# Applicability of the $q$-analogue of Zeilberger's algorithm 

William Y.C. Chen*, Qing-Hu Hou, Yan-Ping Mu<br>Center for Combinatorics, LPMC, Nankai University, Tianjin 300071, PR China

Received 24 May 2003; accepted 12 September 2004


#### Abstract

The applicability or terminating condition for the ordinary case of Zeilberger's algorithm was recently obtained by Abramov. For the $q$-analogue, the question of whether a bivariate $q$-hypergeometric term has a $q Z$-pair remains open. Le has found a solution to this problem when the given bivariate $q$-hypergeometric term is a rational function in certain powers of $q$. We solve the problem for the general case by giving a characterization of bivariate $q$-hypergeometric terms for which the $q$-analogue of Zeilberger's algorithm terminates. Moreover, we give an algorithm to determine whether a bivariate $q$-hypergeometric term has a $q Z$-pair. © 2004 Elsevier Ltd. All rights reserved.


MSC: 33F10; 68W30
Keywords: Zeilberger's algorithm; q-hypergeometric term; Z-pair; qZ-pair; Proper hypergeometric term; $q$-proper hypergeometric term

## 1. Introduction

Zeilberger's algorithm (Graham et al., 1994; Petkovšek et al., 1996; Zeilberger, 1991), also known as the method of creative telescoping, is devised for proving hypergeometric identities of the form

[^0]
## ARTICLE IN PRESS

$$
\sum_{k=-\infty}^{\infty} F(n, k)=f(n)
$$

where $F(n, k)$ is a bivariate hypergeometric term and $f(n)$ is a given function (for most cases a hypergeometric term plus a constant). The algorithm can be easily adapted to the $q$-case, which is called the $q$-analogue of Zeilberger's algorithm (Böing and Koepf, 1999; Koornwinder, 1993; Paule and Riese, 1997; Wilf and Zeilberger, 1992). Let $N$ and $K$ be the shift operators with respect to $n$ and $k$ respectively, defined by

$$
N T(n, k)=T(n+1, k) \quad \text { and } \quad K T(n, k)=T(n, k+1)
$$

Given a bivariate $q$-hypergeometric term $T(n, k)$, the $q$-analogue of Zeilberger's algorithm aims to find a $q Z$-pair $(L, G)$, where $L$ is a linear difference operator with coefficients in the ring of polynomials in $q^{n}$

$$
L=a_{0}\left(q^{n}\right) N^{0}+a_{1}\left(q^{n}\right) N^{1}+\cdots+a_{r}\left(q^{n}\right) N^{r}
$$

and $G$ is a bivariate $q$-hypergeometric term $G(n, k)$ such that

$$
L T(n, k)=(K-1) G(n, k) .
$$

Zeilberger's algorithm has been widely used as a powerful tool to prove hypergeometric identities. It was an open question when the algorithm terminates. This problem was solved recently by Abramov (2002, 2003). For the $q$-analogue of Zeilberger's algorithm, Abramov and Le (2002) found a solution to the termination problem for the case of rational functions. In this paper we provide a solution for the general $q$-case.

We begin with an additive decomposition of univariate $q$-hypergeometric terms. Using this decomposition, a univariate $q$-hypergeometric term $T(n)$ can be represented as

$$
T(n)=(N-1) T_{1}(n)+T_{2}(n),
$$

where $T_{1}(n)$ and $T_{2}(n)$ are $q$-hypergeometric terms, and $T_{2}(n)$ has the following form:

$$
T_{2}(n)=\frac{u_{1}\left(q^{n}\right)}{u_{2}\left(q^{n}\right)} \prod_{j=n_{0}}^{n-1} \frac{f_{1}\left(q^{j}\right)}{f_{2}\left(q^{j}\right)}
$$

where $u_{1}, u_{2}, f_{1}, f_{2}$ are polynomials, $n_{0}$ is a nonnegative integer, and for any integer $m$, $u_{2}(x)$ and $u_{2}\left(x q^{m}\right)$ have no common factors except for a power of $x$. Consequently, a bivariate $q$-hypergeometric term $T(n, k)$ can be decomposed as

$$
\begin{equation*}
T(n, k)=(K-1) T_{1}(n, k)+T_{2}(n, k) \tag{1.1}
\end{equation*}
$$

such that

$$
T_{2}(n, k)=T\left(n, k_{0}\right) V\left(q^{n}, q^{k}\right) \prod_{j=k_{0}}^{k-1} F\left(q^{n}, q^{j}\right),
$$

where $V, F$ are rational functions, $n_{0}$ is a nonnegative integer, and the denominator $v_{2}$ of $V$ satisfies the conditions that for any integer $m, v_{2}(x, y)$ and $v_{2}\left(x, y q^{m}\right)$ have no common factors except for a power of $y$. The polynomial $v_{2}(x, y)$ with the above property
is called $\boldsymbol{\varepsilon}_{y}$-free. We should note that the above decomposition does not solve the minimal additive decomposition problem and is not unique (see Abramov and Petkovšek (2002a) for a precise definition). However, for the purpose of constructing a $q Z$-pair, it turns out that one may choose any decomposition.

Then we consider the structure of bivariate $q$-hypergeometric terms. The structure of ordinary hypergeometric terms has been studied by Ore (1930), Sato et al. (1990), Gel'fand et al. (1992), Abramov and Petkovšek (2002b) and Hou (2004). To a large extent, the $q$-case is analogous to the ordinary case. For each bivariate $q$-hypergeometric term, we associate it with a normal representation ( $q-\mathrm{NR}$ ) which consists of four polynomials $r, s, u, v$. Based on the properties of the representation, we may give a definition of $q$-proper hypergeometric terms and prove that under the condition that $v$ is $\boldsymbol{\varepsilon}_{y}$-free, a bivariate $q$-hypergeometric term has a $q Z$-pair if and only if it is a $q$-proper term. Applying the decomposition (1.1), we deduce that for any bivariate $q$-hypergeometric term $T$, it has a $q Z$-pair if and only if $T_{2}$ is $q$-proper.

We conclude with some examples.

## 2. $\varepsilon$-free decomposition

Throughout the paper, we let $\mathbb{Z}, \mathbb{Z}^{+}$and $\mathbb{N}$ denote the set of integers, positive integers and nonnegative integers, respectively. For integers (or polynomials) $a, b$, we denote by $\operatorname{gcd}(a, b)$ the (monic) greatest common divisor of $a$ and $b$. We also write $a \perp b$ to indicate that $a$ and $b$ are relatively prime, i.e., $\operatorname{gcd}(a, b)=1$.

Let $\mathbb{F}$ be a field of characteristic zero, $q \in \mathbb{F}$ a nonzero element which is not a root of unity, and $x$ transcendental over $\mathbb{F}$. Denote by $\boldsymbol{\varepsilon}$ the unique automorphism of $\mathbb{F}(x)$ which fixes $\mathbb{F}$ and satisfies $\boldsymbol{\varepsilon} x=q x$. Then $\mathbb{F}(x)$ together with the $q$-shift operator $\boldsymbol{\varepsilon}$ is a difference field (Cohn, 1965). Let $r$ and $s$ be two polynomials. We say that $r / s$ is $\boldsymbol{\varepsilon}$-reduced if $r \perp \boldsymbol{\varepsilon}^{h} s$ for all $h \in \mathbb{Z}$.

To be more specific, the rational functions involved in the $q$-hypergeometric terms (see Definition 2.4) are rational functions of $q^{n}$. However, for a rational function $R \in \mathbb{F}(x)$ and a nonnegative integer $n_{0}$, we have

$$
N R\left(q^{n}\right)=R\left(q^{n+1}\right)=\varepsilon R\left(q^{n}\right) \quad \text { and } \quad R\left(q^{n}\right)=0 \forall n \geq n_{0} \Leftrightarrow R(x)=0 .
$$

Therefore, there is a natural one-to-one correspondence between the set of rational functions of $q^{n}$ together with the shift operator $N$ and the field $\mathbb{F}(x)$ together with the $q$-shift operator $\boldsymbol{\varepsilon}$. In this paper, we adopt the notation of $\mathbb{F}(x)$ as in the work of Abramov et al. (1998).

The concept of rational normal forms introduced by Abramov and Petkovšek (2002a) can be extended to the $q$-case.

Definition 2.1. Let $R \in \mathbb{F}(x)$ be a rational function. If polynomials $r, s, u, v \in \mathbb{F}[x]$ satisfy
(i) $R=\frac{r}{s} \cdot \frac{\varepsilon(u / v)}{(u / v)}$, where $u \perp v$ and $u, v$ have no factor $x$,
(ii) $r / s$ is $\boldsymbol{\varepsilon}$-reduced,
then $(r, s, u, v)$ is called a $q$-rational normal form $(q$-RNF) of $R$.

Recall that a monic polynomial that has no factor $x$ is called a $q$-monic polynomial by Abramov et al. (1998). The following factorization theorem was given in Abramov et al. (1998).

Theorem 2.2. Let $R \in \mathbb{F}(x) \backslash\{0\}$. Then there exist $z \in \mathbb{F}$ and monic polynomials $a, b, c \in \mathbb{F}[x]$ such that

$$
\begin{align*}
& R(x)=z \frac{a(x)}{b(x)} \frac{c(q x)}{c(x)}, \\
& \operatorname{gcd}\left(a(x), b\left(q^{n} x\right)\right)=1, \quad \text { for all } n \in \mathbb{N},  \tag{2.1}\\
& \operatorname{gcd}(a(x), c(x))=\operatorname{gcd}(b(x), c(q x))=1 \quad \text { and } \quad c(0) \neq 0 .
\end{align*}
$$

We call $(a z, b, c)$ a $q$-Gosper form ( $q$-GF) of $R$.
Theorem 2.3. Every rational function $R \in \mathbb{F}(x)$ has a $q-R N F$.
Proof. It is clear that $(0,1,1,1)$ is a $q$-RNF of 0 . For $R \neq 0$, by Theorem 2.2, there exists a $q$-GF $(a z, b, c)$ of $R$. Applying Theorem 2.2 again to $b(x) / a(x)$, we get a $q$-GF $(r, s, d)$. From the construction given in Abramov et al. (1998), we have $r \mid b$ and $s \mid a$. Hence $s(x) \perp r\left(x q^{n}\right)$ for any $n \in \mathbb{N}$ because $(a z, b, c)$ is a $q$-GF. Since $(r, s, d)$ is also a $q$-GF, we have $r(x) \perp s\left(x q^{n}\right)$ for any $n \in \mathbb{N}$. Thus $s / r$ is $\boldsymbol{\varepsilon}$-reduced and $(z s, r, c / \operatorname{gcd}(c, d), d / \operatorname{gcd}(c, d))$ is a $q$-RNF of $R$.

The above proof provides an algorithm to generate a $q$-RNF of $R$.

## Algorithm $\boldsymbol{q}$-RNF

if $R=0$ then
return $(0,1,1,1)$;
else
compute ' $q$-GF' of $R$, we get $(a, b, c)$;
compute ' $q$-GF' of $b / a$, we get $(r, s, d)$;
return $(s, r, c / \operatorname{gcd}(c, d), d / \operatorname{gcd}(c, d))$.
We now come to the $q$-multiplicative representation of a general $q$-hypergeometric term. This is the starting point of the $\boldsymbol{\varepsilon}$-free decomposition algorithm.

Definition 2.4. Suppose $T(n)$ is a function from $\mathbb{N}$ to $\mathbb{F}$. If there exist a nonnegative integer $n_{0}$ and a nonzero rational function $R(x) \in \mathbb{F}(x)$ such that $T(n+1)=R\left(q^{n}\right) T(n)$ for all $n \geq n_{0}$, then we call $T(n)$ a (univariate) $q$-hypergeometric term.

Suppose $(r, s, u, v)$ is a $q$-RNF of a rational function $R$. Then the corresponding $q$-hypergeometric term $T(n)$ satisfies

$$
T(n)=T\left(n_{0}\right) \prod_{j=n_{0}}^{n-1} R\left(q^{j}\right)=\frac{T\left(n_{0}\right)}{u\left(q^{n_{0}}\right) / v\left(q^{n_{0}}\right)} \cdot \frac{u\left(q^{n}\right)}{v\left(q^{n}\right)} \prod_{j=n_{0}}^{n-1} \frac{r\left(q^{j}\right)}{s\left(q^{j}\right)}, \quad \forall n \geq n_{0} .
$$

This leads to the following definition.

Definition 2.5. Let $T(n)$ be a $q$-hypergeometric term and $D, U$ be two rational functions such that $D\left(q^{n}\right)$ has neither poles nor zeros and $U\left(q^{n}\right)$ has no poles for all $n \geq n_{0}$. Suppose that

$$
T(n)=U\left(q^{n}\right) \prod_{j=n_{0}}^{n-1} D\left(q^{j}\right), \quad \forall n \geq n_{0}
$$

Then we call ( $D, U, n_{0}$ ) a $q$-multiplicative representation ( $q$-MR) of $T$.
Let $\Delta=N-1$ be the difference operator with respect to $n$. The following lemma can be easily verified.

Lemma 2.6. Let $T$ and $T_{1}$ be two $q$-hypergeometric terms with $q-M R s\left(D, U, n_{0}\right)$ and ( $D, U_{1}, n_{0}$ ), respectively. Suppose that

$$
T_{2}=T-\Delta T_{1} \quad \text { and } \quad U_{2}=U-D \cdot \varepsilon U_{1}+U_{1}
$$

Then $\left(D, U_{2}, n_{0}\right)$ is a $q-M R$ of $T_{2}$.
For $u, v \in \mathbb{F}[x]$, let $\mathcal{R}$ be the set of all nonnegative integers $h$ such that there exists an irreducible polynomial $p(x) \neq x$ satisfying $p(x) \mid u(x)$ and $p(x) \mid v\left(q^{h} x\right)$. Define qdis $(u, v)$ to be $\max \{h \in \mathcal{R}\}$ or -1 if $\mathcal{R}$ is empty. Note that $\mathcal{R}$ is a finite set, and "qdis" is well defined. If $\operatorname{qdis}(v, v)=0$, we say that $v$ is $\boldsymbol{\varepsilon}$-free.

Given a $q$-hypergeometric term $T$ with a $q$-MR $\left(D, U, n_{0}\right)$. Usually the denominator $u$ of $U$ is not $\varepsilon$-free. However, translating the decomposition algorithm of Abramov and Petkovšek (2002a) into the $q$-case, we have the following $\varepsilon$-free decomposition algorithm " $q$-decomp", which decomposes $T$ into $\Delta T_{1}+T_{2}$ such that $T_{2}$ has a $q$-MR $\left(F, V, n_{0}\right)$ where the denominator of $V$ is $\boldsymbol{\varepsilon}$-free.

```
Algorithm \(\boldsymbol{q}\)-decomp
Input: \(\left(D, U, n_{0}\right) \quad\) Output: \(U_{1}, F, V \in \mathbb{F}(x)\)
\(d_{1}:=\operatorname{numer}(D) ; d_{2}:=\operatorname{denom}(D) ;\)
\(U_{1}:=0 ; U_{2}:=U ; u_{2}:=\operatorname{denom}(U)\);
\(N:=\operatorname{qdis}\left(u_{2}, u_{2}\right)\);
for \(h:=N\) down to 1 do
    \(v_{2}:=u_{2} / \operatorname{gcd}\left(u_{2}, d_{2}\right) ;\)
    \(s(x):=\operatorname{gcd}\left(v_{2}(x), v_{2}\left(q^{-h} x\right)\right)\);
    \(\left(\tilde{s}, \tilde{u}_{2}\right):=\operatorname{pump}\left(s, u_{2}\right)\);
    write \(U_{2}=a / \tilde{u}_{2}+b / \tilde{s}\) where \(a, b \in \mathbb{F}[x]\);
    \(U_{1}^{\prime}:=-b / \tilde{s}\);
    \(U_{1}:=U_{1}+U_{1}^{\prime} ; U_{2}:=U_{2}-D \cdot \varepsilon U_{1}^{\prime}+U_{1}^{\prime} ;\)
    \(u_{2}:=\operatorname{denom}\left(U_{2}\right)\);
\(f_{1}:=d_{1} ; f_{2}:=d_{2} ; v_{1}:=\operatorname{numer}\left(U_{2}\right) ; v_{2}:=\operatorname{denom}\left(U_{2}\right) ;\)
\(w:=\operatorname{gcd}\left(d_{2}, v_{2}\right)\);
\(v_{2}:=v_{2} / w ; f_{2}:=\boldsymbol{\varepsilon} w f_{2} / w ;\)
\(F:=f_{1} / f_{2} ; V:=\left(1 / w\left(q^{n_{0}}\right)\right) \cdot v_{1} / v_{2} ;\)
return \(\left(U_{1}, F, V\right)\).
```

The procedure "pump" is the same as in the ordinary case.

## Algorithm pump

Input: $f, g \in \mathbb{F}[x] \quad$ Output: $\tilde{f}, \tilde{g} \in \mathbb{F}[x]$

$$
\tilde{f}:=f ; \tilde{g}:=g / f
$$

repeat
$d:=\operatorname{gcd}(\tilde{f}, \tilde{g}) ; \quad \tilde{f}:=\tilde{f} d ; \tilde{g}:=\tilde{g} / d ;$
until $\operatorname{deg} d=0$;
return $(\tilde{f}, \tilde{g})$.
The following theorem shows that the $\boldsymbol{\varepsilon}$-free algorithm generates the desired decomposition.

Theorem 2.7. Let $T$ be a q-hypergeometric term with a $q-M R\left(D, U, n_{0}\right)$ and $U_{1}, F, V$ be given by the algorithm $q$-decomp. Then there exist $q$-hypergeometric terms $T_{1}$ and $T_{2}$ such that
(1) $T=\Delta T_{1}+T_{2}$.
(2) $T_{1}$ has a q-MR $\left(D, U_{1}, n_{0}\right)$ and $T_{2}$ has a q-MR $\left(F, V, n_{0}\right)$.
(3) The denominator of $V$ is $\boldsymbol{\varepsilon}$-free.

Furthermore, if $D$ is $\boldsymbol{\varepsilon}$-reduced, so is $F$.
Proof. Let $u_{0}$ be the denominator of $U$. We first use induction to show that after iterating the loop of $h$ in the algorithm $i$ times, the denominator $u_{2}$ of $U_{2}$ satisfies:
(a) $\operatorname{qdis}\left(v_{2}, v_{2}\right) \leq N-i$,
(b) $u_{2}\left(q^{n}\right)$ has no zeros for all $n \geq n_{0}$,
where $v_{2}=u_{2} / \operatorname{gcd}\left(u_{2}, d_{2}\right)$, and $d_{2}$ is the denominator of $D$.
The case for $i=0$ is trivial. Assume that the assertion holds for $i-1$. Let $u_{2}$ and $u_{2}^{\prime}$ be the denominator of $U_{2}$ after $i-1$ and $i$ iterations, respectively. Set $h=N-(i-1)>0$ and $w_{2}=\operatorname{gcd}\left(u_{2}, d_{2}\right)$. From the algorithm $q$-decomp we have

$$
v_{2}=u_{2} / w_{2} \quad \text { and } \quad s=\operatorname{gcd}\left(v_{2}(x), v_{2}\left(q^{-h} x\right)\right)
$$

Suppose the prime decomposition of $s$ is $p_{1}^{\alpha_{1}} \cdots p_{r}^{\alpha_{r}}$ and $v_{2}=p_{1}^{\beta_{1}} \cdots p_{r}^{\beta_{r}} v^{\prime}, w_{2}=$ $p_{1}^{\gamma_{1}} \cdots p_{r}^{\gamma_{r}} w^{\prime}$ where $v^{\prime} \perp s, w^{\prime} \perp s$. Then the algorithm "pump" enables us to decompose $u_{2}$ as $p_{1}^{\beta_{1}+\gamma_{1}} \cdots p_{r}^{\beta_{r}+\gamma_{r}} \cdot\left(v^{\prime} w^{\prime}\right)$. That is, $\tilde{s}=p_{1}^{\beta_{1}+\gamma_{1}} \cdots p_{r}^{\beta_{r}+\gamma_{r}}$ and $\tilde{u}_{2}=v^{\prime} w^{\prime}$. Since

$$
U_{2}=\frac{a}{\tilde{u}_{2}}+\frac{d_{1}}{d_{2}} \cdot \varepsilon\left(\frac{b}{\tilde{s}}\right),
$$

it follows that $u_{2}^{\prime}$ divides the least common multiple of $\tilde{u}_{2}$ and $d_{2} \varepsilon \tilde{s}$. Hence we have that $u_{2}^{\prime}$ divides $v^{\prime} d_{2} \cdot \boldsymbol{\varepsilon} \tilde{s}$. Let $v^{\prime \prime}=v^{\prime} \cdot \boldsymbol{\varepsilon} \tilde{s}$. Assume that there exist an integer $m \geq h$ and an irreducible polynomial $p(x) \neq x$ such that $p \mid v^{\prime \prime}$ and $p \mid \boldsymbol{\varepsilon}^{m} v^{\prime \prime}$. We may encounter four cases:

- $p \mid v^{\prime}$ and $p \mid \boldsymbol{\varepsilon}^{m} v^{\prime}$.

From $v^{\prime} \mid v_{2}$ and qdis $\left(v_{2}, v_{2}\right) \leq h$, it follows that $m=h$. Therefore, $\boldsymbol{\varepsilon}^{-h} p \mid \boldsymbol{\varepsilon}^{-h} v_{2}$ and $\boldsymbol{\varepsilon}^{-h} p \mid v_{2}$. Consequently, we have $\boldsymbol{\varepsilon}^{-h} p \mid s$, which contradicts $v^{\prime} \perp s$.

- $p \mid v^{\prime}$ and $p \mid \boldsymbol{\varepsilon}^{m+1} \tilde{s}$.

Since $s$ and $\tilde{s}$ have the same prime factors, we have $p \mid \boldsymbol{\varepsilon}^{m+1} s$, implying that $p \mid \boldsymbol{\varepsilon}^{m+1} v_{2}$. On the other hand, we have $p \mid v_{2}$, which contradicts qdis $\left(v_{2}, v_{2}\right) \leq h$.

- $p \mid \boldsymbol{\varepsilon} \tilde{s}$ and $p \mid \boldsymbol{\varepsilon}^{m} v^{\prime}$.

In this situation, we have $\boldsymbol{\varepsilon}^{-1} p \mid \tilde{s}$, which implies that $\boldsymbol{\varepsilon}^{-1} p \mid \boldsymbol{\varepsilon}^{-h} v_{2}$, or equivalently, $\boldsymbol{\varepsilon}^{h-1} p \mid v_{2}$. On the other hand, $\boldsymbol{\varepsilon}^{h-1} p \mid \boldsymbol{\varepsilon}^{m+h-1} v_{2}$. Since qdis $\left(v_{2}, v_{2}\right) \leq h$, we get $m+h-1 \leq h$, and hence $m=1$. Now we have $p \mid \varepsilon s$ and $p \mid \varepsilon v^{\prime}$, which contradicts $v^{\prime} \perp s$.

- $p \mid \varepsilon \tilde{s}$ and $p \mid \boldsymbol{\varepsilon}^{m+1} \tilde{s}$.

Similarly, we have $\boldsymbol{\varepsilon}^{-1} p \mid s$ and hence $\boldsymbol{\varepsilon}^{-1} p \mid \boldsymbol{\varepsilon}^{-h} v_{2}$, i.e., $\boldsymbol{\varepsilon}^{h-1} p \mid v_{2}$. However, we have $\boldsymbol{\varepsilon}^{h-1} p \mid \boldsymbol{\varepsilon}^{m+h} v_{2}$. Thus, we obtain $m+h \leq h$, which is also a contradiction.

In summary, we may conclude that $\operatorname{qdis}\left(v^{\prime \prime}, v^{\prime \prime}\right) \leq h-1$. Because $u_{2}^{\prime}$ divides $v^{\prime \prime} \cdot d_{2}$, there exist $\bar{v} \mid v^{\prime \prime}$ and $\bar{w} \mid d_{2}$ such that $u_{2}^{\prime}=\bar{v} \bar{w}$. Let $v_{2}^{\prime}=u_{2}^{\prime} / \operatorname{gcd}\left(u_{2}^{\prime}, d_{2}\right)$. From $\bar{w} \mid \operatorname{gcd}\left(u_{2}^{\prime}, d_{2}\right)$, it follows that $v_{2}^{\prime} \mid \bar{v}$. So we get $q \operatorname{dis}\left(v_{2}^{\prime}, v_{2}^{\prime}\right) \leq h-1=N-i$. Thus, we have proved (a). Since $u_{2}^{\prime} \mid u_{2} \cdot \varepsilon u_{2} \cdot d_{2}$, (b) immediately follows from the induction hypothesis.

On the other hand, since $\tilde{s} \mid u_{2}$, (b) implies that $U_{1}\left(q^{n}\right)$ has no poles for all $n \geq n_{0}$. Let

$$
\begin{equation*}
T_{1}(n)=U_{1}\left(q^{n}\right) \prod_{j=n_{0}}^{n-1} D\left(q^{j}\right) \quad \text { and } \quad T_{2}(n)=U_{2}\left(q^{n}\right) \prod_{j=n_{0}}^{n-1} D\left(q^{j}\right) \tag{2.2}
\end{equation*}
$$

Noting that $U_{2}=U-D \boldsymbol{\varepsilon} U_{1}+U_{1}$, by Lemma 2.6, we obtain $T=\Delta T_{1}+T_{2}$.
Because $w \mid d_{2}$ and $d_{2}\left(q^{n}\right) \neq 0$ for all $n \geq n_{0}$, we can write $T_{2}(n)$ as

$$
T_{2}(n)=\frac{1}{w\left(q^{n_{0}}\right)} U_{2}\left(q^{n}\right) w\left(q^{n}\right) \prod_{j=n_{0}}^{n-1} D\left(q^{j}\right) \frac{w\left(q^{j}\right)}{w\left(q^{j+1}\right)}=V\left(q^{n}\right) \prod_{j=n_{0}}^{n-1} F\left(q^{j}\right)
$$

Let $v$ be the denominator of $V$. Then (a) implies $\operatorname{qdis}(v, v)=0$; that is, $v$ is $\boldsymbol{\varepsilon}$-free.
Finally, notice that $f_{1}=d_{1}$ and $f_{2}=\varepsilon w \cdot\left(d_{2} / w\right)$, where $w \mid d_{2}$. Therefore, $F$ is $\boldsymbol{\varepsilon}$-reduced provided that $D$ is $\boldsymbol{\varepsilon}$-reduced. This completes the proof.

## 3. Bivariate $q$-hypergeometric terms

We begin this section with the definition of bivariate $q$-hypergeometric terms.
Definition 3.1. Suppose $T(n, k)$ is a function from $\mathbb{N}^{2}$ to $\mathbb{F}$. If there exist rational functions $R_{1}(x, y), R_{2}(x, y) \in \mathbb{F}(x, y)$ and $n_{0} \in \mathbb{N}$ such that

$$
T(n+1, k)=R_{1}\left(q^{n}, q^{k}\right) T(n, k) \quad \text { and } \quad T(n, k+1)=R_{2}\left(q^{n}, q^{k}\right) T(n, k)
$$

for all $n, k \geq n_{0}$, then we call $T(n, k)$ a bivariate $q$-hypergeometric term.
Without loss of generality, from now on we may assume that $n_{0}=0$ and that $R_{1}\left(q^{n}, q^{k}\right), R_{2}\left(q^{n}, q^{k}\right)$ have neither zeros nor poles for all $n, k \geq 0$.

Denote by $\boldsymbol{\varepsilon}_{x}$ and $\boldsymbol{\varepsilon}_{y}$ the shift operators on $\mathbb{F}(x, y)$ defined by $\boldsymbol{\varepsilon}_{x} x=q x, \boldsymbol{\varepsilon}_{x} \mid \mathbb{F}(y)=$ id (the identity map) and $\boldsymbol{\varepsilon}_{y} y=q y,\left.\boldsymbol{\varepsilon}_{y}\right|_{\mathbb{F}(x)}=$ id, respectively. The idea of $q$-RNFs can be easily adopted to the bivariate case by taking $\mathbb{F}(y)$ as the ground field. Let $R(x, y)$ be
a rational function of $x$ and $y$; its $q$-rational normal form ( $q$-RNF with respect to $\boldsymbol{\varepsilon}_{x}$ ) is represented by $(r, s, u, v)$ as in the univariate case. By using the ground field $\mathbb{F}(x)$, we may find a $q$-RNF of $R(x, y)$ with respect to $\boldsymbol{\varepsilon}_{y}$.

Let $T(n, k)$ be a bivariate $q$-hypergeometric term. By definition, there exists a rational function $R$ such that

$$
T(n+1, k) / T(n, k)=R\left(q^{n}, q^{k}\right)
$$

Suppose $(r, s, u, v)$ is a $q$-RNF of $R$ with respect to $\boldsymbol{\varepsilon}_{x}$. We call $(r, s, u, v)$ a $q$-normal representation ( $q-\mathrm{NR}$ ) of $T(n, k)$ with respect to the shift operator $N$. Similarly, we can define the $q$-NR of $T(n, k)$ with respect to the shift operator $K$.

We next give a characterization of the polynomials involved in the $q$-NR of bivariate $q$-hypergeometric terms.

Theorem 3.2. Let $T(n, k)$ be a bivariate $q$-hypergeometric term that has a $q-N R$ $(r, s, u, v)$ with respect to $N$. Then $r$ and $s$ are products of polynomials having the form

$$
\left(x^{c} y^{d}\right) \cdot \prod_{l=1}^{a} p\left(q^{w_{l}} x^{a} y^{b}\right)
$$

where $p$ is a Laurent polynomial of one variable, $a \in \mathbb{Z}^{+}, b, c, d$, $w_{l} \in \mathbb{Z}, a \perp b$, and $w_{i} \not \equiv w_{j}(\bmod a), \forall i \neq j$.

Similarly, suppose $(r, s, u, v$ ) is a $q-N R$ of $T$ with respect to $K$. Then $r$ and $s$ are products of polynomials having the form

$$
\left(x^{c} y^{d}\right) \cdot \prod_{l=1}^{a} p\left(q^{w_{l}} x^{b} y^{a}\right)
$$

under the same conditions.
Sketch of the proof. The proof of the ordinary case (Hou, 2004, Theorem 3.4) can be carried over to the $q$-case except that we need to consider the characterization of polynomials $f(x, y)$ such that $f\left(q^{a} x, q^{b} y\right)=C f(x, y)$ for certain integers $a, b$ and $C \in \mathbb{F}$.

Consequently, we have
Corollary 3.3. Let $T(n, k)$ be a bivariate $q$-hypergeometric term that has a $q-N R$ $(r, s, u, v)$ with respect to $N$ (or $K$ respectively). Then we have

$$
T(n, k)=C \cdot \frac{u\left(q^{n}, q^{k}\right)}{v\left(q^{n}, q^{k}\right)} \cdot \frac{\prod_{l=1}^{u u} \prod_{j=0}^{a_{l} n+b_{l} k+c_{l}} f_{l}\left(q^{j}\right)}{\prod_{l=1}^{v v} \prod_{j=0}^{a_{l}^{\prime} n+b_{l}^{\prime} k+c_{l}^{\prime}} g_{l}\left(q^{j}\right)},
$$

where $C \in \mathbb{F}, u u, v v \in \mathbb{N}, a_{l}, b_{l}, c_{l}, a_{l}^{\prime}, b_{l}^{\prime}, c_{l}^{\prime} \in \mathbb{Z}$ and $f_{l}, g_{l}$ are polynomials.
Corollary 3.3 enables us to give the following definition of $q$-proper hypergeometric terms.

Definition 3.4. A polynomial $f \in \mathbb{F}[x, y]$ is said to be $q$-proper if, for each of its irreducible factors $p(x, y) \in \mathbb{F}[x, y]$, there exist $a, b \in \mathbb{Z}$, not both zeros, such that $p(x, y) \mid p\left(q^{a} x, q^{b} y\right)$. A bivariate $q$-hypergeometric term $T$ is said to be $q$-proper if $v$ is a $q$-proper polynomial, where $(r, s, u, v)$ is a $q$-NR of $T$ with respect to $N$ or $K$.

Suppose that $T$ is a bivariate $q$-hypergeometric term that has a $q$-NR $(r, s, u, v)$ with respect to $N$ (or $K$ ). Theorem 3.2 guarantees that $r$ and $s$ are both $q$-proper polynomials.

As in the case of ordinary bivariate hypergeometric terms (Hou, 2004, Theorem 4.2), we have an analogous "fundamental theorem" for the $q$-case.

Theorem 3.5. Let $T(n, k)$ be a bivariate $q$-hypergeometric term. Then $T$ is $q$-proper if and only if there exist polynomials $a_{i j}(x) \in \mathbb{F}[x]$, not all zero, such that

$$
\sum_{0 \leq i \leq I, 0 \leq j \leq J} a_{i j}\left(q^{n}\right) T(n+i, k+j)=0 \quad \forall n, k \geq 0 .
$$

Based on an analogous argument for the ordinary case as in Petkovšek et al. (1996, Theorem 6.2.1), we get

Corollary 3.6. Any q-proper hypergeometric term has a qZ-pair.

## 4. The existence of $q Z$-pairs

In this section, we obtain a necessary and sufficient condition for the existence of $q Z$-pairs for any bivariate $q$-hypergeometric term based on its $q$-NR with respect to $K$.

From Theorem 3.2, we have
Corollary 4.1. Let $T(n, k)$ be a bivariate $q$-hypergeometric term that has a $q-N R$ $(r, s, u, v)$ with respect to $K$. Then there exist polynomials $f_{i}(x), g_{i}(x) \in \mathbb{F}[x]$ and $a_{i}, a_{i}^{\prime}, b_{i}, b_{i}^{\prime} \in \mathbb{Z}$ such that

$$
\prod_{j=0}^{k-1}\left(\frac{r\left(q^{n+1}, q^{j}\right)}{r\left(q^{n}, q^{j}\right)} \cdot \frac{s\left(q^{n}, q^{j}\right)}{s\left(q^{n+1}, q^{j}\right)}\right)=\prod_{i=1}^{\ell} \frac{f_{i}\left(q^{a_{i} k+b_{i} n}\right)}{g_{i}\left(q^{\left.a_{i}^{\prime k+b_{i}^{\prime} n}\right)}\right.} .
$$

We need to consider the following ratio:

$$
\frac{T(n+i, k)}{T(n, k)}=\frac{T(n+i, 0)}{T(n, 0)} \prod_{j=0}^{k-1}\left\{\frac{T(n+i, j+1)}{T(n+i, j)} \frac{T(n, j)}{T(n, j+1)}\right\}
$$

which can be rewritten as

$$
\begin{align*}
\frac{T(n+i, k)}{T(n, k)}= & \prod_{l=0}^{i-1} \prod_{j=0}^{k-1}\left\{\frac{r\left(q^{n+l+1}, q^{j}\right)}{r\left(q^{n+l}, q^{j}\right)} \frac{s\left(q^{n+l}, q^{j}\right)}{s\left(q^{n+l+1}, q^{j}\right)}\right\} \prod_{l=0}^{i-1} \frac{T(n+l+1,0)}{T(n+l, 0)} \\
& \times \frac{u\left(q^{n+i}, q^{k}\right)}{u\left(q^{n+i}, q^{0}\right)} \frac{u\left(q^{n}, q^{0}\right)}{u\left(q^{n}, q^{k}\right)} \frac{v\left(q^{n+i}, q^{0}\right)}{v\left(q^{n+i}, q^{k}\right)} \frac{v\left(q^{n}, q^{k}\right)}{v\left(q^{n}, q^{0}\right)} \tag{4.1}
\end{align*}
$$

From Corollary 4.1 we get the following expression.

Lemma 4.2. Let $T(n, k)$ be a bivariate $q$-hypergeometric term that has a $q-N R(r, s, u, v)$ with respect to $K$. Then for each $i \geq 0$, there exist $q$-proper polynomials $w_{1}^{(i)}(x, y)$ and $w_{2}^{(i)}(x, y)$ such that

$$
\begin{equation*}
\frac{T(n+i, k)}{T(n, k)}=\frac{u\left(q^{n+i}, q^{k}\right)}{v\left(q^{n+i}, q^{k}\right)} \cdot \frac{v\left(q^{n}, q^{k}\right)}{u\left(q^{n}, q^{k}\right)} \cdot \frac{w_{1}^{(i)}\left(q^{n}, q^{k}\right)}{w_{2}^{(i)}\left(q^{n}, q^{k}\right)}, \quad \forall n, k \geq 0 . \tag{4.2}
\end{equation*}
$$

An $\boldsymbol{\varepsilon}_{y}$-free polynomial that is not $q$-proper has a special factor.
Lemma 4.3. Let $f \in \mathbb{F}[x, y]$ be a non-q-proper and $\boldsymbol{\varepsilon}_{y}$-free polynomial. Then there exists an irreducible factor $p$ of $f$ such that

$$
\begin{array}{ll}
p(x, y) \perp p\left(q^{i} x, q^{j} y\right), & \forall(i, j) \in \mathbb{Z}^{2} \backslash\{(0,0)\}  \tag{4.3}\\
p(x, y) \perp f\left(q^{i} x, q^{j} y\right), & \forall(i, j) \in(\mathbb{N} \times \mathbb{Z}) \backslash\{(0,0)\}
\end{array}
$$

Proof. Since $f(x, y)$ is non- $q$-proper, by definition it has an irreducible factor $p_{1}(x, y)$ such that $p_{1}(x, y) \perp p_{1}\left(q^{i} x, q^{j} y\right), \forall(i, j) \in \mathbb{Z}^{2} \backslash\{(0,0)\}$.

We may factor $f(x, y)$ as

$$
f(x, y)=p_{1}^{\alpha_{1}}\left(q^{a_{1}} x, q^{b_{1}} y\right) \cdots p_{1}^{\alpha_{r}}\left(q^{a_{r}} x, q^{b_{r}} y\right) f_{1}(x, y)
$$

where $\left(a_{i}, b_{i}\right) \in \mathbb{Z}^{2}$ are distinct pairs, $\alpha_{i} \in \mathbb{Z}^{+}$, and $p_{1}\left(q^{i} x, q^{j} y\right) \perp f_{1}(x, y)$ for all $i, j \in \mathbb{Z}$. Since $f(x, y)$ is $\boldsymbol{\varepsilon}_{y}$-free, it follows that $a_{i} \neq a_{j}$ as long as $i \neq j$. Without loss of generality, we may assume that $a_{1}<a_{2}<\cdots<a_{r}$. Thus, $p(x, y)=p_{1}\left(q^{a_{1}} x, q^{b_{1}} y\right)$ satisfies the condition (4.3).

We are now ready to give a criterion for the existence of $q Z$-pairs.
Theorem 4.4. Let $T(n, k)$ be a bivariate $q$-hypergeometric term that has a $q-N R$ $(r, s, u, v)$ with respect to $K$ such that $v$ is $\boldsymbol{\varepsilon}_{y}$-free. Then $T(n, k)$ has a $q Z$-pair if and only if $v$ is a $q$-proper polynomial.

Proof. Because of Corollary 3.6, it suffices to show that if $T(n, k)$ has a $q Z$-pair, then it is $q$-proper. To this end, we assume that $T(n, k)$ is a bivariate $q$-hypergeometric term. Moreover, we assume that $T(n, k)$ is not $q$-proper, but it has a $q Z$-pair. We proceed to find a contradiction.

Clearly, for a difference operator $L \in \mathbb{F}\left[q^{n}, N\right]$, we have

$$
(N \cdot L) T(n, k)=(K-1) G(n, k) \Longleftrightarrow L T(n, k)=(K-1) G(n-1, k) .
$$

Therefore, we may assume that $T(n, k)$ has a $q Z$-pair $(L, G)$ of the form

$$
L=\sum_{i=0}^{I} a_{i}\left(q^{n}\right) N^{i}
$$

where $a_{i}\left(q^{n}\right)$ are polynomials in $q^{n}$ and $a_{0} \neq 0$. Since $L T / T$ and $(K-1) G / G$ are both rational functions of $q^{n}$ and $q^{k}$, we may assume that

$$
G(n, k)=\frac{f\left(q^{n}, q^{k}\right)}{g\left(q^{n}, q^{k}\right)} T(n, k),
$$

where $f, g \in \mathbb{F}[x, y]$ are two relatively prime polynomials.
By the definition of $q Z$-pairs, we have

$$
\begin{equation*}
\sum_{i=0}^{I} a_{i}\left(q^{n}\right) \frac{T(n+i, k)}{T(n, k)}=\frac{f\left(q^{n}, q^{k+1}\right)}{g\left(q^{n}, q^{k+1}\right)} \frac{T(n, k+1)}{T(n, k)}-\frac{f\left(q^{n}, q^{k}\right)}{g\left(q^{n}, q^{k}\right)} \tag{4.4}
\end{equation*}
$$

Substituting (4.2) into (4.4), we obtain

$$
\begin{equation*}
\sum_{i=0}^{I} a_{i}(x) \frac{u\left(q^{i} x, y\right)}{v\left(q^{i} x, y\right)} \frac{w_{1}^{(i)}(x, y)}{w_{2}^{(i)}(x, y)}=\frac{f(x, q y)}{g(x, q y)} \frac{r(x, y)}{s(x, y)} \frac{u(x, q y)}{v(x, q y)}-\frac{f(x, y)}{g(x, y)} \frac{u(x, y)}{v(x, y)} \tag{4.5}
\end{equation*}
$$

Let $u_{1}=u / \operatorname{gcd}(u, g), g_{1}=g / \operatorname{gcd}(u, g)$. Multiplying

$$
g_{1}(x, q y) g_{1}(x, y) v(x, q y) s(x, y) \prod_{j=0}^{I} v\left(q^{j} x, y\right) w_{2}^{(j)}(x, y)
$$

to both sides of (4.5), we arrive at

$$
\begin{align*}
& g_{1}(x, q y) g_{1}(x, y) v(x, q y) s(x, y) \\
& \quad \times \sum_{i=0}^{I} a_{i}(x) u\left(q^{i} x, y\right) w_{1}^{(i)}(x, y) \prod_{j \neq i} v\left(q^{j} x, y\right) w_{2}^{(j)}(x, y) \\
& = \\
& \quad f(x, q y) r(x, y) u_{1}(x, q y) g_{1}(x, y) \prod_{j=0}^{I} v\left(q^{j} x, y\right) w_{2}^{(j)}(x, y) \\
& \quad-f(x, y) u_{1}(x, y) g_{1}(x, q y) v(x, q y) s(x, y) w_{2}^{(0)}(x, y)  \tag{4.6}\\
& \quad \times \prod_{j=1}^{I} v\left(q^{j} x, y\right) w_{2}^{(j)}(x, y) .
\end{align*}
$$

Since $T(n, k)$ is not $q$-proper, from Lemma 4.3 it follows that there exists an irreducible factor $p$ of $v$ satisfying the condition (4.3). Noting that $p(x, y)$ divides each term of the left-hand side of (4.6) except for the first term, we obtain that $p(x, y)$ divides

$$
\begin{aligned}
& g_{1}(x, q y) v(x, q y) s(x, y) \prod_{j=1}^{I} v\left(q^{j} x, y\right) w_{2}^{(j)}(x, y) \\
& \quad \times\left(g_{1}(x, y) a_{0}(x) u(x, y) w_{1}^{(0)}(x, y)+f(x, y) u_{1}(x, y) w_{2}^{(0)}(x, y)\right)
\end{aligned}
$$

From (4.3) it follows that

$$
p(x, y) \perp v(x, q y) \prod_{j=1}^{I} v\left(q^{j} x, y\right)
$$

Since $s$ and $w_{2}^{(j)}$ are $q$-proper, they are also relatively prime to $p$. This implies that $p(x, y)$ divides

$$
\begin{equation*}
g_{1}(x, q y)\left(g_{1}(x, y) a_{0}(x) u(x, y) w_{1}^{(0)}(x, y)+f(x, y) u_{1}(x, y) w_{2}^{(0)}(x, y)\right) \tag{4.7}
\end{equation*}
$$

Similarly, since $p(x, q y)$ divides both sides of (4.6) and $u \perp v$, we have

$$
\begin{equation*}
p(x, q y) \mid f(x, q y) g_{1}(x, y) . \tag{4.8}
\end{equation*}
$$

Case 1. Suppose $p(x, q y) \mid f(x, q y)$. Since $p(x, y)$ divides (4.7), it follows that

$$
p(x, y) \mid g_{1}(x, q y) g_{1}(x, y) a_{0}(x) u(x, y) w_{1}^{(0)}(x, y)
$$

Since $f \perp g, u \perp v, a_{0}$ and $w_{1}^{(0)}$ are $q$-proper polynomials, we may deduce that $p(x, y) \mid g_{1}(x, q y)$, i.e., $p\left(x, q^{-1} y\right) \mid g_{1}(x, y)$. Let $m(>0)$ be the greatest integer such that $p\left(x, q^{-m} y\right) \mid g_{1}(x, y)$. By virtue of (4.6), we have that $p\left(x, q^{-m} y\right)$ divides

$$
\begin{aligned}
& f(x, y) u_{1}(x, y) g_{1}(x, q y) v(x, q y) s(x, y) w_{2}^{(0)}(x, y) \\
& \quad \times \prod_{j=1}^{I} v\left(q^{j} x, y\right) w_{2}^{(j)}(x, y)
\end{aligned}
$$

However, $f \perp g$ and $g_{1} \perp u_{1}$ imply that $p\left(x, q^{-m} y\right) \mid g_{1}(x, q y)$, which contradicts the choice of $m$.
Case 2. Suppose $p(x, q y) \mid g_{1}(x, y)$. Let $M>0$ be the greatest integer such that $p\left(x, q^{M} y\right) \mid g_{1}(x, y)$. Similarly, from (4.6) it follows that $p\left(x, q^{M+1} y\right)$ divides

$$
f(x, q y) r(x, y) u_{1}(x, q y) g_{1}(x, y) \prod_{j=0}^{I} v\left(q^{j} x, y\right) w_{2}^{(j)}(x, y)
$$

Hence we get $p\left(x, q^{M+1} y\right) \mid g_{1}(x, y)$, which is again a contradiction.
To extend the above result to general bivariate $q$-hypergeometric terms, we need the concept of similar $q$-hypergeometric terms. Two bivariate $q$-hypergeometric terms $T_{1}, T_{2}$ are called similar if there exists a rational function $R \in \mathbb{F}(x, y)$ such that $T_{1}(n, k) / T_{2}(n, k)=R\left(q^{n}, q^{k}\right)$.

As in the ordinary case, the existence of $q Z$-pairs is preserved under the addition of similar bivariate $q$-hypergeometric terms.

Lemma 4.5. Suppose there exist $q Z$-pairs for two similar bivariate $q$-hypergeometric terms $T_{1}(n, k)$ and $T_{2}(n, k)$. Then there exists a q Z-pair for $T(n, k)=T_{1}(n, k)+T_{2}(n, k)$.

Notice that $T(n, k)=(K-1) G(n, k)$ has a $q Z$-pair $(1, G)$. Combining Theorem 4.4 and Lemma 4.5, we obtain the main result of this paper.

Theorem 4.6. Let $T(n, k)$ be a bivariate $q$-hypergeometric term. Let $T_{1}, T_{2}$ be two similar bivariate $q$-hypergeometric terms satisfying

$$
T(n, k)=(K-1) T_{1}(n, k)+T_{2}(n, k)
$$

and $T_{2}(n, k)$ have a $q-N R(r, s, u, v)$ with respect to $K$ such that $v$ is $\boldsymbol{\varepsilon}_{y}$-free. Then $T(n, k)$ has a q Z-pair if and only if $T_{2}(n, k)$ is a q-proper hypergeometric term, or equivalently, if and only if $v(x, y)$ is a $q$-proper polynomial.

## 5. Algorithms

Let $T(n, k)$ be a bivariate $q$-hypergeometric term. By the algorithm " $q$-RNF", we may find a $q$-NR $(r, s, u, v)$ of $T(n, k)$ with respect to $K$. Let

$$
F(k)=\frac{u\left(x, q^{k}\right)}{v\left(x, q^{k}\right)} \prod_{j=0}^{k-1} \frac{r\left(x, q^{j}\right)}{s\left(x, q^{j}\right)}, \quad \forall k \in \mathbb{N} .
$$

Then $F(k)$ is a univariate $q$-hypergeometric term over the field $\mathbb{F}(x)$ with a $q$-MR ( $r / s, u / v, 0$ ). On the other hand, by Eq. (4.1), we have

$$
\begin{aligned}
\frac{\left.F(k)\right|_{x=q^{n+1}}}{\left.F(k)\right|_{x=q^{n}}}=\frac{u\left(q^{n+1}, q^{k}\right) v\left(q^{n}, q^{k}\right)}{u\left(q^{n}, q^{k}\right) v\left(q^{n+1}, q^{k}\right)} \prod_{j=0}^{k-1} \frac{r\left(q^{n+1}, q^{j}\right) s\left(q^{n}, q^{j}\right)}{r\left(q^{n}, q^{j}\right) s\left(q^{n+1}, q^{j}\right)} \\
=\frac{T(n+1, k)}{T(n, k)} \cdot \frac{T(n, 0)}{T(n+1,0)} \cdot \frac{u\left(q^{n+1}, q^{0}\right) v\left(q^{n}, q^{0}\right)}{u\left(q^{n}, q^{0}\right) v\left(q^{n+1}, q^{0}\right)},
\end{aligned}
$$

which is also a rational function of $q^{n}$ and $q^{k}$. Hence $\widetilde{F}(n, k)=\left.F(k)\right|_{x=q^{n}}$ is a bivariate $q$-hypergeometric term.

Using the algorithm " $q$-decomp" given in Section 2, one may find univariate $q$-hypergeometric terms $F_{1}(k), F_{2}(k)$ such that

$$
F(k)=(K-1) F_{1}(k)+F_{2}(k)
$$

and $F_{2}(k)$ has a $q$-MR $\left(f_{1} / f_{2}, v_{1} / v_{2}, 0\right)$ with $v_{2}$ being $\boldsymbol{\varepsilon}_{y}$-free. Since $f_{1} / f_{2}, v_{1} / v_{2} \in$ $\mathbb{F}(x)(y)$, we may assume that $f_{1}, f_{2}, v_{1}, v_{2} \in \mathbb{F}[x, y]$ and $f_{1} \perp f_{2}, v_{1} \perp v_{2}$. From the fact that $r / s$ is $\boldsymbol{\varepsilon}_{y}$-reduced, it follows that $f_{1} / f_{2}$ is also $\boldsymbol{\varepsilon}_{y}$-reduced.

Let

$$
\begin{aligned}
& T_{1}(n, k)=\left.T(n, 0) \frac{v\left(q^{n}, q^{0}\right)}{u\left(q^{n}, q^{0}\right)} \cdot F_{1}(k)\right|_{x=q^{n}}, \\
& T_{2}(n, k)=\left.T(n, 0) \frac{v\left(q^{n}, q^{0}\right)}{u\left(q^{n}, q^{0}\right)} \cdot F_{2}(k)\right|_{x=q^{n}} .
\end{aligned}
$$

Since Eq. (2.2) implies that

$$
F_{1}(k)=\frac{U_{1}}{u / v} \cdot F(k) \quad \text { and } \quad F_{2}(k)=\frac{v_{1} / v_{2}}{u / v} \cdot F(k)
$$

it follows that $T_{1}(n, k)$ and $T_{2}(n, k)$ are similar bivariate $q$-hypergeometric terms. It is easily verified that

$$
T(n, k)=(K-1) T_{1}(n, k)+T_{2}(n, k)
$$

and $\left(f_{1}, f_{2}, v_{1}, v_{2}\right)$ is a $q$-NR of $T_{2}$ with respect to $K$. Therefore, Theorem 4.6 implies that $T(n, k)$ has a $q Z$-pair if and only if $v_{2}$ is a $q$-proper polynomial.

Finally, we need the algorithm given by Abramov and Le (2002) for determining whether or not a polynomial is $q$-proper.

We are now ready to describe the algorithm to determine whether a bivariate $q$-hypergeometric term $T(n, k)$ has a $q Z$-pair.
1.Apply the algorithm in Böing and Koepf (1999) to find a rational function $R \in \mathbb{F}(x, y)$ such that

$$
\frac{T(n, k+1)}{T(n, k)}=R\left(q^{n}, q^{k}\right)
$$

2. Find a $q$-RNF ( $r, s, u, v$ ) with respect to $\varepsilon_{y}$ of $R$.
3. For $D=r / s, U=u / v$ and $n_{0}=0$, apply the algorithm ' $q$-decomp' with respect to $\boldsymbol{\varepsilon}_{y}$ to get $V=v_{1} / v_{2}$.
4. Use the algorithm in Abramov and Le (2002) to determine whether $v_{2}$ is $q$-proper. If the answer is yes, then $T$ has a $q Z$-pair; otherwise, $T$ does not have any $q Z$-pair.

Here are two examples.

## Example 1. Let

$$
T(n, k)=\frac{q^{k}\left(1+q^{n+1}+q^{k+2}\right)}{\left(q^{n}+q^{k}+1\right)\left(q^{n}+q^{k+1}+1\right) \prod_{j=1}^{k+1}\left(1-q^{j}\right)} .
$$

Then

$$
\frac{T(n, k+1)}{T(n, k)}=\frac{q\left(1+q^{n+1}+q^{k+3}\right)\left(q^{n}+q^{k}+1\right)}{\left(q^{n}+q^{k+2}+1\right)\left(1+q^{n+1}+q^{k+2}\right)\left(1-q^{k+2}\right)},
$$

and we have

$$
r=q, s=1-q^{2} y, u=1+q x+q^{2} y, v=(x+y+1)(x+q y+1)
$$

is a $q$-NR of $T$ with respect to $K$. For $D=r / s, U=u / v$ and $n_{0}=0$, applying the algorithm " $q$-decomp", we get

$$
V=v_{1} / v_{2}=\frac{-q^{2}}{\left(-1+q^{2}\right)(x+1)}
$$

Clearly, $v_{2}$ is $q$-proper, so $T(n, k)$ has a $q Z$-pair. Indeed, we can check that

$$
L=1, \quad G=\frac{1}{\left(q^{n}+q^{k}+1\right) \prod_{j=1}^{k}\left(1-q^{j}\right)}
$$

is a $q Z$-pair for $T(n, k)$.

## Example 2.

$$
T(n, k)=\frac{q^{k}\left(1+q^{n+1}+q^{k+2}\right)}{\left(q^{n}+q^{k}+1\right)\left(q^{n}+q^{k+1}+1\right) \prod_{j=1}^{k}\left(1-q^{j}\right)} .
$$

Then

$$
\frac{T(n, k+1)}{T(n, k)}=\frac{q\left(1+q^{n+1}+q^{k+3}\right)\left(q^{n}+q^{k}+1\right)}{\left(q^{n}+q^{k+2}+1\right)\left(1+q^{n+1}+q^{k+2}\right)\left(1-q^{k+1}\right)},
$$

and we have

$$
r=q, s=1-q y, u=1+q x+q^{2} y, v=(x+y+1)(x+q y+1)
$$

is a $q$-NR of $T$ with respect to $K$. For $D=r / s, U=u / v$ and $n_{0}=0$, applying the algorithm " $q$-decomp", we get

$$
V=v_{1} / v_{2}=\frac{-(x+y+1) q^{2}}{(q-1)(x+1)(x+q y+1)} .
$$

Since $x+q y+1$ is not a $q$-proper polynomial, it follows that $T(n, k)$ has no $q Z$-pair.

## Acknowledgments

The authors are grateful to the referees for many helpful comments and suggestions. We thank Professor Marko Petkovšek for bringing our attention to the work of Ore and Sato. This work was done under the auspices of the "973" Project on Mathematical Mechanization, the National Science Foundation, the Ministry of Education, and the Ministry of Science and Technology of China.

## References

Abramov, S.A., 2002. Applicability of Zeilberger's algorithm to hypergeometric terms. In: Proc. Int. Symp. on Symbolic and Algebraic Computation. ACM Press.
Abramov, S.A., 2003. When does Zeilberger's algorithm succeed? Adv. Appl. Math. 30, 424-441.
Abramov, S.A., Le, H.Q., 2002. A criterion for the applicability of Zeilberger's algorithm to rational functions. Discrete Math. 259, 1-17.
Abramov, S.A., Paule, P., Petkovšek, M., 1998. $q$-hypergeometric solutions of $q$-difference equations. Discrete Math. 180, 3-22.
Abramov, S.A., Petkovšek, M., 2002a. Rational normal forms and minimal decompositions of hypergeometric terms. J. Symbolic Comput. 33, 521-543.
Abramov, S.A., Petkovšek, M., 2002b. On the structure of multivariate hypergeometric terms. Adv. Appl. Math. 29, 386-411.
Böing, H., Koepf, W., 1999. Algorithms for $q$-hypergeometric summation in computer algebra. J. Symbolic Comput. 28, 777-799.

Cohn, R.M., 1965. Difference Algebra. Interscience Publishers, New York.
Gel'fand, I.M., Graev, M.I., Retakh, V.S., 1992. General hypergeometric systems of equations and series of hypergeometric type. Uspekhi Mat. Nauk 47, 3-82, 235 (in Russian); Math. Surveys, 47, 1-88 (translation in Russian).

Graham, R., Knuth, D., Patashnik, O., 1994. Concrete Mathematics, 2nd edition. Addison-Wesley, Reading, MA. Hou, Q.H., 2004. $k$-Free recurrences of double hypergeometric terms. Adv. Appl. Math. 32, 468-484.
Koornwinder, T.H., 1993. On Zeilberger's algorithm and its $q$-analogue. J. Comput. Appl. Math. 48, 91-111.
Ore, O., 1930. Sur la forme des fonctions hypergéométriques de plusieurs variables. J. Math. Pures Appl. 9, 311-326.
Paule, P., Riese, A., 1997. A Mathematica $q$-analogue of Zeilberger's algorithm based on an algebraically motivated approach to $q$-hypergeometric telescoping. In: Special Functions, $q$-Series and Related Topics. Toronto, ON, 1995.Fields Inst. Commun., vol. 14. Amer. Math. Soc., Providence, RI, pp. 179-210.
Petkovšek, M., Wilf, H.S., Zeilberger, D., 1996. A = B. A.K. Peters, Wellesley, MA.
Sato, M., Shintani, T., Muro, M., 1990. Theory of prehomogeneous vector spaces (algebraic part). Nagoya Math. J. 120, 1-34.

Wilf, H., Zeilberger, D., 1992. An algorithmic proof theory for hypergeometric (ordinary and " $q$ ") multisum/integral identities. Invent. Math. 108, 575-633.
Zeilberger, D., 1991. The method of creative telescoping. J. Symbolic Comput. 11, 195-204.


[^0]:    * Corresponding author.

    E-mail addresses: chen@ nankai.edu.cn (W.Y.C. Chen), hou@ nankai.edu.cn (Q.-H. Hou), myphb@eyou.com (Y.-P. Mu).

