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Abstract

The applicability or terminating condition for the ordinary case of Zeilberger’s algorithm
was recently obtained by Abramov. For theq-analogue, the question of whether a bivariate
q-hypergeometric term has aq Z-pair remains open. Le has found a solution to this problem when
the given bivariateq-hypergeometric term is a rational function in certain powers ofq. We solve
the problem for the general case by giving a characterization of bivariateq-hypergeometric terms
for which theq-analogue of Zeilberger’s algorithm terminates. Moreover, we give an algorithm to
determine whether a bivariateq-hypergeometric term has aq Z-pair.
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1. Introduction

Zeilberger’s algorithm (Graham et al., 1994; Petkovšek et al., 1996; Zeilberger, 1991),
also known as the method ofcreative telescoping, is devised for proving hypergeometric
identities of the form
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∞∑
k=−∞

F(n, k) = f (n),

whereF(n, k) is a bivariate hypergeometric term andf (n) is a given function (for most
cases a hypergeometric term plus a constant). The algorithm can be easily adapted to the
q-case, which is called theq-analogue of Zeilberger’s algorithm (Böing and Koepf, 1999;
Koornwinder, 1993; Paule and Riese, 1997; Wilf and Zeilberger, 1992). Let N and K be
the shift operators with respect ton andk respectively, defined by

NT (n, k) = T (n + 1, k) and K T (n, k) = T (n, k + 1).

Given a bivariateq-hypergeometric termT (n, k), theq-analogue of Zeilberger’s algorithm
aims to find aq Z-pair (L, G), whereL is a linear difference operator with coefficients in
the ring of polynomials inqn

L = a0(q
n)N0 + a1(q

n)N1 + · · · + ar (q
n)Nr

andG is a bivariateq-hypergeometric termG(n, k) suchthat

LT (n, k) = (K − 1)G(n, k).

Zeilberger’s algorithm has been widely used as a powerful tool to prove hypergeometric
identities. It was an open question when the algorithm terminates. This problem was
solved recently byAbramov(2002, 2003). For theq-analogue of Zeilberger’s algorithm,
Abramov and Le(2002) found a solution to the termination problem for the case of rational
functions. In this paper we provide a solution for the generalq-case.

We begin with an additive decomposition of univariateq-hypergeometric terms. Using
this decomposition, a univariateq-hypergeometric termT (n) can be represented as

T (n) = (N − 1)T1(n) + T2(n),

whereT1(n) andT2(n) areq-hypergeometric terms, andT2(n) has the following form:

T2(n) = u1(qn)

u2(qn)

n−1∏
j=n0

f1(q j )

f2(q j )
,

whereu1, u2, f1, f2 are polynomials,n0 is a nonnegative integer, and for any integerm,
u2(x) and u2(xqm) have no common factors except for a power ofx . Consequently, a
bivariateq-hypergeometric termT (n, k) can be decomposed as

T (n, k) = (K − 1)T1(n, k) + T2(n, k) (1.1)

suchthat

T2(n, k) = T (n, k0)V (qn, qk)

k−1∏
j=k0

F(qn, q j ),

whereV , F are rational functions,n0 is a nonnegative integer, and the denominatorv2
of V satisfies the conditions that for any integerm, v2(x, y) and v2(x, yqm) have no
common factors except for a power ofy. The polynomialv2(x, y) with the above property
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is calledεy-free. We should note that the above decomposition does not solve the minimal
additive decomposition problem and is not unique (seeAbramov andPetkovšek(2002a)
for a precise definition). However, for the purpose of constructing aq Z -pair, it turns out
that one may choose any decomposition.

Then we consider the structure of bivariateq-hypergeometric terms. The structure
of ordinary hypergeometric terms has been studied byOre (1930), Sato et al.(1990),
Gel’fand et al.(1992), Abramov andPetkovšek(2002b) andHou(2004). To a large extent,
the q-case is analogous to the ordinary case. For each bivariateq-hypergeometric term,
we associate it with a normal representation (q-NR) which consists of four polynomials
r, s, u, v. Based on the properties of the representation, we may give a definition of
q-proper hypergeometric terms and prove that under the condition thatv is εy-free, a
bivariateq-hypergeometric term has aq Z -pair if and only if it is aq-proper term. Applying
the decomposition (1.1), we deduce that for any bivariateq-hypergeometric termT , it has
a q Z -pair if and only ifT2 is q-proper.

We conclude with some examples.

2. ε-free decomposition

Throughout the paper, we letZ, Z
+ andN denote the set of integers, positive integers

and nonnegative integers, respectively. For integers (or polynomials)a, b, we denote by
gcd(a, b) the (monic) greatest common divisor ofa andb. We also write a ⊥ b to indicate
thata andb are relatively prime, i.e., gcd(a, b) = 1.

Let F be a field of characteristic zero,q ∈ F a nonzero element which is not a root of
unity, andx transcendental overF. Denote byε theunique automorphism ofF(x) which
fixesF and satisfiesεx = qx . ThenF(x) together with theq-shift operator ε is a difference
field (Cohn, 1965). Letr ands be two polynomials. We say thatr/s is ε-reduced if r ⊥ εhs
for all h ∈ Z.

To be more specific, the rational functions involved in theq-hypergeometric terms (see
Definition 2.4) arerational functions ofqn. However, for a rational functionR ∈ F(x) and
a nonnegative integern0, we have

N R(qn) = R(qn+1) = εR(qn) and R(qn) = 0 ∀ n ≥ n0 ⇔ R(x) = 0.

Therefore, there is a natural one-to-one correspondence between the set of rational
functions of qn together with the shift operatorN and the fieldF(x) together with
the q-shift operatorε. In this paper, we adopt the notation ofF(x) as in the work of
Abramov et al.(1998).

The concept of rational normal forms introduced byAbramov andPetkovšek(2002a)
can be extended to theq-case.

Definition 2.1. Let R ∈ F(x) be a rational function. If polynomialsr, s, u, v ∈ F[x]
satisfy

(i) R = r
s · ε(u/v)

(u/v)
, whereu ⊥ v andu, v have no factorx ,

(ii) r/s is ε-reduced,

then(r, s, u, v) is called aq-rational normal form (q-RNF) of R.



ARTICLE  IN  PRESS
4 W.Y.C. Chen et al. / Journal of Symbolic Computation ( ) –

Recall that a monic polynomial that has no factorx is called aq-monic polynomial by
Abramov et al.(1998). The following factorization theorem was given inAbramov et al.
(1998).

Theorem 2.2. Let R ∈ F(x) \ {0}. Then there exist z ∈ F and monic polynomials
a, b, c ∈ F[x] such that

R(x) = z
a(x)

b(x)

c(qx)

c(x)
,

gcd(a(x), b(qnx)) = 1, for all n ∈ N,

gcd(a(x), c(x)) = gcd(b(x), c(qx)) = 1 and c(0) �= 0.

(2.1)

We call (az, b, c) a q-Gosper form (q-GF) of R.

Theorem 2.3. Every rational function R ∈ F(x) has a q-RNF.

Proof. It is clear that(0, 1, 1, 1) is a q-RNF of 0. For R �= 0, by Theorem 2.2, there
exists a q-GF (az, b, c) of R. Applying Theorem 2.2again to b(x)/a(x), we get a
q-GF (r, s, d). From the construction given inAbramov et al.(1998), we haver | b and
s | a. Hence s(x) ⊥ r(xqn) for any n ∈ N because(az, b, c) is a q-GF. Since(r, s, d)

is also aq-GF, we haver(x) ⊥ s(xqn) for any n ∈ N. Thus s/r is ε-reduced and
(zs, r, c/ gcd(c, d), d/ gcd(c, d)) is aq-RNF of R. �

The above proof provides an algorithm to generate aq-RNF of R.

Algorithm q-RNF
if R = 0 then

return(0, 1, 1, 1);
else

compute ‘q-GF’ of R, we get(a, b, c);
compute ‘q-GF’ of b/a, we get(r, s, d);
return(s, r, c/ gcd(c, d), d/ gcd(c, d)).

We now come to theq-multiplicative representation of a generalq-hypergeometric
term. This is the starting point of theε-free decomposition algorithm.

Definition 2.4. SupposeT (n) is a function fromN toF. If there exist a nonnegative integer
n0 and a nonzero rational functionR(x) ∈ F(x) suchthat T (n + 1) = R(qn)T (n) for all
n ≥ n0, then wecall T (n) a (univariate)q-hypergeometric term.

Suppose(r, s, u, v) is a q-RNF of a rational functionR. Then the corresponding
q-hypergeometric termT (n) satisfies

T (n) = T (n0)

n−1∏
j=n0

R(q j ) = T (n0)

u(qn0)/v(qn0)
· u(qn)

v(qn)

n−1∏
j=n0

r(q j )

s(q j )
, ∀ n ≥ n0.

This leads to the following definition.
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Definition 2.5. Let T (n) be aq-hypergeometric term andD, U be two rational functions
suchthatD(qn) has neither poles nor zeros andU(qn) has no poles for alln ≥ n0. Suppose
that

T (n) = U(qn)

n−1∏
j=n0

D(q j ), ∀ n ≥ n0.

Then we call(D, U, n0) a q-multiplicative representation (q-MR) of T .

Let � = N − 1 be thedifference operator with respect ton. The following lemma can
be easily verified.

Lemma 2.6. Let T and T1 be two q-hypergeometric terms with q-MRs (D, U, n0) and
(D, U1, n0), respectively. Suppose that

T2 = T − �T1 and U2 = U − D · εU1 + U1.

Then (D, U2, n0) is a q-MR of T2.

For u, v ∈ F[x], let R be the set of all nonnegative integersh such that there exists
an irreducible polynomialp(x) �= x satisfying p(x) | u(x) and p(x) | v(qh x). Define
qdis(u, v) to be max{h ∈ R} or −1 if R is empty. Note thatR is a finite set, and “qdis” is
well defined. If qdis(v, v) = 0, we say thatv is ε-free.

Given a q-hypergeometric termT with a q-MR (D, U, n0). Usually the
denominatoru of U is not ε-free. However, translating the decomposition algorithm
of Abramov andPetkovšek(2002a) into the q-case, we have the followingε-free
decomposition algorithm “q-decomp”, which decomposesT into �T1 + T2 suchthat T2
has aq-MR (F, V , n0) where thedenominator ofV is ε-free.

Algorithm q-decomp
Input: (D, U, n0) Output:U1, F, V ∈ F(x)

d1 := numer(D); d2 := denom(D);
U1 := 0; U2 := U ; u2 := denom(U);
N := qdis(u2, u2);
for h := N down to 1 do

v2 := u2/ gcd(u2, d2);
s(x) := gcd(v2(x), v2(q−hx));
(s̃, ũ2) := pump(s, u2);
write U2 = a/ũ2 + b/s̃ wherea, b ∈ F[x];
U ′

1 := −b/s̃;
U1 := U1 + U ′

1; U2 := U2 − D · εU ′
1 + U ′

1;
u2 := denom(U2);

f1 := d1; f2 := d2; v1 := numer(U2); v2 := denom(U2);
w := gcd(d2, v2);
v2 := v2/w; f2 := εw f2/w;
F := f1/ f2; V := (1/w(qn0)) · v1/v2;
return(U1, F, V ).

The procedure “pump” is the same as in the ordinary case.
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Algorithm pump
Input: f, g ∈ F[x] Output: f̃ , g̃ ∈ F[x]

f̃ := f ; g̃ := g/ f ;
repeat

d := gcd( f̃ , g̃); f̃ := f̃ d; g̃ := g̃/d;
until degd = 0;
return (f̃ , g̃).
The following theorem shows that theε-free algorithm generates the desired

decomposition.

Theorem 2.7. Let T be a q-hypergeometric term with a q-MR (D, U, n0) and U1, F, V
be given by the algorithm q-decomp. Then there exist q-hypergeometric terms T1 and T2
such that

(1) T = �T1 + T2.
(2) T1 has a q-MR (D, U1, n0) and T2 has a q-MR (F, V , n0).
(3) The denominator of V is ε-free.

Furthermore, if D is ε-reduced, so is F.

Proof. Let u0 be the denominator ofU . We first use induction to show that after iterating
the loop ofh in the algorithmi times, the denominatoru2 of U2 satisfies:

(a) qdis(v2, v2) ≤ N − i ,
(b) u2(qn) has no zeros for alln ≥ n0,

wherev2 = u2/ gcd(u2, d2), andd2 is the denominator of D.
The case fori = 0 is trivial. Assume that the assertion holds fori − 1. Letu2 andu′

2 be
the denominator ofU2 afteri − 1 andi iterations, respectively. Seth = N − (i − 1) > 0
andw2 = gcd(u2, d2). From thealgorithmq-decomp we have

v2 = u2/w2 and s = gcd(v2(x), v2(q
−hx)).

Suppose the prime decomposition ofs is pα1
1 · · · pαr

r and v2 = pβ1
1 · · · pβr

r v′, w2 =
pγ1

1 · · · pγr
r w′ wherev′ ⊥ s, w′ ⊥ s. Then the algorithm “pump” enables us to decompose

u2 as pβ1+γ1
1 · · · pβr+γr

r · (v′w′). That is,s̃ = pβ1+γ1
1 · · · pβr +γr

r andũ2 = v′w′. Since

U2 = a

ũ2
+ d1

d2
· ε

(
b

s̃

)
,

it follows thatu′
2 divides the least common multiple of̃u2 andd2εs̃. Hence we have that

u′
2 dividesv′d2 · εs̃. Let v′′ = v′ · εs̃. Assume that there exist an integerm ≥ h and an

irreducible polynomialp(x) �= x suchthat p | v′′ and p | εmv′′. We may encounter four
cases:

• p | v′ andp | εmv′.
Fromv′ | v2 and qdis(v2, v2) ≤ h, it follows thatm = h. Therefore,ε−h p | ε−hv2 and
ε−h p | v2. Consequently, we haveε−h p | s, whichcontradictsv′ ⊥ s.
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• p | v′ and p | εm+1s̃.
Sinces ands̃ have the same prime factors, we havep | εm+1s, implying thatp | εm+1v2.
On the otherhand, we havep | v2, whichcontradicts qdis(v2, v2) ≤ h.

• p | εs̃ and p | εmv′.
In this situation, we haveε−1 p | s̃, which implies thatε−1 p | ε−hv2, or equivalently,
εh−1 p | v2. On theother hand,εh−1 p | εm+h−1v2. Sinceqdis(v2, v2) ≤ h, we get
m + h − 1 ≤ h, andhencem = 1. Now we havep | εs and p | εv′, which contradicts
v′ ⊥ s.

• p | εs̃ and p | εm+1s̃.
Similarly, we haveε−1 p | s and henceε−1 p | ε−hv2, i.e., εh−1 p | v2. However, we have
εh−1 p | εm+hv2. Thus, we obtainm + h ≤ h, which isalso a contradiction.

In summary, we may conclude that qdis(v′′, v′′) ≤ h − 1. Becauseu′
2 dividesv′′ · d2, there

existv̄ | v′′ andw̄ | d2 suchthatu′
2 = v̄w̄. Let v′

2 = u′
2/ gcd(u′

2, d2). Fromw̄ | gcd(u′
2, d2),

it follows thatv′
2 | v̄. So we get qdis(v′

2, v
′
2) ≤ h − 1 = N − i . Thus, we have proved (a).

Sinceu′
2|u2 · εu2 · d2, (b) immediately follows from the induction hypothesis.

On the otherhand, sincẽs | u2, (b) implies thatU1(qn) has no poles for alln ≥ n0. Let

T1(n) = U1(q
n)

n−1∏
j=n0

D(q j ) and T2(n) = U2(q
n)

n−1∏
j=n0

D(q j ). (2.2)

Noting thatU2 = U − DεU1 + U1, by Lemma 2.6, weobtainT = �T1 + T2.
Becausew | d2 andd2(qn) �= 0 for all n ≥ n0, wecan writeT2(n) as

T2(n) = 1

w(qn0)
U2(q

n)w(qn)

n−1∏
j=n0

D(q j )
w(q j )

w(q j+1)
= V (qn)

n−1∏
j=n0

F(q j ).

Let v be the denominator ofV . Then (a) implies qdis(v, v) = 0; thatis, v is ε-free.
Finally, notice that f1 = d1 and f2 = εw · (d2/w), wherew | d2. Therefore, F is

ε-reduced provided thatD is ε-reduced. This completes the proof.�

3. Bivariate q-hypergeometric terms

We begin this section with the definition of bivariateq-hypergeometric terms.

Definition 3.1. SupposeT (n, k) is a function fromN
2 toF. If there exist rational functions

R1(x, y), R2(x, y) ∈ F(x, y) andn0 ∈ N suchthat

T (n + 1, k) = R1(q
n, qk)T (n, k) and T (n, k + 1) = R2(q

n, qk)T (n, k),

for all n, k ≥ n0, then wecall T (n, k) a bivariateq-hypergeometric term.

Without loss of generality, from now on we may assume thatn0 = 0 and that
R1(qn, qk), R2(qn, qk) have neither zeros nor poles for alln, k ≥ 0.

Denote byεx andεy the shift operators onF(x, y) defined byεx x = qx , εx |F(y) = id
(the identity map) andεy y = qy, εy|F(x) = id, respectively. The idea ofq-RNFs can
be easily adopted to the bivariate case by takingF(y) as the ground field. LetR(x, y) be



ARTICLE  IN  PRESS
8 W.Y.C. Chen et al. / Journal of Symbolic Computation ( ) –

a rational function ofx and y; its q-rational normal form (q-RNF with respect toεx ) is
represented by(r, s, u, v) as in the univariate case. By using the ground fieldF(x), we may
find aq-RNF of R(x, y) with respect toεy .

Let T (n, k) be a bivariateq-hypergeometric term. By definition, there exists a rational
function R suchthat

T (n + 1, k)/T (n, k) = R(qn, qk).

Suppose(r, s, u, v) is a q-RNF of R with respect toεx . We call (r, s, u, v) a q-normal
representation (q-NR) of T (n, k) with respect to the shift operatorN . Similarly, we can
define theq-NR of T (n, k) with respect to the shift operatorK .

We next give a characterization of the polynomials involved in theq-NR of bivariate
q-hypergeometric terms.

Theorem 3.2. Let T (n, k) be a bivariate q-hypergeometric term that has a q-NR
(r, s, u, v) with respect to N. Then r and s are products of polynomials having the form

(xc yd) ·
a∏

l=1

p(qwl xa yb),

where p is a Laurent polynomial of one variable, a ∈ Z
+, b, c, d, wl ∈ Z, a ⊥ b, and

wi �≡ w j (moda), ∀ i �= j .
Similarly, suppose (r, s, u, v) is a q-NR of T with respect to K . Then r and s are

products of polynomials having the form

(xc yd) ·
a∏

l=1

p(qwl xb ya)

under the same conditions.

Sketch of the proof. The proof of the ordinary case (Hou, 2004, Theorem 3.4) can
be carried over to theq-case except that we need to consider the characterization of
polynomials f (x, y) such that f (qax, qb y) = C f (x, y) for certain integersa, b and
C ∈ F. �

Consequently, we have

Corollary 3.3. Let T (n, k) be a bivariate q-hypergeometric term that has a q-NR
(r, s, u, v) with respect to N (or K respectively). Then we have

T (n, k) = C · u(qn, qk)

v(qn, qk)
·

uu∏
l=1

al n+bl k+cl∏
j=0

fl (q j )

vv∏
l=1

a′
l n+b′

l k+c′
l∏

j=0
gl(q j )

,

where C ∈ F, uu, vv ∈ N, al , bl, cl , a′
l , b′

l , c′
l ∈ Z and fl , gl are polynomials.

Corollary 3.3 enables us to give the following definition ofq-proper hypergeometric
terms.
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Definition 3.4. A polynomial f ∈ F[x, y] is said to beq-proper if, for each of its
irreducible factorsp(x, y) ∈ F[x, y], there exista, b ∈ Z, not both zeros, such that
p(x, y)|p(qax, qb y). A bivariateq-hypergeometric termT is said to beq-proper ifv is a
q-proper polynomial, where(r, s, u, v) is aq-NR of T with respect toN or K .

Suppose thatT is a bivariateq-hypergeometric term that has aq-NR (r, s, u, v) with
respect toN (or K ). Theorem 3.2guarantees thatr ands are bothq-proper polynomials.

As in the case of ordinary bivariate hypergeometric terms (Hou, 2004, Theorem 4.2),
we have an analogous “fundamental theorem” for theq-case.

Theorem 3.5. Let T (n, k) be a bivariate q-hypergeometric term. Then T is q-proper if
and only if there exist polynomials ai j (x) ∈ F[x], not all zero, such that∑

0≤i≤I, 0≤ j≤J

ai j (q
n)T (n + i, k + j) = 0 ∀ n, k ≥ 0.

Based on an analogous argument for the ordinary case as inPetkovšek et al.(1996,
Theorem 6.2.1), we get

Corollary 3.6. Any q-proper hypergeometric term has a q Z-pair.

4. The existence of qZ-pairs

In this section, we obtain a necessary and sufficient condition for the existence of
q Z -pairs for any bivariateq-hypergeometric term based on itsq-NR with respect toK .

FromTheorem 3.2, we have

Corollary 4.1. Let T (n, k) be a bivariate q-hypergeometric term that has a q-NR
(r, s, u, v) with respect to K . Then there exist polynomials fi (x), gi(x) ∈ F[x] and
ai , a′

i , bi , b′
i ∈ Z such that

k−1∏
j=0

(
r(qn+1, q j )

r(qn, q j )
· s(qn, q j )

s(qn+1, q j )

)
=

�∏
i=1

fi (qai k+bi n)

gi(qa′
i k+b′

i n)
.

We need to consider the following ratio:

T (n + i, k)

T (n, k)
= T (n + i, 0)

T (n, 0)

k−1∏
j=0

{
T (n + i, j + 1)

T (n + i, j)

T (n, j)

T (n, j + 1)

}
,

which can be rewritten as

T (n + i, k)

T (n, k)
=

i−1∏
l=0

k−1∏
j=0

{r(qn+l+1, q j )

r(qn+l, q j )

s(qn+l , q j )

s(qn+l+1, q j )

} i−1∏
l=0

T (n + l + 1, 0)

T (n + l, 0)

× u(qn+i , qk)

u(qn+i , q0)

u(qn, q0)

u(qn, qk)

v(qn+i , q0)

v(qn+i , qk)

v(qn, qk)

v(qn, q0)
. (4.1)

FromCorollary 4.1we get the following expression.
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Lemma 4.2. Let T (n, k) be a bivariate q-hypergeometric term that has a q-NR (r, s, u, v)

with respect to K . Then for each i ≥ 0, there exist q-proper polynomials w
(i)
1 (x, y) and

w
(i)
2 (x, y) such that

T (n + i, k)

T (n, k)
= u(qn+i , qk)

v(qn+i , qk)
· v(qn, qk)

u(qn, qk)
· w

(i)
1 (qn, qk)

w
(i)
2 (qn, qk)

, ∀ n, k ≥ 0. (4.2)

An εy-free polynomial that is notq-proper has a special factor.

Lemma 4.3. Let f ∈ F[x, y] be a non-q-proper and εy-free polynomial. Then there exists
an irreducible factor p of f such that

p(x, y) ⊥ p(qix, q j y), ∀ (i, j) ∈ Z
2 \ {(0, 0)},

p(x, y) ⊥ f (qi x, q j y), ∀ (i, j) ∈ (N × Z) \ {(0, 0)}. (4.3)

Proof. Since f (x, y) is non-q-proper, by definition it has an irreducible factorp1(x, y)

suchthat p1(x, y) ⊥ p1(qi x, q j y),∀ (i, j) ∈ Z
2 \ {(0, 0)}.

We may factor f (x, y) as

f (x, y) = pα1
1 (qa1x, qb1 y) · · · pαr

1 (qar x, qbr y) f1(x, y),

where (ai , bi ) ∈ Z
2 are distinct pairs,αi ∈ Z

+, and p1(qi x, q j y) ⊥ f1(x, y) for all
i, j ∈ Z. Since f (x, y) is εy-free, it follows thatai �= a j as long asi �= j . Without loss
of generality, we may assume thata1 < a2 < · · · < ar . Thus, p(x, y) = p1(qa1x, qb1 y)

satisfies the condition (4.3). �

We are now ready to give a criterion for the existence ofq Z -pairs.

Theorem 4.4. Let T (n, k) be a bivariate q-hypergeometric term that has a q-NR
(r, s, u, v) with respect to K such that v is εy-free. Then T (n, k) has a q Z-pair if and
only if v is a q-proper polynomial.

Proof. Because ofCorollary 3.6, it suffices to show that ifT (n, k) has aq Z -pair, then
it is q-proper. To this end, we assume thatT (n, k) is a bivariateq-hypergeometric term.
Moreover, we assume thatT (n, k) is notq-proper, but it has aq Z -pair. We proceed to find
a contradiction.

Clearly, for a difference operatorL ∈ F[qn, N], we have

(N · L)T (n, k) = (K − 1)G(n, k) ⇐⇒ LT (n, k) = (K − 1)G(n − 1, k).

Therefore, we may assume thatT (n, k) has aq Z -pair(L, G) of the form

L =
I∑

i=0

ai (q
n)Ni ,

whereai (qn) are polynomials inqn anda0 �= 0. SinceLT/T and(K − 1)G/G are both
rational functions ofqn andqk , we mayassume that
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G(n, k) = f (qn, qk)

g(qn, qk)
T (n, k),

where f, g ∈ F[x, y] are two relatively prime polynomials.
By the definition ofq Z -pairs, we have

I∑
i=0

ai(q
n)

T (n + i, k)

T (n, k)
= f (qn, qk+1)

g(qn, qk+1)

T (n, k + 1)

T (n, k)
− f (qn, qk)

g(qn, qk)
. (4.4)

Substituting (4.2) into (4.4), we obtain

I∑
i=0

ai(x)
u(qi x, y)

v(qi x, y)

w
(i)
1 (x, y)

w
(i)
2 (x, y)

= f (x, qy)

g(x, qy)

r(x, y)

s(x, y)

u(x, qy)

v(x, qy)
− f (x, y)

g(x, y)

u(x, y)

v(x, y)
.

(4.5)

Let u1 = u/ gcd(u, g), g1 = g/ gcd(u, g). Multiplying

g1(x, qy)g1(x, y)v(x, qy)s(x, y)

I∏
j=0

v(q j x, y)w
( j )
2 (x, y)

to both sides of (4.5), we arrive at

g1(x, qy)g1(x, y)v(x, qy)s(x, y)

×
I∑

i=0

ai (x)u(qi x, y)w
(i)
1 (x, y)

∏
j �=i

v(q j x, y)w
( j )
2 (x, y)

= f (x, qy)r(x, y)u1(x, qy)g1(x, y)

I∏
j=0

v(q j x, y)w
( j )
2 (x, y)

− f (x, y)u1(x, y)g1(x, qy)v(x, qy)s(x, y)w
(0)
2 (x, y)

×
I∏

j=1

v(q j x, y)w
( j )
2 (x, y). (4.6)

SinceT (n, k) is notq-proper, fromLemma 4.3it follows that there exists an irreducible
factor p of v satisfying the condition (4.3). Noting that p(x, y) divides each term of the
left-hand side of (4.6) except for the first term, we obtain thatp(x, y) divides

g1(x, qy)v(x, qy)s(x, y)

I∏
j=1

v(q j x, y)w
( j )
2 (x, y)

× (
g1(x, y)a0(x)u(x, y)w

(0)
1 (x, y) + f (x, y)u1(x, y)w

(0)
2 (x, y)

)
.

From (4.3) it follows that

p(x, y) ⊥ v(x, qy)

I∏
j=1

v(q j x, y).
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Sinces andw
( j )
2 areq-proper, they are also relatively prime top. This implies thatp(x, y)

divides

g1(x, qy)
(
g1(x, y)a0(x)u(x, y)w

(0)
1 (x, y) + f (x, y)u1(x, y)w

(0)
2 (x, y)

)
. (4.7)

Similarly, sincep(x, qy) divides both sides of (4.6) andu ⊥ v, we have

p(x, qy) | f (x, qy)g1(x, y). (4.8)

Case1. Supposep(x, qy) | f (x, qy). Sincep(x, y) divides (4.7), it follows that

p(x, y) | g1(x, qy)g1(x, y)a0(x)u(x, y)w
(0)
1 (x, y).

Since f ⊥ g, u ⊥ v, a0 andw
(0)
1 areq-proper polynomials, we may deduce that

p(x, y) | g1(x, qy), i.e., p(x, q−1y) | g1(x, y). Let m(> 0) be the greatest integer
such that p(x, q−m y) | g1(x, y). By virtue of (4.6), we have thatp(x, q−m y)

divides

f (x, y)u1(x, y)g1(x, qy)v(x, qy)s(x, y)w
(0)
2 (x, y)

×
I∏

j=1

v(q j x, y)w
( j )
2 (x, y).

However, f ⊥ g andg1 ⊥ u1 imply that p(x, q−m y) | g1(x, qy), whichcontradicts
the choice ofm.

Case2. Supposep(x, qy) | g1(x, y). Let M > 0 be the greatest integer such that
p(x, q M y) | g1(x, y). Similarly, from (4.6) it follows that p(x, q M+1y) divides

f (x, qy)r(x, y)u1(x, qy)g1(x, y)

I∏
j=0

v(q j x, y)w
( j )
2 (x, y).

Hence we getp(x, q M+1y) | g1(x, y), which isagain a contradiction.�

To extendthe above result to general bivariateq-hypergeometric terms, we need
the concept of similarq-hypergeometric terms. Two bivariateq-hypergeometric terms
T1, T2 are calledsimilar if there exists a rational functionR ∈ F(x, y) such that
T1(n, k)/T2(n, k) = R(qn, qk).

As in the ordinary case, the existence ofq Z -pairs is preserved under the addition of
similar bivariateq-hypergeometric terms.

Lemma 4.5. Suppose there exist q Z-pairs for two similar bivariate q-hypergeometric
terms T1(n, k) and T2(n, k). Then there exists a q Z-pair for T (n, k) = T1(n, k)+T2(n, k).

Notice thatT (n, k) = (K − 1)G(n, k) has aq Z -pair (1, G). Combining Theorem 4.4
andLemma 4.5, weobtain the main result of this paper.

Theorem 4.6. Let T (n, k) be a bivariate q-hypergeometric term. Let T1, T2 be two similar
bivariate q-hypergeometric terms satisfying

T (n, k) = (K − 1)T1(n, k) + T2(n, k)
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and T2(n, k) have a q-NR (r, s, u, v) with respect to K such that v is εy-free. Then T (n, k)

has a q Z-pair if and only if T2(n, k) is a q-proper hypergeometric term, or equivalently, if
and only if v(x, y) is a q-proper polynomial.

5. Algorithms

Let T (n, k) be a bivariateq-hypergeometric term. By the algorithm “q-RNF”, we may
find aq-NR (r, s, u, v) of T (n, k) with respect toK . Let

F(k) = u(x, qk)

v(x, qk)

k−1∏
j=0

r(x, q j )

s(x, q j )
, ∀ k ∈ N.

Then F(k) is a univariate q-hypergeometric term over the fieldF(x) with a q-MR
(r/s, u/v, 0). On theother hand, by Eq. (4.1), we have

F(k)|x=qn+1

F(k)|x=qn
= u(qn+1, qk)v(qn, qk)

u(qn, qk)v(qn+1, qk)

k−1∏
j=0

r(qn+1, q j )s(qn, q j )

r(qn, q j )s(qn+1, q j )

= T (n + 1, k)

T (n, k)
· T (n, 0)

T (n + 1, 0)
· u(qn+1, q0)v(qn, q0)

u(qn, q0)v(qn+1, q0)
,

which is also a rational function ofqn andqk . Hence F̃(n, k) = F(k)|x=qn is a bivariate
q-hypergeometric term.

Using the algorithm “q-decomp” given in Section 2, one may find univariate
q-hypergeometric termsF1(k), F2(k) suchthat

F(k) = (K − 1)F1(k) + F2(k)

and F2(k) has aq-MR ( f1/ f2, v1/v2, 0) with v2 being εy-free. Since f1/ f2, v1/v2 ∈
F(x)(y), we mayassume thatf1, f2, v1, v2 ∈ F[x, y] and f1 ⊥ f2, v1 ⊥ v2. From the fact
thatr/s is εy-reduced, it follows that f1/ f2 is alsoεy-reduced.

Let

T1(n, k) = T (n, 0)
v(qn, q0)

u(qn, q0)
· F1(k)|x=qn ,

T2(n, k) = T (n, 0)
v(qn, q0)

u(qn, q0)
· F2(k)|x=qn .

Since Eq. (2.2) implies that

F1(k) = U1

u/v
· F(k) and F2(k) = v1/v2

u/v
· F(k),

it follows that T1(n, k) and T2(n, k) are similar bivariateq-hypergeometric terms. It is
easily verified that

T (n, k) = (K − 1)T1(n, k) + T2(n, k)



ARTICLE  IN  PRESS
14 W.Y.C. Chen et al. / Journal of Symbolic Computation ( ) –

and( f1, f2, v1, v2) is aq-NR of T2 with respect toK . Therefore,Theorem 4.6implies that
T (n, k) has aq Z -pair if and only ifv2 is aq-proper polynomial.

Finally, we need the algorithm given byAbramov and Le(2002) for determining
whether or not a polynomial isq-proper.

We are now ready to describe the algorithm to determine whether a bivariate
q-hypergeometric termT (n, k) has aq Z -pair.

1.Apply the algorithm in Böing and Koepf (1999) to find a rational
function R ∈ F(x, y) such that

T (n, k + 1)

T (n, k)
= R(qn, qk).

2.Find a q-RNF (r, s, u, v) with respect to εy of R.
3.For D = r/s, U = u/v and n0 = 0, apply the algorithm ‘q-decomp’ with

respect to εy to get V = v1/v2.
4.Use the algorithm in Abramov and Le (2002) to determine whether

v2 is q-proper. If the answer is yes, then T has a q Z-pair;
otherwise, T does not have any q Z-pair.

Here are two examples.

Example 1. Let

T (n, k) = qk(1 + qn+1 + qk+2)

(qn + qk + 1)(qn + qk+1 + 1)
k+1∏
j=1

(1 − q j )

.

Then

T (n, k + 1)

T (n, k)
= q(1 + qn+1 + qk+3)(qn + qk + 1)

(qn + qk+2 + 1)(1 + qn+1 + qk+2)(1 − qk+2)
,

and we have

r = q, s = 1 − q2y, u = 1 + qx + q2y, v = (x + y + 1)(x + qy + 1)

is a q-NR of T with respect toK . For D = r/s, U = u/v andn0 = 0, applying the
algorithm “q-decomp”, we get

V = v1/v2 = −q2

(−1 + q2)(x + 1)
.

Clearly,v2 is q-proper, soT (n, k) has aq Z -pair. Indeed, we can check that

L = 1, G = 1

(qn + qk + 1)
k∏

j=1
(1 − q j )

is aq Z -pair for T (n, k).
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Example 2.

T (n, k) = qk(1 + qn+1 + qk+2)

(qn + qk + 1)(qn + qk+1 + 1)
k∏

j=1
(1 − q j )

.

Then

T (n, k + 1)

T (n, k)
= q(1 + qn+1 + qk+3)(qn + qk + 1)

(qn + qk+2 + 1)(1 + qn+1 + qk+2)(1 − qk+1)
,

and we have

r = q, s = 1 − qy, u = 1 + qx + q2y, v = (x + y + 1)(x + qy + 1)

is a q-NR of T with respect toK . For D = r/s, U = u/v andn0 = 0, applying the
algorithm “q-decomp”, we get

V = v1/v2 = −(x + y + 1)q2

(q − 1)(x + 1)(x + qy + 1)
.

Sincex + qy + 1 isnot aq-proper polynomial, it follows thatT (n, k) has noq Z -pair.
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