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Abstract. A new q-analog of Genocchi numbers is introduced through a q-analog
of Seidel’s triangle associated to Genocchi numbers. It is then shown that these
q-Genocchi numbers have interesting combinatorial interpretations in the classical
models for Genocchi numbers such as alternating pistols, alternating permutations,
non intersecting lattice paths and skew Young tableaux.

1. Introduction

The Genocchi numbers G2n can be defined through their relation with Bernoulli
numbers G2n = 2(22n−1)Bn or by their exponential generating function [16, p. 74-75]:
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However it is not straightforward from the above definition that G2n should be integers.
It was Seidel [14] who first gave a Pascal type triangle for Genocchi numbers in the
nineteenth century. Recall that the Seidel triangle for Genocchi numbers [4, 5, 18] is
an array of integers (gi,j)i,j≥1 such that g1,1 = g2,1 = 1 and

(1)

{
g2i+1,j = g2i+1,j−1 + g2i,j , for j = 1, 2, . . . , i+ 1,
g2i,j = g2i,j+1 + g2i−1,j , for j = i, i− 1, . . . , 1,

where gi,j = 0 if j < 0 or j > di/2e by convention. The first values of gi,j for
1 ≤ i, j ≤ 10 can be displayed in Seidel’s tiangle for Genocchi numbers as follows:

155 155 5
17 17 155 310 4

3 3 17 34 138 448 3
1 1 3 6 14 48 104 552 2

1 1 1 2 2 8 8 56 56 608 1
1 2 3 4 5 6 7 8 9 10 i \ j

The Genocchi numbers G2n and the so-called median Genocchi numbers H2n−1 are
given by the following relations [4]:

G2n = g2n−1,n, H2n−1 = g2n−1,1.
1



2 A Q-ANALOG OF THE SEIDEL GENERATION OF GENOCCHI NUMBERS

The purpose of this paper is to show that there is a q-analog of Seidel’s algorithm and
the resulted q-Genocchi numbers inherit most of the nice results proved by Dumont-
Viennot, Gessel-Viennot and Dumont-Zeng for ordinary Genocchi numbers [4, 10, 6].

Note that some different q-analogs of Genocchi numbers have been investigated
from both combinatorial and algebraic points of view [11, 13]. In particular, Han
and Zeng [11] have found an interesting q-analog of Gandhi’s algorithm [8] by using
the q-difference operator instead of the difference operator and proved that the ordinary
generating function of these q-Genocchi numbers has a remarkable continued fraction
expansion.

A q-Seidel triangle is an array (gi,j(q))i,j≥1 of polynomials in q such that g1,1(q) =
g2,1(q) = 1 and

(2)

{
g2i+1,j(q) = g2i+1,j−1(q) + qj−1g2i,j(q), for j = 1, 2, . . . , i+ 1,
g2i,j(q) = g2i,j+1(q) + qj−1g2i−1,j(q), for j = i, i− 1, . . . , 1,

where gi,j(q) = 0 if j < 0 or j > di/2e by convention. The first values of gi,j(q) are
given in Table 1.

1 + 2q + 3q2
+ 4q3

+ 4q4
+ 2q5

+ q6
4

1 + q + q2 q2
+ q3

+ q4
1 + 2q + 3q2

+ 4q3
+ 4q4

+ 2q5
+ q6

3

1 q 1 + q + q2 q + 2q2
+ 2q3

+ q4
1 + 2q + 3q2

+ 4q3
+ 3q4

+ q5
2

1 1 1 1 + q 1 + q 1 + 2q + 2q2
+ 2q3

+ q4
1 + 2q + 2q2

+ 2q3
+ q4

1

1 2 3 4 5 6 7 i \ j

Table 1. q-analog of Seidel’s triangle (gi,j(q))i,j≥1

Define the q-Genocchi numbers G2n(q) and q-median Genocchi numbers H2n−1(q) by
G2(q) = H1(q) = 1 and for all n ≥ 2 :

(3) G2n(q) = g2n−1,n(q), H2n−1(q) = qn−2g2n−1,1(q).

Thus, the sequences for G2n(q) and H2n−1(q) start with 1, 1, 1 + q + q2 and 1, 1, q+ q2,
respectively.

This paper is organised as follows. In sections 2 and 3 we generalize the combinatorial
results of Dumont and Viennot [4] by first interpreting gi,j(q) (and in particular the two
kinds of q-Genocchi numbers) in the model of alternating pistols and then derive the
interpret G2n(q) as generating polynomials of alternating permutations. In section 4
we give the q-version of the results of Gessel-Viennot [10] and Dumont-Zeng [5]. In
section 4, by extending the matrix of q-binomial coefficients to negative indices we
obtain a q-analog of results of Dumont and Zeng [6]. Finally, in section 6, we show
that there is a remarkable triangle of q-integers containing the two kinds of q-Genocchi
numbers and conjecture that the terms of this triangle refine the classical q-secant
numbers, generalizing a result of Dumont-Zeng [5].

2. Alternating pistols

An alternating pistol (resp. strict-alternating pistol) on [m] = {1, · · · , m} is a map-
ping p : [m] → [m] such that for i = 1, 2, . . . , dm/2e:

(1) p(2i) ≤ i and p(2i− 1) ≤ i,
(2) p(2i− 1) ≥ p(2i) and p(2i) ≤ p(2i + 1) (resp. p(2i) < p(2i+ 1)).
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We can illustrate an alternating pistol on [m] by an array (Ti,j)1≤i,j≤m with a cross at
(i, j) if p(i) = j. For example, the alternating pistol p = p(1)p(2) . . . p(8) = 11211143
can be illustrated as in Figure 1.

X 4

X 3

X 2

X X X X X 1

1 2 3 4 5 6 7 8 i \ j

Figure 1. An alternating pistol p = 11211143

For all i ≥ 1 and 1 ≤ j ≤ di/2e, let AP i,j (resp. SAP i,j) be the set of alternating
pistols p (resp. strict-alternating pistols) on [i] such that p(i) = j. Dumont and
Viennot [4] proved that the entry gi,j of Seidel’s triangle is the cardinality of AP i,j.
Hence G2n (resp. H2n+1) is the number of alternating pistols (resp. strict alternating
pistols) on [2n].

To obtain a q-version of Dumont-Viennot’s result, we define the charge of a pistol p
by

ch(p) = (p1 − 1) + (p2 − 1) + · · · + (pm − 1).

In other words the charge of a pistol p amounts to the number of cells below its crosses.
For example, the charge of the pistol in Figure 1 is ch(p) = 1 + 3 + 2 = 6.

Proposition 1. For i ≥ 1 and 1 ≤ j ≤ di/2e, gi,j(q) is the generating function of
alternating pistols p on [i] such that p(i) = j, with respect to the charge, i.e.,

gi,j(q) =
∑

p∈APi,j

qch(p)−j+1.

Proof : We proceed by double inductions on i and j, where 1 ≤ j ≤ di/2e:

• If i = 1, then p(1) = 1 and ch(p) = 0, so g1,1(q) = 1,
• Let p ∈ AP2k+1,j and suppose the recurrence is true for all elements of AP2k′+1,j′

with k′ < k, or k′ = k and j ′ < j.
(1) If j > p(2k), let p′ ∈ AP2k+1,j−1 such that p and p′ have the same restric-

tions to [2k]. Then ch(p) = ch(p′),
(2) If j = p(2k) then the charge of the restriction of p to [2k] is ch(p) − j + 1.

Summing over all elements of AP2k+1,j, we obtain the first equation of (2).
• Let p ∈ AP2k,j and suppose the recurrence true for all elements of AP2k′,j′ with
k′ < k, or k′ = k and j ′ > j.
(1) If j < p(2k−1), let p′ ∈ AP2k,j+1 such that p and p′ have same restrictions

to [2k − 1]. Then ch(p) = ch(p′).
(2) If j = p(2k − 1) then the charge of the restriction of p to [2k − 1] is

ch(p) − j + 1.

Summing over all elements of AP2k,j, we obtain the second equation of (2).

In order to interpret the q-median Genocchi numbers H2n−1(q), it is convenient to
introduce another array (hi,j(q))i,j≥1 of polynomials in q such that h1,1(q) = h2,1(q) = 1,
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q2
+ 2q3

+ 2q4
+ 2q5

+ q6 q5
+ 2q6

+ 2q7
+ 2q8

+ q9
4

q + q2 q3
+ q4 q2

+ 2q3
+ 2q4

+ q5 q4
+ 3q5

+ 4q6
+ 3q7

+ 2q8
+ q9

3

1 q q q2
+ q3

+ q4 q2
+ q3

+ q4 q3
+ 2q4

+ 4q5
+ 4q6

+ 3q7
+ 2q8

+ q9
2

1 1 0 q 0 q2
+ q3

+ q4
0 q3

+ 2q4
+ 4q5

+ 4q6
+ 3q7

+ 2q8
+ q9

1

1 2 3 4 5 6 7 8 i \ j

Table 2. First values of hi,j(q)

h2i+1,1(q) = 0 and

(4)

{
h2i+1,j(q) = h2i+1,j−1(q) + qj−2h2i,j−1(q),
h2i,j(q) = h2i,j+1(q) + qj−1h2i−1,j(q),

where by convention hi,j(q) = 0 if j < 0 or j > di/2e. The first values of hi,j(q) are
given in Table 2. Similarly we can prove the following:

Proposition 2. For all i ≥ 1 and 1 ≤ j ≤ di/2e, we have

hi,j(q) =
∑

σ∈SAP i,j

qch(σ)−j+1.

Notice that

G2n+2(q) = g2n+1,n+1(q) =
∑

1≤k≤n

qk−1g2n,k(q),

and since h2n−1,n(q) = qn−2g2n−1,1(q), we have also

H2n+1(q) = h2n+1,n+1(q) =
∑

1≤k≤n

qk−1h2n,k(q).

The above observations and propositions infer immediately the following result.

Proposition 3. For all n ≥ 1, the q-Genocchi number G2n+2(q) (resp. q-medians
Gennochi numbers H2n+1(q)) is the generating function of alternating pistols (resp.
strict alternating pistols) on [2n] with respect to the statistics charge, i.e.,

G2n+2(q) =
∑

p∈AP2n

qch p, H2n+1(q) =
∑

p∈SAP2n

qch p.

Dumont and Viennot [4, Section 3] also gave a combinatorial interpretation of Genoc-
chi numbers with alternating permutations. In the next section we show that one can
translate the statistics charge through all the bijections involved in their proof and
interpret the q-Genocchi numbers as a q-counting of alternating permutations.

3. Alternating permutations

For any σ ∈ Sn and i ∈ [n], the inversion table of σ is a mapping fσ : [n] → [0, n−1]
defined by:

∀i ∈ [n], fσ(i) is the number of indices j such that j < i and σ(j) < σ(i).
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The mapping fσ is an subexceedant function on [n], that is a mapping fσ : [n] → [0, n−1]
such that 0 ≤ fσ(i) < i for every i ∈ [n]. It is well-known [15, p. 21] that the
correpondance ` : σ 7→ Iσ is a bijection between the set of permutations of [n] and
the set of subexceedant functions on [n]. Note that in [15] the inversion table of σ is
the mapping Iσ : [n] → [n − 1] defined by Iσ(i) = i − 1 − fσ(i) for all i ∈ [n] and the
inversion number of a permutation of σ is defined as the following:

(5) invσ =
n∑

i=1

(i− 1 − fσ(i)) =
n(n− 1)

2
−

n∑

i=1

fσ(i).

For example, let σ = 8 3 9 4 5 1 6 2 7 ∈ S9, then the inversion table is fσ = 002120416
and the inversion number is invσ = 20.

A permutation σ of [2n+ 1] is said to be alternating if:

∀i ∈ [n], σ(2i− 1) > σ(2i) and σ(2i) < σ(2i+ 1).

Let F2n+1 be the set of alternating permutations on [2n + 1] with even inversion
table.

Proposition 4. The q-Genocchi number G2n+2(q
2) is the generating function of F2n+1

with respect to inv − n, i.e.,

G2n+2(q) =
∑

σ∈F2n+1

q
1
2
(inv σ−n).

Proof : As in [4], we define the mapping α : p 7→ p′ from AP2n to AP2n+1 by

p′(1) = 1, p′(2i) = i+ 1 − p(2i− 1), p′(2i+ 1) = i+ 2 − p(2i), ∀i ∈ [n].

Note that ch(p′) = n2 − ch(p). Then we can construct an even subexceedant function
φ(p′) = f on [2n+ 1] by the following

f(i) = 2(p′(i) − 1), ∀i ∈ [2n+ 1].

Let σ = `−1(f) be the permutation whose inversion table isf , it is easily verified (cf. [4])
that p is an alternating pistol on [2n] if and only if σ is an alternating permutation
[2n+ 1]. Finally, it follows from (5) that

ch(p) =
1

2
(invσ − n).

For example, for the alternating pistol p = 11211143 ∈ AP8 in Figure 1, we have
p′ = 112133413 ∈ AP9, f = 002044604 and σ = 436287915 ∈ F9.

4. Non intersecting lattice paths

The q-shifted factorials (x; q)n are defined by

(x; q)n = (1 − x)(1 − xq) . . . (1 − xqn−1), ∀n ≥ 0.

They can be used to define the q-binomial coefficients
[
m

n

]
q

as
[
m

n

]

q

=
(qm−n+1; q)n

(q; q)n
∀m ∈ Z and n ∈ N.
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Let G−1
q = ((−1)i−jci, j(q))i, j≥1 be the inverse matrix of

(6) Gq =

([
i

2i− 2j

]

q

q(i−j−1)(i−j)

)

i, j≥1

.

The first values of ci,j(q) are given in Table 3.

i \ j 1 2 3 4

1 1 0 0 0

2 1 1 0 0

3 q2
+ q + 1 q2

+ q + 1 1 0

4 q6
+ 2q5

+ 4q4
+ 4q3

+ 3q2
+ 2q + 1 q6

+ 2q5
+ 4q4

+ 4q3
+ 3q2

+ 2q + 1
(
q2

+ q + 1
) (

q2
+ 1
)

1

Table 3. First values of ci,j(q)

ck, l(q) is a polynomial in q with non negative integrer coefficients using Gessel-
Viennot’s theory [9, 10].

Let A and B be two points in the plan Π = N × N of coordinates (a, b) and (c, d),
respectively. A lattice path from A to B is a sequence of points ((xi, yi))0≤i≤k such that
(x0, y0) = (a, b), (xk, yk) = (c, d) and each step is either east or north, i.e., xi−xi−1 = 1
and yi − yi−1 = 0 or xi − xi−1 = 0 and yi − yi−1 = −1 for 1 ≤ i ≤ k. Clearly there is a
path from A to B if and only if a ≤ c and b ≥ d.

• • • • •

• • •

• • •

• •

• •

qd

c

qb

a

6-
-6

-

6

.

.

.
.
.
.

. . .. . .. . .

. . .. . .. . .

- X

?
Y

Figure 2. A lattice path from (a, b) to (c, d) and its associated Ferrers diagram

Two lattice paths are said to be disjoint or non intersection if they have no common
points. For each path w from A to B with l vertical steps of abscissa x1, x2, . . . , xl,
arranged in decreasing order, we can associate a partition of integers λw = (x1−a, x2−
a, . . . , xl − a). Actually the Ferrers graph of λw corresponds to the area of the region
limited by the lines x = a, y = d and the horizontal and vertical steps of w. The weight
of the partition λw is defined by

|λw| = (x1 − a) + (x2 − a) + · · ·+ (xl − a).
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For example, for the lattice path w in Figure 2, we have |λw| = 5 + 5 + 3 + 2 = 15.
Define the weight of a n-tuple γ = (γ1, γ2, . . . , γn) of lattice paths by

ψ(γ) = q|λγ1 |+...+|λγn |.

We need the following result, which can be easily verified.

Lemma 1. Let (aij)i,j=0,...,m be an invertible lower triangular matrix, and let (bij)i,j =
(aij)

−1
i,j . Then for 0 ≤ k ≤ n ≤ m, we have

bn,k =
(−1)n−k

ak,kak+1,k+1 · · ·an,n
|ak+i,k+j−1|i,j=1,...,n−k .

Let Γk,l be the set of n-tuples of non intersecting lattice paths γ = (γ1, . . . , γn) such
that

• γi goes from Ai(i− 1, 2i− 1) to Bi(2i− 1, 2i− 1) for 1 ≤ i < l or k < i ≤ n and
from Ai+1(i, 2i+ 1) to Bi(2i− 1, 2i− 1) for l ≤ i < k.

Theorem 1. For integers k, l ≥ 1 the coefficient ck, l(q) is the generating function of
Γk,l with respect to the weight ψ, i.e.,

ck, l(q) =
∑

γ∈Γk,l

qψ(γ).

Proof : By Lemma 1, for 1 ≤ l ≤ k and n ≥ k, we have

ck,l(q) =

∣∣∣∣∣

[
l + i

2i− 2j + 2

]

q

q(i−j)(i−j+1)

∣∣∣∣∣

k−l

i,j=1

=

∣∣∣∣∣

[
l + i + 1

2i− 2j + 2

]

q

q(i−j)(i−j+1)

∣∣∣∣∣

k−l−1

i,j=0

=
∑

σ∈Sn

(−1)inv(σ)
n∏

i=1

[
l + i + 1

2i− 2σ(i) + 2

]

q

q(i−σ(i))(i−σ(i)+1) .

For any σ ∈ Sn denote by C(σ, k, l) the set of n-tuples of lattice paths γ = (γ1, · · · , γn),
where γi goes from Ai to Bσ(i) for 1 ≤ i < l or k < i ≤ n, and from Ai+1 to Bσ(i) for
l ≤ i < k.

Let f : Sn → Z be a mapping defined by:

∀σ ∈ Sn, f(σ) =

n∑

i=1

(i− σ(i))(i− σ(i) + 1).

Since the q-binomial coefficient has the following interpretation [1, p. 33]:
[
m+ n

m

]

q

=
∑

γ

q|λγ |,

where the sum is over all lattice paths γ from (0, m) to (n, 0), we derive immediately

(7) ck,l(q) =
∑

σ∈Sn

∑

γ∈C(σ,k,l)

(−1)inv(σ)qψ(γ)+f(σ) .
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Ai

Ai+1

Bσ(i+1)

Bσ(i)
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6
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-
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7−→

r

r

r

r

?

Ai

Ai+1

Bσ(i+1)

Bσ(i)

y

y

i

i

yy

y
-

6

6

-

-

Figure 3. Change of weight after switching tails.

For any n-tuple of lattice paths (γ1, . . . , γn), if there is at least one intersecting point,
we can define the extreme intersecting point (i, j) ∈ Π to be the greatest intersecting
point by the lexicographic order of their coordinates. It is easy to see that this point
must be an intersecting point of two lattice paths wi and wi+1 of consecutive indices.
Applying the Gessel-Viennot method by ”switching the tails”, i.e., exchanging the parts
of wi and wi+1 starting from the extreme point. Let φ : γ 7→ γ ′ be the corresponding
transformation on the n-tuple of lattice paths with at least one intersecting point. This
transformation doesn’t keep the value ψ of intersecting paths as illustrated in Figure 3.
However, it is easy to see that f is the unique mapping on Sn satisfying f(id) = 0 and

f(σ) − f(σ ◦ (i, i+ 1)) = 2(σ(i) − σ(i+ 1)), for any σ ∈ Sn.

Hence, for any σ ∈ Sn and γ ∈ C(σ, k, l), we have:

qψ(γ)+f(σ)(−1)inv(σ) = −qψ(φ(γ))+f(σ◦(i,i+1))(−1)inv(σ◦(i,i+1)).

It means that φ is a weight-preserving-sign-reversing involution on the set of n-tuples
of intersecting lattice paths in ∪σ∈Sn

C(σ, k, l). As γ ∈ C(σ, k, l) is non-intersecting
only if σ is an identity permutation, that is γ ∈ C(id, k, l). The result follows then
from (7).

Notice that for 1 ≤ i < l or k < i ≤ n, there is only one lattice path from Ai to
Bi, the others have two vertical steps. To each vertical step of γi we can associate the
number v = x0 − i + 1 between 1 and i, where x0 is the abscissa of the vertical step.
We define the function p : [2n− 2] −→ [0, n− 1] as follows :

p(i) =

{
0 if there is no vertical steps between the lines y = i, y = i + 1;
v if v is the number associated to the vertical step

For example, for the preceding configuration, we have

p(1) = . . . = p(4) = 0, p(5) = 2, p(6) = 1, p(7) = p(8) = p(10) = 3, p(9) = 5.

By construction, p(2i − 1) ≥ p(2i) for all i ∈ [n − 1]. Now the condition of non-
intersecting paths is equivalent to p(2i) ≤ p(2i+ 1) for all i ∈ [k − 2] \ [l− 1]; and the
value of w is ψ(w) = −2(n− k) +

∑
i p(i).
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Figure 4. One of the 493 configurations counted by d6,3(1) and its
associated truncated pistol.

Then we obtain a bijection between the configurations of Proposition 5 and those
that we can call truncated alternating pistols. More precisely we have the following
result:

Theorem 2. For 0 ≤ l ≤ k and n ≥ k, the coefficient ck+1,l+1(q) is the generating
function of alternating pistols of [2k], weighted by ch′ and truncated at the index 2l,
i.e. the weight of mappings p : [2k] −→ [0, k] satisfying the three conditions:

(1) p(2i− 1) = p(2i) = 0 for 1 ≤ i ≤ l,
(2) p(2i− 1) ≤ i and p(2i) ≤ i for l < i ≤ k,
(3) p(2i− 1) ≥ p(2i) ≤ p(2i+ 1) for 1 ≤ i < k.

For example, the array (g′i,j) with 5 ≤ i ≤ 8 and 1 ≤ j ≤ 4, corresponding to the

truncated alternating pistols using for counting the coefficient c5,3(q) =
∑4

k=1 q
k−1g′8,k

is given in Table 4.

1 + q + 2q2
+ q3

+ q4 q3
+ q4

+ 2q5
+ q6

+ q7
4

1 q2
1 + q + 2q2

+ q3
+ q4 q2

+ 2q3
+ 3q4

+ 3q5
+ 2q6

+ q7
3

1 q + q2
1 + q + 2q2

+ q3 q + 2q2
+ 4q3

+ 4q4
+ 3q5

+ 2q6
+ q7

2

1 1 + q + q2
1 + q + q2

1 + 2q + 3q2
+ 4q3

+ 4q4
+ 3q5

+ 2q6
+ q7

1

5 6 7 8 i \ j

Table 4. Computation of c5,3(q)
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Figure 5. One of the 736 configurations counted by c6,3(1) and its as-
sociated truncated pistol.

In particular we recover the alternating pistol in the case l = 0, and then we obtain
the following result:

Corollary 1. For n ≥ 1, the coefficient cn,1(q) of the inverse matrix of Gq is the
q-Genocchi number G2n(q).

Now we give a last combinatorial interpretation of the q-Genocchi numbers. Some
definitions about integer partitions are needed. A partition µ = (µ1, µ2, . . .) is said to
smaller than another partition λ = (λ1, λ2, . . .) if and only if all the parts of µ are
smaller than the one of λ. If µ ≤ λ we define a skew hook of shape λ \ µ as the set
difference of the diagram of λ removed that of µ. Finally, a row-strict plane partition
T of λ \ µ is a skew hook of shape λ \ µ where we associate to the j th cell (from left
to right) of the ith line (from top to bottom), an positive integer pi,j(T ) such that,
∀i ∈ [k], ∀j ∈ [λi − µi]:

(8) pi,j(T ) > pi,j+1(T ) and pi,j(T ) ≥ pi+1,j(T ).

A reverse plane partition is obtained by reversing all the inequalities of (8).
Now, let γ = (γ1, . . . , γn) be one of the configuration counted by ck,l(q), n ≥ k ≥ l.

Then we can associate to this configuration, two partitions λ = (λ1, · · · , λn) and µ =
(µ1, · · · , µn) defined by λi (resp. µi) equal n+ i−1 for i < l (resp. i < k) and n+ i+1
otherwise. By construction, λ is larger than µ and then we can construct a row-strict
plane partition T where each case of λ \ µ is labelled in the following way:

If the vertical steps of ωl+i−1 (1 ≤ i ≤ k − l) have xi,1 and xi,2 for abscissa from
left-to-right, so xi,1 ≤ xi,2, define

pi,j(T ) = 2l + 2i− j − xi,j for j = 1, 2.
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For example, the row-strict plane partition corresponding to the configuration of 5
paths in Figure 5 is

4 2
3 2

4 1

Let Tk,l be the set of row-strict plane partition of form (k− l+1, k− l, . . . , 2)− (k−
l − 1, k − l − 2, . . . , 0) such that the largest entry in row i is at most l + i. For any
T ∈ Tk,l define the value of T by:

|T | =
k−l∑

i=1

(pi,1(T ) + pi,2(T )),

then we have the following result, which is a q-analog of a result of Gessel-Viennot [10,
Theorem 31].

Theorem 3. For k ≥ l ≥ 1, the entry ck,l(q) is the following generating function of of
Tk,l:

ck,l(q) =
∑

T∈Tk,l

qk
2−l2−|T |.

5. Extension to negative indices and median q-Genocchi numbers

As in [6], we can extend the matrix Gq to the negative indices as follows :

Hq =

([
−j

2i− 2j

]

q

q(i−j)(2i−1)

)

i,j≥1

=

([
2i− j − 1

j − 1

]

q

)

i,j≥1

,

and its inverse
H−1
q =

(
(−1)i−jdi,j(q)

)
i,j≥1

.

Using the result of Lemma 2, for 1 ≤ l ≤ k and n ≥ k, the coefficient dk,l(q) is equal
to:

(9) dk,l(q) =

∣∣∣∣∣

[
l + 2i− j

2i− 2j + 2

]

q

∣∣∣∣∣

k−l

i,j=1

.

The first values of di,j(q) are given in Table 5.

i \ j 1 2 3 4

1 1 0 0 0

2 1 1 0 0

3 q2
+ q q2

+ q + 1 1 0

4 q6
+ 2q5

+ 2q4
+ 2q3

+ q2 q6
+ 2q5

+ 3q4
+ 3q3

+ 3q2
+ q

(
q2

+ q + 1
) (

q2
+ 1
)

1

Table 5. First values of di,j(q)

As in the previous section, we then derive from (9) the following result.
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Theorem 4. For integers k, l ≥ 1 the coefficient dk,l(q) is the generating function of
configuration of lattice path Ω = (ω1, . . . , ωn), weighted by ψ, satisfying the following
two conditions :

(1) ωi joins Ai(0, 2i− 2) to Bi(i− 1, 2i− 2) for 1 ≤ i < l or k < i ≤ n and ωi joins
Ai+1(0, 2i) to Bi(i− 1, 2i− 2) for l ≤ i < k.

(2) the paths ω1, . . . , ωn are disjoint.

Similarly to the preceding section, remark that for 1 ≤ i < l or k < i ≤ n, there is
an only lattice path from Ai to Bi and the other ones have two vertical steps. To each
vertical steps of ωi, we associate a number v = x0 + 1 between 1 and i where x0 is the
abscissa of this vertical step. Then we can define a function p : [2n− 2] −→ [0, n− 1]
as follows :

p(i) =

{
0 if there is no vertical steps between the lines y = i− 1, y = i,
v if v is the number associated to the vertical step.

For example, for the preceding configuration, we have p(1) = p(2) = p(3) = p(4) = 0,
p(5) = p(7) = p(8) = 3, p(6) = p(10) = 1, p(9) = 5. By construction, p(2i− 1) ≥ p(2i)
for all i ∈ [n − 1] and the condition of non-intersecting paths is equivalent to p(2i) <
p(2i + 1) for all i ∈ [k − 2] \ [l − 1]. The value of w is ψ(w) = −2(n − k) +

∑
i p(i).

Then we obtain a bijection between the configurations of Proposition 8 and those that
we can call truncated alternating pistols. More precisely we state the following result:

Proposition 5. For 0 ≤ l ≤ k and n ≥ k, the coefficient dk+1,l+1(q) is the generating
function of alternating pistols of [2k], weighted by ch′ and truncated at the index 2l,
i.e. the mappings p : [2k] −→ [0, k] satisfying the three conditions :

(1) p(2i− 1) = p(2i) = 0 for 1 ≤ i ≤ l,
(2) p(2i− 1) ≤ i and p(2i) ≤ i for l < i ≤ k,
(3) p(2i− 1) ≥ p(2i) < p(2i+ 1) for 1 ≤ i < k.

The array for the computation of d5,3(q) is given in Table 6.

1 + q + 2q2
+ q3

+ q4 q3
+ q4

+ 2q5
+ q6

+ q7
4

1 q2
1 + q + 2q2

+ q3 q2
+ 2q3

+ 3q4
+ 3q5

+ q6
+ q7

3

1 q + q2
1 + q + q2 q + 2q2

+ 3q3
+ 3q4

+ 3q5
+ q6

+ q7
2

1 1 + q + q2
0 q + 2q2

+ 3q3
+ 3q4

+ 3q5
+ q6

+ q7
1

5 6 7 8 i \ j

Table 6. Computation of d5,3(q)

In particular we recover the alternating pistol when l = 0, and then we obtain the
following result:

Corollary 2. For n ≥ 1, the coefficient dn,1(q) of the inverse matrix of Hq is the
medians q-Genocchi number H2n+1(q).

Now, let Ω = (ω1, . . . , ωn) be one of the configuration counting by dk,l(1), n ≥ k ≥ l.
Then we can associate to this configuration, two partitions λ = (λ1, · · · , λn) and µ =
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(µ1, · · · , µn) defined by λi (resp. µi) equal n + i − 2 for i < l (resp. i < k) and n + i
otherwise. By construction, λ is bigger than µ and then we can construct an array T
where each case of λ \ µ is labelled in the following way:

If the vertical steps of ωl+i−1 (1 ≤ i ≤ k − l) have respectively xi,1 and xi,2 for
abscissa, (xi,1 ≤ xi,2), then pi,j(T ) = xi,j + 1 for j = 1, 2.

For example the row-strict plane partition corresponding to the configuration of 5
paths in Figure 4 is

1 3
3 3

1 5
.

Similarly we have the following

Theorem 5. For k ≥ l ≥ 1,

dk,l(q) =
∑

T∈T̃k,l

q−2(k−l)+|T |,

where T̃k,l is the set of column-strict reverse plane partition of (k− l+1, k− l, . . . , 2)−
(k − l − 1, k − l − 2, . . . , 0) with positive integer entries in which the largest entry in
row i is at most l + i− 1.

6. A remarkable triangle of q-numbers refining q-Euler numbers

Recall that the Euler numbers E2n are the coefficients in the Taylor expansion of the
function 1

cos x
:

1

cos x
=
∑

n≥0

E2n
x2n

(2n)!
.

Let ci,j = ci,j(1). Then Dumont and Zeng [5] proved that there is a triangle of positive
integers kn,j (1 ≤ j ≤ n− 1) featuring the two kinds of Genocchi numbers and refining
Euler numbers as follows:

kn,1 + kn,2 + . . . kn,n−1 = E2n−2, kn,1 = G2n and kn,n−1 = H2n−1.

Moreover,
∑

j≥0

cn+j,j+1x
j+1 =

kn,1x + kn,2x
2 + . . .+ kn,n−1x

n−1

(1 − x)2n−1
.

The first values of kn,j (1 ≤ j ≤ n− 1) are tabulated as follows:

n \ j 1 2 3 4 5
∑

j kn,j = E2n−2

1 1 1
2 1 1
3 3 2 5
4 17 36 8 61
5 155 678 496 56 1385
6 2073 15820 23576 8444 608 50521
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We show now there is a q-analog of the above triangle. Following Jackson [12] the
q-secant numbers E2n(q) are defined by

∑

n≥0

E2n(q)
u2n

(q; q)2n
=

(
∑

n≥0

(−1)n
u2n

(q; q)2n

)−1

.

Let [x] = (qx − 1)/(q − 1) and [x]n = [x][x− 1] · · · [x− n+ 1] for n ≥ 0. Then ([x]n)
is a basis of C[qx]. For any integer n ≥ 0 we define a linear q-difference operator δnq on
C[qx] as follows : for f(x) ∈ C[qx],

(10) δ0
qf(x) = f(x), δn+1

q f(x) = (E − qnI) δnq f(x).

that is,

δnq f(x) = (E − qn−1I)(E − qn−2I) · · · (E − I)f(x).

In view of the q-binomial formula [1, p. 36]:

(11) (x; q)n =

n∑

k=0

(−1)k
[
n

k

]

q

q(
k

2)xk,

we have

δnq f(x) =

n∑

k=0

(−1)k
[
n

k

]

q

q(
k
2)f(x+ n− k).

Lemma 2. For all non negative integers n,m we have

δnq [x]m =

{
[m]n[x]m−nq

n(x+n−m) if n ≤ m
0 if n > m.

Hence δnq f(x) = 0 if f(x) is a polynomial in qx of degree < n. It follows from the
q-binomial identity 11 that

(x; q)2n−1

∑

j≥0

cn+j,j+1(q)x
j+1 =

∑

m≥0

xm+1
∑

k≥0

(−1)k
[
2n− 1

k

]

q

q(
k

2)cn+m−k,m−k+1(q),

=
∑

m≥0

xm+1δ2n−1
q f(m).

where f(m) denotes the following determinant :

f(m) =

∣∣∣∣∣

[
m− 2(n− 1) + i

2i− 2j + 2

]

q

q(i−j)(i−j+1)

∣∣∣∣∣

n−1

i,j=1

is a polynomial in qm of degree 2(n − 1) when m ≥ 2n − 3. Hence the preceding
expression is a polynomial in x of degree d ≤ 2n− 1, i.e., we have

(12)
∑

j≥0

cn+j,j+1(q)x
j+1 =

α0(q) + · · · + αd−1(q)x
d

(x; q)2n−1
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Applying a well-known result about rational functions [15, p. 202-210], we derive from
(12) that

∑

j≥1

cn−j,−j+1(q)x
j = −

α0 + α1x
−1 + · · ·+ αd−1x

−d

(1/x; q)2n−2

= −
α0x

2n−1 + · · ·+ αd−1x
2n−d

(x; q)2n−2
.

But the coefficient cn−j,−j+1(q) is null for all 1 ≤ j ≤ n because the determinant formula
of ck,l(q) contains a row with only zeros. So d ≤ n− 1.

Summarizing all the above we get the following theorem, which is a q-analog of a
result of Dumont and Zeng [6, Prop. 7].

Theorem 6. For n ≥ 2, ∀j ∈ [n− 1], there are polynomials kn,j(q) in q such that

∑

j≥0

cn+j,j+1(q)x
j+1 =

∑n−1
i=1 q

(i−1)ikn,i(q)x
i

(x; q)2n−1
.(13)

∑

j≥0

dn+j,j+1(q)x
j+1 =

∑n−1
i=1 q

(i−1)ikn,n−i(q)x
i

(x; q)2n−1
.(14)

Moreover, we have kn,1(q) = G2n(q), kn,n−1(q) = H2n−1(q) and

E2n−2(q) =
n−1∑

i=1

q(i−1)ikn,n−i(q).

Proof : Equations (13) and (14) have been proved previously. In view of Corollaries 1
and 2 we derive from (13) and (14) that

kn,1(q) = cn,1(q) = G2n(q),

kn,n−1(q) = dn,1(q) = H2n−1(q).

Recall that for any sequence (an)n in C[[q]], we have limq→1(1 − x)
∑

n≥0 anq
n =

limn→∞ an, provided the later limit exists. Hence we derive from (14) that

n−1∑

i=1

q(i−1)ikn,n−i(q) = lim
x→1

(x; q)2n−1

∑

j≥0

dn+j,j+1(q)x
j+1

= (q; q)2n−2 lim
j→∞

dn+j,j+1(q).

As limn→+∞

[
n

k

]
q

= 1
(q;q)k

it follows from (9) that

(15)

n−1∑

i=1

q(i−1)ikn,n−i(q) = (q, q)2n−2

∣∣∣∣
1

(q; q)2i−2j+2

∣∣∣∣
n−1

i,j=1

.

Now, using inclusion-exclusion principle we can show (see [15, p.70]) that the right-
hand side of (15) is the enumerating polynomial of up-down permutations on [2n− 2],
i.e., whose descent set is {2, 4, · · · , 2n− 4}, with respect to inversion numbers, and it
is also known (see [15, p.148]) that this enumerating polynomial is equal to the q-Euler
polynomial E2n−2k(q).

It is not difficult to derive from Theorem 6 the following result.
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Corollary 3. For n ≥ 2, for all i ∈ [n− 1], we have:

q(i−1)ikn,i(q) =

i−1∑

l=0

(−1)lq(
k

2)
[
2n− 1

l

]

q

cn+i−l−1, i−l(q),

and

q(i−1)ikn,n−i(q) =

i−1∑

l=0

(−1)lq(
k
2)
[
2n− 1

l

]

q

dn+i−l−1, i−l(q).

Finally, for n = 2, 3, equation (13) reads as follows:
x

(x; q)3

= x+ (1 + q + q2)x2 + (1 + q + 2q2 + q3 + q4)x3 + · · · ,

(1 + q + q2)x+ q2(q + q2)x2

(x; q)5

= (1 + q + q2)x

+ (1 + 2q + 3q2 + 4q3 + 4q4 + 2q5 + q6)x2 + · · · .

So k3,1(q) = 1 + q + q2 and k3,2(q) = q + q2. While the five up-down permutations on
[4] are

1 3 2 4, 1 4 2 3, 2 3 1 4, 2 3 1 4, 3 4 1 2.

Therefore E4(q) = q + 2q2 + q3 + q4 and we can check that E4(q) = k3,2(q) + q2k3,1(q).
For n = 4 the values of k4,j(q), 1 ≤ j ≤ 3, are given by

k4,1(q) = 1 + 2q + 3q2 + 4q3 + 4q4 + 2q5 + q6,

k4,2(q) = q(1 + q)(1 + q2)(1 + q + q2)2,

k4,3(q) = q2(q2 + 1)(q + 1)2.

It seems that the coefficients of the polynomial kn,i(q) in q are non negative integers
and it would be interesting to find a combinatorial interpretation for kn,i(q) in case the
above conjecture is true.
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