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Abstract

The egplicability or terminating conition for the ordinary case foZeilberger's algorithm
was recently obtained by Abramov. For thg-analogue, the question of whether a bivariate
g-hypergeometric term hascgZ-pair remains open. Le has found a solution to this problem when
the given bvariateg-hypergeometric term is a rational function in certain powers.ofVe solve
the pioblem for the general case by giving a characterization of bivagdigpergeometric terms
for which theg-analogue of Zeilberger’s algorithm terminates. Moreover, we give an algorithm to
deternine whether a bivariatg-hypergeometric term hascgZ-pair.
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1. Introduction

Zeilberger’s algorithmGraham et a).1994 PetkovSek et 811996 Zeilberger 1997,
also known as the method offeative telescoping, is devised for proving hypergeometric
identities of the form
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whereF(n, k) is a hvariate hypergeometric term arfdn) is a given function (for most
cases a hypergeometric term plus a constant). The algorithm can be easily adapted to the
g-case, which is called thg-analogue of Zeilberger’s algorithrBding and Koepf1999
Koornwinder 1993 Paule ad Riese 1997 Wilf and Zeilbergey 1999. Let N andK be
the shift operators with respectmoandk respectively, defined by

NT(n,k)=T(n+1,k) and KT, k) =T(n,k+1).

Given a bivariate-hypergeometric ternf (n, k), theg-analogue of Zeilberger’s algorithm
aims to find agZ-pair (L, G), wherelL is a linear difference operator with coefficients in
the ring of polynomials ing"

L =ao(@N° +ai(@"N' + - +a ("N’
andG is a bivariateg-hypergeometric terrs(n, k) suchthat
LT(n, k) = (K —1)G(n, k).

Zeilberger’s algorithm has been widely used as a powerful tool to prove hypergeometric
identities. It was an open question when the algorithm terminates. This problem was
sdved recently byAbramov (2002 2003. For theg-analogue of Zeilberger’s algorithm,
Abramov and L&2002 found a solution to the termination problem for the case of rational
functions. In this paper we provide a solution for the gengradse.

We begin with an additive decomposition of univariagehypergeometric terms. Using
this decompositin, a univariat@-hypergeometric terri (n) can be represented as

T() = (N —DTi(n) + T2(n),

whereT(n) andTz(n) areq-hypergeometric terms, arf@d(n) has the following form:

Ul(qn) l—[ f1(g))
U {= f2(ql)’
whereus, up, f1, fz are polynomialsng is a nonnegative integer, and for any integer

u2(x) anduz(xq™ have no common factors except for a powerxofConsequently, a
bivariateg-hypergeometric terri (n, k) can be decomposed as

TN, k) = (K —1)Ti(n, k) + To(n, k) (1.2)
suchthat
k—1 _
Ton, k) =T, ko)V(@" q [ | F@"ah,
j=ko

whereV, F are rational functionsyp is a nonnegative integer, and the denominatgr
of V satisfies the conditions that for any integar v2(x, y) and v2(x, yg™) have no
common factors except for a poweryfThe polynomiab(x, y) with the almve pioperty
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is calledey-free. We should note that the above depwsition does not solve the minimal
additive decomposition problem and is not unique (A&beamov andPetkovsek(20023
for a precise definition). However, for the purpose of constructig@ gpair, it turns out
that one may choose any decomposition.

Then we consider the structure of bivariajehypergeometric terms. The structure
of ordinary hypergeometric terms has been studiedOng (1930, Sato et al.(1990,
Gel'fand et al(1992, Abramov andPetkovieK20020) andHou (2004. To a large extent,
the g-case is analogous to the ordinary case. For each bivariatgergeometric term,
we associate it with a normal representatigiNR) which consists of four polynomials
r,s,u,v. Based on the properties of the representation, we may give a definition of
g-proper hypergeometric terms and prove that under the conditiorwtisky-free, a
bivariateg-hypergeometric term hasgZ -pair if and only if it is ag-proper term. Applying
the decompositionl( 1), we deduce that for any bivariatieghypergeometric territ, it has
aqZ-pair if and only if T, is g-proper.

We onclude with some examples.

2. e-free decomposition

Throughout the paper, we |18, Z+ andN denote the set of integers, positive integers
and nonnegative integers, respectively. For integers (or polynonaigis)we denote by
gcd@a, b) the (monic) greatésommon divisor ofa andb. We al® write a L b to indicate
thata andb are relatively prime, i.e., gcd, b) = 1.

LetF be a field of characteristic zerq,< I anonzero element which is not a root of
unity, andx transcendental ovét. Denote bye the unique automorphism df (x) which
fixesIF and satisfiegex = gx. ThenF(x) together with they-shift operator ¢ is a difference
field (Cohn 1965. Letr ands be two polynomials. We say thets is e-reduced if r L e"'s
forallh € Z.

To be more secific, the rational functions involved in tleehypergeometric terms (see
Definition 2.4 arerational functions of|". However, for aational functionR € F(x) and
anonnegative integery, we have

N R@" = R@"") =eR(@") and R(@") =0Vn>ng< RXx) =0.

Therefore, there is a natural one-to-one correspondence between the set of rational
functions of q" together with the shift operatoN and the fieldF(x) together with
the g-shift operatore. In this paper, we adopt the notation Bfx) as in the work of
Abramov et al(1998.

The concept of rational normal forms introduced Myramov andPetkovsek20023
can be extended to tltpcase.

Definition 2.1. Let R € F(x) be a rational function. If polynomials s, u, v € F[x]
satisfy

() R="L- "’((UU/U”)), whereu L v andu, v have no factox,

(ii) r/sise-reduced,

then(r, s, u, v) is called ag-rational normal form@-RNF) of R.
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Recall that a monic polynoial that has no factox is called ag-monic polynomial by
Abramov et al.(1998. The following factorization theorem was given Abramov et al.
(1998.

Theorem 2.2. Let R € F(x) \ {0}. Then there exist z € F and monic polynomials
a, b, ¢ € F[x] such that

_ _ax) c(gx)
R(x) = Zb(x) c(x)
ged@a(x), b(q"x)) =1, forallneN, 2.1)

geda(x), c(x)) = gedb(x), c(gx)) =1 and c(0) # 0.
We call (az, b, ¢) aq-Gosper form (q-GF) of R.

Theorem 2.3. Every rational function R € F(x) hasa gq-RNF.

Proof. It is clear that(0, 1, 1, 1) is ag-RNF of 0. ForR # 0, by Theorem 2.2there
exids a q-GF (az, b, c) of R. Applying Theorem 2.2again tob(x)/a(x), we get a
g-GF (r, s,d). From the onstructio given in Abramov et al.(1998, we haver |b and
s|a. Herce s(x) Lr(xq") for anyn € N becausgaz, b, c) is ag-GF. Since(r, s, d)

is also ag-GF, we haver (x) Ls(xq") for anyn € N. Thuss/r is e-reduced and
(zs,r,c/gcdc, d),d/gedc, d)) isag-RNFof R. OO

The above proof provides an algorithm to generageRINF of R.
Algorithm g-RNF

if R=0then
return(0, 1, 1, 1);
else

compute §-GF’ of R, we get(a, b, ¢);
compute §-GF' of b/a, we get(r, s, d);
return(s, r, ¢/ gcd(c, d), d/ gcdc, d)).

We now ®me to theg-multiplicative representation of a genergthypergeometric
term. The is the startig point of thee-free decomposition algorithm.

Definition 2.4. SupposeT (n) is a function froniN to IF. If there exist a nonnegative integer
np and a nonzero rational functidR(x) € F(x) suchthatT(n + 1) = R(g™)T(n) for all
n > ng, then we call T (n) a (univariate)g-hypergeometric term.

Suppose(r, s, u, v) is a g-RNF of a rational functionR. Then the corresponding
g-hypergeometric terri (n) satisfies

n—1 )
T =Tmo) [ R@H =

i=no

T u@) fFra@) oo
u(@m)/v(@@m) wv(@" _; s@)’ -

This leads to the following definition.
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Definition 2.5. Let T (n) be ag-hypergeometric term anB, U be two rational functions
suchthatD(gq") has neither poles nor zeros dddg™) has no poles for alh > ng. Suppose
that

n-1
Tm=U@" [] @), ¥n=no

J=no
Then we call(D, U, ng) ag-multiplicative representatiorgtMR) of T.

Let A = N — 1 be thedifference operator with respect o The fdlowing lemma can
be easily verified.

Lemma2.6. Let T and T1 be two g-hypergeometric terms with g-MRs (D, U, ng) and
(D, Uy, no), respectively. Suppose that

To,=T—-ATy and Ux=U —D.eUj+Uj.
Then (D, Uz, ng) isaq-MRof To.

Foru,v € F[x], let R be the set of all nonnegative integdrsuch that there exists
an irreducible polynomiab(x) # x satisfying p(x) |u(x) and p(x) | v(th). Define
qdig(u, v) to be maxh € R} or —1 if R is empty. Note thaR is a finite set, and “qdis” is
well defined If qdig(v, v) = 0, we say that is e-free.

Given a g-hypergeometric termT with a g-MR (D,U,ng). Usudly the
denominatoru of U is not e-free. However, translating the decomposition algorithm
of Abramov andPetkoviek (20023 into the g-case, we have the following-free
decomposition algorithmd-decomp”, which decomposdsinto ATy 4+ T2 suchthat T,
has ag-MR (F, V, np) where thedenominator oV is e-free.

Algorithm g-decomp
Input: (D, U, ng) Oufput:U1, F,V € F(x)

d1 := numelD); do := denom{D);
Uy :=0;Us :=U; uz := denonfU);
N := qdis(uz, uy);
forh:= Ndownb 1do
v2 1= U2/ gcduz, dp);
s(x) := ged(v2(x), v2(q~"x));
(8, G2) := pump(s, Uz);
write U = a/02 + b/Swherea, b € F[x];
Ui = —b/§;
Up:=U1+U;;Uz:i=Ux— D -eUj +Ug;
Uz := denomUy);
f1 :=d1; f2 :=do; v1 := numeKUy); v2 := denonfUy);
w = gcd(dy, v2);
v2 1= v2/w; fo:=ewfy/w;
F = f1/f2 V= (L/w(@")) - v1/v2;
return(Uq, F, V).
The procedure “pump” is the same as in the ordinary case.
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Algorithm pump 5
Input: f, g € F[x] Output: f, § € F[x]

fi=1:9:=g/f;
repeat

d:=gedf,g; f:=fd;g:=g/d;
until degd = 0;

return (f, §).
The following theorem shows that the-free algorithm generates the desired
decomposition.

Theorem 2.7. Let T be a g-hypergeometric term with a g-MR (D, U, ng) and Uy, F, V
be given by the algorithm g-decomp. Then there exist g-hypergeometric terms T; and To
such that

QD T=AT1+To.
(2) T1 hasag-MR (D, U1, ng) and T2 hasa g-MR (F, V, ng).
(3) The denominator of V ise-free.

Furthermore, if D ise-reduced, sois F.

Proof. Letug be the denominator df . We first use induction to show that after iterating
the loop ofh in the algorithmi times, he denominatou, of U, satisfies:

(a) qd|$v27 UZ) S N - il
(b) u2(gq™ has no zeros for ati > ng,

wherev; = uz/ gcd(uz, dz), andd; is the denormator of D.

The case for = 0 is trivial. Assume that the assertion holdsifer 1. Letuz andu’, be
the denominator ofU, afteri — 1 andi iterations, respectively. Set=N — (i — 1) > 0
andw = gcd(uy, dp). From thealgorithmqg-decomp we have

v2=Up/wp and s=gcdva(x), v2(q "x)).

Suppose the prime decomposition ©fs p{*--- p/" andvz = pfl . pfrv’ wy =

p’l’l- -pf"w’ wherev' Ls, w’ Ls. Then he algorithm “pump” enables us to decompose
Upaspit ™t ... pf L (vw'). Thatis,s = pf**7 ... pf" ™" andd, = v'w'. Since

a d b
U=—+ 1. (t) )
u do S
it follows thatu’, divides the least common multiple ofi; anddeS. Herce we have that
u, dividesv'd; - €8. Letv” = v’ - £5. Assume that there exist an integer> h and an

irreducible polynomialp(x) # x suchthat p|v” and p|&e™v”. We may encounter four
cases:

e plv andp|e™.
Fromv | v2 and qdigvz. v2) < h, it foIIows thatm = h. Therdore,e "p|e v, and
"'p | va. Consequently, we hawe " p| s, whichcontradictsy’ L s.
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e plv andp|e™1s,
Sinces ands have the same prime factors, we haes™+1s, implying thatp | e™+1v,.
On the othehand, we have | vz, which contradicts qdi@», v2) < h.

e pleSandp|e™/
In this situation, we have ~1p|3&, whichimplies thate~1p| e Mv,, or equivalently,

1p|vo. On theother handg"1p|e™N—1y,. Sinceqdis(vo, v2) < h, we get

m+ h —1 < h, andhencem = 1. Now we havep | es and p | ev’, which contradicts
vV Ls.

e plesandp|e™1s,
Similarly, we havee~1p|sand hence 1p|e vy, i.e, " 1p| vo. Howeverwe have

~1p|e™thy,. Thus, we obtaim + h < h, which isalso a contradiction.

In summary, we may conclude that gdi$, v”) < h — 1. Becausel,, dividesv” - dp, there
existv | v” andw | dz suchthatu’, = vw. Letv, = u,/ gcdus, d2). Fromw | gecdus, dp),
it follows thatv), | v. So we @t qdigvy, v5) < h — 1= N —i. Thus, we have proved (a).
Sinceu,|uz - euz - d, (b) immediately follows from the induction hypothesis.

On the othehand, since& | uy, (b) implies thatU;(q™) has no poles for ath > ngp. Let

n—1 A n—1 A
T =U1@" [] D@)) and Txn) =Ux(@" [] Da@h. (2.2)

i=no i=no

Noting thatU, = U — DeU; + Uy, by Lemma 2.6 weobtainT = ATy + To.
Becausew | d2 anddy(q™) £ 0 for all n > ng, we can writeTx(n) as

w(gh)
w(@ith)

V@™ H Fah.

i=no

Ta(n) = ———Ua(@Mw(q") H D(a’)

w(q nO) i=no

Let v be the denominator of . Then (a) inplies qdigv, v) = 0; thatis, v is e-free.
Finally, notice thatfy = d; and f; = ew - (d2/w), wherew | d2. Therdore, F is
e-reduced provided thdd is e-reduced. This completes the proof.]

3. Bivariate g-hypergeometricterms
We bagin this ®ction with the definition of bivariatg-hypergeometric terms.

Definition 3.1. Suppose€T (n, k) is a function fromiN? to IF. If there exist ational functions
Ri1(X,y), Ra(X, y) € F(x, y) andng € N suchthat

T(N+1.k = Ru@". g9T(n. k) and T(n.k+1) = Re(@".q"T(n. k),
for all n, k > ng, then we call T (n, k) a bivaiateq-hypergeometric term.

Without loss of generality, from now on we may assume th@t= 0 and that
R1(g", gX), Ro(q", g¥) have neither zeros nor poles for allk > 0.

Denote byex andey the shit operators orF (x, y) defined byexx = gx, ex|r(y) = id
(the identity map) andeyy = qy, ey|lr(x) = id, respectively. The idea aj-RNFs can
be easily adopted to the bivariate case by takifg) as the ground field. LeR(x, y) be
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a ratonal function ofx andy; its g-rational normal form ¢-RNF with respect tcey) is
represented byr, s, u, v) as in the univariate case. By using the ground fi&ld), we may
find ag-RNF of R(x, y) with respect tey.

Let T (n, k) be a bivarate g-hypergeometric term. By definition, there exists a rational
function R suchthat

Ti+1,k)/Tn k) = Ra@", g%.

Suppose(r, s, u, v) is agq-RNF of R with respect toex. We call (r, s, u, v) a g-normal
represetation @-NR) of T (n, k) with respect to the shift operat?. Similarly, we can
define thag-NR of T (n, k) with respect to the shift operatét.

We next give a characterization of the polynomials involved in ghR of bivariate
g-hypergeometric terms.

Theorem 3.2. Let T(n,k) be a bivariate g-hypergeometric term that has a g-NR
(r, s, u, v) with respect to N. Thenr and s are products of polynomials having the form

a
oy - [T p@”xy®),
=1
where p is a Laurent polynomial of one variable, a € Z*,b,c,d, w € Z,alb, and
wi # wj (moda), Vi # j.
Smilarly, suppose (r, s, u, v) is a g-NR of T with respect to K. Then r and s are
products of polynomials having the form

a
oy - TT @ x°y?)
=1
under the same conditions.

Sketch of the proof. The proof of the ordinary caseH6u, 2004 Theorem 3.4) can
be carried over to the-case except that we need to coies the characterization of
polynomials f (x, y) suchthat f(q2x, qPy) = Cf(x,y) for cetain integersa, b and
CeF. O

Consequently, we have

Corollary 3.3. Let T(n,k) be a bivariate g-hypergeometric term that has a g-NR
(r, s, u, v) with respect to N (or K respectively). Then we have

uu a|n+Iqu+C| j
fi(@!)

u@". g% =1  j=o
v(@", k) v Antbkig _
[ IT ad@h

I=1 j=0

T(n,k)=C

s

whereC € F,uu,vv e N, &, by, ¢, &, bf, ¢/ € Zand f|, g arepolynomials.

Corollay 3.3 enables us to give the following definition gfproper hypergeometric
terms.
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Definition 3.4. A polynomial f € [F[x,y] is said to beg-proper if, for each of its
irreducible factorsp(x, y) € F[x, Y], there exista,b € Z, not both zeros, such that
p(X, ¥)| p(a@x, qPy). A bivariateq-hypergeometric terri is said to beg-proper ifv is a
g-proper polynomial, wheré, s, u, v) is aq-NR of T with respect taN or K.

Suppose thafl is a bivariateq-hypergeometric term that hascgNR (r, s, u, v) with
respect ta\ (or K). Theorem 3.3yuarantees thatands are bothg-proper polynomials.

As in the case of ordinary bivariate hypergeometric termisif, 2004 Theorem 4.2),
we have an analogous “fundamental theorem” fordhease.

Theorem 3.5. Let T(n, k) be a bivariate q-hypergeometric term. Then T is q-proper if
and only if there exist polynomials ajj (x) € F[x], not all zero, such that

Y aj@)Tm+ik+j)=0 Vnk=0.

O<i<lI, 0<j<J

Basal on an analogous argument for the ordinary case a$é@tkovsek et al(1996
Theorem 6.2.1), we get

Corollary 3.6. Any g-proper hypergeometric term has a qZ-pair.

4. The existence of qZ-pairs

In this section, we obtain a necessary and sufficient condition for the existence of
gZ-pairs for any bivariatg-hypergeometric term based on @sNR with respect toK.
FromTheorem 3.2we have

Corollary 4.1. Let T(n,k) be a bivariate g-hypergeometric term that has a g-NR
(r, s, u, v) with respect to K. Then there exist polynomials fj(x), gi(x) € F[x] and
aj, &, b, bl € Z such that
= (r@a)  s@.q)) :zfjfmq@“*m>

rana)  s@talh) ) LT gigdkhiny

We reed to consider the following ratio:

j=0

T(+i k) T(n+i,0)ﬁ{T(n+i,j+1) T j) }

Tk T00 (Gl TO+i) Toj+D)

which can be rewritten as

T(n+i,k) _ﬁkl[r(q“+'+1,qj) s@@™', q) }ilT(n+I +1,0)
0

T(n,k) r@t, ql) s+l qb) T(n+1,0)
u@™, g u@", g v(@"*, 9% v(@", g
X - - .
u@"t, g% u@", g4 v(@"+, gk v(g", 4%
FromCorollary 4.1 we get he following expression.

1=0 j=

(4.1)
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Lemma4.2. Let T(n, k) beabivariate q-hypergeometric termthat hasag-NR(r, s, u, v)
with respect to K. Then for eachi > 0, there exist g-proper polynomials w&')(x, y) and
wy (x, y) such that

T(n+i, k) 3 U(qn+i,qk) . U(qn,qk) . wg)(qn,qk)
T v@, 09 u@, g9 wd g, gl

vn,k>0. 4.2)

An ey-free polynomial that is nag-proper has a special factor.

Lemma4.3. Let f e F[x, y] beanon-g-proper and ey-free polynomial. Then there exists
an irreducible factor p of f such that

p(x.y) L p@'x.qly), V.)€ Z?\{(0,0)},
px. y) L f@'x, aly), V. ) e N x2)\{0 0}

Proof. Since f (x, y) is nong-prope, by definition it has an irreducible factops(x, y)
suchthat p1(x, y) L pa(a'x, aly). ¥ (i, j) € Z*\ {(0, 0)}.
We may fctor f (x, y) as

4.3)

f(x,y) = pIH(g®x, q®y) - - P2 (@® x, g y) f1(x, y),

where (a, b)) € Z2 are distinct pairsg; € Z*t, and p1(q'x, gly) L fi(x, y) for all
i,j € Z.Sincef (x,y) is ey-free, it fdlows thata; # aj as long as # j. Without loss
of generality, we may assume that; < a» < --- < a;. Thus, p(x, y) = p1(q2x, g°ty)
satisfies the conditiom(3). O

We are now eady to give a criterion for the existencegqi® -pairs.

Theorem 4.4. Let T(n,k) be a bivariate g-hypergeometric term that has a g-NR
(r, s, u, v) with respect to K such that v is ey-free. Then T (n, k) has a qZ-pair if and
only if v isa g-proper polynomial.

Proof. Because ofCorollary 3.6, it suffices to show that iff (n, k) has aqZ-pair, then
it is g-proper. To this end, we assume tfiamn, k) is a bivariateg-hypergeometric term.
Moreover, we assume that(n, k) is notqg-proper, but it has gZ-pair. We proceed to find
a mntradiction.
Clearly, for a diffeence operatok € F[q", N], we have

(N-L)T(n, k) = (K —=1)G(n, k) & LT(n, k) = (K — 1)G(n — 1, k).

Therefore, we may assume thiatn, k) has aqZ-pair (L, G) of the form
[

L=>) a@HN',

i=0

wherea; (q") are polynomials i andag # 0. SinceL T/T and(K — 1)G/G are both
rational functions ofj" andgX, we mayassume that
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f(@", g%

9a", g%

wheref, g € F[x, y] are two relatively prime polynomials.
By the definition ofgZ-pairs, we have

G(n, k) == T(n1 k)s

IZ’*‘( W TO+iK _ fE@ e Tok+ D f@.db

—~ T(nk — g@".gth) Tk 9@, gk’
Substituting 4.2) into (4.4), we obtain

3 a0 U Y) w0y) LA e y) uay)  Fx, ) U, y)

o v@X. Y wd(x,y)  9X.ay) S, Y) v(x.qy)  gX. y) v(X, )’

(4.4)

(4.5)
Letu; = u/gcdu, g), g1 = g/ gcdu, g). Multiplying
I A
g1(x. qY)g1(x. Yv(x. ay)sex. y) [ | v(alx. yyws x, y)
j=0
to both sias of @.5), we arrive at
91(X, qy)g1(X, y)v(X, qy)s(X, y)
! A , .
x Y aeou@x, ywi’ x, y) [Tv@x, ywdx, )
i=0 j£i
| A
= (. qy)r (x, y)us(x, qy)gix. y) [ ] @ x, yyws’x, y)
j=0
— F (. Y)uL(X, Y)G1(X. Gy)v(X, qy)s(x, y)ws’ (X, y)
! .
< [Tv@x ywdx. y). (4.6)
j=1

SinceT (n, k) is notg-proper, from_Lemma 4.3t follows that there exists an irreducible
factor p of v satisfying the condition4.3). Noting that p(x, y) divides each term of the
left-hand side of4.6) except for the first term, we obtain thatx, y) divides

| |
g1(x. qy)v(x. qy)sx, y) [ [ va'x. yywy’ (x. y)
=1

x (g1(x, Y)aoooux, Y)wi(x, y) + f (x, yui(x, yyws’ (x, y)).

From @.3) it follows that

|
p(x, y) Lotk ay) [ Je@'x, ).
=1
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Sinces andw
divides

g) areq-proper, they are also relatively prime po This imgdies thatp(x, y)

g10x, ay) (91(%, Y)aooux, Ywlx, y) + f, yui, ywx,y)).  (4.7)

Similarly, sincep(x, qy) divides both sides of(6) andu L v, we have

p(x, qy) | f(x,qy)ga(x, y). (4.8)
Casel. Suppose(x, qy) | f(x, qy). Sincep(x, y) divides @.7), it follows that

PO, ) 191X, GY)G1(X, Y)ao0Ou(x, yyws” (x, y).
Sincef L g,u_l v, ag and ng) areg-proper polynomials, we may deduce that
p(X, ¥) | g1(X, gy), i.e., p(x, q~ty) | gi(x, y). Letm(> 0) be the greatest integer
suchthat p(x,g~™y) | g1(X, ¥). By virtue of @.6), we have thatp(x,q~™My)
divides

f (X, Y)U1(X, Y)g1(X, gy)v(x, qy)s(x, yywe (X, y)

! .
< [Tv@x. ywx, y).
j=1

However,f 1 gandg; L us imply thatp(x, q~™y) | g1(X, qy), whichcontradicts
the dhoice ofm.

Case2. Supposep(x,qy) | gi(x,y). Let M > 0 be thegreatest integer such that
p(x, qMy) | g1(x, y). Similarly, from (4.6) it follows that p(x, gM*1y) divides

! .
F(x, ayr (6, yyusx, ayaax, y) [T v@lx, yyws’ o, y).
j=0

Hence ve getp(x, qM*1y) | g1(x, y), which isagain a contradiction. ]

To extendthe above result to general bivariatehypergeometric terms, we need
the concept of similag-hypergeometric terms. Two bivariatphypergeometric terms
Ty, T, are calledsimilar if there exists a rational functioR e TF(x,y) such that
T1i(n, k)/ T2(n, k) = R(@Q", ).

As in the ordinary case, the existenceq®-pairs is preserved under the addition of
similar bivariateq-hypergeometric terms.

Lemma 4.5. Suppose there exist qZ-pairs for two similar bivariate g-hypergeometric
terms T1(n, k) and Ta(n, K). Thenthereexistsa qZ-pair for T (n, k) = T1(n, k) + T2(n, k).

Notice thatT (n, k) = (K — 1)G(n, k) has agZ-pair (1, G). Conbining Theorem 4.4
andLemma 4.5we obtain the main result of this paper.

Theorem 4.6. Let T (n, k) be abivariate g-hypergeometricterm. Let T1, T, betwo similar
bivariate g-hypergeometric terms satisfying

TN, k) = (K —1)Ti(n, k) + To(n, k)
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and T2(n, k) havea d-NR (r, s, u, v) with respect to K such that v isey-free. Then T (n, k)
hasa gZ-pair if and only if T2(n, k) isa q-proper hypergeometric term, or equivalently, if
and only if v(x, y) isa g-proper polynomial.

5. Algorithms

Let T(n, k) be a biariateq-hypergeometric term. By the algorithrg-RNF”, we may
find ag-NR (r, s, u, v) of T (n, k) with respect taK. Let
u(x, g% ﬁr(x,qj)

= . —, VkeN.
v(x, a4 5 8(x,a’)

FK)

Then F(K) is a univariate g-hypergeometric term over the fiell(x) with a g-MR
(r/s,u/v, 0). On theother hand, by Eq4(1), we have

FMlegrt — u@™ g9u@”. ¢ 7 r@™t g))s@". ab)
FMOlk=gn — u@, g9v@™*, g% | tr@", ah)s@ ql)

_T+1k  T,0 u@g)u@", g%
Tk T(M+1,00 u@", q%u(@™t, g0’

which is also a rational function @f® andgX. Herce F(n, k) = F (K)[x=qgn is a bivariate
g-hypergeometric term.

Using the algorithm ‘g-decomp” given in Section 2 one may find univariate
g-hypergeometric termBz (k), F2(k) suchthat

F) = (K = DF1(k) + Fa(k)

and F2(k) has ag-MR (f1/f2, v1/v2, 0) with v2 beingey-free. Sincefy/fz, vi/v2 €
F(x)(y), we mayassume thaffy, fz, v1, v2 € F[x, y] and f1 L fa, v1 L vo. From he fact
thatr /s is ey-reduced, it dllows that 1/ f> is alsoey-reduced.

Let
Ti(n, k) = T(n, 0)% - F1(K)|x=qn,
Ta2(n, k) = T(n, 0)% - Fa(k) [x=gn-
Since H. (2.2 implies that
Fi(k) = uu—/t} "F(k) and Fa(k) = ”37:)2 Fk),

it follows that T1(n, k) and T2(n, k) are similar bivariateg-hypergeometric terms. It is
easily verified that

TN, k) = (K =DTi(n, k) + T2(n, k)
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and( f1, f2, v1, v2) is ag-NR of T, with respect tdK . Therdore, Theorem 4.6mplies that
T (n, k) has agZ-pair if and only ifv, is ag-proper polynomial.

Finally, we need the algorithm given b&bramov and Le(2002 for deternining
whether or not a polynomial ig-proper.

We are now eady to describe the algorithm toetgrmine whether a bivariate
g-hypergeometric terri (n, k) has aqZ-pair.

1.Apply the algorithm in BSing and Koepf (1999) to find a ratiomal
function R e F(X,Yy) such that

Tn,k+1) _ n -k
Tk R, g").

2.Find a Q-RNF (r,S,U,v) with respect to ey of R.

3.For D=r/s,U =u/v and ng =0, apply the algorithm ‘g-decomp’ with
respect to ey to get V =v1/v2.

4.Use the algorithm in Abramov and Le (2002) to determine whether
v2 is Q-proper. If the answer is yes, then T has a qZ-pair;
otherwise, T does not have any Z-pair.

Here are two examples.

Example 1. Let

T — qk(1+ qn+1 + qk+22 .
@ +ak+1)(@Q" + g+t 4 1) -ﬁi(l —-q))
=
Then
Tink+1) qA+ 9™t + g3 (" + g+ 1)
Tk @492+ )1+ qmt 4 gkt2) (1 — gkt2)’
and we have

r=qg,s=1-0%, u=14+0gx+0%, v=X+y+DXx+qy+1)
is ag-NR of T with respect toK. ForD = r/s,U = u/v andng = 0, applying the
algorithm ‘g-decomp”, we get
_q2
(-1+99)(x+1)°
Clearly, vz is g-proper, sor (n, k) has agZ-pair. Indeed, we can check that
1

V =v1/vp =

L=1 G= ”

@ +g<+1) _Hl(l— q))
J:

is aqZ-pair for T (n, k).
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Example 2.
k n+1 k+2
T(n.K) = °d+a7 +q )k .
@ +ak+ D@+ +1) [TA-a)
j=1

Then

T k+1 9+ 9" + g @" + g+ 1)

T(k) @+ k2 + 1)1+ gL + gkt2) (1 — gkt

and we have

r=q, s=1-qy, u=1+qx+q2y, v=XX+y+DHX+qy+1

is ag-NR of T with respect toK. ForD = r/s,U = u/v andng = 0, applying the
algorithm ‘g-decomp”, we get
—(X+y+1g?
@-Dx+DHx+ay+1)°
Sincex + qy + 1 isnot ag-proper polynomial, it follows that (n, k) has nagZ-pair.

V =v/ve =

Acknowledgments

The authors are grateful to the referees for many helpful comments and suggestions.
We thank Préessor Marko Petkovsek for bringing our attention to the work of Ore and
Sao. This work was done under the auspices of the “973” Project on Mathematical
Mechanization, the National Science Foundation, the Ministry of Education, and the
Ministry of Science and Technology of China.

References

Abramov, S.A., 2002. Applicability of Zeilberger's algorithm to hypergeometric terms. In: Proc. Int. Symp. on
Symbdic and Algebraic Computation. ACM Press.

Abramov, S.A., 2003. When does Zeilberger's algorithm succeed? Adv. Appl. Math. 30, 424-441.

Abramov, S.A., Le, H.Q., 2002. A criterion for the apgalbility of Zeilberger's algorithm to rational functions.
Discrete Math. 259, 1-17.

Abramov, S.A., Paule, P., Petkovsek, M., 198&ypergeometric solutions @f-difference equations. Discrete
Math. 180, 3-22.

Abramov, S.A., Petkovsek, M., 2002a. Rational nornzathfs and minimal decompositions of hypergeometric
terms. J. Symbolic Comput. 33, 521-543.

Abramov, S.A., PetkovSek, M., 2002b. On the structurendtivariate hypergeometric terms. Adv. Appl. Math.
29, 386-411.

Béing, H., Koepf, W. 1999. Algorithms forg-hypergeometric summation in computer algebra.
J. Symbolic Comput. 28, 777-799.

Cohn, R.M., 1965. Difference Algebra. Interscience Publishers, New York.

Gel'fand, .M., Graev, M.l., Retakhy.S., 1992. General hypergeometric systems of equations and series of
hypergeometric type. Uspekhi Mat. Nauk 47, 3-82, 28F{issian); Math. Surveys, 47, 1-88 (translation in
Russian).



16 W.Y.C. Chen et al. / Journal of Symbolic Computation I (R1IE) InE—1EE

Graham, R., Knuth, D., Patashnik, O., 1994. Concrete Fratitics, 2nd edition. Addison-Wesley, Reading, MA.
Hou, Q.H., 2004k-Free recurrences of double hypergetnoderms. Adv. Appl. Math. 32, 468-484.
Koornwinder, T.H., 1993. On Zeilberger’s algorithm andgtanalogue. J. Compufppl. Math. 48, 91-111.

Ore, 0., 1930. Sur la forme des fonctions hypergéométsiqiepusieurs variables. J. Math. Pures Appl. 9,
311-326.

Paule, P., Riese, A., 1997. A Mathematicganalogue of Zeilberger's algorithm based on an algebraically
motivated approach ta@-hypergeometric telescoping. In: Special FunctiopsSeries and Rated Topics.
Toronto, ON, 1995.Fields Inst. Commun., vol. mer. Math. Soc., Providence, RI, pp. 179-210.

Petkovsek, M., Wilf, H.S., Zeilberger, D., 1996./AB. A.K. Peters, Whesley, MA.

Sao, M., Shintani, T., Muro, M., 1990. Theory of prehomageus vector spaces (algebraic part). Nagoya Math.
J.120, 1-34.

Wilf, H., Zeilberger, D., 1992. An algorithmic proof theory for hypergeometric (ordinary agt) “
multisum/integral identities. Invent. Math. 108, 575-633.

Zeilberger, D., 1991. The method of creatiedescoping. J. Symbolic Comput. 11, 195-204.



	Applicability of the  q-analogue of Zeilberger's algorithm
	Introduction
	varepsilon-free decomposition
	Bivariate q-hypergeometric terms
	The existence of qZ-pairs
	Algorithms
	Acknowledgments
	References


