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Abstract. Let W be a Weyl or an affine Weyl group and let Wc be the set of fully com-

mutative elements in W . We associate each w ∈ Wc to a digraph G(w). By using G(w), we
give a graph-theoretic description for Lusztig’s a-function on Wc and describe explicitly all

the distinguished involutions of Wc. The results verify two conjectures in our case: one was
proposed by myself in [16, Conjecture 8.10] and the other was by Lusztig in [2].

Introduction.

Let W = (W,S) be a Coxeter group with S the distinguished generator set. The fully

commutative elements w ∈W were defined by Stembridge:

(i) w is fully commutative, if any two reduced expressions of w can be transformed from

each other by only applying the relations st = ts with s, t ∈ S and o(st) = 2 (o(st) the

order of st), or equivalently,

(ii) w is fully commutative, if w has no reduced expression of the form w = x(sts...)y,

where sts... is a string of length o(st) > 2 for some s 6= t in S.

The fully commutative elements were studied extensively by a number of people (see

[3], [8], [10], [22], [23], [24]). Let Wc be the set of all fully commutative elements in W .
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The present paper is only concerned with the case where W is a Weyl or an affine Weyl

group unless otherwise specified. In [19], we associated any Coxeter element of a Coxeter

group to a directed graph (or a digraph in short). In the present paper, we extend this

idea by associating each w ∈ Wc to a digraph G(w). Then some techniques developed

in [21] can be applied here for our purpose. In particular, we use the digraph G(w) to

define the number n(w), which equals the maximum possible cardinality for the node sets

of G(w) satisfying condition (2.7.1) (see Lemma 2.7).

Our first main result is to evaluate the function a(w) on Wc by establishing the equation

a(w) = n(w) for any w ∈ Wc (see Theorem 3.1). The function a(w) was defined by

Lusztig in [12], which is important in the cell representation theory of the group W and

the associated Hecke algebra. It is usually a difficult task to compute the value a(w) for

an arbitrary w ∈ W . In establishing the equation a(w) = n(w) for w ∈ Wc, we first

show that the set Wc and the function n(w) are invariant under star operations. It is

well known for the invariance of the function a(w) under star operations. Then we reduce

ourselves to a special subset Fc of Wc. We explicitly describe all the elements of Fc in

each case. Then we show the equation a(w) = n(w) for any w in Fc and hence in Wc.

Lusztig defined distinguished involutions of W which play an important role in the left

cell representations of W and the associated Hecke algebras (see [13]). However, except

for the case of symmetric groups, it is usually very hard to recognize and to describe the

distinguished involutions among the elements of W . We proposed a conjecture in [16,

Conjecture 8.10] to describe the distinguished involutions of W , which is supported by all

the existing data (see [16], [21]). Our second main result is to give an explicit description

for all the distinguished involutions of W in the set Wc, verifying the conjecture in our

case. Denote by D0(Wc) the set of these elements. In order to describe the elements of

D0(Wc), we define a subset F ′
c of Wc (see 3.10). Write w = wJ · y ∈ F ′

c with J = L(w)

and some y ∈W . Then we conclude that d = y−1 ·wJ · y is the unique element in D0(Wc)

with d ∼
L
w (see Theorem 4.3). By applying this result, we conclude that any left cell

L of W with L ∩Wc 6= ∅ contains a unique element (say wL) in F ′
c and that any z ∈ L

has the form z = x · wL for some x ∈ W (see Corollary 4.11). This further implies that
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L is left connected (see Remark 4.12 (3)), verifying a conjecture of Lusztig on the left

connectedness of left cells of W in our case (see [2]).

The contents of the paper are organized as follows. We collect some notations, terms

and known results concerning cells of a Coxeter group W in Section 1. In Section 2, we

associate each w ∈Wc to a digraph G(w) and deduce some results on the elements of Wc

by using G(w). Then two main results of the paper are shown in Sections 3–4, one in

each section.

§1. Some results on Coxeter groups.

Let (W,S) be a Coxeter system. In Introduction we defined the set Wc of all the fully

commutative elements of W . In this section, we collect some notations, terms and known

results for later use.

1.1. Let 6 be the Bruhat–Chevalley order and `(w) the length function on W . Given

J ⊆ S, let wJ be the longest element in the subgroup WJ of W generated by J , provided

that WJ is finite. Call J fully commutative if the element wJ is so.

For w, x, y ∈W , we use the notation w = x · y to mean w = xy and `(w) = `(x)+ `(y).

In this case, we say that w is a left (resp., right) extension of y (resp., x), and say that y

(resp., x) is a left (resp., right) retraction of w. More generally, we say z is a retraction of

w (or w is an extension of z), if w = x · z · y for some x, y ∈ W . A retraction z of w is

proper if `(z) < `(w).

Lemma. Let w = s1s2...sr be a reduced expression of w ∈Wc with si ∈ S.

(1) The multi-set {s1, s2, ..., sr} only depends on w but not on the choice of a reduced

expression.

(2) For any s ∈ S with sw ∈ Wc, the equation sw = ws holds if and only if ssi = sis

for any 1 6 i 6 r.

(3) If s, t ∈ S satisfy sw = wt ∈Wc, then s = t.

(4) If w ∈ Wc then any retraction of w is also in Wc. In particular, if w ∈ Wc has an

expression w = x · wJ · y with x, y ∈W and J ⊆ S, then J is fully commutative.

Proof. (1) and (2) (resp., (4)) follow by the definition (i) (resp., (ii)) of a fully commutative
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element (see Introduction) Then (3) is an easy consequence of (1). �

1.2. Let 6
L

(resp., 6
R

, 6
LR

) be the preorder on W defined as in [11], and let ∼
L

(resp., ∼
R

,

∼
LR

) be the equivalence relation on W determined by 6
L

(resp., 6
R

, 6
LR

). The corresponding

equivalence classes are called left (resp., right, two-sided) cells of W . 6
L

(resp., 6
R

, 6
LR

)

induces a partial order on the set of left (resp., right, two-sided) cells of W .

1.3. Lusztig defined a function a : W −→ N ∪ {∞} for a Coxeter group W in [12]. When

W is a Weyl or affine Weyl group, Lusztig proved in [12], [13] the following results.

(a) a(wJ ) = `(wJ) for J ⊆ S with WJ finite (see [12, Proposition 2.4] and [13, Proposi-

tion 1.2]). In particular, when J is fully commutative, we have a(wJ) = |J |, the cardinality

of the set J .

(b) If x 6
LR

y in W , then a(x) > a(y). So x ∼
LR

y implies a(x) = a(y), i.e., the function

a is constant on a two-sided cell of W (see [12, Theorem 5.4]).

(c) If w = x · y then w 6
L
y and w 6

R
x. Hence a(w) > a(x), a(y).

(d) If a(x) = a(y) and x 6
L
y then x ∼

L
y (see [13, Corollary 1.9]).

Note that (d) remains valid in any finite or affine Coxeter group (i.e., any finite Coxeter

group or any affine Weyl group) if condition a(x) = a(y) is replaced by x ∼
LR

y (see [1,

Corollary 3.3]).

1.4. Following Lusztig (see [13]), an element w ∈ W is distinguished, if `(w) − 2δ(w) =

a(w), where δ(w) = degPe,w, e the identity element of W and Px,y is the celebrated

Kazhdan–Lusztig polynomial associated to the ordered pair (x, y) in W . When W is a

Weyl or an affine Weyl group, Lusztig showed in [13, Proposition 1.4 (a) and Theorem

1.10] that a distinguished element w of W is always an involution (i.e., w2 = e) and that

any left cell of W contains a unique distinguished involution.

1.5. For any w ∈W , let L(w) = {s ∈ S | sw < w} and R(w) = {s ∈ S | ws < w}.

Assume m = o(st) > 2 for some s, t ∈ S. A sequence of elements

ys, yst, ysts, . . .︸ ︷︷ ︸
m−1 terms

is called a right {s, t}-string ( or just a right string ) if y ∈W satisfies R(y) ∩ {s, t} = ∅.
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We say that z is obtained from w by a right {s, t}-star operation (or a right star

operation for brevity), if z, w are two neighboring terms in a right {s, t}-string. Note that

a resulting element z of a right {s, t}-star operation on w, when it exists, need not be

unique unless w is a terminal term of the right {s, t}-string containing it.

Similarly, we can define a left {s, t}-string and a left {s, t}-star operation on an element.

The following result follows directly from the definition of the relations ∼
L

and ∼
R

on W ,

which is known in [11], [12].

Lemma. If x, y ∈W can be obtained from each other by successively applying left (resp.,

right) star operations, then x ∼
L
y (resp., x ∼

R
y).

1.6. By the notation x–—y in W , we mean that max{degPx,y, degPy,x} = 1
2 (|`(x) −

`(y)|−1). Two elements x, y ∈W form a (left) primitive pair, if there exist two sequences

of elements x0 = x, x1, ..., xr and y0 = y, y1, ..., yr in W satisfying:

(a) xi—–yi for all i, 0 ≤ i ≤ r.

(b) For every i, 1 ≤ i ≤ r, there exist some si, ti ∈ S such that xi−1, xi (and also

yi−1, yi) are two neighboring terms in some left {si, ti}-string.

(c) Either L(x) * L(y) and L(yr) * L(xr), or L(y) * L(x) and L(xr) * L(yr) hold.

Lemma. (see [16, Subsection 3.3]) If x, y ∈W form a left primitive pair then x ∼
L
y.

§2. Digraphs associated to elements of Wc.

In [19], [20], [21], we associated each generalized Coxeter element of W to a digraph

which made it possible to use graph theory in the study of generalized Coxeter elements.

Clearly, a generalized Coxeter element is fully commutative. In this section, we shall

extend such an idea to the set Wc. Lemmas 2.6, 2.7, 2.9 and Corollary 2.8 are extensions

of some results of [21]. The proofs of these results can proceed by imitating those of the

corresponding results in [21] and so are omitted. An important property of the set Wc is

given in Proposition 2.10, which asserts that Wc is invariant under star operations.

Let us start with some basic definitions of graph theory.

2.1. By a graph, we mean a finite set of nodes together with a finite set of edges. A

graph is always assumed simple (i.e., no loop and no multi-edges). Two nodes of a graph
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are adjacent if they are joined by an edge. In a graph G, the degree dG(v) of a node v

is the number of edges incident on v; v is a branch node if dG(v) > 2, and a terminus if

dG(v) 6 1. A directed graph (or a digraph for brevity) is a graph with each edge orientated.

A directed edge (i.e., an edge with orientation) with two incident nodes v,v′ is denoted

by an ordered pair (v,v′), if the orientation is from v to v′. A node s of G is a source

(resp., a sink) if (s, s′) (resp., (s′, s)) is a directed edge of G for any node s′ adjacent to

s. An isolated node is a node which is both a source and a sink. A source or a sink of G

is also called an extreme node. A directed path ξ of a digraph G is a sequence of nodes

v0,v1, ...,vr in G with r > 0 such that (vi−1,vi) is a directed edge of G for 1 6 i 6 r. Call

r the length of ξ. A path ξ is maximal if ξ is not properly contained in any other directed

path of G. A path ξ is a directed cycle, if v0 = vr. A digraph is acyclic if it contains no

directed cycle. A subdigraph of a digraph G is a digraph which can be obtained from G

by removing some nodes and all the directed edges incident to these removed nodes.

2.2. To an expression

(2.2.1) χ : w = s1s2...sr

(not necessarily reduced) of any w ∈ W with si ∈ S, we associate a digraph G(χ) as

follows. The node set V of G(χ) is {si | 1 6 i 6 r} (note that the si’s are boldfaced),

and the directed edge set E of G(χ) consists of all the ordered pairs (si, sj) satisfying the

conditions i < j, sisj 6= sjsi and that there does not exist any i = h0 < h1 < ... < ht = j

with t > 1 such that shp−1
shp

6= shp
shp−1

for every 1 6 p 6 t. The digraph G(χ)

so obtained usually depends on the choice of an expression χ of w. However, if two

expressions of w can be obtained from each other by only applying the relations of the

form st = ts for some s, t ∈ S with o(st) = 2, then their corresponding digraphs should be

the same. In particular, when w is in Wc and an expression χ of w in (2.2.1) is reduced,

the digraph G(χ) only depends on the element w, but not on the particular choice of a

reduced expression χ of w. In this case, it makes sense to denote G(χ), V, E by G(w),

V(w), E(w), respectively. Call G(w) the associated digraph of w.

By the above construction of a digraph G(w) for w ∈ Wc, there exists a natural map
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φ : si 7→ si from V(w) to S and hence V(w) can be regarded as a multi-set in S.

Note that the above definition of the digraph G(w) can be regarded as a reformulation

of Viennot’s notion of a heap (see [25]).

2.3. Here and later, we always use the boldfaced letters, say I,J,V, ... (resp., s, t,v, ...) to

denote node sets (resp., nodes) of a digraph and use the ordinary letters I, J, V, ... (resp.,

s, t, v, ...) to denote the corresponding multi-sets (resp., elements) in S. In the subsequent

discussion of the paper, for a given expression of w ∈W , we often first mention a multi-set

I (resp., an element s) in S and then use the corresponding boldfaced letter I (resp., s)

to denote a node set (resp., a node) of the digraph G(w) or the other way round; in such

a case, the node set I (resp., the node s) is usually a certain specific one with φ(I) = I

and |I| = |I| (resp., φ(s) = s), and not φ−1(I) (resp., φ−1(s)) in general. This will be

unambiguous from the context.

2.4. Consider the following conditions on an expression χ of w ∈W in (2.2.1):

(2.4.1) for any pair i < j with si = sj, there exists a directed path in G(χ) connecting

the nodes si and sj .

(2.4.2) for any directed path si1 , si2 , ..., sim
in G(χ) with sih

= sih+2
for 1 6 h 6 m − 2

and m = o(si1si2) > 2, there exists another directed path with si1 , sim
two extreme nodes.

The following result follows by a result of Stembridge (see [24, Proposition 3.3]).

Lemma 2.5. Let χ be an expression of some w ∈W of the form (2.2.1). Then χ satisfies

both conditions (2.4.1) and (2.4.2) if and only if the element w is in Wc with χ reduced.

The next two results can be proved by imitating those for [21, Lemmas 2.1 and 2.2].

Lemma 2.6. (comparing with [21, Lemma 2.1]) Let G be an acyclic orientation of a

graph G. Then

(i) Each terminus of G is an extreme node of G.

(ii) Each node of G is contained in some maximal directed path of G, which starts with

a source and ends with a sink.

(iii) Let w ∈ Wc be with G(w) the associated digraph. Then L(w) (resp., R(w)) (see

1.5) is exactly the set of all s ∈ S with φ−1(s) containing a source (resp., a sink) of G(w).
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(iv) Keep the assumption of (iii). Let s ∈ L(w) (resp., s ∈ R(w)). Then L(w)
+
*L(sw)

(resp., R(w)
+
*R(ws)) if and only if the removal of the source (resp., sink) s from G(w)

yields a new source (resp., sink) in the resulting digraph (see 2.3).

Lemma 2.7. (comparing with [21, Lemma 2.2]) Given w ∈Wc with G(w) the associated

digraph. Then there is an expression w = x · wJ · y for some J ⊆ S and x, y ∈ W if and

only if there is a node set J of G(w) with φ(J) = J such that

(2.7.1) for any s 6= t in J, there is no directed path connecting s and t in G(w).

For any w ∈Wc, denote by m(w) the maximum possible value of `(wJ) in an expression

w = x · wJ · y, and denote by n(w) the maximum possible cardinality of a node set J of

G(w) satisfying condition (2.7.1). Then Lemma 2.7 tells us the following

Corollary 2.8. (comparing with [21, Corollary 2.3]) m(w) = n(w) for any w ∈Wc.

By Corollary 2.8, we shall not distinguish the numbers m(w) and n(w) for any w ∈ Wc

and denote n(w) for both numbers.

The next result asserts that the number n(w) remains unchanged under a star operation

on w ∈Wc, whose proof imitates that for [21, Lemma 2.4].

Lemma 2.9. (comparing with [21, Lemma 2.4]) If w, y ∈ Wc can be obtained from each

other by a star operation, then n(w) = n(y).

Finally, we show an important property of Wc involving star operations.

Proposition 2.10. The set Wc is invariant under star operations.

Proof. Assume that y ∈ W can be obtained from some w ∈ Wc by a left {s, t}-star

operation for some s, t ∈ S with st 6= ts. We want to show y ∈ Wc. We may assume

y = sw for the sake of definiteness. The result follows by Lemma 1.1 (4) if y < w. Now

assume w < y. Let w = s1s2...sr be a reduced expression of w with si ∈ S and let G(w)

be the associated digraph of w with V(w) = {si | 1 6 i 6 r} the node set. Let G be

the digraph for the reduced expression y = ss1s2...sr with V = V(w) ∪ {s0} the node

set, where φ(s0) = s0 = s. If y is not fully commutative, then by Lemma 2.5, there
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exists a directed path, say ξ : si1 , si2 , ..., sim
, in G with m > 3 such that sih

= sih+2
for

1 6 h 6 m− 2, o(si1si2) = m and that there does not exist any other directed path in G

with si1 , sim
two extreme nodes (hence for any node s of G not in ξ, if s is adjacent to

two nodes sij
, sik

of ξ in G, then (s, sij
) is a directed edge of G if and only if (s, sik

) is

so). Since s0 is a source of G and w ∈ Wc, we must have s0 = si1 . So there is a reduced

expression

(2.10.1) y = p1p2...pa(ss
′ss′...︸ ︷︷ ︸

m factors

)q1q2...qb ,

of y whose corresponding digraph is again G, where pi, qj ∈ S, a + b + m = r + 1 and

s′ = si2 . We may assume that a is the smallest number with this property. Hence

p1p2...pa(ss
′ss′...︸ ︷︷ ︸

kfactors

) ∈Wc for any k < m. Then w has the reduced expression

(2.10.2) w = p1p2...pa( s′ss′s...︸ ︷︷ ︸
m−1 factors

)q1q2...qb .

Since m > 3, there exists at least one factor s among the m− 1 factors in the parentheses

of the expression (2.10.2). We have phs = sph for any h by Lemma 1.1 (2) and the fact

that the leftmost factor s in the parentheses of the expression (2.10.1) corresponds to a

source of the digraph G. In particular, this implies t 6= ph for any h. Next we claim that

t = s′. Otherwise, the leftmost factor t in the expression (2.10.2) should be qk for some k.

Since there exists at least one factor s in the parentheses of the expression (2.10.2), this

contradicts the fact that qk is a source of the digraph G(w). So (2.10.2) becomes

(2.10.3) w = p1p2...pa( tsts...︸ ︷︷ ︸
m−1 factors

)q1q2...qb .

Since the leftmost factor t in the parentheses of (2.10.3) is a source of G(w), we have

pht = tph for any h. So y has the reduced expression

(2.10.4) y = ( stst...︸ ︷︷ ︸
m factors

)p1p2...paq1q2...qb ,
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which is impossible since y is obtained from w by a left {s, t}-star operation. This shows

that Wc is invariant under left star operations. By the same argument, we can show that

Wc is invariant under right star operations. This proves our result. �

We are told that the conclusion of Proposition 2.10 was proved by Graham in the simply

laced case of finite Coxeter groups (see [9]). By Lemma 2.6 (iv) and Proposition 2.10, we

see that Lemma 2.9 implies that the number n(w) is invariant under the star operations

on an element w in Wc.

§3. The value a(w) for w ∈Wc.

Assume that W is a Weyl or an affine Weyl group. Lusztig’s a-value is an important

invariant for an element of W (see 1.3). It is usually difficult to calculate a(z) for an

arbitrary z ∈ W . However, the value n(w) for w ∈ Wc can be computed easily. The

main result of the present section is Theorem 3.1, which equates a(w) with n(w) for any

w ∈Wc.

Theorem 3.1. When W is a Weyl or an affine Weyl group, we have a(w) = n(w) for

any w ∈Wc.

By 1.3 (a)–(c), the inequality a(w) > n(w) holds for w ∈ Wc in general. We have to

show the equality holds. We need only show it in the case where W is irreducible. So

from now on, assume that we are in such a case.

Note that the result in the simply-laced cases are known already (see [14, Theorems

17.4 and 17.6] and [18, Theorem 3.1] for the cases of An and Ãn, n > 1; and see [5,

Theorem 4.1] for an arbitrary simply-laced case).

3.2. Let W be An or Ãn (n > 1). Then we have the following two results:

(i) An element w ∈W is in Wc if and only if w corresponds to a partition of the form

2k1n−2k (i.e., a partition of n with k parts equal to 2 and n − 2k parts equal to 1) for

some 0 6 k 6 n/2 under the map defined in [14, Definition 5.3] (see [14, Theorems 17.4

and 17.6] and [18, Theorem 3.1]);

(ii) For any w ∈ Wc, we have a(w) = k if and only if w corresponds to 2k1n−2k, which

holds if and only if n(w) = k (see [18, Theorem 3.1] and [16, formula (6.27)]).
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Then Theorem 3.1 follows in this case. So in the subsequent discussion, we assume

W 6= An, Ãn (hence the Coxeter graph of W is a tree).

3.3. By the Cartier-Foata factorization of w ∈ W , we mean the expression of w of the

form w = wJ1
wJ2

...wJr
, where Ji = L(wJi

wJi+1
...wJr

) for any 1 6 i 6 r (see [7]).

Let Fc be the set of all the elements w in Wc such that L(sw) ⊂ L(w) (or equivalently,

L(sw) = L(w) \ {s}) for any s ∈ L(w). Then the following result can be shown from the

definition.

Lemma. Let W be a Weyl or an affine Weyl group.

(1) Any w ∈ Wc can be transformed to some of its left retractions in Fc by left star

operations.

(2) If w ∈ Fc, then any right retraction of w is also in Fc.

Let w = wJ1
wJ2

...wJr
be the Cartier-Foata factorization of w ∈ W .

(3) Denote J = J1 and I = J2. Then for any s ∈ I, there exist at least two t 6= r in

J such that st 6= ts and rs 6= sr. In particular, this implies that I contains no terminal

node of the Coxeter graph of W .

(4) w is in Wc if and only if the following conditions hold:

(i) if s ∈ Ji−1 ∩ Ji+1 for some 1 < i < r then there must exist either some t ∈ Ji with

o(st) > 3, or some t 6= t′ in Ji with o(st), o(st′) > 2; in the former case, if o(st) = 4 and

t ∈ Ji−2 (resp., t ∈ Ji+2) then there exists either some s′ ∈ Ji−1\{s} (resp., s′ ∈ Ji+1\{s})

with o(s′t) > 2 or some t′ ∈ Ji \ {t} with o(st′) > 2.

(ii) if there exist some 1 6 i < r−5 and s, t ∈ S with o(st) = 6 such that s ∈ Ji∩Ji+2∩

Ji+4 and t ∈ Ji+1 ∩ Ji+3 ∩ Ji+5, then there must exist either some s′ ∈ (Ji+2 ∪ Ji+4) \ {s}

with o(s′t) > 2 or some t′ ∈ (Ji+1 ∪ Ji+3) \ {t} with o(st′) > 2.

Proof. By applying induction on `(w) > 0, (1) follows directly from the definition of the

set Fc. Since no element of I is in L(w), there exists, for any s ∈ I, at least one t ∈ J

such that st 6= ts. If, for some s ∈ I, t is the only element in J satisfying the condition

st 6= ts, then t ∈ L(w) \ L(tw) and s ∈ L(tw) \ L(w). So w 7→ tw is a left {s, t}-star

operation with tw < w, contradicting the assumption of w ∈ Fc. Hence (3) follows. For
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(2), we need only show that if w = x · s ∈ Fc and s ∈ S then x ∈ Fc. We have x ∈ Wc

by Lemma 1.1 (4). Suppose x /∈ Fc. Then there exists some t ∈ L(rx) \ L(x) for some

r ∈ L(x). Since L(x) ⊆ L(w) and L(rx) ⊆ L(rw), we have r ∈ L(w) and t ∈ L(rw). By

the assumption of w ∈ Fc, we have t ∈ L(w). As t /∈ L(x), this implies x · s = t · x by the

exchange condition on W . This implies s = t by Lemma 1.1 (3) and the fact that w ∈Wc.

Moreover, s commutes with and is not equal to any factor v ∈ S in a reduced expression

of x by the fact that s · x = x · s ∈Wc and Lemma 1.1 (2). This contradicts the fact that

s = t ∈ L(rx). Hence (2) is shown. Finally, (4) follows directly by Lemma 2.5. �

For any w ∈ Wc, there is some y ∈ Fc obtained from w by left star operations by

Lemma 3.3 (1). We have a(w) = a(y) and n(w) = n(y) by 1.3 (b) and Lemmas 1.5, 2.9.

So we need only consider the case of w ∈ Fc (rather than w ∈Wc) in the proof of Theorem

3.1.

3.4. In 3.4 and 3.6–3.7, we always assume that w ∈ Fc and I, J ⊆ S are as in Lemma 3.3

(3). We may assume I 6= ∅. For otherwise, w = wJ , the equation a(w) = n(w) clearly

holds. Then G(wJwI) is a subdigraph of G(w) with the node set I ∪ J. Let

(3.4.1) I ∪ J = K1 ∪ ... ∪Ku

be a partition of I ∪ J with WI∪J = WK1
× ...×WKu

(direct product), where each WKi

is an irreducible standard parabolic subgroup of W . Then each Ki is the node set of a

connected subgraph Γi of the Coxeter graph Γ of W . By Lemma 3.3, we see that I ∩Ki,

when it is nonempty (or equivalently, |Ki| > 3), is fully commutative and contains no

terminus of Γi. Thus |I ∩ Ki| 6 1
2 |Ki| for any i. In particular, when I ∩ Ki 6= ∅, the

equation |I∩Ki| = 1
2 |Ki| holds only when |Ki| is even and the underlying graph of G(wKi

)

is a circle (i.e., WKi
= Ã|Ki|−1). The latter case never happens by our assumption on W

(see 3.2).

3.5. In the subsequent discussion, the subscripts for the generators of the irreducible

Weyl and affine Weyl groups are given as follows (following [4, pages 250–275]) . The gen-

erators s1, s2, ..., s8 of E8 satisfy that o(s1s3) = o(s3s4) = o(s2s4) = o(s4s5) = o(s5s6) =

o(s6s7) = o(s7s8) = 3. The groups E6 and E7 can be regarded as the standard parabolic
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subgroups of E8 generated by {s1, ..., s6} and {s1, ..., s7} respectively. Then Ẽm is the ex-

tension of Em with an additional generator s0 such that o(s0s2) = 3 if m = 6, o(s0s1) = 3

if m = 7, and o(s0s8) = 3 if m = 8.

The generator set S = {s0, s1, ..., sn} of the group Ãn (resp., B̃n, C̃n, D̃n) satisfies

that o(sisi+1) = 3 for 0 6 i 6 n with the subscripts modulo n + 1 (resp., o(sisi+1) =

o(s0s2) = 3 for 1 6 i < n − 1 and o(sn−1sn) = 4; o(sisi+1) = 3 for 1 6 i < n − 1 and

o(s0s1) = o(sn−1sn) = 4; o(sisi+1) = o(s0s2) = o(sn−2sn) = 3 for 1 6 i < n− 1).

The generator set S = {s0, s1, s2, s3, s4} of F̃4 satisfies that o(s0s1) = o(s1s2) =

o(s3s4) = 3 and o(s2s3) = 4. The generator set S = {s0, s1, s2} of G̃2 satisfies that

o(s0s2) = 3 and o(s1s2) = 6.

Then a Weyl group X ∈ {Ah, Bk, Cl, Dm, F4, G2 | h > 0, k > 2, l > 1,m > 3} can be

regarded as the standard parabolic subgroup of the affine Weyl group X̃ generated by

S \ {s0}.

3.6. In 3.6–3.7, we assume the digraph G(wJwI) to be connected with Γ′ the underlying

graph. First assume that I ∪ J contains no branch node of the Coxeter graph Γ of W .

Then the graph Γ′ is a line, and I∪J = {s1, s2, ..., st}, where sisi+1 6= si+1si for 1 6 i < t

by relabelling if necessary. By Lemma 3.3 (3), we see that t is odd, say t = 2h + 1 for

some h > 1, and that J = {s1, s3, ..., s2h+1} and I = {s2, s4, ..., s2h}. The directed edges

of G(wJwI) are (s2i±1, s2i) for 1 6 i 6 h.

(i) If o(s2i±1s2i) = 3 for all 1 6 i 6 h, then let z = s1s3...s2h+1 ·s2s4...s2h ·s3s5...s2h−1 ·

... · shsh+2 · sh+1 (here and later we express the elements z, zk, etc, in the form of Cartier-

Foata factorizations, see 3.3).

(ii) If there exists exactly one pair (say s, t) in I ∪ J, satisfying o(st) = 4 and if one of

s, t is a terminus in Γ′ (say s2h+1 ∈ {s, t} for the sake of definiteness), then WI∪J = B2h+1

for some h > 1. Let z be the element s1s3...s2h+1 · s2s4...s2h · s3s5...s2h+1 · s4s6...s2h · ... ·

s2h−1s2h+1 · s2h · s2h+1 if W ∈ {Bl, B̃l, C̃l} for some l > 2h+ 1 (note that the subscripts i

of the si’s here and in (i) are not those described in 3.5), s2s4 · s3 · s2 · s1 or s1s3 · s2 · s3 · s4

if W = F4, and s2s4 · s3 · s2 · s1 · s0 or s1s3 · s2 · s3 · s4 if W = F̃4 (here and later the

subscripts i of the si’s are given as in 3.5).
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(iii) If there exists exactly one pair (say s, t) in I ∪ J, satisfying o(st) = 4 and none of

s, t is a terminus of Γ′, then WI∪J = F̃4. Let z = s0s2s4 · s1s3 · s2 · s3 · s4.

Then in any of the cases (i)–(iii), the element w is a right retraction of z (see 1.1) by

Lemmas 2.5, 3.3 and the assumption of w ∈ Fc.

(iv) Suppose there exists exactly one pair (say s, t) in I ∪ J with o(st) = 6. Then

WI∪J = G̃2. Let x = s0s1 · s2 · s1 · s2 and then let zk = xk for any k > 1.

(v) If there exist two pairs (say {s, t}, {s′, t′}) in I ∪ J with o(st) = o(s′t′) = 4, then

WI∪J = C̃2h for some h > 1 and (s, t, s′, t′) = (s0, s1, s2h−1, s2h). Let x = s0s2...s2h ·

s1s3...s2h−1 and then let zk = xk for k > 1.

Then in any of the cases (iv)–(v), the element w is a right retraction of zk with some

k > 1 by Lemmas 2.5, 3.3 and the assumption of w ∈ Fc.

3.7. Next assume that I∪ J contains a branch node, say s, of the Coxeter graph Γ of W .

If s is a terminus in the underlying graph Γ′ of the digraph G(wJwI), then the situation

is the same as that in 3.6. Now assume that we are not in such a case.

(i) First assume s ∈ J. Then W ∈ {Ei, Ẽi | i = 6, 7, 8} and s = s4. When W is

E6, E7 or Ẽ7, let z = s1s4s6 · s3s5 · s4 · s2; when W = Ẽ6, let z be one of the elements

s1s4s6 ·s3s5 ·s4 ·s2 ·s0, s1s4s0 ·s3s2 ·s4 ·s5 ·s6, s0s4s6 ·s2s5 ·s4 ·s3 ·s1, and s0s1s4s6 ·s2s3s5 ·s4;

when W is E8 or Ẽ8, let z = s1s4s6s8 · s3s5s7 · s4s6 · s2s5 · s4 · s3 · s1.

(ii) Next assume s ∈ I. Then W is Dn, D̃n, B̃m, Ei or Ẽi (n > 4, m > 3 and

i = 6, 7, 8). When W = D̃n with s = s2, sn−2 two branch nodes (hence n > 4), let

x = s0s1 · s2 · s3 · ... · sn−2, y = sn−1sn · sn−2 · sn−3 · ... · s2, then let zk = xyx...

and z′k = yxy... (k factors each) for k > 1; when n = 4, the branch node s is s2, let

xij = sisj ·s2 for any i 6= j in {0, 1, 3, 4} and let x̄ij = xlm be with {i, j, l,m} = {0, 1, 3, 4},

then let z
(ij)
k = xij x̄ijxij ... (k factors) for any k > 1, let z(m) = sisjsl · s2 · sm for

{i, j, l,m} = {0, 1, 3, 4}, and let z0 = s0s1s3s4 · s2. When W = B̃m is with s = s2 the

branch node, let x = s0s1 · s2 · s3 · ... · sm−1 · sm · sm−1 · ... · s2, then let zk = xk for k > 1;

in particular, when W = B̃3, we further let y0 = s0s3 · s2 and y1 = s1s3 · s2, then let

z′k = y0y1y0... and z′′k = y1y0y1... (k factors each) for k > 1. Also, let z = s0s1s3 · s2 · s3.

When W is Ei or Ẽi, the branch node s is always s4. Then z0 = s2s3s5 · s4 is always



Fully commutaive elements 15

in Fc. Now we consider the other elements of Fc in Ei or Ẽi. When W = Ẽ6, let z0 ∈

{s3s5·s4·s2·s0, s2s5·s4·s3·s1, s2s3·s4·s5·s6}. WhenW = Ẽ7, let x = s2s5s7·s4s6·s3s5·s1s4,

y = s0s2s3 ·s1s4 ·s3s5 ·s4s6, then let zk = xyx... and z′k = yxy... (k factors each) for k > 1;

let w1 = s0s3s5s7 · s1s4s6 · u with u ∈ {s2s3s5 · s4, s2s3 · s4 · s5, s2s5 · s4 · s3, s3s5 · s4 · s2},

let w2 = s0s2s3s5s7 · s1s4s6 · s3s5 · s4 · s2, w3 = s0s3s5 · s1s4 · s2s3 · s4 · s5 · s6 · s7 and

w4 = s3s5s7 ·s4s6 ·s2s5 ·s4 ·s3 ·s1 ·s0. When W = Ẽ8, let z1 = s3s2s5s7s0 ·s4s6s8 ·s5s7 ·s6,

z2 = s2s5s7s0 ·s4s6s8 ·s3s5s7 ·s1s4s6 ·u with u ∈ {s3s2s5 ·s4, s3s5 ·s4 ·s2, s3s2 ·s4 ·s5, s2s5 ·

s4 · s3}, z3 = s3s5s7s0 · s4s6s8 · s2s5s7 · s4s6 · s3s5 · s1s4 · s2s3 · s4 · s5 · s6 · s7 · s8 · s0,

z4 = s2s5s7 ·s4s6 ·s3s5 ·s1s4 ·s2s3 ·s4 ·s5 ·s6 ·s7 ·s8 ·s0, and z5 = s2s3 ·s4 ·s5 ·s6 ·s7 ·s8 ·s0.

Note that Ei is a standard parabolic subgroup of Ẽi for i = 6, 7, 8. We see that in any

of the above affine Weyl groups and of the corresponding Weyl groups, an element w of

Fc with I ∪ J containing a branch node of Γ and with WI∪J irreducible must be a right

retraction of some z, zk, z′k, z′′k , z
(ij)
k , z(m) or wk whenever it is applicable.

Lemmas 3.8 and 3.9 below can be obtained by the list of elements of Fc in 3.6–3.7.

Lemma 3.8. Let W be an irreducible Weyl or affine Weyl group. Let w ∈ Fc and I, J ⊆ S

be as in Lemma 3.3 with I ∪ J containing no branch node of the Coxeter graph Γ of W .

Then the set {s ∈ S | s 6 w} is contained in I ∪J except for the case where W ∈ {F4, F̃4}

and w is a right extension of s1s3 · s2 · s3 · s4 or s2s4 · s3 · s2 · s1. In this case (i.e.,

{s ∈ S | s 6 w} ⊆ I ∪ J), let u be the number of parts in the partition (3.4.1) of I ∪ J ,

then there exists a decomposition w = w1 · w2 · ... · wu with wh ∈ WKh
∩ Fc, where each

wh is a right retraction of some suitable z, zk, z
′
k, z

′′
k , z

(ij)
k , z(m) or wk.

Lemma 3.9. Let W be an irreducible Weyl or affine Weyl group. For any w ∈ Fc in

3.6–3.7 with WI∪J irreducible, we have n(sw) 6 n(w) = |L(w)| for any s ∈ L(w). More

precisely, we have n(sw) < n(w) = |L(w)| for any s ∈ L(w), unless w is a right extension

of some element w′ defined below:

(1) W = D̃n. When n > 4, let u = s0s1 ·s2 ·s3 · ... ·sn−2 ·sn−1sn, then let w′ ∈ {u, u−1};

when n = 4, let w′ ∈ {sisj · s2 · slsm | {i, j, l,m} = {0, 1, 3, 4}}.

(2) W = B̃m. When m > 3, let w′ = s0s1 · s2 · s3 · ... · sm−1 · sm · sm−1 · ... · s2 · s1s0;
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when m = 3, let w′ ∈ {s0s1 · s2 · s3 · s2 · s0s1, s0s3 · s2 · s1s3, s1s3 · s2 · s0s3}.

(3) W = C̃l for some even l > 2. Let w′ = s0s2s4...sl · s1s3...sl−1 · s0s2s4...sl.

(4) W = Ẽ7. Let u = s2s5s7 · s4s6 · s3s5 · s1s4 · s0s3s2, then let w′ ∈ {u, u−1}.

(5) W = G̃2. Let w′ = s0s1 · s2 · s1 · s2 · s1s0.

3.10. Let F ′
c be the set of all the elements w in Fc with n(sw) < n(w) for any s ∈ L(w).

Let F ′′
c = Fc \ F

′
c. We record a simple fact on F ′′

c for later use.

Lemma 3.11. Let W be an irreducible Weyl or an affine Weyl group. Then s 6 w for

any w ∈ F ′′
c and s ∈ S.

3.12. In the above discussion on w ∈ Fc, we always assume WI∪J irreducible. Now

assume that I ∪ J is as in (3.4.1) with u > 1. For each i, let Vi be the set of all the

nodes s in G(w) such that there exists a directed path connecting s with some node in Ki.

Let Gi be the subdigraph of G(w) with Vi its node set. Then Gi will be the associated

digraph of some element wi of Fc in one of the cases discussed in 3.5–3.9. By Lemma 3.8

and by observing the cases of W = F4, F̃4, we see that there exist some 1 6 i < j 6 u

with Vi ∩Vj 6= ∅ only when Ki ∪Kj contains some branch node of the Coxeter graph of

W . By the definition of the set F ′′
c , we see that w ∈ F ′′

c if and only if there exist some

1 6 k 6 u with wk ∈ F ′′
c . Then we have the following

Lemma 3.13. Let W be an irreducible Weyl or affine Weyl group. If w ∈ F ′′
c then WI∪J

is irreducible, where I ∪ J is determined by w as in Lemma 3.3 (3).

Proof. Write w = wJ · x with J = L(w) and some x ∈ Wc. Let I = L(x). Then I ∪ J

has a partition (3.4.1) for some u > 1. We must show u = 1. Recall the notations Ki,

Ki, Vi and wi (1 6 i 6 u) in (3.4.1) and in 3.12. By 3.12, there exists some 1 6 k 6 u

with wk ∈ F ′′
c . We may assume k = 1 by relabelling the Ki’s if necessary. By Lemma

3.9, we see that w1 ∈ F ′′
c only if W is D̃n (n > 4), B̃m (m > 3), C̃l (even l > 2), Ẽ7

or G̃2. Write w1 = wK · y with K = L(w1) and some y ∈ Wc. Let H = L(y). Then

K∪H = K1 ⊆ I∪J . When W is C̃l or G̃2, we have K∪H = S by Lemma 3.9 (3), (5). This

implies K1 = I ∪ J , i.e., u = 1. When W = Ẽ7, K1 is equal to either {s0, s1, s3, s4, s2}
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or {s2, s4, s5, s6, s7}. Assume K1 = {s0, s1, s3, s4, s2}. Then w1 is a right extension of

z = s0s3s2 · s1s4 · s3s5 · s4s6 · s2s5s7. Let V′ = V(w) \ V1 and let G′ be the subdigraph

of G(w) with V′ its node set. Then G′ will be the associated digraph of some right

retraction (written w′) of w. We have w = w′ · w1 by the construction of V1. If u > 1

then w′ 6= e. Since w = w′ · w1 ∈ Wc and since the sources s0, s3, s2 of the subdigraph

G(w1) are also the sources of the digraph G(w), the element w′ contains no factors si

with 0 6 i 6 4 in its reduced expression by Lemma 1.1 (2). So R(w′) ⊆ {s5, s6, s7}. It

can be checked easily that sjz /∈Wc for any j = 5, 6, 7. So w′ 6= e would imply w /∈Wc, a

contradiction. Hence we again get u = 1. Similarly for the case of K1 = {s2, s4, s5, s6, s7}.

The arguments for the remaining two cases (i.e., W = D̃n, B̃m) are similar to that for the

case of W = Ẽ7 and hence are left to the readers. �

3.14. Now we consider the set F ′
c. For any z = wK · z′ ∈Wc with K = L(z) and z′ ∈Wc,

let n′(z) be the maximum possible cardinality for a node set V in the digraph G(z) which

satisfies conditions (2.7.1) and V 6= K (K being the set of sources in the digraph G(z),

see 2.3). Clearly, the inequality n′(z) 6 n(z) holds in general.

The following is concerned with the properties of the set F ′
c.

Lemma. Let W be a Weyl or an affine Weyl group.

(1) The following statements on an element w ∈Wc are equivalent:

(a) w ∈ F ′
c;

(b) n(sw) < n(w) for any s ∈ L(w);

(c) a(sw) < a(w) for any s ∈ L(w);

(d) w <
L
sw for any s ∈ L(w);

(e) n′(w) < n(w);

(f) n′(w) < |L(w)|.

(2) If w ∈ F ′
c then any right retraction of w is also in F ′

c.

Proof. (1) Write w = wJ · x with J = L(w) and some x ∈Wc.

(b) ⇐⇒ (c): This follows by Theorem 3.1.



18 Jian-yi Shi

(c) ⇐⇒ (d): We have w 6
L
sw for any s ∈ L(w) in general. Hence the result is an easy

consequence of 1.3 (b),(d).

(b) ⇐⇒ (e)⇐⇒ (f): This can be shown by the facts that n′(w) = max{n(sw) | s ∈ J}

and n(w) = max{n′(w), |J |}.

(a) =⇒ (b): This follows by the definition of the set F ′
c.

(b) =⇒ (a): Condition (b) ensures that if V is a node set of G(w) satisfying conditions

(2.7.1) and |V| = n(w) then V = J (J being the set of sources of G(w), corresponding

to J = L(w)). This implies that |L(sw)| < |L(w)| for any s ∈ L(w). In general, we have

L(sw) ⊇ L(w) \ {s} for any s ∈ L(w). Hence the inequality |L(sw)| < |L(w)| implies

L(sw) = L(w) \ {s} ⊂ L(w) for any s ∈ L(w). So w ∈ Fc. Thus w is in F ′
c by condition

(b) and by the definition of the set F ′
c.

(2) According to the transitivity of taking right retraction, we need only show that if

w = z · s ∈ F ′
c and s ∈ S then z ∈ F ′

c. Since z ∈ Wc, we may consider the associated

digraph G(z). Clearly, n′(z) 6 n′(w) < |L(w)| by the equivalence of (a) and (f) in

(1), and L(z) ⊆ L(w). Again by the equivalence of (a) and (f) in (1), it suffices to

show n′(z) < |L(z)|. The result is obvious in the case of L(z) = L(w). Now assume

L(z) ( L(w) = J . Thus s ∈ J (s being the node of G(w) corresponding to the rightmost

factor s in the expression w = z · s) and L(z) = L(w) \ {s} by the exchange condition

on W and the fact of w ∈ Wc. Hence s commutes with any t ∈ S satisfying t 6 z by

Lemma 1.1 (2). This implies that the node s is contained in any maximal node set of

G(w) satisfying condition (2.7.1). So n′(w)− 1 is the maximum possible cardinality for a

node set V of the digraph G(z) (regarded as a subdigraph of G(w)) satisfying conditions

(2.7.1) and V 6= J \ {s}. Therefore n′(z) = n′(w) − 1 < |L(w)| − 1 = |L(z)|. This shows

z ∈ F ′
c by the equivalence of (a) and (f) in (1). �

We have the following important properties for the elements in Fc.

Lemma 3.15. Let W be a Weyl or an affine Weyl group.

(1) For any w ∈ F ′
c, there exists a sequence of elements x0 = w, x1, ..., xr = wK in

F ′
c with K = L(w) such that xi can be obtained from xi−1 by a right star operation and
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xi < xi−1 for every 1 6 i 6 r. In particular, we have n(w) = |L(w)|.

(2) For any w ∈ F ′′
c , there exists some s ∈ L(w) such that n(sw) = n(w) = |L(w)| and

that {w, sw} is a primitive pair (see 1.6).

(3) For any w ∈Wc, there exists some y ∈ F ′
c such that y is a left retraction of w with

y ∼
L
w and n(y) = n(w).

Proof. For w ∈ Fc, write w = wJ · x with J = L(w) and some x ∈ Wc. Let I = L(x).

We may assume I 6= ∅, for otherwise, the results are trivial. When WI∪J is irreducible,

results (1)–(2) can be shown by a close observation of all the cases listed in 3.6–3.9 (see

Examples 3.19 for illustration). Lemma 3.13 tells us that WI∪J is always irreducible for

w ∈ F ′′
c whenever W is irreducible. So (2) follows.

Now we want to prove (1). Suppose that w ∈ F ′
c and that I ∪ J has a partition (3.4.1)

with u > 1. Keep the notations wi, Vi, 1 6 i 6 u, in 3.12. If any wi, 1 6 i 6 u, has the

form wHi
for some Hi ⊆ S, then so does the element w and hence the result is true. Now

assume that there exists some 1 6 k 6 u with wk 6= wH for any H ⊆ S. We may assume

k = 1 by relabelling the Ki’s in (3.4.1) if necessary. Let V′ = V(w)\V1 and let G′ be the

subdigraph of G(w) with the node set V′. Then it is easily seen that G′ is the associated

digraph of some right retraction (written w′) of w. Moreover, we have w = w′ · w1. By

the last sentence of 3.12, w1 is in F ′
c. Write w1 = wK · y with K = L(w1) and some

y ∈ Wc. Let H = L(y). Then WK∪H is irreducible (note K ∪ H = K1 in the notation

of (3.4.1)). Hence w1 can be transformed to wK by a sequence of right star operations

according to the list in 3.6–3.7 for the elements of F ′
c in the irreducible case of WI∪J . By

Lemma 2.6 (iv) and by the construction of the elements w1, w
′, this implies that w can

be transformed to w′′ = w′ · wK by the same sequence of right star operations as wK

obtained from w1. We see that w′′ is a proper right retraction of w. Hence by Lemma

3.14 (2), w′′ is in F ′
c as so is w. Therefore, (1) follows by induction on `(w)− |L(w)| > 0.

For (3), if w /∈ Fc, then by the definition of the set Fc, there exists some s ∈ L(w) such

that w′ = sw can be obtained from w by a left star operation. Clearly, w′ is a proper

left retraction of w with w′ ∼
L
w and n(w′) = n(w) by Lemmas 1.5 and 2.9. Applying
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induction on `(w) > 0, we can show that there exists some y ∈ Fc such that y is a left

retraction of w with y ∼
L
w and n(y) = n(w). If y ∈ F ′

c then we are done. Otherwise,

by (2), there exists some s ∈ L(y) such that {y, sy} is a primitive pair and n(sy) = n(y).

Hence y′ = sy is a proper left retraction of y with y′ ∼
L
y by Lemma 1.6. Since y′ is in

Wc, we can find a left retraction y1 of y′ in Fc with y1 ∼
L
y′ and n(y1) = n(y′). Continue

the process. Since y1 is a proper left retraction of y and since `(y) < ∞, such a process

must stop after a finite number of steps. So we can eventually find a required element of

F ′
c. �

3.16. Proof of Theorem 3.1. By Lemma 3.15 (3) and 1.3 (b), any w ∈ Wc can be

transformed to some y ∈ F ′
c with a(y) = a(w) and n(y) = n(w). Then by Lemma 3.15

(1), we have y ∼
R
wJ with J = L(y), where wJ is obtained from y by a sequence of right

star operations. Then n(y) = n(wJ ) = |J | by Lemma 2.9. Also, a(y) = a(wJ) = |J | by

1.3 (a), (b). This implies a(y) = n(y) and hence a(w) = n(w). �

Remark 3.17. The careful reader may suspect that the above arguments proceed in

circle:

Theorem 3.1 =⇒ Lemma 3.14 (1) =⇒ Lemma 3.14 (2)

=⇒ Lemma 3.15 (1) =⇒ Theorem 3.1.

Now we would like to explain that this is not the case. Theorem 3.1 is applied only in

the proof for the equivalence between (c) and (d), but not between (a) and (f) in Lemma

3.14 (1); only the latter equivalence is applied in the proof of Lemma 3.14 (2). Thus the

validity of Lemma 3.14 (2) does not depend on Theorem 3.1.

Corollary 3.18. Let W be a Weyl or an affine Weyl group. Then a(w) = |L(w)| for any

w ∈ Fc.

Proof. Let w = wJ1
· ... ·wJr

be the Cartier-Foata factorization of w. The result is obvious

if r = 1. Now assume r > 1. If the group WJ1∪J2
is irreducible then the result follows by

Theorem 3.1 and Lemma 3.9. When WJ1∪J2
is reducible, we can make the decomposition

(3.4.1) with J1 ∪ J2 in the place of I ∪ J . Then our proof in this case can proceed similar

to that for Lemma 3.15 (1). �
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Examples 3.19. (1) Let W = Ẽ8 and let w = s2s5s7s0 ·s4s6s8 ·s3s5s7 ·s1s4s6 ·s3s2s5 ·s4.

Then w is in F ′
c with n(w) = |L(w)| = 4. The required right star operations on w are just

to remove the factors s4, s3, s5, s2, s6, s4, s1, s7, s5, s3, s4, s6, s8 in turn on the right-side

of w. Then the resulting element is w0257 = s2s5s7s0. So by 1.3 (a) and Lemma 1.5, we

get a(w) = a(w0257) = 4.

(2) Let W = Ẽ7 and let w = s2s5s7 ·s4s6 ·s3s5 ·s1s4 ·s0s3s2 ·z (some z ∈Wc) be a right

retraction of the element zk but not that of zk−1 for some k > 2 (see 3.7 for zk in Ẽ7).

Then w ∈ F ′′
c . Take y = s2w. We have n(y) = n(w) = |L(w)| = 3. We claim that {w, y}

is a primitive pair. Let w0 = w,w1, ..., w8 be such that w1 = s4w, w2 = s6w1, w3 = s3w2,

w4 = s5w3, w5 = s1w4, w6 = s4w5, w7 = s0w6, w8 = s3w7. Also, let y0 = y, y1, ..., y8 be

such that y1 = s5y, y2 = s7y1, y3 = s4y2, y4 = s6y3, y5 = s3y4, y6 = s5y5, y7 = s1y6,

y8 = s4y7 = s0s3s2 · z. Then we see that L(w0) = {s2, s5, s7} % {s5, s7} = L(y0),

L(wi) = L(yi) for 1 6 i < 8, L(w8) = {s0, s3} $ {s0, s3, s2} = L(y8) and that wj is

obtained from wj−1 by the same left star operation as yj from yj−1 for any 1 6 j 6 8.

This implies that {w, y} is a primitive pair and hence w ∼
L
y ∼

L
y8 by Lemmas 1.6 and 1.5.

So a(w) = a(y) = a(y8) and n(w) = n(y) = n(y8) = 3 by 1.3 (a),(b) and Proposition 2.10.

The element y8 is in Fc with L(y8) = {s0, s3, s2} which is a right retraction of z′k−1 but

not that of z′k−2 (see 3.7 for z′k in Ẽ7). Applying induction on k > 1, we can eventually

find some y′ in F ′
c with L(y′) ∈ {{s0, s3, s2}, {s2, s5, s7}} and w ∼

L
y′ which is a right

retraction of z1 or z′1. Then y′ can be transformed to w257 or w023 by a sequence of right

star operations and hence a(y′) = 3 = n(y′). This implies a(w) = a(y′) = 3 by 1.3 (a),(b)

and Lemma 1.6.

§4. Distinguished involutions in Wc.

Again assume that W is a Weyl or an affine Weyl group in this section. In [21], we

described all the distinguished involutions in the left cells ofW containing some generalized

Coxeter elements. In this section, we shall describe all the distinguished involutions of W

in the set Wc. The main result is Theorem 4.3.

4.1. By Lemma 3.15, we see that for any z ∈Wc, there exists some w ∈ F ′
c which is a left



22 Jian-yi Shi

retraction of z and satisfies w ∼
L
z. By Lemma 3.14, we also see that for any w ∈ F ′

c and

any s ∈ L(w), the inequalities n(sw) < n(w) and hence a(sw) < a(w) hold, which implies

w <
L
sw again by Lemma 3.14. So we can say that any w ∈ F ′

c is a minimal element (with

respect to left retraction) in the left cell of W containing it.

4.2. For w ∈ F ′
c, write w = wJ · x with J = L(w) and x ∈ Wc. Let I = L(x). By

Lemma 3.15 (1), there is a reduced expression x = s1s2...sa with si ∈ S such that, let

wk = wJs1s2...sk (0 6 k 6 a), then wk can be obtained from wk−1 by a right {sk, rk}-star

operation for some rk ∈ S with skrk 6= rksk. Given a reduced expression wJ = t1t2...tb

with tj ∈ S, let G be the digraph determined by the expression

(4.2.1) d = x−1wJx = sa...s2s1t1t2...tbs1s2...sa

with s′a, ..., s
′
2, s

′
1, t1, t2, ..., tb, s1, s2, ..., sa the nodes corresponding to the factors sa, ..., s2, s1,

t1, t2, ..., tb, s1, s2, ..., sa in (4.2.1) respectively (hence the node set J of G corresponding

to J is {t1, t2, ..., tb}, see 2.3). Two facts concerning the digraphs G(w) and G can be

seen easily:

(i) A node of G(w) is adjacent to some node in J if and only if it is in I (I being the

set of sources in the subdigraph G(x) of G(w));

(ii) G has no directed edge of the form (s′i, sj) for any i, j > 1.

Now we state the main result of the section.

Theorem 4.3. Assume that W is a Weyl or an affine Weyl group. Let w = wJ · x ∈ F ′
c

be as above. Then we have

(1) The element d = x−1wJx satisfies `(d) = `(wJ) + 2`(x);

(2) d ∈Wc;

(3) d ∼
L
w;

(4) d is a distinguished involution of W .

To show Theorem 4.3, we need first prove some lemmas.

Lemma 4.4. In the setup of 4.2, let

(4.4.1) dk = sk...s2s1t1t2...tbs1s2...sk
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for 0 6 k 6 a with the convention that d0 = t1t2...tb = wJ .

(1) dk is an involution of W in Wc for any 0 6 k 6 a.

(2) The expression (4.4.1) of dk is reduced for any 0 6 k 6 a.

In particular, (1)–(2) hold for d = da.

(3) For any 1 6 k 6 a, we have dk = sk · dk−1 · sk, which can be obtained from dk−1 by

a left {sk, rk}-star operation followed by a right {sk, rk}-star operation.

Proof. That dk is an involution follows by noting in (4.4.1) that wJ = t1t2...tb is an

involution. To show dk ∈Wc, we first claim that the expression (4.4.1) satisfies conditions

(2.4.1) and (2.4.2) for any 0 6 k 6 a. First we show that (4.4.1) satisfies condition (2.4.1).

We know that sk...s2s1t1t2...tb and t1t2...tbs1s2...sk are reduced expressions. Then to show

the claim, we need only prove that for any nodes s′i, sj (1 6 i, j 6 k) of G with si = sj

(keep the notations in 4.2), there exists a directed path of G connecting s′i and sj . Let

h be the smallest number with sh = sj . Then there exists a directed path ξ′ (resp., ξ)

of G connecting the nodes s′i, s
′
h (resp., sh, sj) (we allow a directed path to contain only

a single node; see 2.1). There also exists a directed path ζ : tl, spc
, spc−1

, ..., sp0
= sh of

G(w) (and hence of G) connecting the nodes tl, sh for some l, c > 1 by Lemma 2.6 (ii).

Hence ζ ′ : s′p0
= s′h, s

′
p1
, ..., s′pc

, tl is a directed path of G connecting the nodes s′h, tl by

symmetry. Let λ be obtained by concatenating the directed paths ξ ′, ζ ′, ζ, ξ. Then λ is a

directed path of G connecting the nodes s′i, sj.

Next show that (4.4.1) satisfies condition (2.4.2) for any 0 6 k 6 a. Suppose not. Then

by Lemma 2.5, there exists some directed path µ : v1,v2, ...,vm of G with vh = vh+2

for 1 6 h 6 m − 2 and m = o(v1v2) such that there does not exist any other directed

path of G connecting v1 and vm. Since both sk...s2s1t1t2...tb and t1t2...tbs1s2...sk are

reduced expressions of some elements of Wc, the directed path µ is neither a subsequence

of s′k, ..., s
′
2, s

′
1, t1, t2, ..., tb, nor a subsequence of t1, t2, ..., tb, s1, s2, ..., sk. So by 4.2 (ii),

there exists some 1 < h < m such that vh−1 = s′p, vh = tq, vh+1 = sr for some p, q, r > 1.

By 4.2 (i) and the facts of tq ∈ J, sp = vh−1 = vh+1 = sr, we have p = r, sr ∈ I and

s′r ∈ I′ ( I′ being the set of sinks in the subdigraph G(x−1) of G). By Lemma 3.3 (3),
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there exists some q′ 6= q with tq′sr 6= srtq′ . Let µ′ be obtained from µ by replacing tq

by tq′. Then µ′ is another directed path of G connecting v1 and vm, contradicting our

assumption. So dk is in Wc with (4.4.1) reduced by Lemma 2.5. We get (1) and (2).

In particular, we have dk = sk · dk−1 · sk for 1 6 k 6 a. It is known that the element

wk can be obtained from wk−1 by a right {sk, rk}-star operation with sk ∈ R(wk) for

1 6 k 6 a (see 4.2). By Lemma 2.6 (iii) and the fact that dk, dk−1 ∈ Wc, we have

R(wk) = R(dk) for 0 6 k 6 a by comparing the sinks in the digraphs G(wk) and G(dk).

This implies that R(dk) ∩ {sk, rk} = {sk} and R(dk−1) ∩ {sk, rk} = {rk}. So (3) follows

by (1) and the fact that dk = sk · dk−1 · sk. �

By Lemma 4.4, we can use the notation G(dk) for any 0 6 k 6 a.

For 1 6 k 6 a, let yk be the shortest element in the double coset 〈sk, rk〉dk〈sk, rk〉,

where sk 6= rk in S are given in 4.2, and 〈sk, rk〉 is the subgroup of W generated by sk, rk.

Lemma 4.5. Let yk be as above for 1 6 k 6 a.

(1) The element yk is an involution in Wc;

(2) skyk 6= ykrk;

(3) There exists at least one, say t, of sk, rk satisfying tyk 6= ykt.

Proof. (1) Since dk is an involution, both yk and y−1
k are the shortest element in the

double coset 〈sk, rk〉dk〈sk, rk〉, which must be equal by [6, Proposition 2.7.3]. So yk is an

involution. We know that dk is in Wc and that yk is a retraction of dk. Hence yk is also

in Wc.

(2) Since dk is an involution and R(dk) ∩ {sk, rk} 6= ∅, at least one (say z) of the

elements sk · yk and yk · rk is a retraction of dk. Then z is in Wc by the fact that dk ∈Wc.

This implies skyk 6= ykrk by Lemma 1.1 (3) and the fact of sk 6= rk.

(3) The element dk has an expression (4.4.1). Let Ik = L(s1s2...sk). Denote by Ik

(resp., I′k) the node set of G(dk) corresponding to the set of sources (resp., sinks) of the

subdigraph G(s1s2...sk) (resp., G(sk...s2s1)). We can write dk = y ·f1f2...fc with fh = sk

if h ≡ c ( mod 2) and fh = rk if h ≡ c − 1 ( mod 2), where 1 < c < m = o(skrk), and

y ∈Wc satisfies R(y)∩ {sk, rk} = ∅. Then the corresponding directed path ξ : f1, f2, ..., fc
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of the digraph G(dk) satisfies

(4.5.1) for any 1 6 h 6 c, there does not exist any node v of G(dk) outside ξ with (fh,v)

a directed edge of G(dk).

We claim that ξ is a subsequence of t1, t2, ..., tb, s1, s2, ..., sk (note that ξ contains at most

one node in J = {t1, t2, ..., tb}). For otherwise, there would exist some 1 < h 6 c such

that fh−1 = s′p, fh = tq for some p, q > 1 by 4.2 (ii) (note that there is no sink of G(dk)

among s′k, ..., s
′
2, s

′
1). Then fh−1 ∈ I′k and fh ∈ J by 4.2 (i). By Lemma 3.3 (3), there

exists some node tq′ ∈ J with q′ 6= q such that (fh−1, tq′) is a directed edge of G(dk),

contradicting condition (4.5.1).

The element y has an expression y = gc′ ...g2g1 ·yk with c′ 6 c such that gh = sk if h ≡ c′ (

mod 2) and gh = rk if h ≡ c′ − 1 ( mod 2). We can also show that the corresponding

directed path ζ : gc′ , ...,g2,g1 of G(dk) is a subsequence of s′k, ..., s
′
2, s

′
1, t1, t2, ..., tb by the

same argument as above. This implies that among the nodes gc′ , ...,g2,g1, f1, f2, ..., fc,

only two nodes f1,g1 could be possibly in J.

Recall the notation wk = wJ · s1s2...sk in 4.2.

First assume f1,g1 /∈ J. Then by symmetry for the factors s1, ..., sk occurring in the

expression (4.4.1) of dk, we see that c = c′ > 1 and that for any 1 6 h 6 c, the equation

(fh,gh) = (sjh
, s′jh

) holds for some 1 6 jh 6 k. Hence fh = gh for any h. In particular,

f1 = g1. There exists a directed path th, sm1
, sm2

, ..., smp
= f1 of the digraph G(wk)

with p > 1 for some 1 6 h 6 b and some 1 6 m1 < m2 < ... < mp 6 k. Then

s′mp
= g1, ..., s

′
m2
, s′m1

, th, sm1
, sm2

, ..., smp
= f1 is a directed path of the digraph G(dk)

by symmetry, where s′mp−1
, ..., s′m2

, s′m1
, th, sm1

, sm2
, ..., smp−1

also form a directed path

in G(yk). If p = 1 then thf1 6= f1th. If p > 1 then smp−1
f1 6= f1smp−1

. Clearly, we have

th 6 yk when p = 1 and smp−1
6 yk when p > 1. In either case, we have f1yk 6= ykf1 by

the fact of ykf1 ∈Wc and Lemma 1.1 (2).

Next assume f1 ∈ J, say f1 = th for some 1 6 h 6 b. Hence c > 1 by the fact

that fc = sk ∈ R(wk) and rk ∈ R(wksk). By condition (4.5.1) on the directed path

ξ : f1, f2, ..., fc in G(dk), the facts that wk ∈Wc and that f1 is a source of G(wk), we have

f1v = vf1 for any node v ∈ V(wk) \ {fl | 1 6 l 6 c} by Lemma 1.1 (2). This implies
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f1yk = ykf1. Similarly, we can show that if g1 ∈ J then g1yk = ykg1. We claim that we

cannot have both f1,g1 in J. Otherwise, we would have both equations f1yk = ykf1 and

g1yk = ykg1. Thus f1 6= g1 as ykg1f1 = g1ykf1 = g1·yk ·f1. This implies {f1, g1} = {sk, rk}

by the fact that f1, g1 ∈ {sk, rk}. Hence f1g1 6= g1f1, contradicting condition (2.7.1) on

the node set J. By the construction of f1, g1, we see that if {f1,g1} ∩ J 6= ∅ then we must

have f1 ∈ J and g1 /∈ J. In this case, we have c = c′ + 1 and that for any 1 6 h 6 c′,

we have (fh+1,gh) = (sjh
, s′jh

) for some 1 6 jh 6 k by symmetry. On the other hand, we

have f2 = sq ∈ I for some 1 6 q 6 k by 4.2 (i). So there exists some h′ 6= h with (th′ , f2)

a directed edge of the digraph G(wk) by Lemma 3.3 (3). This implies

(a) th′f2 6= f2th′ .

By the claim just shown, we have

(b) th′ 6 yk.

We know that ykf1f2 is a retraction of dk and that ykf2 is a retraction of f1ykf2 =

ykf1f2. So ykf2 is a retraction of dk. Since dk ∈Wc by Lemma 4.4 (1), we get

(c) ykf2 ∈Wc.

Hence f2yk 6= ykf2 by (a)–(c) and Lemma 1.1 (2). So (3) follows. �

Let D0 be the set of all the distinguished involutions of W . We record a known result

as follows.

Lemma 4.6. (see [17, Proposition 5.12 (a), (b)]) Let y be an involution of W and let

s, t ∈ S satisfy o(st) ∈ {3, 4, 6} and s, t /∈ L(y). Define a subset of D0 as follows.

G(y, s, t) = {z ∈ D0 | z ∈ 〈s, t〉y〈s, t〉, |L(z)∩ {s, t}| = 1}.

Suppose G(y, s, t) 6= ∅.

(a) If ry 6= yr for r = s, t, and sy 6= yt, then G(y, s, t) is the set of all elements of the

form zyz−1, where z runs over one or two {s, t}-strings in 〈s, t〉.

(b) Suppose that ry = yr for exactly one r ∈ {s, t}. Let

G1 = {zryz−1 | z ∈ 〈s, t〉, r /∈ R(z), and 0 6 `(z) < o(st) − 1}
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and

G2 = {zyz−1 | z ∈ 〈s, t〉, r /∈ R(z), and 0 < `(z) 6 o(st) − 1}.

Then G(y, s, t) = G1, G2 or G1 ∪G2.

Now we are ready to prove the main result of the section.

4.7. Proof of Theorem 4.3. (1) and (2) follow by Lemma 4.4. Keep the notations in 4.2

and 4.4, in particular, the expressions of d, wk, dk. Applying induction on k > 0, we want

to show, for any 0 6 k 6 a, the following two results:

(a) dk ∼
L
wk;

(b) dk is a distinguished involution of W .

The results obviously hold when k = 0. Now let 0 < k 6 a. Suppose that the results

have been shown for all the smaller k. Let yk be as in Lemma 4.5. Then both dk−1 and

dk are in the double coset 〈sk, rk〉yk〈sk, rk〉 with dk−1 a distinguished involution of W as

assumed. Thus dk−1 ∈ G(yk, sk, rk) (see Lemma 4.6 for the notation). By Lemmas 4.5

and 4.6, we conclude that dk is in G(yk, sk, rk) and hence is a distinguished involution of

W , too. We have dk ∼
LR

dk−1 ∼
L
wk−1 ∼

R
wk, where the relation dk−1 ∼

L
wk−1 follows by

the inductive hypothesis, and the other two relations follow by the fact that the concerned

pair of elements can be obtained from each other either by star operations or by a right

star operation. So a(dk) = a(wk) by 1.3 (b). Since wk is a left retraction of dk, this

implies dk 6
L
wk by 1.3 (c). Then dk ∼

L
wk by 1.3 (d). So the assertions (a)–(b) follow by

induction. In particular, d = da is a distinguished involution of W with d = da ∼
L
wa = w.

Our proof is completed. �

4.8. Keep the notations in 4.2. Take w = wJ ·x ∈ F ′
c and the corresponding distinguished

involution d = x−1 ·wJ ·x. Then G(d) is symmetric with respect to the node set J in the

following sense:

(i) For any 1 6 p < q 6 a, (sp, sq) is a directed edge of G(d) if and only if (s′q, s
′
p) is so;

(ii) For any 1 6 p 6 a and 1 6 h 6 b, (th, sp) is a directed edge of G(d) if and only if

(s′p, th) is so.

(iii) J satisfies condition (2.7.1);
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We also have

(iv) Neither (s′p, sq) nor (sq, s
′
p) is a directed edge of G(d) for any 1 6 p, q 6 a (see 4.2

(ii));

(v) For any 1 6 p 6 a, there exists a directed path tk, sm1
, sm2

, ..., smr
= sp in G(w)

for some 1 6 k 6 b and some 1 6 m1 < m2 < ... < mr = p (see Lemma 2.6 (ii)).

Given a node u of G(d), let Vu be the set of all the nodes v of G(d) such that there

exists a directed path ξ in G(d) with u,v two extreme nodes, where u could be either

a source or a sink in ξ. Let Gu be the subdigraph of G(d) with Vu its node set. Then

by conditions (i)–(v) on G(d), we see that a node u of G(d) is in J if and only if Gu

is symmetric with respect to u (i.e., Gu satisfies conditions (i)–(iii) above with u in the

place of J). Hence the node set J is entirely determined by the digraph G(d). Then

the subdigraph G(w) is also determined by G(d): G(w) can be obtained from G(d) by

removing all such nodes v /∈ J that there exists some directed path of G(d) from v to

some node in J. So we have

Lemma 4.9. ψ : wJ ·x 7→ x−1 ·wJ ·x gives an injective map from the set F ′
c to D0, where

J = L(wJx).

Corollary 4.10. For w, y ∈ F ′
c, we have w ∼

L
y if and only if w = y.

Proof. The implication “ ⇐= ”is obvious. To show the other implication, we assume that

w, y ∈ F ′
c satisfy w ∼

L
y. Write w = wJ · x and y = wI · z with J = L(w), I = L(y) and

some x, z ∈ Wc. Then d = x−1 · wJ · x and d′ = z−1 · wI · z are distinguished involutions

of W by Theorem 4.3. We have d ∼
L
w ∼

L
y ∼

L
d′ again by Theorem 4.3. This implies

d = d′ since each left cell of W contains a unique distinguished involution of W (see [13,

Theorem 1.10]). Hence w = y by Lemma 4.9. �

By Lemma 3.15 (3) and Corollary 4.10, it is immediate to get the following

Corollary 4.11. If a left cell L of W satisfies L ∩Wc 6= ∅, then the intersection L ∩ F ′
c

contains a unique element, say wL. Any element z of L has the form z = x ·wL for some

x ∈W .
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Remark 4.12. (1) By Theorem 4.3, we can get the distinguished involution in any left

cell L of W , provided that L contains some element of Wc. Then Corollary 4.11 tells us

that the set F ′
c forms a representative set for all these left cells of W .

(2) Let H be the Hecke algebra of W over A = Z[q−1, q] with q an indeterminate. Let

{Tw | w ∈W} be the standard A-basis of H (in the sense of [11]). In [16, Conjecture 8.10],

we proposed a conjecture that any distinguished involution d of W should have the form

λ(x−1, x), where x is a shortest element in the left cell of W containing d, and λ(x−1, x)

is the unique maximal element y (under the Bruhat–Chevalley order) with fy 6= 0 in the

product Tx−1Tx =
∑

z fzTz, fz ∈ A. By the description of the elements λ(x, y) in [15,

Proposition 2.3], we have λ(w−1, w) = x−1 ·wJ ·x for any w = wJ ·x ∈ F ′
c with J = L(w).

So Theorem 4.3 verifies this conjecture for any distinguished involutions in Wc.

(3) A subset K of W is left connected, if for any x, y ∈ K, there exists a sequence of

elements x0 = x, x1, ..., xr = y in K with some r > 0 such that xi−1x
−1
i ∈ S for every

1 6 i 6 r. Lusztig conjectured in [2] that if W is an affine Weyl group then any left cell L

of W is left connected. The conjecture is supported by all the existing data (see [14], [15],

[16], [21]). Now let W be a Weyl or an affine Weyl group. Assume that L is a left cell of

W with L ∩Wc 6= ∅. Then by Corollary 4.11, there exists a unique element, say wL, in

L ∩ F ′
c such that any z ∈ L has the form z = x · wL for some x ∈ W . Take any reduced

expression x = s1s2...sr of x with si ∈ S. Denote by wi = sisi+1...sr ·w
L for 1 6 i 6 r+1

with the convention that wr+1 = wL. Then z = w1 6
L
w2 6

L
... 6

L
wr+1 = wL ∼

L
z by

1.3 (c). Hence all the wi’s, 1 6 i 6 r + 1, are in L. So L is left connected, verifying the

conjecture in the case where L contains some element of Wc.
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