X is called a transient point, or a tran-
sient state vector of g.

4. If there does not exist any state vector Z such that g(Z) = X, then
X is called a Garden-of-Eden (GOE) of g. The set of GOEs of g is
denoted by GOE[g].

Definition 2.3 Let G be a dependency graph on V = [n] and let g be the
global update function of a dynamical system on G. The digraph Γ[g], called
the functional digraph of g, is defined as the digraph with vertex set as the
state space of g, and arc set

A[Γ[g]] = {(X, g(X))|X ∈ F
n
2}.

An orbit of g is a cycle or a loop of the functional digraph of g.

We next define the width of a dynamical system in terms of its functional
digraph.

Definition 2.4 Let g be the global update function of a dynamical system
on the dependency graph G. For a state vector X ∈ F

n
2 , let h(X) be the min-

imum nonnegative integer such that gh(X)(X) is a fixed point or a periodic
point in the functional digraph Γ[g], where g0(X) is defined to be X. The
number max{h(X)|X ∈ F

n
2} is called the width of the dynamical system.

This paper will be concerned with the properties of the dynamical sys-
tems with OR and NOR functions that are related to the above terminology.

3. OR-PDS and OR-SDS

If we take the OR function as the local update functions, then the corre-
sponding dynamical systems are called OR-PDS and OR-SDS, and denoted
by [OR,G] and [OR,G, π], respectively.
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Recall that a system is said to be a fixed point system if all its orbits
are loops, see [7]. We will show that PDS [OR,G] and SDS [OR,G, π] are
fixed point systems, that is, all orbits in their state space are fixed points.
To describe the global update functions for the OR systems, we find it more
convenient to work with subsets as a representation of state vectors. The
following evaluation theorem can be easily verified.

Theorem 3.1 Let PDS [OR,G] be the OR-PDS on G. Let X be a state
vector and W be the subset of V corresponding to X, namely, W is the subset
of vertices having state 1 with respect to X. Let φ[OR,G] be the function
acting on subsets of V in accordance with the OR-PDS. In other words,
φ[OR,G](W ) is the subset of vertices having state 1 with respect to the state
vector [OR,G](X). Then we have

φ[OR,G](W ) = W
⋃

NG(W ). (3.1)

Theorem 3.2 Let SDS [OR,G, π] be the OR-SDS on G. Let X be a state
vector and W be the subset of V corresponding to X. Let φ[OR,G,π] be the
function acting on subsets of V in accordance with the OR-SDS. Then we
have

φ[OR,G,π](W ) = ϑπn
(ϑπn−1

· · · (ϑπ1
(W ))), (3.2)

where

ϑi(W ) =

{

W, if NG(i) ∩ W = ∅,

W ∪ {i}, otherwise.

Using the above evaluation theorems, we show that there is no cycle
of length bigger than 1 in Γ[OR,G] and Γ[OR,G, π] (for any π ∈ Sn),
or equivalently, PER[OR,G] = PER[OR,G, π] = ∅. This leads to the
following conclusion.

Theorem 3.3 The systems PDS [OR,G] and SDS [OR,G, π] are fixed point
systems.

We next show that the set of fixed points of the system [OR,G] is related
to the connected components of G.
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Theorem 3.4 Suppose there are k connected components in the dependency
graph G. Then functional digraph Γ[OR,G] has 2k components, and the
system PDS [OR,G] has 2k fixed points.

Proof. Using the evaluation of φ[OR,G], one sees that a subset W is a fixed
point of φ[OR,G] if and only if W satisfies the following condition: if i ∈ W ,
then for any j in the same component as i in the dependency graph G,
we have j ∈ W . There are altogether 2k such subsets W when G has k
components. By virtue of Theorem 3.1, PDS [OR,G] has 2k fixed points. It
follows from the fact PER[OR,G] = ∅ that the functional digraph Γ[OR,G]
has 2k components. This completes the proof.

The width of PDS [OR,G] is determined by the diameter of G.

Theorem 3.5 Assume that G is a connected graph. Then the width of PDS
[OR,G] equals to the diameter of G.

Proof. Suppose that G is a connected graph with vertex set V and d is the
diameter of G. Then we may assume that there is a shortest path of length
d in G from a vertex i to a vertex j. By Theorem 3.4, there are only two
fixed points in the system [OR,G] corresponding to the subsets V and ∅,
namely, the state vectors (1, 1, . . . , 1) and (0, 0, . . . , 0). By Theorem 3.1, for
a subset W = {i} with one element, we have j /∈ φd−1

[OR,G](W ). It follows that

φd−1
[OR,G](W ) 6= V.

On the other hand, for any W ′ ⊂ V , we have φd
[OR,G](W

′) = V or φd
[OR,G](W

′) =

∅; otherwise the diameter of G would exceed d. By Definition 2.4, we obtain
that d is the width of PDS [OR,G].

In the spirit of Theorem 3.4 and Theorem 3.5, we obtain the following
results for OR-SDS. The proofs are omitted.

Theorem 3.6 Suppose there are k connected components in the depen-
dency graph G. Then for any permutation π ∈ Sn, the functional digraph
Γ[OR,G, π] has 2k components, and the system SDS [OR,G, π] has 2k fixed
points.
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Theorem 3.7 Let G be a connected graph. Then for any permutation
π ∈ Sn, the width of SDS [OR,G, π] does not exceed the diameter of G.
Moreover, there exists a permutation σ ∈ Sn such that the width of the
system [OR,G, σ] is equal to the diameter of G.

The following example is an illustration of Theorem 3.7.

Example 3.8 Let G be the following graph with diameter 3:
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There are 16 different OR-SDS on G (with respect to the global update func-
tion) corresponding to the following permutations:

12345 12354 12543 12435 13425 13542 15432 14352
23451 23541 25431 24351 34512 35142 54312 43512.

The widths of these OR-SDS are respectively 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3,
2, 2, 2, 3, 2.

For a special class of graphs, the number of acyclic orientations equals
the number of different OR-SDS based on the these graphs. Let G be an
undirected graph on V = [n] and Acyc(G) be the set of acyclic orientations
of G. Let a(G) = |Acyc(G)|, and let S(fk)(G) be the set of different SDS
with the local functions fk(1 ≤ k ≤ n) and the dependency graph G. We
set a(fk)(G) = |S(fk)(G)|.

In [10], Reidys shows that the number of different NOR-SDS on G equals
to the number of acyclic orientations of G, namely, for any graph G,

a(nork)(G) = a(G). (3.3)

Although the above assertion does not apply to the case of OR functions,
we will show that the same result is valid for the forests that do not contain
isolated edges.
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Theorem 3.9 Assume that F = (V,E) is a forest on V = [n] which does
not contain isolated edges (connected components with two vertices). Then
we have

a(ork)(F ) = a(F ) = 2|E|.

Proof. Let G be a graph on V = [n] and U be the graph with vertex set Sn

in which two different vertices (i1, . . . , in) and (h1, . . . , hn) are adjacent if
(i1, . . . , in) can be obtained from (h1, . . . , hn) by exchanging of two elements
hk, hk+1, where hk and hk+1 are not adjacent in G. We set

[π]G = {π′|π′ and π are in the same component of U}.

Let
Sn/∼G = {[π]G|π ∈ Sn}

and h(fk) be the following mapping:

h(fk) : Sn/∼G 7→ S(fk)(G),

[π]G 7→ [F,G, π].

Since there is a one-to-one correspondence between Acyc(G) and Sn/∼G for
any graph G ( [11], Proposition 1), we only need to show that h(ork) is
a bijection when G is a forest F which does not contain an isolate edge.
Clearly, h(ork) is a surjection. For any [π]F 6= [σ]F in Sn/∼F , there is an
edge (i, j) in F such that i <π j and j <σ i, where i <π j means that i is
on the left of j in the permutation π. Let

Si = {k | k 6= i, i and k are in the same component of F \ (i, j)},

Sj = {k | k 6= j, j and k are in the same component of F \ (i, j)}.

By the assumption that none of the components of F is an isolated edge, it
follows that Si 6= ∅ or Sj 6= ∅. Without loss of generality we may assume
that Si 6= ∅. Since (i, j) is a cut edge, we get that Si ∩ Sj = ∅.

Let XSi
be the state vector corresponding to the subset Si. Notice that

the j-th entry of the state vector [OR,F, π](XSi
) equals 1 and the j-th entry

of the state vector [OR,F, σ](XSi
) equals 0. It follows that [OR,F, π] and

[OR,F, σ] are different systems, that is to say, h(ork) is injective. Therefore,
we have shown that h(ork) is a bijection. This completes the proof.
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4. NOR-PDS

In this section, we are concerned with parallel dynamical systems with the
NOR function as local functions. These systems are called NOR-PDS, and
denoted by [NOR,G] for a dependency graph G. We first present the follow-
ing evaluation theorem. The proof is straightforward and hence is omitted.

Theorem 4.1 Let PDS [NOR,G] be the NOR-PDS on G. Let X be a
state vector and W be the subset of V corresponding to X. Let φ[NOR,G]

be the global update function acting on subsets of V in accordance with the
NOR-PDS. Then we have

φ[NOR,G](W ) = V \ (W
⋃

NG(W )). (4.1)

As an immediate consequence of Theorem 4.1, the system [NOR,G] does
not have any fixed point. Moreover, we have

Theorem 4.2 All the orbits of PDS [NOR,G] are 2-cycles.

Proof. Since PDS [NOR,G] has no fixed point, PER[NOR,G] must have
some orbits with length exceeding 1 by the structure of the functional di-
graph of [NOR,G]. Let X be a periodic point of PDS [NOR,G] and W
be the corresponding subset. Then there exists an integer k such that
φk

[NOR,G](W ) = W . Because φ[NOR,G] is given by (4.1), k must be an even
number. It remains to prove k = 2.

Let W ′ = φ[NOR,G](W ). We claim that NG(W ) = NG(W ′). Assume that
there is an element w ∈ (NG(W ) ∪ NG(W ′)) and w /∈ (NG(W ) ∩ NG(W ′)).
Without loss of generality, we may assume that w ∈ NG(W ) and w /∈
NG(W ′). By the definition of φ[NOR,G], w is contained in φ2m

[NOR,G] for any
integer m > 1, which is contradictory to the fact that the state vector X
corresponding to the subset W is a periodic point. So the claim is justified,
and we get

φ[NOR,G](W ) = W ′ and φ[NOR,G](W
′) = W.

That is to say, φ2
[NOR,G](W ) = W . This completes the proof.

We next show that the functional digraph of PDS [NOR,G] has quite a
simple structure.
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Theorem 4.3 The width of PDS [NOR,G] is equal to 1.

Proof. Let X be a state vector and W be the subset corresponding to X.
By Theorem 4.2, it suffices to show that φ3

[NOR,G](W ) = φ[NOR,G](W ). Let

W1 = φ[NOR,G](W ), W2 = φ[NOR,G](W1), W3 = φ[NOR,G](W2).

It is easy to verify that NG(W1) = NG(W2). Thus we have

W3 = (V \ W2) \ NG(W2)

= (V \ (V \ W1 \ NG(W1))) \ NG(W2)

= W1 ∪ (NG(W1) \ NG(W2))

= W1.

This is to say, φ3
[NOR,G](W ) = φ[NOR,G](W ).

Note that the above theorem can be restated as

GOE[NOR,G] ∪ PER[NOR,G] = F
n
2 . (4.2)

The following theorem shows that the maximum in-degree of the func-
tional digraph of the system [NOR,G] is related to the dominant sets of the
dependency graph G.

Theorem 4.4 In the functional digraph Γ[NOR,G], the maximum in-degree
is reached by the state vector X = (0, 0, · · · , 0), and it is equal to the number
of dominant sets of G.

Proof. By the evaluation theorem of PDS [NOR,G], one sees that for any
subset W ′, φ[NOR,G](W ) = W ′ if and only if W is a dominant set of the graph
G[V \ W ′], the induced subgraph of G restricted to V \ W ′. In particular,
W ′ = ∅ if and only if W is a dominant set of G. From Theorem 4.1, it follows
that the in-degree of X = (0, 0, · · · , 0) equals to the number of dominant
sets of G.

We continue to show that the in-degree of the state vector X = (0, 0, . . . , 0)
in Γ[NOR,G] is indeed the maximum in-degree. For any subset W ′, if
φ[NOR,G](W ) = W ′, then φ[NOR,G](W ∪ W ′) = ∅. This implies that from a
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pre-image of W ′, we can find a pre-image of ∅. Moreover, for any two dis-
tinct pre-images W1 and W2 of W ′, we have W1 ∩W ′ = ∅ and W2 ∩W ′ = ∅.
It follows that

W1 ∪ W ′ 6= W2 ∪ W ′. (4.3)

Furthermore, W1 ∪ W ′ and W2 ∪ W ′ are both dominant sets of G, namely,

φ[NOR,G](W1 ∪ W ′) = φ[NOR,G](W2 ∪ W ′) = ∅. (4.4)

Therefore, for any two distinct pre-images of W ′, there are two distinct
pre-images of ∅. So we obtain that

|φ−1
[NOR,G](W

′)| ≤ |φ−1
[NOR,G](∅)|.

This completes the proof.

5. NOR-SDS

In this section, we study sequential dynamical systems with NOR function as
the local update functions, denoted by [NOR,G, π] for a given dependency
graph G. These systems have been studied by Reidys [12]. We give the
following evaluation theorem which is useful to give a simpler augment for
the results obtained by Reidys.

Theorem 5.1 Let SDS [NOR,G, π] be a NOR-SDS on G. Let X be a
state vector and W be the subset of V corresponding to X. Let φ[NOR,G,π]

be the global update function acting on subsets of V in accordance with the
NOR-SDS with dependency graph G. Then we have

φ[NOR,G,π](W ) = ρπn
(ρπn−1

· · · (ρπ1
(W ))), (5.1)

where

ρi(W ) =



















W \ {i}, if i ∈ W,

W ∪ {i}, if NG(i) ∩ W = ∅,

W, otherwise.

An instant consequence of the above theorem is that the functional di-
graph Γ[NOR,G, π] has no fixed points. Furthermore, we may use the above
evaluation scheme to simplify proofs of several results of Reidys. The set of
independent sets of G will be denoted by DG [6].
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Lemma 5.2 For any subset W of V , φ[NOR,G,π](W ) forms an independent
set of G.

Proof. Assume that there exists a subset W such that φ[NOR,G,π](W ) /∈ DG.
Then there are two elements i, j in φ[NOR,G,π](W ) such that (i, j) is an edge
of G. Without loss of generality, we may assume that i <π j and j = πk

for some k. Since i is in the subset ρπk−1
(ρπk−2

· · · (ρπ1
(W ))), after the

action of ρj on the subset ρπk−1
(ρπk−2

· · · (ρπ1
(W ))), j is not contained in

ρπk
(ρπk−1

· · · (ρπ1
(W ))). This leads to a contradiction.

Next we show that the mapping φ[NOR,G,π] induces a bijection on DG.
In other words, φ[NOR,G,π] maps an independent set to an independent, and
the mapping is one-to-one.

Lemma 5.3 For any permutation π on [n], the mapping φ[NOR,G,π] yields
a bijection on the set of independent sets of G.

Proof. By the finiteness of DG, we only need to prove that φ[NOR,G,π] over
DG is an injection. Suppose that W1 and W2 are two different independent
set of G such that

φ[NOR,G,π](W1) = φ[NOR,G,π](W2). (5.2)

Let k0 be the first element in π that appears in W1∪W2\(W1∩W2). Without
loss of generality, we assume that k0 ∈ W1 and k0 /∈ W2. Then there exists
k1 >π k0 such that k1 ∈ W2, k1 /∈ W1 and (k0, k1) ∈ E. Similarly, for
k1 ∈ W1 ∪ W2 \ (W1 ∩ W2), there exists k2 >π k1 such that k2 ∈ W1,
k2 /∈ W2 and (k1, k2) ∈ E. By iterating this procedure, we will fail at certain
point to find ki >π ki−1 such that ki ∈ W1, ki /∈ W2 and (ki−1, ki) ∈ E,
or to find ki >π ki−1 such that ki ∈ W2, ki /∈ W1 and (ki−1, ki) ∈ E.
Hence we get ki−1 ∈ φ[NOR,G,π](W1) and ki−1 /∈ φ[NOR,G,π](W2), or get
ki−1 ∈ φ[NOR,G,π](W2) and ki−1 /∈ φ[NOR,G,π](W1). This is contradictory to
the assumption (5.2).

The above Theorem 4.4 has the following counterpart for SDS [NOR,G, π].
The proof is essentially the same.

Lemma 5.4 For any subset W of V , we have

|φ−1
[NOR,G,π](W )| ≤ |φ−1

[NOR,G,π](∅)|.
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From the above three lemmas, we get the following results due to Reidys
[12].

Theorem 5.5 The width of SDS [NOR,G, π] equals to 1.

Theorem 5.6 There is a bijection between the set of the periodic points of
[NOR,G, π] and the set of the independent sets of G.

Theorem 5.7 In the functional digraph Γ[NOR,G, π], the maximal in-
degree is reach by the state vector X = (0, 0, · · · , 0).

The following example is an illustration of Theorem 5.5, Theorem 5.6
and Theorem 5.7.

Example 5.8 Let G be the following graph with independent sets: ∅, {1},
{2}, {3}, {4}, {1, 4}, {2, 4}.
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By Theorem 5.5 and Theorem 5.6, we obtain that for any π ∈ Sn,

PER[NOR,G, π] = {0000, 1000, 0100, 0010, 0001, 1001, 0101},

and

GOE[NOR,G, π] = {0011, 0110, 0111, 1010, 1011, 1100, 1101, 1110, 1111}.

Moreover, for the permutation π = 3124, the in-degrees of the periodic
points 0000, 1000, 0100, 0010, 0001, 1001, 0101 in the functional digraph
Γ[NOR,G, 3124] are respectively 4, 2, 2, 1, 4, 1, 2.
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