FULLY COMMUTATIVE ELEMENTS IN THE WEYL AND AFFINE WEYL GROUPS

Jian-yi Shi
Department of Mathematics, East China
Normal University, Shanghai, 200062, China
and
Center for Combinatorics, Nankai
University, Tianjin, 300071, China

Abstract

Let W be a Weyl or an affine Weyl group and let W_{c} be the set of fully commutative elements in W. We associate each $w \in W_{\mathrm{c}}$ to a digraph $\mathbf{G}(w)$. By using $\mathbf{G}(w)$, we give a graph-theoretic description for Lusztig's a-function on W_{c} and describe explicitly all the distinguished involutions of W_{c}. The results verify two conjectures in our case: one was proposed by myself in [16, Conjecture 8.10] and the other was by Lusztig in [2].

Introduction.

Let $W=(W, S)$ be a Coxeter group with S the distinguished generator set. The fully commutative elements $w \in W$ were defined by Stembridge:
(i) w is fully commutative, if any two reduced expressions of w can be transformed from each other by only applying the relations $s t=t s$ with $s, t \in S$ and $o(s t)=2(o(s t)$ the order of $s t$), or equivalently,
(ii) w is fully commutative, if w has no reduced expression of the form $w=x($ sts... $) y$, where $s t s . .$. is a string of length $o(s t)>2$ for some $s \neq t$ in S.

The fully commutative elements were studied extensively by a number of people (see [3], [8], [10], [22], [23], [24]). Let W_{c} be the set of all fully commutative elements in W.

[^0]The present paper is only concerned with the case where W is a Weyl or an affine Weyl group unless otherwise specified. In [19], we associated any Coxeter element of a Coxeter group to a directed graph (or a digraph in short). In the present paper, we extend this idea by associating each $w \in W_{\text {c }}$ to a digraph $\mathbf{G}(w)$. Then some techniques developed in [21] can be applied here for our purpose. In particular, we use the digraph $\mathbf{G}(w)$ to define the number $n(w)$, which equals the maximum possible cardinality for the node sets of $\mathbf{G}(w)$ satisfying condition (2.7.1) (see Lemma 2.7).

Our first main result is to evaluate the function $a(w)$ on W_{c} by establishing the equation $a(w)=n(w)$ for any $w \in W_{\mathrm{c}}$ (see Theorem 3.1). The function $a(w)$ was defined by Lusztig in [12], which is important in the cell representation theory of the group W and the associated Hecke algebra. It is usually a difficult task to compute the value $a(w)$ for an arbitrary $w \in W$. In establishing the equation $a(w)=n(w)$ for $w \in W_{\mathrm{c}}$, we first show that the set W_{c} and the function $n(w)$ are invariant under star operations. It is well known for the invariance of the function $a(w)$ under star operations. Then we reduce ourselves to a special subset F_{c} of W_{c}. We explicitly describe all the elements of F_{c} in each case. Then we show the equation $a(w)=n(w)$ for any w in F_{c} and hence in W_{c}.

Lusztig defined distinguished involutions of W which play an important role in the left cell representations of W and the associated Hecke algebras (see [13]). However, except for the case of symmetric groups, it is usually very hard to recognize and to describe the distinguished involutions among the elements of W. We proposed a conjecture in [16, Conjecture 8.10] to describe the distinguished involutions of W, which is supported by all the existing data (see [16], [21]). Our second main result is to give an explicit description for all the distinguished involutions of W in the set W_{c}, verifying the conjecture in our case. Denote by $D_{0}\left(W_{c}\right)$ the set of these elements. In order to describe the elements of $D_{0}\left(W_{\mathrm{c}}\right)$, we define a subset F_{c}^{\prime} of W_{c} (see 3.10). Write $w=w_{J} \cdot y \in F_{\mathrm{c}}^{\prime}$ with $J=\mathcal{L}(w)$ and some $y \in W$. Then we conclude that $d=y^{-1} \cdot w_{J} \cdot y$ is the unique element in $D_{0}\left(W_{\mathrm{c}}\right)$ with $d \underset{L}{\sim} w$ (see Theorem 4.3). By applying this result, we conclude that any left cell L of W with $L \cap W_{\mathrm{c}} \neq \emptyset$ contains a unique element (say w^{L}) in F_{c}^{\prime} and that any $z \in L$ has the form $z=x \cdot w^{L}$ for some $x \in W$ (see Corollary 4.11). This further implies that
L is left connected (see Remark $4.12(3))$, verifying a conjecture of Lusztig on the left connectedness of left cells of W in our case (see [2]).

The contents of the paper are organized as follows. We collect some notations, terms and known results concerning cells of a Coxeter group W in Section 1. In Section 2, we associate each $w \in W_{\mathrm{c}}$ to a digraph $\mathbf{G}(w)$ and deduce some results on the elements of W_{c} by using $\mathbf{G}(w)$. Then two main results of the paper are shown in Sections $3-4$, one in each section.

§1. Some results on Coxeter groups.

Let (W, S) be a Coxeter system. In Introduction we defined the set W_{c} of all the fully commutative elements of W. In this section, we collect some notations, terms and known results for later use.
1.1. Let \leqslant be the Bruhat-Chevalley order and $\ell(w)$ the length function on W. Given $J \subseteq S$, let w_{J} be the longest element in the subgroup W_{J} of W generated by J, provided that W_{J} is finite. Call J fully commutative if the element w_{J} is so.

For $w, x, y \in W$, we use the notation $w=x \cdot y$ to mean $w=x y$ and $\ell(w)=\ell(x)+\ell(y)$. In this case, we say that w is a left (resp., right) extension of y (resp., x), and say that y (resp., x) is a left (resp., right) retraction of w. More generally, we say z is a retraction of w (or w is an extension of z), if $w=x \cdot z \cdot y$ for some $x, y \in W$. A retraction z of w is proper if $\ell(z)<\ell(w)$.

Lemma. Let $w=s_{1} s_{2} \ldots s_{r}$ be a reduced expression of $w \in W_{\mathrm{c}}$ with $s_{i} \in S$.
(1) The multi-set $\left\{s_{1}, s_{2}, \ldots, s_{r}\right\}$ only depends on w but not on the choice of a reduced expression.
(2) For any $s \in S$ with $s w \in W_{\mathrm{c}}$, the equation $s w=w s$ holds if and only if $s s_{i}=s_{i} s$ for any $1 \leqslant i \leqslant r$.
(3) If $s, t \in S$ satisfy $s w=w t \in W_{c}$, then $s=t$.
(4) If $w \in W_{\mathrm{c}}$ then any retraction of w is also in W_{c}. In particular, if $w \in W_{\mathrm{c}}$ has an expression $w=x \cdot w_{J} \cdot y$ with $x, y \in W$ and $J \subseteq S$, then J is fully commutative.

Proof. (1) and (2) (resp., (4)) follow by the definition (i) (resp., (ii)) of a fully commutative
element (see Introduction) Then (3) is an easy consequence of (1).
1.2. Let $\underset{L}{\leqslant}$ (resp., $\underset{R}{\underset{L R}{\leqslant}} \underset{L}{\leqslant}$) be the preorder on W defined as in [11], and let $\underset{L}{\sim}($ resp., $\underset{R}{\sim}$, $\underset{L R}{\sim})$ be the equivalence relation on W determined by $\underset{L}{\leqslant}($ resp., $\underset{R}{\leqslant}, \underset{L R}{\leqslant})$. The corresponding equivalence classes are called left (resp., right, two-sided) cells of $W . \underset{L}{\leqslant}($ resp., $\underset{R}{\leqslant}, \underset{L R}{\leqslant})$ induces a partial order on the set of left (resp., right, two-sided) cells of W.
1.3. Lusztig defined a function $a: W \longrightarrow \mathbb{N} \cup\{\infty\}$ for a Coxeter group W in [12]. When W is a Weyl or affine Weyl group, Lusztig proved in [12], [13] the following results.
(a) $a\left(w_{J}\right)=\ell\left(w_{J}\right)$ for $J \subseteq S$ with W_{J} finite (see [12, Proposition 2.4] and [13, Proposition 1.2]). In particular, when J is fully commutative, we have $a\left(w_{J}\right)=|J|$, the cardinality of the set J.
(b) If $x \underset{L R}{\leqslant} y$ in W, then $a(x) \geqslant a(y)$. So $x \underset{L R}{\sim} y$ implies $a(x)=a(y)$, i.e., the function a is constant on a two-sided cell of W (see [12, Theorem 5.4]).
(c) If $w=x \cdot y$ then $w \underset{L}{\leqslant} y$ and $w \underset{R}{\leqslant}$. Hence $a(w) \geqslant a(x), a(y)$.
(d) If $a(x)=a(y)$ and $x \underset{L}{\leqslant} y$ then $x \underset{L}{\sim} y$ (see [13, Corollary 1.9]).

Note that (d) remains valid in any finite or affine Coxeter group (i.e., any finite Coxeter group or any affine Weyl group) if condition $a(x)=a(y)$ is replaced by $x \underset{L R}{\sim} y$ (see [1, Corollary 3.3]).
1.4. Following Lusztig (see [13]), an element $w \in W$ is distinguished, if $\ell(w)-2 \delta(w)=$ $a(w)$, where $\delta(w)=\operatorname{deg} P_{e, w}$, e the identity element of W and $P_{x, y}$ is the celebrated Kazhdan-Lusztig polynomial associated to the ordered pair (x, y) in W. When W is a Weyl or an affine Weyl group, Lusztig showed in [13, Proposition 1.4 (a) and Theorem 1.10] that a distinguished element w of W is always an involution (i.e., $w^{2}=e$) and that any left cell of W contains a unique distinguished involution.
1.5. For any $w \in W$, let $\mathcal{L}(w)=\{s \in S \mid s w<w\}$ and $\mathcal{R}(w)=\{s \in S \mid w s<w\}$.

Assume $m=o(s t)>2$ for some $s, t \in S$. A sequence of elements

$$
\underbrace{y s, y s t, y s t s, \ldots}_{m-1 \text { terms }}
$$

is called a right $\{s, t\}$-string (or just a right string) if $y \in W$ satisfies $\mathcal{R}(y) \cap\{s, t\}=\emptyset$.

We say that z is obtained from w by a right $\{s, t\}$-star operation (or a right star operation for brevity), if z, w are two neighboring terms in a right $\{s, t\}$-string. Note that a resulting element z of a right $\{s, t\}$-star operation on w, when it exists, need not be unique unless w is a terminal term of the right $\{s, t\}$-string containing it.

Similarly, we can define a left $\{s, t\}$-string and a left $\{s, t\}$-star operation on an element.
The following result follows directly from the definition of the relations $\underset{L}{\sim}$ and $\underset{R}{\sim}$ on W, which is known in [11], [12].

Lemma. If $x, y \in W$ can be obtained from each other by successively applying left (resp., right) star operations, then $x \underset{L}{\sim} y$ (resp., $x \underset{R}{\sim} y$).
1.6. By the notation $x-y$ in W, we mean that $\max \left\{\operatorname{deg} P_{x, y}, \operatorname{deg} P_{y, x}\right\}=\frac{1}{2}(\mid \ell(x)-$ $\ell(y) \mid-1)$. Two elements $x, y \in W$ form a (left) primitive pair, if there exist two sequences of elements $x_{0}=x, x_{1}, \ldots, x_{r}$ and $y_{0}=y, y_{1}, \ldots, y_{r}$ in W satisfying:
(a) $x_{i}-y_{i}$ for all $i, 0 \leq i \leq r$.
(b) For every $i, 1 \leq i \leq r$, there exist some $s_{i}, t_{i} \in S$ such that x_{i-1}, x_{i} (and also $\left.y_{i-1}, y_{i}\right)$ are two neighboring terms in some left $\left\{s_{i}, t_{i}\right\}$-string.
(c) Either $\mathcal{L}(x) \nsubseteq \mathcal{L}(y)$ and $\mathcal{L}\left(y_{r}\right) \nsubseteq \mathcal{L}\left(x_{r}\right)$, or $\mathcal{L}(y) \nsubseteq \mathcal{L}(x)$ and $\mathcal{L}\left(x_{r}\right) \nsubseteq \mathcal{L}\left(y_{r}\right)$ hold.

Lemma. (see [16, Subsection 3.3]) If $x, y \in W$ form a left primitive pair then $\underset{L}{\sim} y$.

§2. Digraphs associated to elements of W_{c}.

In [19], [20], [21], we associated each generalized Coxeter element of W to a digraph which made it possible to use graph theory in the study of generalized Coxeter elements. Clearly, a generalized Coxeter element is fully commutative. In this section, we shall extend such an idea to the set $W_{\text {c }}$. Lemmas 2.6, 2.7, 2.9 and Corollary 2.8 are extensions of some results of [21]. The proofs of these results can proceed by imitating those of the corresponding results in [21] and so are omitted. An important property of the set W_{c} is given in Proposition 2.10, which asserts that W_{c} is invariant under star operations.

Let us start with some basic definitions of graph theory.
2.1. By a graph, we mean a finite set of nodes together with a finite set of edges. A graph is always assumed simple (i.e., no loop and no multi-edges). Two nodes of a graph
are adjacent if they are joined by an edge. In a graph G, the degree $d_{G}(\mathbf{v})$ of a node \mathbf{v} is the number of edges incident on $\mathbf{v} ; \mathbf{v}$ is a branch node if $d_{G}(\mathbf{v})>2$, and a terminus if $d_{G}(\mathbf{v}) \leqslant 1$. A directed graph (or a digraph for brevity) is a graph with each edge orientated. A directed edge (i.e., an edge with orientation) with two incident nodes $\mathbf{v}, \mathbf{v}^{\prime}$ is denoted by an ordered pair $\left(\mathbf{v}, \mathbf{v}^{\prime}\right)$, if the orientation is from \mathbf{v} to \mathbf{v}^{\prime}. A node \mathbf{s} of \mathbf{G} is a source (resp., a sink) if ($\mathbf{s}, \mathbf{s}^{\prime}$) (resp., $\left(\mathbf{s}^{\prime}, \mathbf{s}\right)$) is a directed edge of \mathbf{G} for any node \mathbf{s}^{\prime} adjacent to \mathbf{s}. An isolated node is a node which is both a source and a sink. A source or a sink of \mathbf{G} is also called an extreme node. A directed path ξ of a digraph \mathbf{G} is a sequence of nodes $\mathbf{v}_{0}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{r}$ in \mathbf{G} with $r \geqslant 0$ such that $\left(\mathbf{v}_{i-1}, \mathbf{v}_{i}\right)$ is a directed edge of \mathbf{G} for $1 \leqslant i \leqslant r$. Call r the length of ξ. A path ξ is maximal if ξ is not properly contained in any other directed path of \mathbf{G}. A path ξ is a directed cycle, if $\mathbf{v}_{0}=\mathbf{v}_{r}$. A digraph is acyclic if it contains no directed cycle. A subdigraph of a digraph \mathbf{G} is a digraph which can be obtained from \mathbf{G} by removing some nodes and all the directed edges incident to these removed nodes.

2.2. To an expression

$$
\begin{equation*}
\chi: \quad w=s_{1} s_{2} \ldots s_{r} \tag{2.2.1}
\end{equation*}
$$

(not necessarily reduced) of any $w \in W$ with $s_{i} \in S$, we associate a digraph $\mathbf{G}(\chi)$ as follows. The node set \mathbf{V} of $\mathbf{G}(\chi)$ is $\left\{\mathbf{s}_{i} \mid 1 \leqslant i \leqslant r\right\}$ (note that the \mathbf{s}_{i} 's are boldfaced), and the directed edge set \mathbf{E} of $\mathbf{G}(\chi)$ consists of all the ordered pairs ($\left.\mathbf{s}_{i}, \mathbf{s}_{j}\right)$ satisfying the conditions $i<j, s_{i} s_{j} \neq s_{j} s_{i}$ and that there does not exist any $i=h_{0}<h_{1}<\ldots<h_{t}=j$ with $t>1$ such that $s_{h_{p-1}} s_{h_{p}} \neq s_{h_{p}} s_{h_{p-1}}$ for every $1 \leqslant p \leqslant t$. The digraph $\mathbf{G}(\chi)$ so obtained usually depends on the choice of an expression χ of w. However, if two expressions of w can be obtained from each other by only applying the relations of the form $s t=t s$ for some $s, t \in S$ with $o(s t)=2$, then their corresponding digraphs should be the same. In particular, when w is in W_{c} and an expression χ of w in (2.2.1) is reduced, the digraph $\mathbf{G}(\chi)$ only depends on the element w, but not on the particular choice of a reduced expression χ of w. In this case, it makes sense to denote $\mathbf{G}(\chi), \mathbf{V}, \mathbf{E}$ by $\mathbf{G}(w)$, $\mathbf{V}(w), \mathbf{E}(w)$, respectively. Call $\mathbf{G}(w)$ the associated digraph of w.

By the above construction of a digraph $\mathbf{G}(w)$ for $w \in W_{c}$, there exists a natural map
$\phi: \mathbf{s}_{i} \mapsto s_{i}$ from $\mathbf{V}(w)$ to S and hence $\mathbf{V}(w)$ can be regarded as a multi-set in S.
Note that the above definition of the digraph $\mathbf{G}(w)$ can be regarded as a reformulation of Viennot's notion of a heap (see [25]).
2.3. Here and later, we always use the boldfaced letters, say $\mathbf{I}, \mathbf{J}, \mathbf{V}, \ldots$ (resp., $\mathbf{s}, \mathbf{t}, \mathbf{v}, \ldots$) to denote node sets (resp., nodes) of a digraph and use the ordinary letters I, J, V, \ldots (resp., s, t, v, \ldots) to denote the corresponding multi-sets (resp., elements) in S. In the subsequent discussion of the paper, for a given expression of $w \in W$, we often first mention a multi-set I (resp., an element s) in S and then use the corresponding boldfaced letter \mathbf{I} (resp., s) to denote a node set (resp., a node) of the digraph $\mathbf{G}(w)$ or the other way round; in such a case, the node set \mathbf{I} (resp., the node \mathbf{s}) is usually a certain specific one with $\phi(\mathbf{I})=I$ and $|\mathbf{I}|=|I|$ (resp., $\phi(\mathbf{s})=s$), and not $\phi^{-1}(I)$ (resp., $\left.\phi^{-1}(s)\right)$ in general. This will be unambiguous from the context.
2.4. Consider the following conditions on an expression χ of $w \in W$ in (2.2.1):
(2.4.1) for any pair $i<j$ with $s_{i}=s_{j}$, there exists a directed path in $\mathbf{G}(\chi)$ connecting the nodes \mathbf{s}_{i} and \mathbf{s}_{j}.
(2.4.2) for any directed path $\mathbf{s}_{i_{1}}, \mathbf{s}_{i_{2}}, \ldots, \mathbf{s}_{i_{m}}$ in $\mathbf{G}(\chi)$ with $s_{i_{h}}=s_{i_{h+2}}$ for $1 \leqslant h \leqslant m-2$ and $m=o\left(s_{i_{1}} s_{i_{2}}\right)>2$, there exists another directed path with $\mathbf{s}_{i_{1}}, \mathbf{s}_{i_{m}}$ two extreme nodes. The following result follows by a result of Stembridge (see [24, Proposition 3.3]).

Lemma 2.5. Let χ be an expression of some $w \in W$ of the form (2.2.1). Then χ satisfies both conditions (2.4.1) and (2.4.2) if and only if the element w is in W_{c} with χ reduced.

The next two results can be proved by imitating those for [21, Lemmas 2.1 and 2.2].
Lemma 2.6. (comparing with [21, Lemma 2.1]) Let \mathbf{G} be an acyclic orientation of a graph G. Then
(i) Each terminus of G is an extreme node of \mathbf{G}.
(ii) Each node of G is contained in some maximal directed path of \mathbf{G}, which starts with a source and ends with a sink.
(iii) Let $w \in W_{\mathrm{c}}$ be with $\mathbf{G}(w)$ the associated digraph. Then $\mathcal{L}(w)$ (resp., $\mathcal{R}(w)$) (see 1.5) is exactly the set of all $s \in S$ with $\phi^{-1}(s)$ containing a source (resp., a sink) of $\mathbf{G}(w)$.
(iv) Keep the assumption of (iii). Let $s \in \mathcal{L}(w)$ (resp., $s \in \mathcal{R}(w)$). Then $\mathcal{L}(w) \not{ }_{\neq}^{\nsupseteq} \mathcal{L}(s w)$ (resp., $\mathcal{R}(w) \nsupseteq \mathcal{D}(w s))$ if and only if the removal of the source (resp., sink) \mathbf{s} from $\mathbf{G}(w)$ yields a new source (resp., sink) in the resulting digraph (see 2.3).

Lemma 2.7. (comparing with [21, Lemma 2.2]) Given $w \in W_{c}$ with $\mathbf{G}(w)$ the associated digraph. Then there is an expression $w=x \cdot w_{J} \cdot y$ for some $J \subseteq S$ and $x, y \in W$ if and only if there is a node set \mathbf{J} of $\mathbf{G}(w)$ with $\phi(\mathbf{J})=J$ such that
(2.7.1) for any $\mathbf{s} \neq \mathbf{t}$ in \mathbf{J}, there is no directed path connecting \mathbf{s} and \mathbf{t} in $\mathbf{G}(w)$.

For any $w \in W_{\mathrm{c}}$, denote by $m(w)$ the maximum possible value of $\ell\left(w_{J}\right)$ in an expression $w=x \cdot w_{J} \cdot y$, and denote by $n(w)$ the maximum possible cardinality of a node set \mathbf{J} of $\mathbf{G}(w)$ satisfying condition (2.7.1). Then Lemma 2.7 tells us the following

Corollary 2.8. (comparing with [21, Corollary 2.3]) $m(w)=n(w)$ for any $w \in W_{\mathrm{c}}$.
By Corollary 2.8, we shall not distinguish the numbers $m(w)$ and $n(w)$ for any $w \in W_{\text {c }}$ and denote $n(w)$ for both numbers.

The next result asserts that the number $n(w)$ remains unchanged under a star operation on $w \in W_{\mathrm{c}}$, whose proof imitates that for [21, Lemma 2.4].

Lemma 2.9. (comparing with [21, Lemma 2.4]) If $w, y \in W_{\mathrm{c}}$ can be obtained from each other by a star operation, then $n(w)=n(y)$.

Finally, we show an important property of W_{c} involving star operations.
Proposition 2.10. The set W_{c} is invariant under star operations.
Proof. Assume that $y \in W$ can be obtained from some $w \in W_{\mathrm{c}}$ by a left $\{s, t\}$-star operation for some $s, t \in S$ with $s t \neq t s$. We want to show $y \in W_{\mathrm{c}}$. We may assume $y=s w$ for the sake of definiteness. The result follows by Lemma 1.1 (4) if $y<w$. Now assume $w<y$. Let $w=s_{1} s_{2} \ldots s_{r}$ be a reduced expression of w with $s_{i} \in S$ and let $\mathbf{G}(w)$ be the associated digraph of w with $\mathbf{V}(w)=\left\{\mathbf{s}_{i} \mid 1 \leqslant i \leqslant r\right\}$ the node set. Let \mathbf{G} be the digraph for the reduced expression $y=s s_{1} s_{2} \ldots s_{r}$ with $\mathbf{V}=\mathbf{V}(w) \cup\left\{\mathbf{s}_{0}\right\}$ the node set, where $\phi\left(\mathbf{s}_{0}\right)=s_{0}=s$. If y is not fully commutative, then by Lemma 2.5 , there
exists a directed path, say $\xi: \mathbf{s}_{i_{1}}, \mathbf{s}_{i_{2}}, \ldots, \mathbf{s}_{i_{m}}$, in \mathbf{G} with $m \geqslant 3$ such that $s_{i_{h}}=s_{i_{h+2}}$ for $1 \leqslant h \leqslant m-2, o\left(s_{i_{1}} s_{i_{2}}\right)=m$ and that there does not exist any other directed path in \mathbf{G} with $\mathbf{s}_{i_{1}}, \mathbf{s}_{i_{m}}$ two extreme nodes (hence for any node \mathbf{s} of \mathbf{G} not in ξ, if \mathbf{s} is adjacent to two nodes $\mathbf{s}_{i_{j}}, \mathbf{s}_{i_{k}}$ of ξ in \mathbf{G}, then ($\mathbf{s}, \mathbf{s}_{i_{j}}$) is a directed edge of \mathbf{G} if and only if $\left(\mathbf{s}, \mathbf{s}_{i_{k}}\right)$ is so). Since \mathbf{s}_{0} is a source of \mathbf{G} and $w \in W_{\mathrm{c}}$, we must have $\mathbf{s}_{0}=\mathbf{s}_{i_{1}}$. So there is a reduced expression

$$
\begin{equation*}
y=p_{1} p_{2} \ldots p_{a}(\underbrace{s s^{\prime} s s^{\prime} \ldots}_{m \text { factors }}) q_{1} q_{2} \ldots q_{b} \tag{2.10.1}
\end{equation*}
$$

of y whose corresponding digraph is again \mathbf{G}, where $p_{i}, q_{j} \in S, a+b+m=r+1$ and $s^{\prime}=s_{i_{2}}$. We may assume that a is the smallest number with this property. Hence $p_{1} p_{2} \ldots p_{a}(\underbrace{s s^{\prime} s s^{\prime} \ldots}_{k \text { factors }}) \in W_{\mathrm{c}}$ for any $k<m$. Then w has the reduced expression

$$
\begin{equation*}
w=p_{1} p_{2} \ldots p_{a}(\underbrace{s^{\prime} s s^{\prime} s \ldots}_{m-1 \text { factors }}) q_{1} q_{2} \ldots q_{b} \tag{2.10.2}
\end{equation*}
$$

Since $m \geqslant 3$, there exists at least one factor s among the $m-1$ factors in the parentheses of the expression (2.10.2). We have $p_{h} s=s p_{h}$ for any h by Lemma 1.1 (2) and the fact that the leftmost factor s in the parentheses of the expression (2.10.1) corresponds to a source of the digraph \mathbf{G}. In particular, this implies $t \neq p_{h}$ for any h. Next we claim that $t=s^{\prime}$. Otherwise, the leftmost factor t in the expression (2.10.2) should be q_{k} for some k. Since there exists at least one factor s in the parentheses of the expression (2.10.2), this contradicts the fact that \mathbf{q}_{k} is a source of the digraph $\mathbf{G}(w)$. So (2.10.2) becomes

$$
\begin{equation*}
w=p_{1} p_{2} \ldots p_{a}(\underbrace{t s t s \ldots}_{m-1 \text { factors }}) q_{1} q_{2} \ldots q_{b} \tag{2.10.3}
\end{equation*}
$$

Since the leftmost factor t in the parentheses of (2.10.3) is a source of $\mathbf{G}(w)$, we have $p_{h} t=t p_{h}$ for any h. So y has the reduced expression

$$
\begin{equation*}
y=(\underbrace{s t s t \ldots}_{m \text { factors }}) p_{1} p_{2} \ldots p_{a} q_{1} q_{2} \ldots q_{b} \tag{2.10.4}
\end{equation*}
$$

which is impossible since y is obtained from w by a left $\{s, t\}$-star operation. This shows that W_{c} is invariant under left star operations. By the same argument, we can show that W_{c} is invariant under right star operations. This proves our result.

We are told that the conclusion of Proposition 2.10 was proved by Graham in the simply laced case of finite Coxeter groups (see [9]). By Lemma 2.6 (iv) and Proposition 2.10, we see that Lemma 2.9 implies that the number $n(w)$ is invariant under the star operations on an element w in W_{c}.
§3. The value $a(w)$ for $w \in W_{\mathrm{c}}$.
Assume that W is a Weyl or an affine Weyl group. Lusztig's a-value is an important invariant for an element of W (see 1.3). It is usually difficult to calculate $a(z)$ for an arbitrary $z \in W$. However, the value $n(w)$ for $w \in W_{\mathrm{c}}$ can be computed easily. The main result of the present section is Theorem 3.1, which equates $a(w)$ with $n(w)$ for any $w \in W_{\mathrm{c}}$.

Theorem 3.1. When W is a Weyl or an affine Weyl group, we have $a(w)=n(w)$ for any $w \in W_{\mathrm{c}}$.

By 1.3 (a)-(c), the inequality $a(w) \geqslant n(w)$ holds for $w \in W_{\mathrm{c}}$ in general. We have to show the equality holds. We need only show it in the case where W is irreducible. So from now on, assume that we are in such a case.

Note that the result in the simply-laced cases are known already (see [14, Theorems 17.4 and 17.6] and [18, Theorem 3.1] for the cases of A_{n} and $\widetilde{A}_{n}, n \geqslant 1$; and see [5, Theorem 4.1] for an arbitrary simply-laced case).
3.2. Let W be A_{n} or $\widetilde{A}_{n}(n \geqslant 1)$. Then we have the following two results:
(i) An element $w \in W$ is in W_{c} if and only if w corresponds to a partition of the form $2^{k} 1^{n-2 k}$ (i.e., a partition of n with k parts equal to 2 and $n-2 k$ parts equal to 1) for some $0 \leqslant k \leqslant n / 2$ under the map defined in [14, Definition 5.3] (see [14, Theorems 17.4 and 17.6] and [18, Theorem 3.1]);
(ii) For any $w \in W_{\mathrm{c}}$, we have $a(w)=k$ if and only if w corresponds to $2^{k} 1^{n-2 k}$, which holds if and only if $n(w)=k$ (see [18, Theorem 3.1] and [16, formula (6.27)]).

Then Theorem 3.1 follows in this case. So in the subsequent discussion, we assume $W \neq A_{n}, \widetilde{A}_{n}$ (hence the Coxeter graph of W is a tree).
3.3. By the Cartier-Foata factorization of $w \in W$, we mean the expression of w of the form $w=w_{J_{1}} w_{J_{2}} \ldots w_{J_{r}}$, where $J_{i}=\mathcal{L}\left(w_{J_{i}} w_{J_{i+1}} \ldots w_{J_{r}}\right)$ for any $1 \leqslant i \leqslant r$ (see [7]).

Let F_{c} be the set of all the elements w in W_{c} such that $\mathcal{L}(s w) \subset \mathcal{L}(w)$ (or equivalently, $\mathcal{L}(s w)=\mathcal{L}(w) \backslash\{s\})$ for any $s \in \mathcal{L}(w)$. Then the following result can be shown from the definition.

Lemma. Let W be a Weyl or an affine Weyl group.
(1) Any $w \in W_{\mathrm{c}}$ can be transformed to some of its left retractions in F_{c} by left star operations.
(2) If $w \in F_{\mathrm{c}}$, then any right retraction of w is also in F_{c}.

Let $w=w_{J_{1}} w_{J_{2}} \ldots w_{J_{r}}$ be the Cartier-Foata factorization of $w \in W$.
(3) Denote $J=J_{1}$ and $I=J_{2}$. Then for any $s \in I$, there exist at least two $t \neq r$ in J such that st $\neq t$ s and $r s \neq s r$. In particular, this implies that \mathbf{I} contains no terminal node of the Coxeter graph of W.
(4) w is in W_{c} if and only if the following conditions hold:
(i) if $s \in J_{i-1} \cap J_{i+1}$ for some $1<i<r$ then there must exist either some $t \in J_{i}$ with $o(s t)>3$, or some $t \neq t^{\prime}$ in J_{i} with $o(s t), o\left(s t^{\prime}\right)>2$; in the former case, if $o(s t)=4$ and $t \in J_{i-2}$ (resp., $t \in J_{i+2}$) then there exists either some $s^{\prime} \in J_{i-1} \backslash\{s\}$ (resp., $s^{\prime} \in J_{i+1} \backslash\{s\}$) with $o\left(s^{\prime} t\right)>2$ or some $t^{\prime} \in J_{i} \backslash\{t\}$ with $o\left(s t^{\prime}\right)>2$.
(ii) if there exist some $1 \leqslant i<r-5$ and $s, t \in S$ with $o(s t)=6$ such that $s \in J_{i} \cap J_{i+2} \cap$ J_{i+4} and $t \in J_{i+1} \cap J_{i+3} \cap J_{i+5}$, then there must exist either some $s^{\prime} \in\left(J_{i+2} \cup J_{i+4}\right) \backslash\{s\}$ with $o\left(s^{\prime} t\right)>2$ or some $t^{\prime} \in\left(J_{i+1} \cup J_{i+3}\right) \backslash\{t\}$ with $o\left(s t^{\prime}\right)>2$.

Proof. By applying induction on $\ell(w) \geqslant 0$, (1) follows directly from the definition of the set F_{c}. Since no element of I is in $\mathcal{L}(w)$, there exists, for any $s \in I$, at least one $t \in J$ such that $s t \neq t s$. If, for some $s \in I, t$ is the only element in J satisfying the condition $s t \neq t s$, then $t \in \mathcal{L}(w) \backslash \mathcal{L}(t w)$ and $s \in \mathcal{L}(t w) \backslash \mathcal{L}(w)$. So $w \mapsto t w$ is a left $\{s, t\}$-star operation with $t w<w$, contradicting the assumption of $w \in F_{\mathrm{c}}$. Hence (3) follows. For
(2), we need only show that if $w=x \cdot s \in F_{\mathrm{c}}$ and $s \in S$ then $x \in F_{\mathrm{c}}$. We have $x \in W_{\mathrm{c}}$ by Lemma 1.1 (4). Suppose $x \notin F_{\mathrm{c}}$. Then there exists some $t \in \mathcal{L}(r x) \backslash \mathcal{L}(x)$ for some $r \in \mathcal{L}(x)$. Since $\mathcal{L}(x) \subseteq \mathcal{L}(w)$ and $\mathcal{L}(r x) \subseteq \mathcal{L}(r w)$, we have $r \in \mathcal{L}(w)$ and $t \in \mathcal{L}(r w)$. By the assumption of $w \in F_{\mathrm{c}}$, we have $t \in \mathcal{L}(w)$. As $t \notin \mathcal{L}(x)$, this implies $x \cdot s=t \cdot x$ by the exchange condition on W. This implies $s=t$ by Lemma 1.1 (3) and the fact that $w \in W_{\mathrm{c}}$. Moreover, s commutes with and is not equal to any factor $v \in S$ in a reduced expression of x by the fact that $s \cdot x=x \cdot s \in W_{\mathrm{c}}$ and Lemma 1.1 (2). This contradicts the fact that $s=t \in \mathcal{L}(r x)$. Hence (2) is shown. Finally, (4) follows directly by Lemma 2.5.

For any $w \in W_{\mathrm{c}}$, there is some $y \in F_{\mathrm{c}}$ obtained from w by left star operations by Lemma $3.3(1)$. We have $a(w)=a(y)$ and $n(w)=n(y)$ by $1.3(\mathrm{~b})$ and Lemmas 1.5, 2.9. So we need only consider the case of $w \in F_{\mathrm{c}}$ (rather than $w \in W_{\mathrm{c}}$) in the proof of Theorem 3.1.
3.4. In 3.4 and 3.6-3.7, we always assume that $w \in F_{\mathrm{c}}$ and $I, J \subseteq S$ are as in Lemma 3.3 (3). We may assume $I \neq \emptyset$. For otherwise, $w=w_{J}$, the equation $a(w)=n(w)$ clearly holds. Then $\mathbf{G}\left(w_{J} w_{I}\right)$ is a subdigraph of $\mathbf{G}(w)$ with the node set $\mathbf{I} \cup \mathbf{J}$. Let

$$
\begin{equation*}
I \cup J=K_{1} \cup \ldots \cup K_{u} \tag{3.4.1}
\end{equation*}
$$

be a partition of $I \cup J$ with $W_{I \cup J}=W_{K_{1}} \times \ldots \times W_{K_{u}}$ (direct product), where each $W_{K_{i}}$ is an irreducible standard parabolic subgroup of W. Then each \mathbf{K}_{i} is the node set of a connected subgraph Γ_{i} of the Coxeter graph Γ of W. By Lemma 3.3, we see that $\mathbf{I} \cap \mathbf{K}_{i}$, when it is nonempty (or equivalently, $\left|\mathbf{K}_{i}\right| \geqslant 3$), is fully commutative and contains no terminus of Γ_{i}. Thus $\left|\mathbf{I} \cap \mathbf{K}_{i}\right| \leqslant \frac{1}{2}\left|\mathbf{K}_{i}\right|$ for any i. In particular, when $\mathbf{I} \cap \mathbf{K}_{i} \neq \emptyset$, the equation $\left|\mathbf{I} \cap \mathbf{K}_{i}\right|=\frac{1}{2}\left|\mathbf{K}_{i}\right|$ holds only when $\left|\mathbf{K}_{i}\right|$ is even and the underlying graph of $\mathbf{G}\left(w_{K_{i}}\right)$ is a circle (i.e., $W_{K_{i}}=\widetilde{A}_{\left|K_{i}\right|-1}$). The latter case never happens by our assumption on W (see 3.2).
3.5. In the subsequent discussion, the subscripts for the generators of the irreducible Weyl and affine Weyl groups are given as follows (following [4, pages 250-275]) . The generators $s_{1}, s_{2}, \ldots, s_{8}$ of E_{8} satisfy that $o\left(s_{1} s_{3}\right)=o\left(s_{3} s_{4}\right)=o\left(s_{2} s_{4}\right)=o\left(s_{4} s_{5}\right)=o\left(s_{5} s_{6}\right)=$ $o\left(s_{6} s_{7}\right)=o\left(s_{7} s_{8}\right)=3$. The groups E_{6} and E_{7} can be regarded as the standard parabolic
subgroups of E_{8} generated by $\left\{s_{1}, \ldots, s_{6}\right\}$ and $\left\{s_{1}, \ldots, s_{7}\right\}$ respectively. Then \widetilde{E}_{m} is the extension of E_{m} with an additional generator s_{0} such that $o\left(s_{0} s_{2}\right)=3$ if $m=6, o\left(s_{0} s_{1}\right)=3$ if $m=7$, and $o\left(s_{0} s_{8}\right)=3$ if $m=8$.

The generator set $S=\left\{s_{0}, s_{1}, \ldots, s_{n}\right\}$ of the group \widetilde{A}_{n} (resp., $\widetilde{B}_{n}, \widetilde{C}_{n}, \widetilde{D}_{n}$) satisfies that $o\left(s_{i} s_{i+1}\right)=3$ for $0 \leqslant i \leqslant n$ with the subscripts modulo $n+1$ (resp., $o\left(s_{i} s_{i+1}\right)=$ $o\left(s_{0} s_{2}\right)=3$ for $1 \leqslant i<n-1$ and $o\left(s_{n-1} s_{n}\right)=4 ; o\left(s_{i} s_{i+1}\right)=3$ for $1 \leqslant i<n-1$ and $o\left(s_{0} s_{1}\right)=o\left(s_{n-1} s_{n}\right)=4 ; o\left(s_{i} s_{i+1}\right)=o\left(s_{0} s_{2}\right)=o\left(s_{n-2} s_{n}\right)=3$ for $\left.1 \leqslant i<n-1\right)$.

The generator set $S=\left\{s_{0}, s_{1}, s_{2}, s_{3}, s_{4}\right\}$ of \widetilde{F}_{4} satisfies that $o\left(s_{0} s_{1}\right)=o\left(s_{1} s_{2}\right)=$ $o\left(s_{3} s_{4}\right)=3$ and $o\left(s_{2} s_{3}\right)=4$. The generator set $S=\left\{s_{0}, s_{1}, s_{2}\right\}$ of \widetilde{G}_{2} satisfies that $o\left(s_{0} s_{2}\right)=3$ and $o\left(s_{1} s_{2}\right)=6$.

Then a Weyl group $X \in\left\{A_{h}, B_{k}, C_{l}, D_{m}, F_{4}, G_{2} \mid h>0, k>2, l>1, m>3\right\}$ can be regarded as the standard parabolic subgroup of the affine Weyl group \widetilde{X} generated by $S \backslash\left\{s_{0}\right\}$.
3.6. In $3.6-3.7$, we assume the digraph $\mathbf{G}\left(w_{J} w_{I}\right)$ to be connected with Γ^{\prime} the underlying graph. First assume that $\mathbf{I} \cup \mathbf{J}$ contains no branch node of the Coxeter graph Γ of W. Then the graph Γ^{\prime} is a line, and $\mathbf{I} \cup \mathbf{J}=\left\{\mathbf{s}_{1}, \mathbf{s}_{2}, \ldots, \mathbf{s}_{t}\right\}$, where $s_{i} s_{i+1} \neq s_{i+1} s_{i}$ for $1 \leqslant i<t$ by relabelling if necessary. By Lemma 3.3 (3), we see that t is odd, say $t=2 h+1$ for some $h \geqslant 1$, and that $\mathbf{J}=\left\{\mathbf{s}_{1}, \mathbf{s}_{3}, \ldots, \mathbf{s}_{2 h+1}\right\}$ and $\mathbf{I}=\left\{\mathbf{s}_{2}, \mathbf{s}_{4}, \ldots, \mathbf{s}_{2 h}\right\}$. The directed edges of $\mathbf{G}\left(w_{J} w_{I}\right)$ are $\left(\mathbf{s}_{2 i \pm 1}, \mathbf{s}_{2 i}\right)$ for $1 \leqslant i \leqslant h$.
(i) If $o\left(s_{2 i \pm 1} s_{2 i}\right)=3$ for all $1 \leqslant i \leqslant h$, then let $z=s_{1} s_{3} \ldots s_{2 h+1} \cdot s_{2} s_{4} \ldots s_{2 h} \cdot s_{3} s_{5} \ldots s_{2 h-1}$. $\ldots \cdot s_{h} s_{h+2} \cdot s_{h+1}$ (here and later we express the elements z, z_{k}, etc, in the form of CartierFoata factorizations, see 3.3).
(ii) If there exists exactly one pair (say \mathbf{s}, \mathbf{t}) in $\mathbf{I} \cup \mathbf{J}$, satisfying $o(s t)=4$ and if one of \mathbf{s}, \mathbf{t} is a terminus in Γ^{\prime} (say $\mathbf{s}_{2 h+1} \in\{\mathbf{s}, \mathbf{t}\}$ for the sake of definiteness), then $W_{I \cup J}=B_{2 h+1}$ for some $h \geqslant 1$. Let z be the element $s_{1} s_{3} \ldots s_{2 h+1} \cdot s_{2} s_{4} \ldots s_{2 h} \cdot s_{3} s_{5} \ldots s_{2 h+1} \cdot s_{4} s_{6} \ldots s_{2 h} \cdot \ldots$. $s_{2 h-1} s_{2 h+1} \cdot s_{2 h} \cdot s_{2 h+1}$ if $W \in\left\{B_{l}, \widetilde{B}_{l}, \widetilde{C}_{l}\right\}$ for some $l \geqslant 2 h+1$ (note that the subscripts i of the s_{i} 's here and in (i) are not those described in 3.5), $s_{2} s_{4} \cdot s_{3} \cdot s_{2} \cdot s_{1}$ or $s_{1} s_{3} \cdot s_{2} \cdot s_{3} \cdot s_{4}$ if $W=F_{4}$, and $s_{2} s_{4} \cdot s_{3} \cdot s_{2} \cdot s_{1} \cdot s_{0}$ or $s_{1} s_{3} \cdot s_{2} \cdot s_{3} \cdot s_{4}$ if $W=\widetilde{F}_{4}$ (here and later the subscripts i of the s_{i} 's are given as in 3.5).
(iii) If there exists exactly one pair (say \mathbf{s}, \mathbf{t}) in $\mathbf{I} \cup \mathbf{J}$, satisfying $o(s t)=4$ and none of \mathbf{s}, \mathbf{t} is a terminus of Γ^{\prime}, then $W_{I \cup J}=\widetilde{F}_{4}$. Let $z=s_{0} s_{2} s_{4} \cdot s_{1} s_{3} \cdot s_{2} \cdot s_{3} \cdot s_{4}$.

Then in any of the cases (i)-(iii), the element w is a right retraction of z (see 1.1) by Lemmas 2.5, 3.3 and the assumption of $w \in F_{\mathrm{c}}$.
(iv) Suppose there exists exactly one pair (say s,t) in $\mathbf{I} \cup \mathbf{J}$ with $o(s t)=6$. Then $W_{I \cup J}=\widetilde{G}_{2}$. Let $x=s_{0} s_{1} \cdot s_{2} \cdot s_{1} \cdot s_{2}$ and then let $z_{k}=x^{k}$ for any $k \geqslant 1$.
(v) If there exist two pairs (say $\{\mathbf{s}, \mathbf{t}\},\left\{\mathbf{s}^{\prime}, \mathbf{t}^{\prime}\right\}$) in $\mathbf{I} \cup \mathbf{J}$ with $o(s t)=o\left(s^{\prime} t^{\prime}\right)=4$, then $W_{I \cup J}=\widetilde{C}_{2 h}$ for some $h \geqslant 1$ and $\left(\mathbf{s}, \mathbf{t}, \mathbf{s}^{\prime}, \mathbf{t}^{\prime}\right)=\left(\mathbf{s}_{0}, \mathbf{s}_{1}, \mathbf{s}_{2 h-1}, \mathbf{s}_{2 h}\right)$. Let $x=s_{0} s_{2} \ldots s_{2 h}$. $s_{1} s_{3} \ldots s_{2 h-1}$ and then let $z_{k}=x^{k}$ for $k \geqslant 1$.

Then in any of the cases (iv)-(v), the element w is a right retraction of z_{k} with some $k \geqslant 1$ by Lemmas 2.5, 3.3 and the assumption of $w \in F_{\mathrm{c}}$.
3.7. Next assume that $\mathbf{I} \cup \mathbf{J}$ contains a branch node, say s, of the Coxeter graph Γ of W. If \mathbf{s} is a terminus in the underlying graph Γ^{\prime} of the digraph $\mathbf{G}\left(w_{J} w_{I}\right)$, then the situation is the same as that in 3.6. Now assume that we are not in such a case.
(i) First assume $\mathbf{s} \in \mathbf{J}$. Then $W \in\left\{E_{i}, \widetilde{E}_{i} \mid i=6,7,8\right\}$ and $s=s_{4}$. When W is E_{6}, E_{7} or \widetilde{E}_{7}, let $z=s_{1} s_{4} s_{6} \cdot s_{3} s_{5} \cdot s_{4} \cdot s_{2}$; when $W=\widetilde{E}_{6}$, let z be one of the elements $s_{1} s_{4} s_{6} \cdot s_{3} s_{5} \cdot s_{4} \cdot s_{2} \cdot s_{0}, s_{1} s_{4} s_{0} \cdot s_{3} s_{2} \cdot s_{4} \cdot s_{5} \cdot s_{6}, s_{0} s_{4} s_{6} \cdot s_{2} s_{5} \cdot s_{4} \cdot s_{3} \cdot s_{1}$, and $s_{0} s_{1} s_{4} s_{6} \cdot s_{2} s_{3} s_{5} \cdot s_{4} ;$ when W is E_{8} or \widetilde{E}_{8}, let $z=s_{1} s_{4} s_{6} s_{8} \cdot s_{3} s_{5} s_{7} \cdot s_{4} s_{6} \cdot s_{2} s_{5} \cdot s_{4} \cdot s_{3} \cdot s_{1}$.
(ii) Next assume $\mathbf{s} \in \mathbf{I}$. Then W is $D_{n}, \widetilde{D}_{n}, \widetilde{B}_{m}, E_{i}$ or $\widetilde{E}_{i}(n \geqslant 4, m \geqslant 3$ and $i=6,7,8$). When $W=\widetilde{D}_{n}$ with $\mathbf{s}=\mathbf{s}_{2}, \mathbf{s}_{n-2}$ two branch nodes (hence $n>4$), let $x=s_{0} s_{1} \cdot s_{2} \cdot s_{3} \cdot \ldots \cdot s_{n-2}, y=s_{n-1} s_{n} \cdot s_{n-2} \cdot s_{n-3} \cdot \ldots \cdot s_{2}$, then let $z_{k}=x y x \ldots$ and $z_{k}^{\prime}=y x y \ldots(k$ factors each $)$ for $k \geqslant 1$; when $n=4$, the branch node \mathbf{s} is \mathbf{s}_{2}, let $x_{i j}=s_{i} s_{j} \cdot s_{2}$ for any $i \neq j$ in $\{0,1,3,4\}$ and let $\bar{x}_{i j}=x_{l m}$ be with $\{i, j, l, m\}=\{0,1,3,4\}$, then let $z_{k}^{(i j)}=x_{i j} \bar{x}_{i j} x_{i j} \ldots(k$ factors $)$ for any $k \geqslant 1$, let $z^{(m)}=s_{i} s_{j} s_{l} \cdot s_{2} \cdot s_{m}$ for $\{i, j, l, m\}=\{0,1,3,4\}$, and let $z_{0}=s_{0} s_{1} s_{3} s_{4} \cdot s_{2}$. When $W=\widetilde{B}_{m}$ is with $\mathbf{s}=\mathbf{s}_{2}$ the branch node, let $x=s_{0} s_{1} \cdot s_{2} \cdot s_{3} \cdot \ldots \cdot s_{m-1} \cdot s_{m} \cdot s_{m-1} \cdot \ldots \cdot s_{2}$, then let $z_{k}=x^{k}$ for $k \geqslant 1$; in particular, when $W=\widetilde{B}_{3}$, we further let $y_{0}=s_{0} s_{3} \cdot s_{2}$ and $y_{1}=s_{1} s_{3} \cdot s_{2}$, then let $z_{k}^{\prime}=y_{0} y_{1} y_{0} \ldots$ and $z_{k}^{\prime \prime}=y_{1} y_{0} y_{1} \ldots(k$ factors each $)$ for $k \geqslant 1$. Also, let $z=s_{0} s_{1} s_{3} \cdot s_{2} \cdot s_{3}$. When W is E_{i} or \widetilde{E}_{i}, the branch node \mathbf{s} is always \mathbf{s}_{4}. Then $z_{0}=s_{2} s_{3} s_{5} \cdot s_{4}$ is always
in F_{c}. Now we consider the other elements of F_{c} in E_{i} or \widetilde{E}_{i}. When $W=\widetilde{E}_{6}$, let $z_{0} \in$ $\left\{s_{3} s_{5} \cdot s_{4} \cdot s_{2} \cdot s_{0}, s_{2} s_{5} \cdot s_{4} \cdot s_{3} \cdot s_{1}, s_{2} s_{3} \cdot s_{4} \cdot s_{5} \cdot s_{6}\right\}$. When $W=\widetilde{E}_{7}$, let $x=s_{2} s_{5} s_{7} \cdot s_{4} s_{6} \cdot s_{3} s_{5} \cdot s_{1} s_{4}$, $y=s_{0} s_{2} s_{3} \cdot s_{1} s_{4} \cdot s_{3} s_{5} \cdot s_{4} s_{6}$, then let $z_{k}=x y x \ldots$ and $z_{k}^{\prime}=y x y \ldots(k$ factors each $)$ for $k \geqslant 1$; let $w_{1}=s_{0} s_{3} s_{5} s_{7} \cdot s_{1} s_{4} s_{6} \cdot u$ with $u \in\left\{s_{2} s_{3} s_{5} \cdot s_{4}, s_{2} s_{3} \cdot s_{4} \cdot s_{5}, s_{2} s_{5} \cdot s_{4} \cdot s_{3}, s_{3} s_{5} \cdot s_{4} \cdot s_{2}\right\}$, let $w_{2}=s_{0} s_{2} s_{3} s_{5} s_{7} \cdot s_{1} s_{4} s_{6} \cdot s_{3} s_{5} \cdot s_{4} \cdot s_{2}, w_{3}=s_{0} s_{3} s_{5} \cdot s_{1} s_{4} \cdot s_{2} s_{3} \cdot s_{4} \cdot s_{5} \cdot s_{6} \cdot s_{7}$ and $w_{4}=s_{3} s_{5} s_{7} \cdot s_{4} s_{6} \cdot s_{2} s_{5} \cdot s_{4} \cdot s_{3} \cdot s_{1} \cdot s_{0}$. When $W=\widetilde{E}_{8}$, let $z_{1}=s_{3} s_{2} s_{5} s_{7} s_{0} \cdot s_{4} s_{6} s_{8} \cdot s_{5} s_{7} \cdot s_{6}$, $z_{2}=s_{2} s_{5} s_{7} s_{0} \cdot s_{4} s_{6} s_{8} \cdot s_{3} s_{5} s_{7} \cdot s_{1} s_{4} s_{6} \cdot u$ with $u \in\left\{s_{3} s_{2} s_{5} \cdot s_{4}, s_{3} s_{5} \cdot s_{4} \cdot s_{2}, s_{3} s_{2} \cdot s_{4} \cdot s_{5}, s_{2} s_{5}\right.$. $\left.s_{4} \cdot s_{3}\right\}, z_{3}=s_{3} s_{5} s_{7} s_{0} \cdot s_{4} s_{6} s_{8} \cdot s_{2} s_{5} s_{7} \cdot s_{4} s_{6} \cdot s_{3} s_{5} \cdot s_{1} s_{4} \cdot s_{2} s_{3} \cdot s_{4} \cdot s_{5} \cdot s_{6} \cdot s_{7} \cdot s_{8} \cdot s_{0}$, $z_{4}=s_{2} s_{5} s_{7} \cdot s_{4} s_{6} \cdot s_{3} s_{5} \cdot s_{1} s_{4} \cdot s_{2} s_{3} \cdot s_{4} \cdot s_{5} \cdot s_{6} \cdot s_{7} \cdot s_{8} \cdot s_{0}$, and $z_{5}=s_{2} s_{3} \cdot s_{4} \cdot s_{5} \cdot s_{6} \cdot s_{7} \cdot s_{8} \cdot s_{0}$.

Note that E_{i} is a standard parabolic subgroup of \widetilde{E}_{i} for $i=6,7,8$. We see that in any of the above affine Weyl groups and of the corresponding Weyl groups, an element w of F_{c} with $\mathbf{I} \cup \mathbf{J}$ containing a branch node of Γ and with $W_{I \cup J}$ irreducible must be a right retraction of some $z, z_{k}, z_{k}^{\prime}, z_{k}^{\prime \prime}, z_{k}^{(i j)}, z^{(m)}$ or w_{k} whenever it is applicable.

Lemmas 3.8 and 3.9 below can be obtained by the list of elements of F_{c} in 3.6-3.7.
Lemma 3.8. Let W be an irreducible Weyl or affine Weyl group. Let $w \in F_{\mathrm{c}}$ and $I, J \subseteq S$ be as in Lemma 3.3 with $\mathbf{I} \cup \mathbf{J}$ containing no branch node of the Coxeter graph Γ of W. Then the set $\{s \in S \mid s \leqslant w\}$ is contained in $I \cup J$ except for the case where $W \in\left\{F_{4}, \widetilde{F}_{4}\right\}$ and w is a right extension of $s_{1} s_{3} \cdot s_{2} \cdot s_{3} \cdot s_{4}$ or $s_{2} s_{4} \cdot s_{3} \cdot s_{2} \cdot s_{1}$. In this case (i.e., $\{s \in S \mid s \leqslant w\} \subseteq I \cup J$), let u be the number of parts in the partition (3.4.1) of $I \cup J$, then there exists a decomposition $w=w_{1} \cdot w_{2} \cdot \ldots \cdot w_{u}$ with $w_{h} \in W_{K_{h}} \cap F_{\mathrm{c}}$, where each w_{h} is a right retraction of some suitable $z, z_{k}, z_{k}^{\prime}, z_{k}^{\prime \prime}, z_{k}^{(i j)}, z^{(m)}$ or w_{k}.

Lemma 3.9. Let W be an irreducible Weyl or affine Weyl group. For any $w \in F_{\mathrm{c}}$ in 3.6-3.7 with $W_{I \cup J}$ irreducible, we have $n(s w) \leqslant n(w)=|\mathcal{L}(w)|$ for any $s \in \mathcal{L}(w)$. More precisely, we have $n(s w)<n(w)=|\mathcal{L}(w)|$ for any $s \in \mathcal{L}(w)$, unless w is a right extension of some element w^{\prime} defined below:
(1) $W=\widetilde{D}_{n}$. When $n>4$, let $u=s_{0} s_{1} \cdot s_{2} \cdot s_{3} \cdot \ldots \cdot s_{n-2} \cdot s_{n-1} s_{n}$, then let $w^{\prime} \in\left\{u, u^{-1}\right\}$; when $n=4$, let $w^{\prime} \in\left\{s_{i} s_{j} \cdot s_{2} \cdot s_{l} s_{m} \mid\{i, j, l, m\}=\{0,1,3,4\}\right\}$.
(2) $W=\widetilde{B}_{m}$. When $m>3$, let $w^{\prime}=s_{0} s_{1} \cdot s_{2} \cdot s_{3} \cdot \ldots \cdot s_{m-1} \cdot s_{m} \cdot s_{m-1} \cdot \ldots \cdot s_{2} \cdot s_{1} s_{0}$;
when $m=3$, let $w^{\prime} \in\left\{s_{0} s_{1} \cdot s_{2} \cdot s_{3} \cdot s_{2} \cdot s_{0} s_{1}, s_{0} s_{3} \cdot s_{2} \cdot s_{1} s_{3}, s_{1} s_{3} \cdot s_{2} \cdot s_{0} s_{3}\right\}$.
(3) $W=\widetilde{C}_{l}$ for some even $l \geqslant 2$. Let $w^{\prime}=s_{0} s_{2} s_{4} \ldots s_{l} \cdot s_{1} s_{3} \ldots s_{l-1} \cdot s_{0} s_{2} s_{4} \ldots s_{l}$.
(4) $W=\widetilde{E}_{7}$. Let $u=s_{2} s_{5} s_{7} \cdot s_{4} s_{6} \cdot s_{3} s_{5} \cdot s_{1} s_{4} \cdot s_{0} s_{3} s_{2}$, then let $w^{\prime} \in\left\{u, u^{-1}\right\}$.
(5) $W=\widetilde{G}_{2}$. Let $w^{\prime}=s_{0} s_{1} \cdot s_{2} \cdot s_{1} \cdot s_{2} \cdot s_{1} s_{0}$.
3.10. Let F_{c}^{\prime} be the set of all the elements w in F_{c} with $n(s w)<n(w)$ for any $s \in \mathcal{L}(w)$. Let $F_{\mathrm{c}}^{\prime \prime}=F_{\mathrm{c}} \backslash F_{\mathrm{c}}^{\prime}$. We record a simple fact on $F_{\mathrm{c}}^{\prime \prime}$ for later use.

Lemma 3.11. Let W be an irreducible Weyl or an affine Weyl group. Then $s \leqslant w$ for any $w \in F_{\mathrm{c}}^{\prime \prime}$ and $s \in S$.
3.12. In the above discussion on $w \in F_{\mathrm{c}}$, we always assume $W_{I \cup J}$ irreducible. Now assume that $I \cup J$ is as in (3.4.1) with $u>1$. For each i, let \mathbf{V}_{i} be the set of all the nodes sin $\mathbf{G}(w)$ such that there exists a directed path connecting s with some node in \mathbf{K}_{i}. Let \mathbf{G}_{i} be the subdigraph of $\mathbf{G}(w)$ with \mathbf{V}_{i} its node set. Then \mathbf{G}_{i} will be the associated digraph of some element w_{i} of F_{c} in one of the cases discussed in 3.5-3.9. By Lemma 3.8 and by observing the cases of $W=F_{4}, \widetilde{F}_{4}$, we see that there exist some $1 \leqslant i<j \leqslant u$ with $\mathbf{V}_{i} \cap \mathbf{V}_{j} \neq \emptyset$ only when $\mathbf{K}_{i} \cup \mathbf{K}_{j}$ contains some branch node of the Coxeter graph of W. By the definition of the set $F_{\mathrm{c}}^{\prime \prime}$, we see that $w \in F_{\mathrm{c}}^{\prime \prime}$ if and only if there exist some $1 \leqslant k \leqslant u$ with $w_{k} \in F_{\mathrm{c}}^{\prime \prime}$. Then we have the following

Lemma 3.13. Let W be an irreducible Weyl or affine Weyl group. If $w \in F_{\mathrm{c}}^{\prime \prime}$ then $W_{I \cup J}$ is irreducible, where $I \cup J$ is determined by w as in Lemma 3.3 (3).

Proof. Write $w=w_{J} \cdot x$ with $J=\mathcal{L}(w)$ and some $x \in W_{\mathrm{c}}$. Let $I=\mathcal{L}(x)$. Then $I \cup J$ has a partition (3.4.1) for some $u \geqslant 1$. We must show $u=1$. Recall the notations K_{i}, $\mathbf{K}_{i}, \mathbf{V}_{i}$ and $w_{i}(1 \leqslant i \leqslant u)$ in (3.4.1) and in 3.12. By 3.12 , there exists some $1 \leqslant k \leqslant u$ with $w_{k} \in F_{\mathrm{c}}^{\prime \prime}$. We may assume $k=1$ by relabelling the K_{i} 's if necessary. By Lemma 3.9, we see that $w_{1} \in F_{\mathrm{c}}^{\prime \prime}$ only if W is $\widetilde{D}_{n}(n \geqslant 4), \widetilde{B}_{m}(m \geqslant 3), \widetilde{C}_{l}$ (even $l \geqslant 2$), \widetilde{E}_{7} or \widetilde{G}_{2}. Write $w_{1}=w_{K} \cdot y$ with $K=\mathcal{L}\left(w_{1}\right)$ and some $y \in W_{c}$. Let $H=\mathcal{L}(y)$. Then $K \cup H=K_{1} \subseteq I \cup J$. When W is \widetilde{C}_{l} or \widetilde{G}_{2}, we have $K \cup H=S$ by Lemma 3.9 (3), (5). This implies $K_{1}=I \cup J$, i.e., $u=1$. When $W=\widetilde{E}_{7}, K_{1}$ is equal to either $\left\{s_{0}, s_{1}, s_{3}, s_{4}, s_{2}\right\}$
or $\left\{s_{2}, s_{4}, s_{5}, s_{6}, s_{7}\right\}$. Assume $K_{1}=\left\{s_{0}, s_{1}, s_{3}, s_{4}, s_{2}\right\}$. Then w_{1} is a right extension of $z=s_{0} s_{3} s_{2} \cdot s_{1} s_{4} \cdot s_{3} s_{5} \cdot s_{4} s_{6} \cdot s_{2} s_{5} s_{7}$. Let $\mathbf{V}^{\prime}=\mathbf{V}(w) \backslash \mathbf{V}_{1}$ and let \mathbf{G}^{\prime} be the subdigraph of $\mathbf{G}(w)$ with \mathbf{V}^{\prime} its node set. Then \mathbf{G}^{\prime} will be the associated digraph of some right retraction (written w^{\prime}) of w. We have $w=w^{\prime} \cdot w_{1}$ by the construction of \mathbf{V}_{1}. If $u>1$ then $w^{\prime} \neq e$. Since $w=w^{\prime} \cdot w_{1} \in W_{\mathrm{c}}$ and since the sources $\mathbf{s}_{0}, \mathbf{s}_{3}, \mathbf{s}_{2}$ of the subdigraph $\mathbf{G}\left(w_{1}\right)$ are also the sources of the digraph $\mathbf{G}(w)$, the element w^{\prime} contains no factors s_{i} with $0 \leqslant i \leqslant 4$ in its reduced expression by Lemma 1.1 (2). So $\mathcal{R}\left(w^{\prime}\right) \subseteq\left\{s_{5}, s_{6}, s_{7}\right\}$. It can be checked easily that $s_{j} z \notin W_{\mathrm{c}}$ for any $j=5,6,7$. So $w^{\prime} \neq e$ would imply $w \notin W_{\mathrm{c}}$, a contradiction. Hence we again get $u=1$. Similarly for the case of $K_{1}=\left\{s_{2}, s_{4}, s_{5}, s_{6}, s_{7}\right\}$. The arguments for the remaining two cases (i.e., $W=\widetilde{D}_{n}, \widetilde{B}_{m}$) are similar to that for the case of $W=\widetilde{E}_{7}$ and hence are left to the readers.
3.14. Now we consider the set F_{c}^{\prime}. For any $z=w_{K} \cdot z^{\prime} \in W_{\mathrm{c}}$ with $K=\mathcal{L}(z)$ and $z^{\prime} \in W_{\mathrm{c}}$, let $n^{\prime}(z)$ be the maximum possible cardinality for a node set \mathbf{V} in the digraph $\mathbf{G}(z)$ which satisfies conditions (2.7.1) and $\mathbf{V} \neq \mathbf{K}(\mathbf{K}$ being the set of sources in the digraph $\mathbf{G}(z)$, see 2.3). Clearly, the inequality $n^{\prime}(z) \leqslant n(z)$ holds in general.

The following is concerned with the properties of the set F_{c}^{\prime}.

Lemma. Let W be a Weyl or an affine Weyl group.
(1) The following statements on an element $w \in W_{\mathrm{c}}$ are equivalent:
(a) $w \in F_{\mathrm{c}}^{\prime}$;
(b) $n(s w)<n(w)$ for any $s \in \mathcal{L}(w)$;
(c) $a(s w)<a(w)$ for any $s \in \mathcal{L}(w)$;
(d) $w \underset{L}{<} s w$ for any $s \in \mathcal{L}(w)$;
(e) $n^{\prime}(w)<n(w)$;
(f) $n^{\prime}(w)<|\mathcal{L}(w)|$.
(2) If $w \in F_{c}^{\prime}$ then any right retraction of w is also in F_{c}^{\prime}.

Proof. (1) Write $w=w_{J} \cdot x$ with $J=\mathcal{L}(w)$ and some $x \in W_{\mathrm{c}}$.
$(\mathrm{b}) \Longleftrightarrow(\mathrm{c})$: This follows by Theorem 3.1.
$(\mathrm{c}) \Longleftrightarrow(\mathrm{d}):$ We have $w \underset{L}{\leqslant} s w$ for any $s \in \mathcal{L}(w)$ in general. Hence the result is an easy consequence of 1.3 (b),(d).
$(\mathrm{b}) \Longleftrightarrow(\mathrm{e}) \Longleftrightarrow(\mathrm{f})$: This can be shown by the facts that $n^{\prime}(w)=\max \{n(s w) \mid s \in J\}$ and $n(w)=\max \left\{n^{\prime}(w),|J|\right\}$.
$(\mathrm{a}) \Longrightarrow(\mathrm{b})$: This follows by the definition of the set F_{c}^{\prime}.
$(\mathrm{b}) \Longrightarrow(\mathrm{a})$: Condition (b) ensures that if \mathbf{V} is a node set of $\mathbf{G}(w)$ satisfying conditions (2.7.1) and $|\mathbf{V}|=n(w)$ then $\mathbf{V}=\mathbf{J}$ (J being the set of sources of $\mathbf{G}(w)$, corresponding to $J=\mathcal{L}(w))$. This implies that $|\mathcal{L}(s w)|<|\mathcal{L}(w)|$ for any $s \in \mathcal{L}(w)$. In general, we have $\mathcal{L}(s w) \supseteq \mathcal{L}(w) \backslash\{s\}$ for any $s \in \mathcal{L}(w)$. Hence the inequality $|\mathcal{L}(s w)|<|\mathcal{L}(w)|$ implies $\mathcal{L}(s w)=\mathcal{L}(w) \backslash\{s\} \subset \mathcal{L}(w)$ for any $s \in \mathcal{L}(w)$. So $w \in F_{\mathrm{c}}$. Thus w is in F_{c}^{\prime} by condition (b) and by the definition of the set F_{c}^{\prime}.
(2) According to the transitivity of taking right retraction, we need only show that if $w=z \cdot s \in F_{\mathrm{c}}^{\prime}$ and $s \in S$ then $z \in F_{\mathrm{c}}^{\prime}$. Since $z \in W_{\mathrm{c}}$, we may consider the associated digraph $\mathbf{G}(z)$. Clearly, $n^{\prime}(z) \leqslant n^{\prime}(w)<|\mathcal{L}(w)|$ by the equivalence of (a) and (f) in (1), and $\mathcal{L}(z) \subseteq \mathcal{L}(w)$. Again by the equivalence of (a) and (f) in (1), it suffices to show $n^{\prime}(z)<|\mathcal{L}(z)|$. The result is obvious in the case of $\mathcal{L}(z)=\mathcal{L}(w)$. Now assume $\mathcal{L}(z) \subsetneq \mathcal{L}(w)=J$. Thus $\mathbf{s} \in \mathbf{J}$ (s being the node of $\mathbf{G}(w)$ corresponding to the rightmost factor s in the expression $w=z \cdot s)$ and $\mathcal{L}(z)=\mathcal{L}(w) \backslash\{s\}$ by the exchange condition on W and the fact of $w \in W_{\mathrm{c}}$. Hence s commutes with any $t \in S$ satisfying $t \leqslant z$ by Lemma 1.1 (2). This implies that the node \mathbf{s} is contained in any maximal node set of $\mathbf{G}(w)$ satisfying condition (2.7.1). So $n^{\prime}(w)-1$ is the maximum possible cardinality for a node set \mathbf{V} of the digraph $\mathbf{G}(z)$ (regarded as a subdigraph of $\mathbf{G}(w)$) satisfying conditions (2.7.1) and $\mathbf{V} \neq \mathbf{J} \backslash\{\mathbf{s}\}$. Therefore $n^{\prime}(z)=n^{\prime}(w)-1<|\mathcal{L}(w)|-1=|\mathcal{L}(z)|$. This shows $z \in F_{\mathrm{c}}^{\prime}$ by the equivalence of (a) and (f) in (1).

We have the following important properties for the elements in F_{c}.
Lemma 3.15. Let W be a Weyl or an affine Weyl group.
(1) For any $w \in F_{c}^{\prime}$, there exists a sequence of elements $x_{0}=w, x_{1}, \ldots, x_{r}=w_{K}$ in F_{c}^{\prime} with $K=\mathcal{L}(w)$ such that x_{i} can be obtained from x_{i-1} by a right star operation and
$x_{i}<x_{i-1}$ for every $1 \leqslant i \leqslant r$. In particular, we have $n(w)=|\mathcal{L}(w)|$.
(2) For any $w \in F_{\mathrm{c}}^{\prime \prime}$, there exists some $s \in \mathcal{L}(w)$ such that $n(s w)=n(w)=|\mathcal{L}(w)|$ and that $\{w, s w\}$ is a primitive pair (see 1.6).
(3) For any $w \in W_{\mathrm{c}}$, there exists some $y \in F_{\mathrm{c}}^{\prime}$ such that y is a left retraction of w with $y \underset{L}{\sim} w$ and $n(y)=n(w)$.

Proof. For $w \in F_{\mathrm{c}}$, write $w=w_{J} \cdot x$ with $J=\mathcal{L}(w)$ and some $x \in W_{\mathrm{c}}$. Let $I=\mathcal{L}(x)$. We may assume $I \neq \emptyset$, for otherwise, the results are trivial. When $W_{I \cup J}$ is irreducible, results (1)-(2) can be shown by a close observation of all the cases listed in 3.6-3.9 (see Examples 3.19 for illustration). Lemma 3.13 tells us that $W_{I \cup J}$ is always irreducible for $w \in F_{\mathrm{c}}^{\prime \prime}$ whenever W is irreducible. So (2) follows.

Now we want to prove (1). Suppose that $w \in F_{\mathrm{c}}^{\prime}$ and that $I \cup J$ has a partition (3.4.1) with $u>1$. Keep the notations $w_{i}, \mathbf{V}_{i}, 1 \leqslant i \leqslant u$, in 3.12 . If any $w_{i}, 1 \leqslant i \leqslant u$, has the form $w_{H_{i}}$ for some $H_{i} \subseteq S$, then so does the element w and hence the result is true. Now assume that there exists some $1 \leqslant k \leqslant u$ with $w_{k} \neq w_{H}$ for any $H \subseteq S$. We may assume $k=1$ by relabelling the K_{i} 's in (3.4.1) if necessary. Let $\mathbf{V}^{\prime}=\mathbf{V}(w) \backslash \mathbf{V}_{1}$ and let \mathbf{G}^{\prime} be the subdigraph of $\mathbf{G}(w)$ with the node set \mathbf{V}^{\prime}. Then it is easily seen that \mathbf{G}^{\prime} is the associated digraph of some right retraction (written w^{\prime}) of w. Moreover, we have $w=w^{\prime} \cdot w_{1}$. By the last sentence of $3.12, w_{1}$ is in F_{c}^{\prime}. Write $w_{1}=w_{K} \cdot y$ with $K=\mathcal{L}\left(w_{1}\right)$ and some $y \in W_{\mathrm{c}}$. Let $H=\mathcal{L}(y)$. Then $W_{K \cup H}$ is irreducible (note $K \cup H=K_{1}$ in the notation of (3.4.1)). Hence w_{1} can be transformed to w_{K} by a sequence of right star operations according to the list in 3.6-3.7 for the elements of F_{c}^{\prime} in the irreducible case of $W_{I \cup J}$. By Lemma 2.6 (iv) and by the construction of the elements w_{1}, w^{\prime}, this implies that w can be transformed to $w^{\prime \prime}=w^{\prime} \cdot w_{K}$ by the same sequence of right star operations as w_{K} obtained from w_{1}. We see that $w^{\prime \prime}$ is a proper right retraction of w. Hence by Lemma $3.14(2), w^{\prime \prime}$ is in F_{c}^{\prime} as so is w. Therefore, (1) follows by induction on $\ell(w)-|\mathcal{L}(w)| \geqslant 0$.

For (3), if $w \notin F_{\mathrm{c}}$, then by the definition of the set F_{c}, there exists some $s \in \mathcal{L}(w)$ such that $w^{\prime}=s w$ can be obtained from w by a left star operation. Clearly, w^{\prime} is a proper left retraction of w with $w^{\prime} \underset{L}{\sim} w$ and $n\left(w^{\prime}\right)=n(w)$ by Lemmas 1.5 and 2.9. Applying
induction on $\ell(w) \geqslant 0$, we can show that there exists some $y \in F_{\mathrm{c}}$ such that y is a left retraction of w with $y \underset{L}{\sim} w$ and $n(y)=n(w)$. If $y \in F_{c}^{\prime}$ then we are done. Otherwise, by (2), there exists some $s \in \mathcal{L}(y)$ such that $\{y, s y\}$ is a primitive pair and $n(s y)=n(y)$. Hence $y^{\prime}=s y$ is a proper left retraction of y with $y^{\prime} \underset{L}{\sim} y$ by Lemma 1.6. Since y^{\prime} is in W_{c}, we can find a left retraction y_{1} of y^{\prime} in F_{c} with $y_{1} \underset{L}{\sim} y^{\prime}$ and $n\left(y_{1}\right)=n\left(y^{\prime}\right)$. Continue the process. Since y_{1} is a proper left retraction of y and since $\ell(y)<\infty$, such a process must stop after a finite number of steps. So we can eventually find a required element of F_{c}^{\prime}.
3.16. Proof of Theorem 3.1. By Lemma 3.15 (3) and 1.3 (b), any $w \in W_{\mathrm{c}}$ can be transformed to some $y \in F_{\mathrm{c}}^{\prime}$ with $a(y)=a(w)$ and $n(y)=n(w)$. Then by Lemma 3.15 (1), we have $y \underset{R}{\sim} w_{J}$ with $J=\mathcal{L}(y)$, where w_{J} is obtained from y by a sequence of right star operations. Then $n(y)=n\left(w_{J}\right)=|J|$ by Lemma 2.9. Also, $a(y)=a\left(w_{J}\right)=|J|$ by 1.3 (a), (b). This implies $a(y)=n(y)$ and hence $a(w)=n(w)$.

Remark 3.17. The careful reader may suspect that the above arguments proceed in circle:

Theorem $3.1 \Longrightarrow$ Lemma 3.14 (1) \Longrightarrow Lemma 3.14 (2)

$$
\Longrightarrow \text { Lemma } 3.15(1) \Longrightarrow \text { Theorem 3.1. }
$$

Now we would like to explain that this is not the case. Theorem 3.1 is applied only in the proof for the equivalence between (c) and (d), but not between (a) and (f) in Lemma 3.14 (1); only the latter equivalence is applied in the proof of Lemma 3.14 (2). Thus the validity of Lemma 3.14 (2) does not depend on Theorem 3.1.

Corollary 3.18. Let W be a Weyl or an affine Weyl group. Then $a(w)=|\mathcal{L}(w)|$ for any $w \in F_{\mathrm{c}}$.

Proof. Let $w=w_{J_{1}} \cdot \ldots \cdot w_{J_{r}}$ be the Cartier-Foata factorization of w. The result is obvious if $r=1$. Now assume $r>1$. If the group $W_{J_{1} \cup J_{2}}$ is irreducible then the result follows by Theorem 3.1 and Lemma 3.9. When $W_{J_{1} \cup J_{2}}$ is reducible, we can make the decomposition (3.4.1) with $J_{1} \cup J_{2}$ in the place of $I \cup J$. Then our proof in this case can proceed similar to that for Lemma 3.15 (1).

Examples 3.19. (1) Let $W=\widetilde{E}_{8}$ and let $w=s_{2} s_{5} s_{7} s_{0} \cdot s_{4} s_{6} s_{8} \cdot s_{3} s_{5} s_{7} \cdot s_{1} s_{4} s_{6} \cdot s_{3} s_{2} s_{5} \cdot s_{4}$. Then w is in F_{c}^{\prime} with $n(w)=|\mathcal{L}(w)|=4$. The required right star operations on w are just to remove the factors $s_{4}, s_{3}, s_{5}, s_{2}, s_{6}, s_{4}, s_{1}, s_{7}, s_{5}, s_{3}, s_{4}, s_{6}, s_{8}$ in turn on the right-side of w. Then the resulting element is $w_{0257}=s_{2} s_{5} s_{7} s_{0}$. So by 1.3 (a) and Lemma 1.5 , we get $a(w)=a\left(w_{0257}\right)=4$.
(2) Let $W=\widetilde{E}_{7}$ and let $w=s_{2} s_{5} s_{7} \cdot s_{4} s_{6} \cdot s_{3} s_{5} \cdot s_{1} s_{4} \cdot s_{0} s_{3} s_{2} \cdot z$ (some $z \in W_{\text {c }}$) be a right retraction of the element z_{k} but not that of z_{k-1} for some $k \geqslant 2$ (see 3.7 for z_{k} in \widetilde{E}_{7}). Then $w \in F_{\mathrm{c}}^{\prime \prime}$. Take $y=s_{2} w$. We have $n(y)=n(w)=|\mathcal{L}(w)|=3$. We claim that $\{w, y\}$ is a primitive pair. Let $w_{0}=w, w_{1}, \ldots, w_{8}$ be such that $w_{1}=s_{4} w, w_{2}=s_{6} w_{1}, w_{3}=s_{3} w_{2}$, $w_{4}=s_{5} w_{3}, w_{5}=s_{1} w_{4}, w_{6}=s_{4} w_{5}, w_{7}=s_{0} w_{6}, w_{8}=s_{3} w_{7}$. Also, let $y_{0}=y, y_{1}, \ldots, y_{8}$ be such that $y_{1}=s_{5} y, y_{2}=s_{7} y_{1}, y_{3}=s_{4} y_{2}, y_{4}=s_{6} y_{3}, y_{5}=s_{3} y_{4}, y_{6}=s_{5} y_{5}, y_{7}=s_{1} y_{6}$, $y_{8}=s_{4} y_{7}=s_{0} s_{3} s_{2} \cdot z$. Then we see that $\mathcal{L}\left(w_{0}\right)=\left\{s_{2}, s_{5}, s_{7}\right\} \supsetneqq\left\{s_{5}, s_{7}\right\}=\mathcal{L}\left(y_{0}\right)$, $\mathcal{L}\left(w_{i}\right)=\mathcal{L}\left(y_{i}\right)$ for $1 \leqslant i<8, \mathcal{L}\left(w_{8}\right)=\left\{s_{0}, s_{3}\right\} \varsubsetneqq\left\{s_{0}, s_{3}, s_{2}\right\}=\mathcal{L}\left(y_{8}\right)$ and that w_{j} is obtained from w_{j-1} by the same left star operation as y_{j} from y_{j-1} for any $1 \leqslant j \leqslant 8$. This implies that $\{w, y\}$ is a primitive pair and hence $w \underset{L}{\sim} y \underset{L}{\sim} y_{8}$ by Lemmas 1.6 and 1.5. So $a(w)=a(y)=a\left(y_{8}\right)$ and $n(w)=n(y)=n\left(y_{8}\right)=3$ by 1.3 (a), (b) and Proposition 2.10. The element y_{8} is in F_{c} with $\mathcal{L}\left(y_{8}\right)=\left\{s_{0}, s_{3}, s_{2}\right\}$ which is a right retraction of z_{k-1}^{\prime} but not that of z_{k-2}^{\prime} (see 3.7 for z_{k}^{\prime} in \widetilde{E}_{7}). Applying induction on $k \geqslant 1$, we can eventually find some y^{\prime} in F_{c}^{\prime} with $\mathcal{L}\left(y^{\prime}\right) \in\left\{\left\{s_{0}, s_{3}, s_{2}\right\},\left\{s_{2}, s_{5}, s_{7}\right\}\right\}$ and $w \underset{L}{\sim} y^{\prime}$ which is a right retraction of z_{1} or z_{1}^{\prime}. Then y^{\prime} can be transformed to w_{257} or w_{023} by a sequence of right star operations and hence $a\left(y^{\prime}\right)=3=n\left(y^{\prime}\right)$. This implies $a(w)=a\left(y^{\prime}\right)=3$ by 1.3 (a),(b) and Lemma 1.6.

§4. Distinguished involutions in W_{c}.

Again assume that W is a Weyl or an affine Weyl group in this section. In [21], we described all the distinguished involutions in the left cells of W containing some generalized Coxeter elements. In this section, we shall describe all the distinguished involutions of W in the set W_{c}. The main result is Theorem 4.3.
4.1. By Lemma 3.15, we see that for any $z \in W_{\mathrm{c}}$, there exists some $w \in F_{\mathrm{c}}^{\prime}$ which is a left
retraction of z and satisfies $w \underset{L}{\sim} z$. By Lemma 3.14, we also see that for any $w \in F_{\mathrm{c}}^{\prime}$ and any $s \in \mathcal{L}(w)$, the inequalities $n(s w)<n(w)$ and hence $a(s w)<a(w)$ hold, which implies $w \underset{L}{<} s w$ again by Lemma 3.14. So we can say that any $w \in F_{\mathrm{c}}^{\prime}$ is a minimal element (with respect to left retraction) in the left cell of W containing it.
4.2. For $w \in F_{\mathrm{c}}^{\prime}$, write $w=w_{J} \cdot x$ with $J=\mathcal{L}(w)$ and $x \in W_{\mathrm{c}}$. Let $I=\mathcal{L}(x)$. By Lemma 3.15 (1), there is a reduced expression $x=s_{1} s_{2} \ldots s_{a}$ with $s_{i} \in S$ such that, let $w_{k}=w_{J} s_{1} s_{2} \ldots s_{k}(0 \leqslant k \leqslant a)$, then w_{k} can be obtained from w_{k-1} by a right $\left\{s_{k}, r_{k}\right\}$-star operation for some $r_{k} \in S$ with $s_{k} r_{k} \neq r_{k} s_{k}$. Given a reduced expression $w_{J}=t_{1} t_{2} \ldots t_{b}$ with $t_{j} \in S$, let \mathbf{G} be the digraph determined by the expression

$$
\begin{equation*}
d=x^{-1} w_{J} x=s_{a} \ldots s_{2} s_{1} t_{1} t_{2} \ldots t_{b} s_{1} s_{2} \ldots s_{a} \tag{4.2.1}
\end{equation*}
$$

with $\mathbf{s}_{a}^{\prime}, \ldots, \mathbf{s}_{2}^{\prime}, \mathbf{s}_{1}^{\prime}, \mathbf{t}_{1}, \mathbf{t}_{2}, \ldots, \mathbf{t}_{b}, \mathbf{s}_{1}, \mathbf{s}_{2}, \ldots, \mathbf{s}_{a}$ the nodes corresponding to the factors $s_{a}, \ldots, s_{2}, s_{1}$, $t_{1}, t_{2}, \ldots, t_{b}, s_{1}, s_{2}, \ldots, s_{a}$ in (4.2.1) respectively (hence the node set \mathbf{J} of \mathbf{G} corresponding to J is $\left\{\mathbf{t}_{1}, \mathbf{t}_{2}, \ldots, \mathbf{t}_{b}\right\}$, see 2.3). Two facts concerning the digraphs $\mathbf{G}(w)$ and \mathbf{G} can be seen easily:
(i) A node of $\mathbf{G}(w)$ is adjacent to some node in \mathbf{J} if and only if it is in \mathbf{I} (\mathbf{I} being the set of sources in the subdigraph $\mathbf{G}(x)$ of $\mathbf{G}(w)$);
(ii) \mathbf{G} has no directed edge of the form $\left(\mathbf{s}_{i}^{\prime}, \mathbf{s}_{j}\right)$ for any $i, j \geqslant 1$.

Now we state the main result of the section.
Theorem 4.3. Assume that W is a Weyl or an affine Weyl group. Let $w=w_{J} \cdot x \in F_{\mathrm{c}}^{\prime}$ be as above. Then we have
(1) The element $d=x^{-1} w_{J} x$ satisfies $\ell(d)=\ell\left(w_{J}\right)+2 \ell(x)$;
(2) $d \in W_{\mathrm{c}}$;
(3) $d \underset{L}{\sim} w$;
(4) d is a distinguished involution of W.

To show Theorem 4.3, we need first prove some lemmas.
Lemma 4.4. In the setup of 4.2, let

$$
\begin{equation*}
d_{k}=s_{k} \ldots s_{2} s_{1} t_{1} t_{2} \ldots t_{b} s_{1} s_{2} \ldots s_{k} \tag{4.4.1}
\end{equation*}
$$

for $0 \leqslant k \leqslant a$ with the convention that $d_{0}=t_{1} t_{2} \ldots t_{b}=w_{J}$.
(1) d_{k} is an involution of W in W_{c} for any $0 \leqslant k \leqslant a$.
(2) The expression (4.4.1) of d_{k} is reduced for any $0 \leqslant k \leqslant a$.

In particular, (1)-(2) hold for $d=d_{a}$.
(3) For any $1 \leqslant k \leqslant a$, we have $d_{k}=s_{k} \cdot d_{k-1} \cdot s_{k}$, which can be obtained from d_{k-1} by a left $\left\{s_{k}, r_{k}\right\}$-star operation followed by a right $\left\{s_{k}, r_{k}\right\}$-star operation.

Proof. That d_{k} is an involution follows by noting in (4.4.1) that $w_{J}=t_{1} t_{2} \ldots t_{b}$ is an involution. To show $d_{k} \in W_{\mathrm{c}}$, we first claim that the expression (4.4.1) satisfies conditions (2.4.1) and (2.4.2) for any $0 \leqslant k \leqslant a$. First we show that (4.4.1) satisfies condition (2.4.1). We know that $s_{k} \ldots s_{2} s_{1} t_{1} t_{2} \ldots t_{b}$ and $t_{1} t_{2} \ldots t_{b} s_{1} s_{2} \ldots s_{k}$ are reduced expressions. Then to show the claim, we need only prove that for any nodes $\mathbf{s}_{i}^{\prime}, \mathbf{s}_{j}(1 \leqslant i, j \leqslant k)$ of \mathbf{G} with $s_{i}=s_{j}$ (keep the notations in 4.2), there exists a directed path of \mathbf{G} connecting \mathbf{s}_{i}^{\prime} and \mathbf{s}_{j}. Let h be the smallest number with $s_{h}=s_{j}$. Then there exists a directed path ξ^{\prime} (resp., ξ) of \mathbf{G} connecting the nodes $\mathbf{s}_{i}^{\prime}, \mathbf{s}_{h}^{\prime}$ (resp., $\mathbf{s}_{h}, \mathbf{s}_{j}$) (we allow a directed path to contain only a single node; see 2.1). There also exists a directed path $\zeta: \mathbf{t}_{l}, \mathbf{s}_{p_{c}}, \mathbf{s}_{p_{c-1}}, \ldots, \mathbf{s}_{p_{0}}=\mathbf{s}_{h}$ of $\mathbf{G}(w)$ (and hence of \mathbf{G}) connecting the nodes $\mathbf{t}_{l}, \mathbf{s}_{h}$ for some $l, c \geqslant 1$ by Lemma 2.6 (ii). Hence $\zeta^{\prime}: \mathbf{s}_{p_{0}}^{\prime}=\mathbf{s}_{h}^{\prime}, \mathbf{s}_{p_{1}}^{\prime}, \ldots, \mathbf{s}_{p_{c}}^{\prime}, \mathbf{t}_{l}$ is a directed path of \mathbf{G} connecting the nodes $\mathbf{s}_{h}^{\prime}, \mathbf{t}_{l}$ by symmetry. Let λ be obtained by concatenating the directed paths $\xi^{\prime}, \zeta^{\prime}, \zeta, \xi$. Then λ is a directed path of \mathbf{G} connecting the nodes $\mathbf{s}_{i}^{\prime}, \mathbf{s}_{j}$.

Next show that (4.4.1) satisfies condition (2.4.2) for any $0 \leqslant k \leqslant a$. Suppose not. Then by Lemma 2.5 , there exists some directed path $\mu: \mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{m}$ of \mathbf{G} with $v_{h}=v_{h+2}$ for $1 \leqslant h \leqslant m-2$ and $m=o\left(v_{1} v_{2}\right)$ such that there does not exist any other directed path of \mathbf{G} connecting \mathbf{v}_{1} and \mathbf{v}_{m}. Since both $s_{k} \ldots s_{2} s_{1} t_{1} t_{2} \ldots t_{b}$ and $t_{1} t_{2} \ldots t_{b} s_{1} s_{2} \ldots s_{k}$ are reduced expressions of some elements of W_{c}, the directed path μ is neither a subsequence of $\mathbf{s}_{k}^{\prime}, \ldots, \mathbf{s}_{2}^{\prime}, \mathbf{s}_{1}^{\prime}, \mathbf{t}_{1}, \mathbf{t}_{2}, \ldots, \mathbf{t}_{b}$, nor a subsequence of $\mathbf{t}_{1}, \mathbf{t}_{2}, \ldots, \mathbf{t}_{b}, \mathbf{s}_{1}, \mathbf{s}_{2}, \ldots, \mathbf{s}_{k}$. So by 4.2 (ii), there exists some $1<h<m$ such that $\mathbf{v}_{h-1}=\mathbf{s}_{p}^{\prime}, \mathbf{v}_{h}=\mathbf{t}_{q}, \mathbf{v}_{h+1}=\mathbf{s}_{r}$ for some $p, q, r \geqslant 1$. By 4.2 (i) and the facts of $\mathbf{t}_{q} \in \mathbf{J}, s_{p}=v_{h-1}=v_{h+1}=s_{r}$, we have $p=r, \mathbf{s}_{r} \in \mathbf{I}$ and $\mathbf{s}_{r}^{\prime} \in \mathbf{I}^{\prime}$ (\mathbf{I}^{\prime} being the set of sinks in the subdigraph $\mathbf{G}\left(x^{-1}\right)$ of $\left.\mathbf{G}\right)$. By Lemma 3.3 (3),
there exists some $q^{\prime} \neq q$ with $t_{q^{\prime}} s_{r} \neq s_{r} t_{q^{\prime}}$. Let μ^{\prime} be obtained from μ by replacing \mathbf{t}_{q} by $\mathbf{t}_{q^{\prime}}$. Then μ^{\prime} is another directed path of \mathbf{G} connecting \mathbf{v}_{1} and \mathbf{v}_{m}, contradicting our assumption. So d_{k} is in W_{c} with (4.4.1) reduced by Lemma 2.5. We get (1) and (2).

In particular, we have $d_{k}=s_{k} \cdot d_{k-1} \cdot s_{k}$ for $1 \leqslant k \leqslant a$. It is known that the element w_{k} can be obtained from w_{k-1} by a right $\left\{s_{k}, r_{k}\right\}$-star operation with $s_{k} \in \mathcal{R}\left(w_{k}\right)$ for $1 \leqslant k \leqslant a$ (see 4.2). By Lemma 2.6 (iii) and the fact that $d_{k}, d_{k-1} \in W_{\mathrm{c}}$, we have $\mathcal{R}\left(w_{k}\right)=\mathcal{R}\left(d_{k}\right)$ for $0 \leqslant k \leqslant a$ by comparing the sinks in the digraphs $\mathbf{G}\left(w_{k}\right)$ and $\mathbf{G}\left(d_{k}\right)$. This implies that $\mathcal{R}\left(d_{k}\right) \cap\left\{s_{k}, r_{k}\right\}=\left\{s_{k}\right\}$ and $\mathcal{R}\left(d_{k-1}\right) \cap\left\{s_{k}, r_{k}\right\}=\left\{r_{k}\right\}$. So (3) follows by (1) and the fact that $d_{k}=s_{k} \cdot d_{k-1} \cdot s_{k}$.

By Lemma 4.4, we can use the notation $\mathbf{G}\left(d_{k}\right)$ for any $0 \leqslant k \leqslant a$.
For $1 \leqslant k \leqslant a$, let y_{k} be the shortest element in the double coset $\left\langle s_{k}, r_{k}\right\rangle d_{k}\left\langle s_{k}, r_{k}\right\rangle$, where $s_{k} \neq r_{k}$ in S are given in 4.2, and $\left\langle s_{k}, r_{k}\right\rangle$ is the subgroup of W generated by s_{k}, r_{k}.

Lemma 4.5. Let y_{k} be as above for $1 \leqslant k \leqslant a$.
(1) The element y_{k} is an involution in W_{c};
(2) $s_{k} y_{k} \neq y_{k} r_{k}$;
(3) There exists at least one, say t, of s_{k}, r_{k} satisfying $t y_{k} \neq y_{k} t$.

Proof. (1) Since d_{k} is an involution, both y_{k} and y_{k}^{-1} are the shortest element in the double coset $\left\langle s_{k}, r_{k}\right\rangle d_{k}\left\langle s_{k}, r_{k}\right\rangle$, which must be equal by [6, Proposition 2.7.3]. So y_{k} is an involution. We know that d_{k} is in W_{c} and that y_{k} is a retraction of d_{k}. Hence y_{k} is also in W_{c}.
(2) Since d_{k} is an involution and $\mathcal{R}\left(d_{k}\right) \cap\left\{s_{k}, r_{k}\right\} \neq \emptyset$, at least one (say z) of the elements $s_{k} \cdot y_{k}$ and $y_{k} \cdot r_{k}$ is a retraction of d_{k}. Then z is in W_{c} by the fact that $d_{k} \in W_{\mathrm{c}}$. This implies $s_{k} y_{k} \neq y_{k} r_{k}$ by Lemma 1.1 (3) and the fact of $s_{k} \neq r_{k}$.
(3) The element d_{k} has an expression (4.4.1). Let $I_{k}=\mathcal{L}\left(s_{1} s_{2} \ldots s_{k}\right)$. Denote by \mathbf{I}_{k} (resp., \mathbf{I}_{k}^{\prime}) the node set of $\mathbf{G}\left(d_{k}\right)$ corresponding to the set of sources (resp., sinks) of the subdigraph $\mathbf{G}\left(s_{1} s_{2} \ldots s_{k}\right)$ (resp., $\mathbf{G}\left(s_{k} \ldots s_{2} s_{1}\right)$). We can write $d_{k}=y \cdot f_{1} f_{2} \ldots f_{c}$ with $f_{h}=s_{k}$ if $h \equiv c(\bmod 2)$ and $f_{h}=r_{k}$ if $h \equiv c-1(\bmod 2)$, where $1<c<m=o\left(s_{k} r_{k}\right)$, and $y \in W_{\text {c }}$ satisfies $\mathcal{R}(y) \cap\left\{s_{k}, r_{k}\right\}=\emptyset$. Then the corresponding directed path $\xi: \mathbf{f}_{1}, \mathbf{f}_{2}, \ldots, \mathbf{f}_{c}$
of the digraph $\mathbf{G}\left(d_{k}\right)$ satisfies
(4.5.1) for any $1 \leqslant h \leqslant c$, there does not exist any node \mathbf{v} of $\mathbf{G}\left(d_{k}\right)$ outside ξ with $\left(\mathbf{f}_{h}, \mathbf{v}\right)$ a directed edge of $\mathbf{G}\left(d_{k}\right)$.

We claim that ξ is a subsequence of $\mathbf{t}_{1}, \mathbf{t}_{2}, \ldots, \mathbf{t}_{b}, \mathbf{s}_{1}, \mathbf{s}_{2}, \ldots, \mathbf{s}_{k}$ (note that ξ contains at most one node in $\left.\mathbf{J}=\left\{\mathbf{t}_{1}, \mathbf{t}_{2}, \ldots, \mathbf{t}_{b}\right\}\right)$. For otherwise, there would exist some $1<h \leqslant c$ such that $\mathbf{f}_{h-1}=\mathbf{s}_{p}^{\prime}, \mathbf{f}_{h}=\mathbf{t}_{q}$ for some $p, q \geqslant 1$ by 4.2 (ii) (note that there is no sink of $\mathbf{G}\left(d_{k}\right)$ among $\mathbf{s}_{k}^{\prime}, \ldots, \mathbf{s}_{2}^{\prime}, \mathbf{s}_{1}^{\prime}$). Then $\mathbf{f}_{h-1} \in \mathbf{I}_{k}^{\prime}$ and $\mathbf{f}_{h} \in \mathbf{J}$ by 4.2 (i). By Lemma 3.3 (3), there exists some node $\mathbf{t}_{q^{\prime}} \in \mathbf{J}$ with $q^{\prime} \neq q$ such that $\left(f_{h-1}, \mathbf{t}_{q^{\prime}}\right)$ is a directed edge of $\mathbf{G}\left(d_{k}\right)$, contradicting condition (4.5.1).

The element y has an expression $y=g_{c^{\prime}} \ldots g_{2} g_{1} \cdot y_{k}$ with $c^{\prime} \leqslant c$ such that $g_{h}=s_{k}$ if $h \equiv c^{\prime}($ $\bmod 2)$ and $g_{h}=r_{k}$ if $h \equiv c^{\prime}-1(\bmod 2)$. We can also show that the corresponding directed path $\zeta: \mathbf{g}_{c^{\prime}}, \ldots, \mathbf{g}_{2}, \mathbf{g}_{1}$ of $\mathbf{G}\left(d_{k}\right)$ is a subsequence of $\mathbf{s}_{k}^{\prime}, \ldots, \mathbf{s}_{2}^{\prime}, \mathbf{s}_{1}^{\prime}, \mathbf{t}_{1}, \mathbf{t}_{2}, \ldots, \mathbf{t}_{b}$ by the same argument as above. This implies that among the nodes $\mathbf{g}_{c^{\prime}}, \ldots, \mathbf{g}_{2}, \mathbf{g}_{1}, \mathbf{f}_{1}, \mathbf{f}_{2}, \ldots, \mathbf{f}_{c}$, only two nodes $\mathbf{f}_{1}, \mathbf{g}_{1}$ could be possibly in \mathbf{J}.

Recall the notation $w_{k}=w_{J} \cdot s_{1} s_{2} \ldots s_{k}$ in 4.2.
First assume $\mathbf{f}_{1}, \mathbf{g}_{1} \notin \mathbf{J}$. Then by symmetry for the factors s_{1}, \ldots, s_{k} occurring in the expression (4.4.1) of d_{k}, we see that $c=c^{\prime} \geqslant 1$ and that for any $1 \leqslant h \leqslant c$, the equation $\left(\mathbf{f}_{h}, \mathbf{g}_{h}\right)=\left(\mathbf{s}_{j_{h}}, \mathbf{s}_{j_{h}}^{\prime}\right)$ holds for some $1 \leqslant j_{h} \leqslant k$. Hence $f_{h}=g_{h}$ for any h. In particular, $f_{1}=g_{1}$. There exists a directed path $\mathbf{t}_{h}, \mathbf{s}_{m_{1}}, \mathbf{s}_{m_{2}}, \ldots, \mathbf{s}_{m_{p}}=\mathbf{f}_{1}$ of the digraph $\mathbf{G}\left(w_{k}\right)$ with $p \geqslant 1$ for some $1 \leqslant h \leqslant b$ and some $1 \leqslant m_{1}<m_{2}<\ldots<m_{p} \leqslant k$. Then $\mathbf{s}_{m_{p}}^{\prime}=\mathbf{g}_{1}, \ldots, \mathbf{s}_{m_{2}}^{\prime}, \mathbf{s}_{m_{1}}^{\prime}, \mathbf{t}_{h}, \mathbf{s}_{m_{1}}, \mathbf{s}_{m_{2}}, \ldots, \mathbf{s}_{m_{p}}=\mathbf{f}_{1}$ is a directed path of the digraph $\mathbf{G}\left(d_{k}\right)$ by symmetry, where $\mathbf{s}_{m_{p-1}}^{\prime}, \ldots, \mathbf{s}_{m_{2}}^{\prime}, \mathbf{s}_{m_{1}}^{\prime}, \mathbf{t}_{h}, \mathbf{s}_{m_{1}}, \mathbf{s}_{m_{2}}, \ldots, \mathbf{s}_{m_{p-1}}$ also form a directed path in $\mathbf{G}\left(y_{k}\right)$. If $p=1$ then $t_{h} f_{1} \neq f_{1} t_{h}$. If $p>1$ then $s_{m_{p-1}} f_{1} \neq f_{1} s_{m_{p-1}}$. Clearly, we have $t_{h} \leqslant y_{k}$ when $p=1$ and $s_{m_{p-1}} \leqslant y_{k}$ when $p>1$. In either case, we have $f_{1} y_{k} \neq y_{k} f_{1}$ by the fact of $y_{k} f_{1} \in W_{\mathrm{c}}$ and Lemma 1.1 (2).

Next assume $\mathbf{f}_{1} \in \mathbf{J}$, say $\mathbf{f}_{1}=\mathbf{t}_{h}$ for some $1 \leqslant h \leqslant b$. Hence $c>1$ by the fact that $f_{c}=s_{k} \in \mathcal{R}\left(w_{k}\right)$ and $r_{k} \in \mathcal{R}\left(w_{k} s_{k}\right)$. By condition (4.5.1) on the directed path $\xi: \mathbf{f}_{1}, \mathbf{f}_{2}, \ldots, \mathbf{f}_{c}$ in $\mathbf{G}\left(d_{k}\right)$, the facts that $w_{k} \in W_{\mathrm{c}}$ and that \mathbf{f}_{1} is a source of $\mathbf{G}\left(w_{k}\right)$, we have $f_{1} v=v f_{1}$ for any node $\mathbf{v} \in \mathbf{V}\left(w_{k}\right) \backslash\left\{\mathbf{f}_{l} \mid 1 \leqslant l \leqslant c\right\}$ by Lemma 1.1 (2). This implies
$f_{1} y_{k}=y_{k} f_{1}$. Similarly, we can show that if $\mathbf{g}_{1} \in \mathbf{J}$ then $g_{1} y_{k}=y_{k} g_{1}$. We claim that we cannot have both $\mathbf{f}_{1}, \mathbf{g}_{1}$ in \mathbf{J}. Otherwise, we would have both equations $f_{1} y_{k}=y_{k} f_{1}$ and $g_{1} y_{k}=y_{k} g_{1}$. Thus $f_{1} \neq g_{1}$ as $y_{k} g_{1} f_{1}=g_{1} y_{k} f_{1}=g_{1} \cdot y_{k} \cdot f_{1}$. This implies $\left\{f_{1}, g_{1}\right\}=\left\{s_{k}, r_{k}\right\}$ by the fact that $f_{1}, g_{1} \in\left\{s_{k}, r_{k}\right\}$. Hence $f_{1} g_{1} \neq g_{1} f_{1}$, contradicting condition (2.7.1) on the node set \mathbf{J}. By the construction of f_{1}, g_{1}, we see that if $\left\{\mathbf{f}_{1}, \mathbf{g}_{1}\right\} \cap \mathbf{J} \neq \emptyset$ then we must have $\mathbf{f}_{1} \in \mathbf{J}$ and $\mathbf{g}_{1} \notin \mathbf{J}$. In this case, we have $c=c^{\prime}+1$ and that for any $1 \leqslant h \leqslant c^{\prime}$, we have $\left(\mathbf{f}_{h+1}, \mathbf{g}_{h}\right)=\left(\mathbf{s}_{j_{h}}, \mathbf{s}_{j_{h}}^{\prime}\right)$ for some $1 \leqslant j_{h} \leqslant k$ by symmetry. On the other hand, we have $\mathbf{f}_{2}=\mathbf{s}_{q} \in \mathbf{I}$ for some $1 \leqslant q \leqslant k$ by 4.2 (i). So there exists some $h^{\prime} \neq h$ with $\left(\mathbf{t}_{h^{\prime}}, \mathbf{f}_{2}\right)$ a directed edge of the digraph $\mathbf{G}\left(w_{k}\right)$ by Lemma 3.3 (3). This implies
(a) $t_{h^{\prime}} f_{2} \neq f_{2} t_{h^{\prime}}$.

By the claim just shown, we have
(b) $t_{h^{\prime}} \leqslant y_{k}$.

We know that $y_{k} f_{1} f_{2}$ is a retraction of d_{k} and that $y_{k} f_{2}$ is a retraction of $f_{1} y_{k} f_{2}=$ $y_{k} f_{1} f_{2}$. So $y_{k} f_{2}$ is a retraction of d_{k}. Since $d_{k} \in W_{\mathrm{c}}$ by Lemma 4.4 (1), we get (c) $y_{k} f_{2} \in W_{\mathrm{c}}$.

Hence $f_{2} y_{k} \neq y_{k} f_{2}$ by (a)-(c) and Lemma 1.1 (2). So (3) follows.
Let D_{0} be the set of all the distinguished involutions of W. We record a known result as follows.

Lemma 4.6. (see [17, Proposition 5.12 (a), (b)]) Let y be an involution of W and let $s, t \in S$ satisfy $o(s t) \in\{3,4,6\}$ and $s, t \notin \mathcal{L}(y)$. Define a subset of D_{0} as follows.

$$
G(y, s, t)=\left\{z \in D_{0}|z \in\langle s, t\rangle y\langle s, t\rangle,|\mathcal{L}(z) \cap\{s, t\}|=1\}\right.
$$

Suppose $G(y, s, t) \neq \emptyset$.
(a) If $r y \neq y r$ for $r=s, t$, and $s y \neq y t$, then $G(y, s, t)$ is the set of all elements of the form $z y z^{-1}$, where z runs over one or two $\{s, t\}$-strings in $\langle s, t\rangle$.
(b) Suppose that $r y=y r$ for exactly one $r \in\{s, t\}$. Let

$$
G_{1}=\left\{z r y z^{-1} \mid z \in\langle s, t\rangle, r \notin \mathcal{R}(z), \text { and } 0 \leqslant \ell(z)<o(s t)-1\right\}
$$

and

$$
G_{2}=\left\{z y z^{-1} \mid z \in\langle s, t\rangle, r \notin \mathcal{R}(z), \text { and } 0<\ell(z) \leqslant o(s t)-1\right\}
$$

Then $G(y, s, t)=G_{1}, G_{2}$ or $G_{1} \cup G_{2}$.
Now we are ready to prove the main result of the section.
4.7. Proof of Theorem 4.3. (1) and (2) follow by Lemma 4.4. Keep the notations in 4.2 and 4.4, in particular, the expressions of d, w_{k}, d_{k}. Applying induction on $k \geqslant 0$, we want to show, for any $0 \leqslant k \leqslant a$, the following two results:
(a) $d_{k} \underset{L}{\sim} w_{k} ;$
(b) d_{k} is a distinguished involution of W.

The results obviously hold when $k=0$. Now let $0<k \leqslant a$. Suppose that the results have been shown for all the smaller k. Let y_{k} be as in Lemma 4.5. Then both d_{k-1} and d_{k} are in the double coset $\left\langle s_{k}, r_{k}\right\rangle y_{k}\left\langle s_{k}, r_{k}\right\rangle$ with d_{k-1} a distinguished involution of W as assumed. Thus $d_{k-1} \in G\left(y_{k}, s_{k}, r_{k}\right)$ (see Lemma 4.6 for the notation). By Lemmas 4.5 and 4.6, we conclude that d_{k} is in $G\left(y_{k}, s_{k}, r_{k}\right)$ and hence is a distinguished involution of W, too. We have $d_{k} \underset{L R}{\sim} d_{k-1} \underset{L}{\sim} w_{k-1} \underset{R}{\sim} w_{k}$, where the relation $d_{k-1} \underset{L}{\sim} w_{k-1}$ follows by the inductive hypothesis, and the other two relations follow by the fact that the concerned pair of elements can be obtained from each other either by star operations or by a right star operation. So $a\left(d_{k}\right)=a\left(w_{k}\right)$ by $1.3(\mathrm{~b})$. Since w_{k} is a left retraction of d_{k}, this implies $d_{k} \underset{L}{\leqslant} w_{k}$ by 1.3 (c). Then $d_{k} \underset{L}{\sim} w_{k}$ by 1.3 (d). So the assertions (a)-(b) follow by induction. In particular, $d=d_{a}$ is a distinguished involution of W with $d=d_{a} \underset{L}{\sim} w_{a}=w$. Our proof is completed.
4.8. Keep the notations in 4.2. Take $w=w_{J} \cdot x \in F_{\mathrm{c}}^{\prime}$ and the corresponding distinguished involution $d=x^{-1} \cdot w_{J} \cdot x$. Then $\mathbf{G}(d)$ is symmetric with respect to the node set \mathbf{J} in the following sense:
(i) For any $1 \leqslant p<q \leqslant a,\left(\mathbf{s}_{p}, \mathbf{s}_{q}\right)$ is a directed edge of $\mathbf{G}(d)$ if and only if $\left(\mathbf{s}_{q}^{\prime}, \mathbf{s}_{p}^{\prime}\right)$ is so;
(ii) For any $1 \leqslant p \leqslant a$ and $1 \leqslant h \leqslant b,\left(\mathbf{t}_{h}, \mathbf{s}_{p}\right)$ is a directed edge of $\mathbf{G}(d)$ if and only if $\left(\mathbf{s}_{p}^{\prime}, \mathbf{t}_{h}\right)$ is so.
(iii) \mathbf{J} satisfies condition (2.7.1);

We also have
(iv) Neither $\left(\mathbf{s}_{p}^{\prime}, \mathbf{s}_{q}\right)$ nor $\left(\mathbf{s}_{q}, \mathbf{s}_{p}^{\prime}\right)$ is a directed edge of $\mathbf{G}(d)$ for any $1 \leqslant p, q \leqslant a$ (see 4.2 (ii));
(v) For any $1 \leqslant p \leqslant a$, there exists a directed path $\mathbf{t}_{k}, \mathbf{s}_{m_{1}}, \mathbf{s}_{m_{2}}, \ldots, \mathbf{s}_{m_{r}}=\mathbf{s}_{p}$ in $\mathbf{G}(w)$ for some $1 \leqslant k \leqslant b$ and some $1 \leqslant m_{1}<m_{2}<\ldots<m_{r}=p$ (see Lemma 2.6 (ii)).

Given a node \mathbf{u} of $\mathbf{G}(d)$, let $\mathbf{V}_{\mathbf{u}}$ be the set of all the nodes \mathbf{v} of $\mathbf{G}(d)$ such that there exists a directed path ξ in $\mathbf{G}(d)$ with \mathbf{u}, \mathbf{v} two extreme nodes, where \mathbf{u} could be either a source or a sink in ξ. Let $\mathbf{G}_{\mathbf{u}}$ be the subdigraph of $\mathbf{G}(d)$ with $V_{\mathbf{u}}$ its node set. Then by conditions (i)-(v) on $\mathbf{G}(d)$, we see that a node \mathbf{u} of $\mathbf{G}(d)$ is in \mathbf{J} if and only if $\mathbf{G}_{\mathbf{u}}$ is symmetric with respect to \mathbf{u} (i.e., $\mathbf{G}_{\mathbf{u}}$ satisfies conditions (i)-(iii) above with \mathbf{u} in the place of $\mathbf{J})$. Hence the node set \mathbf{J} is entirely determined by the digraph $\mathbf{G}(d)$. Then the subdigraph $\mathbf{G}(w)$ is also determined by $\mathbf{G}(d)$: $\mathbf{G}(w)$ can be obtained from $\mathbf{G}(d)$ by removing all such nodes $\mathbf{v} \notin \mathbf{J}$ that there exists some directed path of $\mathbf{G}(d)$ from \mathbf{v} to some node in J. So we have

Lemma 4.9. $\psi: w_{J} \cdot x \mapsto x^{-1} \cdot w_{J} \cdot x$ gives an injective map from the set F_{c}^{\prime} to D_{0}, where $J=\mathcal{L}\left(w_{J} x\right)$.

Corollary 4.10. For $w, y \in F_{c}^{\prime}$, we have $w \underset{L}{\sim} y$ if and only if $w=y$.
Proof. The implication " " is obvious. To show the other implication, we assume that $w, y \in F_{\mathrm{c}}^{\prime}$ satisfy $w \underset{L}{\sim} y$. Write $w=w_{J} \cdot x$ and $y=w_{I} \cdot z$ with $J=\mathcal{L}(w), I=\mathcal{L}(y)$ and some $x, z \in W_{\mathrm{c}}$. Then $d=x^{-1} \cdot w_{J} \cdot x$ and $d^{\prime}=z^{-1} \cdot w_{I} \cdot z$ are distinguished involutions of W by Theorem 4.3. We have $d \underset{L}{\sim} w \underset{L}{\sim} y \underset{L}{\sim} d^{\prime}$ again by Theorem 4.3. This implies $d=d^{\prime}$ since each left cell of W contains a unique distinguished involution of W (see [13, Theorem 1.10]). Hence $w=y$ by Lemma 4.9.

By Lemma 3.15 (3) and Corollary 4.10, it is immediate to get the following
Corollary 4.11. If a left cell L of W satisfies $L \cap W_{c} \neq \emptyset$, then the intersection $L \cap F_{\mathrm{c}}^{\prime}$ contains a unique element, say w^{L}. Any element z of L has the form $z=x \cdot w^{L}$ for some $x \in W$.

Remark 4.12. (1) By Theorem 4.3, we can get the distinguished involution in any left cell L of W, provided that L contains some element of W_{c}. Then Corollary 4.11 tells us that the set F_{c}^{\prime} forms a representative set for all these left cells of W.
(2) Let \mathcal{H} be the Hecke algebra of W over $A=\mathbb{Z}\left[q^{-1}, q\right]$ with q an indeterminate. Let $\left\{T_{w} \mid w \in W\right\}$ be the standard A-basis of \mathcal{H} (in the sense of [11]). In [16, Conjecture 8.10], we proposed a conjecture that any distinguished involution d of W should have the form $\lambda\left(x^{-1}, x\right)$, where x is a shortest element in the left cell of W containing d, and $\lambda\left(x^{-1}, x\right)$ is the unique maximal element y (under the Bruhat-Chevalley order) with $f_{y} \neq 0$ in the product $T_{x^{-1}} T_{x}=\sum_{z} f_{z} T_{z}, f_{z} \in A$. By the description of the elements $\lambda(x, y)$ in [15, Proposition 2.3], we have $\lambda\left(w^{-1}, w\right)=x^{-1} \cdot w_{J} \cdot x$ for any $w=w_{J} \cdot x \in F_{\mathrm{c}}^{\prime}$ with $J=\mathcal{L}(w)$. So Theorem 4.3 verifies this conjecture for any distinguished involutions in W_{c}.
(3) A subset K of W is left connected, if for any $x, y \in K$, there exists a sequence of elements $x_{0}=x, x_{1}, \ldots, x_{r}=y$ in K with some $r \geqslant 0$ such that $x_{i-1} x_{i}^{-1} \in S$ for every $1 \leqslant i \leqslant r$. Lusztig conjectured in [2] that if W is an affine Weyl group then any left cell L of W is left connected. The conjecture is supported by all the existing data (see [14], [15], [16], [21]). Now let W be a Weyl or an affine Weyl group. Assume that L is a left cell of W with $L \cap W_{\mathrm{c}} \neq \emptyset$. Then by Corollary 4.11, there exists a unique element, say w^{L}, in $L \cap F_{\mathrm{c}}^{\prime}$ such that any $z \in L$ has the form $z=x \cdot w^{L}$ for some $x \in W$. Take any reduced expression $x=s_{1} s_{2} \ldots s_{r}$ of x with $s_{i} \in S$. Denote by $w_{i}=s_{i} s_{i+1} \ldots s_{r} \cdot w^{L}$ for $1 \leqslant i \leqslant r+1$ with the convention that $w_{r+1}=w^{L}$. Then $z=w_{1} \underset{L}{\leqslant} w_{2} \underset{L}{\leqslant} \ldots \underset{L}{\leqslant} w_{r+1}=w^{L} \underset{L}{\sim} z$ by 1.3 (c). Hence all the w_{i} 's, $1 \leqslant i \leqslant r+1$, are in L. So L is left connected, verifying the conjecture in the case where L contains some element of W_{c}.

References

1. D. Alvis, The left cells of the Coxeter group of type H_{4}, J. Algebra 107 (1987), 160-168.
2. T. Asai et al., Open problems in algebraic groups., Problems from the conference on algebraic groups and representations held at Katata (Ryoshi Hotta (ed.)), August 29-September 3, 1983.
3. S. C. Billey and G. S. Warrington, Kazhdan-Lusztig polynomials for 321-hexagon-avoiding permutations, J. Algebraic Combin. 13 (2001), 111-136.
4. N. Bourbaki, Groupes et algèbres de Lie, Ch. 4-6, Hermann, Paris, 1968.
5. K. Bremke and C. K. Fan, Comparison of a-functions, J. Algebra 203 (1998), 355-360.
6. R. W. Carter, Finite Groups of Lie Type: Conjugacy Classes and Complex Characters, Wiley Series in Pure and Applied Mathematics, John Wiley, London, 1985.
7. P.Cartier and D. Foata, Problèmes combinatoires de commutation et réarrangements, vol. 85, Lecture Notes in Mathematics, Springer-Verlag, New York/Berlin, 1969.
8. C. K. Fan and J. R. Stembridge, Nilpotent orbits and commutative elements, J. Algebra 196 (1997), 490-498.
9. J. J. Graham, Modular representations of Hecke algebras and related algebras, Ph. D. thesis, University of Sydney, 1995.
10. R. M. Green and J. Losonczy, Fully commutative Kazhdan-Lusztig cells, Ann. Inst. Fourier (Grenoble) 51 (2001), 1025-1045.
11. D. Kazhdan and G. Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), 165-184.
12. G. Lusztig, Cells in affine Weyl groups, in " Algebraic Groups and Related Topics "(R. Hotta, ed.), Advanced Studies in Pure Math., Kinokuniya and North Holland,(1985), 255-287.
13. G. Lusztig, Cells in affine Weyl groups, II, J. Algebra 109 (1987), 536-548.
14. Jian-yi Shi, The Kazhdan-Lusztig cells in certain affine Weyl groups, vol. 1179, Springer-Verlag, Lecture Notes in Mathematics, 1986.
15. Jian-yi Shi, A two-sided cell in an affine Weyl group, II, J. London Math. Soc. (1988), 253-264.
16. Jian-yi Shi, A survey on the cell theory of affine Weyl groups, Advances in Science of China, Math. 3 (1990), 79-98.
17. Jian-yi Shi, The joint relations and the set \mathcal{D}_{1} in certain crystallographic groups, Adv. in Math. 81(1) (1990), 66-89.
18. Jian-yi Shi, Some results relating two presentations of certain affine Weyl groups, J. Algebra 163(1) (1994), 235-257.
19. Jian-yi Shi, The enumeration of Coxeter elements, J. Alg. Comb. 6(2) (1997), 161-171.
20. Jian-yi Shi, Conjugacy relations on Coxeter elements, Adv. in Math. 161(1) (2001), 1-19.
21. Jian-yi Shi, Coxeter elements and Kazhdan-Lusztig cells, J. Algebra 250 (2002), 229-251.
22. Jian-yi Shi, Fully commutative elements and Kazhdan-Lusztig cells in the finite and affine Coxeter groups, Proc. of AMS 131 (2003), 3371-3378.
23. Jian-yi Shi, Fully commutative elements and Kazhdan-Lusztig cells in the finite and affine Coxeter groups, II, preprint.
24. J. R. Stembridge, On the fully commutative elements of Coxeter groups, J. Algebraic Combin. 5 (1996), 353-385.
25. G. X. Viennot, Heaps of pieces, I: basic definitions and combinational lemmas, Combinatoire Énumerative (G. Labelle and P. Leroux, ed.), Springer-Verlag, Berlin, 1986, pp. 321-350.

[^0]: Supported by Nankai Univ., the 973 Project of MST of China, the NSF of China, the SF of the Univ. Doctoral Program of ME of China, the Shanghai Priority Academic Discipline, and the CST of Shanghai

