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Abstract

We enumerate nonisomorphic lattice-square designs yielded by a conventional construction. Constructed designs are
speci3ed by words composed from 3nite-3eld elements. These words are permuted by the isomorphism group in ques-
tion. The latter group contains a direct-product subgroup, acting, respectively, upon the positions and identities of the
3nite-3eld elements. We review enumeration theory for such direct-product groups. This subgroup is a direct product of
a hyperoctahedral and a dihedral group, with the orbits of the hyperoctahedral group, acting on the positions of the 3eld
elements, interpretable as perfect matchings. Thus, the enumeration of dihedral equivalence classes of perfect matchings
provides an upper bound on the number of nonisomorphic, constructed designs. The full isomorphism group also contains
non-direct-product elements, and the isomorphism classes are enumerated using Burnside’s Lemma: counting the number
of orbits of a normal subgroup 3xed by the quotient group. This approach is applied to constructed lattice-square designs
of odd, prime-power order 613.
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1. Introduction

From graph theory, a perfect matching is a partition of an even-size set into sets of size two, or pairs. Such perfect
matchings are also denoted complete matchings or spreads. In the sequel, mention of matchings implies perfect matchings.
Also, herein, [j] denotes {1; 2; : : : ; j}; j ∈N.
A lattice-square design of (odd) order q is a collection of (q + 1)=2 square matrices of order q. The entries of each

matrix constitute a set �; of size q2. The de3ning characteristic of the design is that all unordered pairs of the elements
of � occur precisely once in the individual rows and columns of its matrices [4,6].
The matrices of lattice-square designs could be used to specify the arrangement of DNA clones in square arrays [8].

Then, the rows and columns of these matrices would constitute practical “groupings” for group testing [7, Section V.6]
because such groupings would be easy to implement in the laboratory using available plastic-ware.
In any case, there exists a lattice-square design of order q if and only if there exists a resolvable (q2; q; 1)-BIBD [15,

p. 171]. In fact, a lattice-square design is equivalent to the combination of an aFne plane of the same order with a
matching of the set {1; 2; : : : ; q + 1}—whose pairs index paired parallel classes, with the latter’s lines occurring on the
rows and columns of a respective matrix, pre3guring the prominence of matchings herein.
Because aFne planes are derivable from projective planes and because there is a well known construction for a

Desarguesian plane (cf. [17, p. 81]), lattice-square designs of odd, prime-power order q are constructible using linear
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algebra over 3nite 3elds (viz Section 3). In fact, such a construction is seen to yield many designs, but what has
previously been passed over is the number of nonisomorphic designs obtained.
The detailed de3nition of design isomorphism is postponed to Section 3; it will be seen that all of the constructed

designs would be indistinguishable from the perspective of pooling designs because they all contain the same lines.
Nevertheless, the isomorphism classes are distinguishable in other applications: for instance, when the elements of �
designate agricultural treatments and with the design matrices specifying replications, their statistical sequelae depend
upon the arrangement of the lines [6, Section 12.2].
Constructed designs are parameterized by a set of words whose letters are 3nite-3eld elements—or marks [3]. Trans-

formations of designs into isomorphic, constructed designs yield a corresponding permutation representation of the iso-
morphism group, whose orbits, on words, represent the nonisomorphic, constructed designs. We describe these particulars
in full detail in Section 3. This group is suFciently complex to discourage closed-form enumeration of its orbits. Instead,
for designs of orders 3–13, the computer program GAP was used to construct the orbits [9]. Extending POolya enumeration
theory to semidirect-product groups could greatly facilitate such enumerations.
Simpler problems, subsumed by our enumerations, are treated in modest generality in Section 2. Because, for example,

a subgroup of the isomorphism group comprises the actions of the dihedral group on matchings of marks, we directly
enumerate the respective number of orbits of matchings, aPording an upper bound on the number of nonisomorphic
constructed designs. We also enumerate the orbits of matchings under cyclic groups and, also, the orbits of ordered
partitions, with block size two, under the dihedral group—orbits occurring in our subsequent enumeration of nonisomorphic
designs.

2. Enumeration of sequences under direct-product actions

Let there be given a set of letters, each representing a color. Then, colorings of combinatorial objects are speci3ed by
words composed from these letters [13,14], with the letter at each position specifying the coloring of a respective “point”
of the object.
To determine the number of distinctly colored objects one must, in general, consider at least two types of group actions.

First, there is the “symmetry group” G of the object, taken to act on the points, and hence, on the positions of the letters.
Second, there is a group H of letter-identity permutations, specifying equivalent alphabets (or palettes). The isomorphism
group is the direct product of these two groups, say, G ⊗ H, acting on a Cartesian product: the set of letter positions ×
the set of letter identities, thus, having natural actions on words. Note that direct-product groups have been considered in
the context of combinatorial enumeration [2,14]; we focus on a special case.
For the sequel, we need only address sets of words containing all arrangements of the letters of a given alphabet: S(m)

denotes the set of all m-sequences having distinct letters from [m]; with m∈N. To apply the Burnside Lemma, we require
F(
�): the number of elements of S(m) 3xed by 
�, with 
�∈G ⊗ H. Recall that the cycle structure of a permutation
equals 1k12k2 · · ·mkm : indicating that there are ki cycles of length i in the decomposition of this permutation into cycles.

Theorem 1. If the cycle structure of 
 is not the same as �, F(
�) equals zero. Otherwise,

F(
�) =
∏
i

ki!i
ki :

Here, the product is over the lengths, i, of the cycles in, say, 
, of multiplicity ki.

Proof. For an m-sequence of distinct letters to be 3xed by 
�, the actions of 
 and of � must be equal and opposite. This
is evidently possible only if their cycle structures are identical: i.e. for every i, equality holds for the ki’s. If so, then,
for all i, each of the ki! pairings of i-cycles, with one cycle from 
 and the other from �, speci3es

∏
i i

ki m-sequences
which are 3xed by 
�—which may be seen as follows. Each cycle of the positions, (j1 j2 · · · ji), paired with a cycle
of the letter identities, denoted (‘j1 ‘j2 · · · ‘ji ), evidently 3xes the subsequence ‘ji ‘ji−1 : : : ‘j1 : letter ‘ji occurs at position
j1; letter ‘ji−1 occurs at position j2; and so on, and this pair of cycles also plainly 3xes any cyclic permutation of this
subsequence.

2.1. Applications to matchings and ordered partitions

The hyperoctahedral group B2n, acting on arrangements of [2n] via letters’ indices, readily yields equivalence classes
of S(2n) corresponding to matchings. For example, B2 may be taken to be 〈(1 2)〉, and, for 26 n, a suitable permutation
representation of the hyperoctahedral group B2n is generated by permutations (1 2), (1 3)(2 4) and (1 3 · · · 2n − 1)
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(2 4 · · · 2n). Thus, if an element of S(2n) yields a matching via assignment of the digits at positions 1 and 2 to the
3rst block, the digits at positions 3 and 4 to the second block, and so on, then this representation of B2n has orbits
containing all the elements of S(2n) corresponding to a each matching. Therefore, the orbits of B2n ⊗ D2n are 1–1 with
the equivalence classes of matchings under dihedral actions on the identities of the elements of the matched set.
The Burnside Lemma [12, Theorem 10.5] may be used to enumerate D2n; the number of dihedral equivalence classes

of matchings of [2n]; n∈N. Here we apply Theorem 1, substituting the relevant cycle-index polynomials.
In detail, consider the permutation representation of D2n generated by (1 2 : : : 2n) and (1)(2 2n)(3 2n − 1) · · ·

(n n+ 2)(n+ 1): The corresponding cycle-index polynomial ZD2n is well known [5,14, p. 169]:

ZD2n(x1; x2; : : : ; x2n) =
1
4n

∑
k|2n

�(k)x2n=kk +
1
4
(xn2 + x21x

n−1
2 ); (1)

where �(k) denotes the Euler totient function. The construction of B2n—as the wreath product Sn[S2] [14, p. 178]—
yields its cycle-index polynomial:

ZB2n(x1; x2; : : : ; x2n) =
∑
(i)

(x21 + x2)i1 (x22 + x4)i2 · · · (x2j + x2j)ij

i1!2i1 i2!4i2 · · · ij!(2j)ij
:

Here, (i) indicates that the range of summation is restricted to distinct sequences of non-negative, integral indices i‘;
16 ‘6 n, satisfying

∑n
‘=1 ‘i‘ = n: i.e. the unordered, integer partitions of n. Also, for a given sequence of indices, j

denotes the index of the largest nonzero i‘.
Then, the Burnside Lemma yields D2n, in terms of a sum of F(��) over ��∈B2n ⊗ D2n:

D2n =
1
4n


g(2n)n! +

∑
‘|2n

b(‘; 2n)d(‘; 2n) (2n=‘)!‘2n=‘


 (2)

with

g(2n) =
∑

06i; j:i+2j=n

i
i!j!

;

b(‘; 2n) =




∑
06i; j:i+2j=2n=‘

1
‘ii!(2‘)j j!

; ‘ ≡ 0 (mod 2);

1
(2‘)n=‘ (n=‘)!

; ‘ ≡ 1 (mod 2); and

d(‘; 2n) = �(‘) + n�‘2;

n∈Z, where the Kronecker delta �‘2 equals unity if ‘=2 and equals zero otherwise. The function g(2n) is derived from
the right-hand monomial of ZD2n , identifying the coeFcients of the corresponding monomial in ZB2n and using Theorem 1.
The function d(‘; 2n) similarly incorporates the remaining terms of ZD2n , and the function b(‘; 2n) arises from the sum
of the coeFcients for the corresponding terms of ZB2n . Numerical values of D2n follow:

2n D2n C2n

2 1 1
4 2 2
6 5 5
8 17 18
10 79 105
12 554 902
14 5283 9749
16 65,346 127,072
18 966,156 1,915,951
20 16,411,700 32,743,182

This table also includes analogously derived values of C2n: the number of equivalence classes of matchings of [2n]—with
the cyclic group Z2n ⊂ D2n permuting the letter identities.
The application of Theorem 1 to ordered partitions of a 2n-set into blocks of size two is simpler because the cycle-index

polynomial of Zn
2 (which replaces ZB2n) equals ((x21 + x2)=2)n. Applying the Burnside Lemma to Zn

2 ⊗ D2n yields
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“3xing monomials” of the forms x21x
n−1
2 , xn2 and x2n1 . Substituting the coeFcients derived from the product of cycle-index

polynomials yields the number of orbits of these ordered partitions under the action of the dihedral group:

P2n =
n!
4

(
2 +

1
n

)
+
(2n)!
2n+2n

; n∈Z: (3)

3. Nonisomorphic, constructed lattice-square designs

We denote the marks of GF(q) by uk , 06 k6 q−1, with u0 and u1 denoting the additive and multiplicative identities,
respectively [3]. Furthermore, with � denoting a primitive root of GF(q), we take u‘ = �‘−1; 16 ‘6 q − 1.
The entries of lattice-square-design matrices are taken to be the ordered pairs, ui uj , of marks; 06 i; j ¡q. Thus,

our � = {uiuj:06 i; j ¡q}. The following inclusive de3nition is fundamental to our isomorphism classes of constructed
designs (viz Sections 3.1 and 3.4).

De!nition 1. Two lattice-square-design matrices are equivalent whenever the following construct is identical for both: a
2-set of sets, the former containing, as its elements, the set of unordered pairs of elements occurring in its rows and the
set of unordered pairs occurring in its columns.

A lattice-square design may, without loss of generality, include the trivial matrix Tq
def= [ui uj]; 06 i; j ¡q. For instance,

Tq could evidently be derived from any matrix in the design by a permutation of the identities of the points of �. Therefore,
we assume that Tq (or an equivalent matrix) occurs in the design, anchoring our studies of isomorphism. We construct
the remaining (q − 1)=2 nontrivial matrices, denoted M (indexed 1 through (q − 1)=2) as follows. Each of our nontrivial
matrices is parameterized by four marks, say, ua; ub; uc and ud: all unequal to u0. In detail, let

M(a;b;c;d) def= [uaui + ubuj ucui + uduj]; 06 i; j ¡q: (4)

It is straightforward to establish the following result.

Theorem 2. Two nontrivial matricesM(a;b;c;d) andM(a′ ; b′;c′ ; d′) may both occur in a lattice-square design—also containing
a matrix equivalent to Tq—whenever the four ratios ua=uc; ub=ud; ua′ =uc′ and ub′ =ud′ are distinct.

Proof is omitted. As a consequence of Theorem 2, of the 2(q − 1)-sequences of (nonzero) marks,

!= ua1ub1uc1ud1ua2ub2uc2ud2 · · · ua(q−1)=2ub(q−1)=2uc(q−1)=2ud(q−1)=2 ; (5)

(q − 1)(q−1)(q − 1)! specify lattice-square designs, and the set of the latter !’s is denoted "q. (In the sequel, we also
consider the elements of "q to be (q−1)=2-sequences of 4-sequence “blocks”: the latter being the consecutively occurring
mark parameters for the individual nontrivial matrices.)
What remains to be seen is: How many nonisomorphic designs are engendered by "q?
Note that all the designs of Theorem 2 contain the same “lines”: the matrices’ rows and columns, each considered as

a q-set of the respective elements of �. This follows from pairs of points on the lines of design matrices diPering by
ua‘ �

#uc‘ �
# or ub‘ �

#ud‘ �
#; ‘∈ [(q − 1)=2]; 06 #¡q − 1; thus, only the ratios ua‘ =uc‘ and ub‘ =ud‘ distinguish these lines.

As the arrangement of these lines is plainly immaterial to the aforementioned pooling experiments, all of the designs of
Theorem 2 are interchangeable for our application.

3.1. Constructed lattice-square design isomorphism

De!nition 2. Two lattice-square designs are isomorphic whenever a permutation of the elements of �; in one design, yields
a set of matrices which may be put in 1–1 correspondence with equivalent matrices in the other design (cf. De3nition 1).

All design isomorphisms permute the elements of "q and constitute a group [11, p. 28]. Such permutation groups are
denoted Wq, with q a power of an odd prime. By de3nition, the Wq-orbits on "q represent the nonisomorphic designs.
Some elements of Wq are easily accommodated by the theory of Section 2. Others, notably those which map a speci3ed

nontrivial matrix onto Tq, are not inducible by letter-identity and letter-position permutations because their action is ! de-
pendent. As will be seen, however, the foregoing enumerations lead to simpli3cations in the enumeration of nonisomorphic
designs.
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3.2. Wq: the group of constructed-design isomorphisms

We begin by specifying the “elemental” elements of Wq. These elemental elements yield, by their combination, all its
elements. Throughout, the action of a product of elements is taken to be from right to left: the rightmost acts 3rst, etc.
A 3rst class of elemental elements of Wq independently modi3es individual nontrivial matrices, hence individual

4-sequence blocks in (5). These elements correspond to implementable equivalence transformations of individual ma-
trices: cyclic row and column permutations and transposition about the main diagonal. These elements are of two types,
depending on whether or not they involve transposition:

$‘(u%‘ ; u&‘) :"q → "q : ua‘ ub‘ uc‘ ud‘ �→ u%‘ua‘ u&‘ub‘ u%‘uc‘ u&‘ud‘

and


‘$‘(u%‘ ; u&‘) :"q → "q : ua‘ ub‘ uc‘ ud‘ �→ u%‘ub‘ u&‘ua‘ u%‘ud‘ u&‘uc‘ :

Here, ‘∈ [(q − 1)=2]; u%‘ and u&‘ are any nonzero marks; and both mappings 3x the remaining blocks: uak ubk uck udk ;
16 k �= ‘6 (q − 1)=2. (They plainly also 3x {ua‘ =uc‘ ; ub‘ =ud‘}).
A second class of elemental elements of Wq maps Tq onto an equivalent matrix by implementable collineations:

mappings of its rows and columns to its rows and columns. These maps are also of two types, depending on whether or
not they involve transposition of Tq:

'(u%) :"q → "q : uak ubk uck udk �→ u%uak u%ubk uck udk ; ∀k ∈ [(q − 1)=2]

and

('(u%) :"q → "q : uak ubk uck udk �→ u%uck u%udk uak ubk ; ∀k ∈ [(q − 1)=2]:

Here, u% is any nonzero mark, and all blocks of ! are similarly modi3ed. Thus, ( interchanges the uak ’s with the respective
uck ’s and the ubk ’s with the respective udk ’s. (The reason for not also including elements multiplying the uck ’s and udk ’s
by a nonzero mark is because ', ( and elements of the 3rst class engender such mappings.)
The third, and 3nal, class of elemental elements of Wq arises as follows. For designs to maintain the parameterized

form (5), acceptable, additional permutations of the elements of � must yield a matrix equivalent to Tq from a nontrivial
matrix. We may use such a permutation to map the kth nontrivial matrix onto Tq, with 16 k6 (q − 1)=2. The mapping
taking the kth matrix to Tq is denoted )k :

)k :� → � : uak ui + ubk uj uck ui + udk uj �→ uiuj; 06 i; j ¡q; k ∈ [(q − 1)=2]

or, equivalently,

)k :� → � : u# u
 �→ udk u# − ubk u


*k

uak u
 − uck u#

*k
; k ∈ [(q − 1)=2]: (6)

Here *k denotes uak udk − ubk uck (�= u0 for admissible sequences, from Theorem 2). In particular, )k induces

[ui uj] = Tq �→
[
udk ui − ubk uj

*k

uak uj − uck ui

*k

]
(06 i; j ¡q): (7)

It is reasonable to replace the kth block with the foregoing. The induced action of )k on elements of "q will be denoted
+k ; k ∈ [(q − 1)=2]. It follows that

De!nition 3.

+k :"q → "q : uak ubk uck udk �→ udk =*k − ubk =*k − uck =*k uak =*k ; k ∈ [(q − 1)=2]

and for all ‘ : 16 ‘ �= k6 (q − 1)=2; ua‘ ub‘ uc‘ ud‘ �→
(udk ua‘ − ubk uc‘)=*k (udk ub‘ − ubk ud‘)=*k (uak uc‘ − uck ua‘)=*k (uak ud‘ − uck ub‘)=*k :

The action of +k on a given mark will, therefore, vary depending upon on ! and its kth 4-sequence block. Thus, the +’s
are insubordinate to the theory of Section 2.
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3.3. Characteristics of Wq

The foregoing elements yield two key subgroups of Wq: generating Wq as an extension group thereof. These subgroups
are characterized as follows.
The subgroup M q is generated by +k ; 16 k6 (q − 1)=2. M q will be seen to have order ((q+ 1)=2)! and to contain

the elements , and ,+k ; 16 k6 (q − 1)=2, with ,∈S(q−1)=2—the symmetric group of order (q − 1)=2—permuting the
4-sequence blocks.
To establish these results, we employ the following consequences of De3nition 3:

+2k = –; 16 k6 (q − 1)=2

and

+k+‘ = (k‘)+k ; 16 k; ‘6 (q − 1)=2; k �= ‘:

Here, – denotes the group identity; as always, group operations on the right are applied 3rst; and (k‘)∈S(q−1)=2 de-
notes transposition of the 4-sequence block k with the 4-sequence block ‘. It is easily established that +k, = ,+,−1(k);
16 k6 (q − 1)=2, and, furthermore, M q ∼= S(q+1)=2.
The remaining elements of Wq generate Nq, a subgroup of order 2(q+1)=2(q− 1)q, with the following speci3cations. It is

generated by two groups: (i) a dihedral group D q−1, of order 2(q−1) and (ii) the direct product of (q−1)=2 copies of a
Z-metacyclic group Cq−1, each of order 2(q− 1)2. The individual groups of (ii) correspond to the admissible equivalence
transformations of individual matrices: $k(u%k ; u&k ) and 
k$k(u%k ; u&k ), with 16 k6 (q − 1)=2. The D q−1 incorporates the
actions of the second class of elemental elements: '(u%) and ('(u%).
Although Nq is not Abelian, the elements of D q−1 commute with those of C

(q−1)=2
q−1 . (Thus Nq is an extension of

C
(q−1)=2
q−1 by D q−1.) Collecting the foregoing notation, the elements of Nq are denoted

(j'(u%)
(q−1)=2∏

‘=1


i‘‘ $‘(u%‘ ; u&‘)

with i‘ and j ∈ {0; 1}, 16 ‘6 (q−1)=2, and with all of the %’s and &’s arbitrary elements of {1; 2; : : : ; q−1}. For future
reference, note that

'(u%)(
(q−1)=2∏

‘=1


i‘‘ $‘(u%‘ ; u&‘) = ('(u−1
% )

(q−1)=2∏
‘=1


i‘‘ $‘(u%‘u%; u&‘u%); (8)

where 
0 = –.

Theorem 3. Wq is a normal extension of Nq by M q.

Proof. Wq is generated by M q and Nq. The commutation of ,∈S(q−1)=2 with elements of Nq is as follows:

,(j'(u%)
(q−1)=2∏

‘=1



i,−1(‘)
‘ $‘(u%,−1(‘)

; u&,−1(‘)
) = (j'(u%)

(q−1)=2∏
‘=1


i‘‘ $‘(u%‘ ; u&‘),: (9)

Commutation of the +’s with elements of Nq is as follows:

+k(
j'(u%)

(q−1)=2∏
‘=1


i‘‘ $‘(u%‘ ; u&‘)

='(u&k =u%k )(
ik 
jk$k(u

−1
&k uj−1

% ; u−1
&k u−j

% )


(q−1)=2′∏

‘=1


i‘‘ $‘(u%‘ =u&k ; u&‘ =u&k )


 +k ; (10)

where 16 k6 (q− 1)=2; where the prime on the product symbol indicates that the term with ‘= k is omitted; where, as
above, ik , i‘ and j ∈ {0; 1}; and where (0 = –. Transposition of ' and (, on the right-hand side (ik =1), may be ePected
by (8).
As all elements of M q may be written either as , or as ,+k ; 16 k6 (q − 1)=2, it follows from (9) and (10) that

Nq /Wq. Because M q ∩ Nq = –, Wq is an internal semidirect product of M q and Nq [16, p. 27].

Corollary 1. The order of Wq is 2
q+1
2 (q − 1)q

( q+1
2

)
!.
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3.4. Collineation groups

Because all the designs of Theorem 2 contain the same lines, all isomorphisms are collineations. Furthermore, Wq,
through its actions upon !∈"q, is primitive on blocks consisting either of rows or of columns from individual matrices,
engendering new matrices by re-matching these blocks. These collineations are, in general, distinct from those in the
respective group of isomorphisms of aFne planes, A(L3(q) [1, p. 98] [3, Chapter XII], as may be further appreciated by
means of the following example.
Consider q=3: |W3|=64 and |A(L3(3)|=432, so the latter contains collineations not induced by the former. A(L3(3)

acts primitively on blocks consisting of the four parallel classes containing three lines each. Its actions may be contrasted
with those of the elements of W3, acting on the design’s lines: the rows and columns of T3 and of the nontrivial matrix.
Note that the elements of N3 interchange rows and columns within matrices, and there are 144 elements of A(L3(3)
which ePect such permutations, with some of the latter common to both groups. The cycle-index polynomial for N3’s
action on twelve lines (rows and columns) equals

1
32

(x61 + x41x2 + x32 + x2x4)(x
6
1 + 2x41x2 + 2x21x

2
2 + 2x32 + 2x2x4):

The left parenthesis indicates actions on the rows and columns of T3, and the right parenthesis indicates actions on the rows
and columns of the nontrivial matrix. Focusing on terms corresponding to the stabilizing of T3, only the identity occurs
in A(L3(3)—because the latter’s non-identity elements 3x at most four lines. Thus, collineations induced by elements of
W3 may be absent from A(L3(3).

3.5. Enumerating the orbits of Wq

There are numerous approaches for 3nding the Wq-orbits on the sequences of (5). An elementary method would model
the problem by a simple graph—whose vertices correspond to the sequences and whose edges represent equivalences. The
connected components would then represent the desired equivalence classes. One could superimpose Wq’s equivalencings
upon matchings and, presumably, resolve the situation for larger q than is achieved herein. At the other end of the
spectrum, as illustrated through the model enumerations of Section 2.1, the Burnside Lemma could be directly applied
to Wq, acting on "q [10], provided one knew the respective cycle-index polynomials. Herein, an intermediate course is
pursued: we use numerical group-theory methods for orbit construction.
Provisionally removing the +’s from Wq, its remaining elements are easily seen to generate a group of order

2(q+1)=2(q − 1)q((q − 1)=2)!. This group has a natural matrix representation. Multiplicative factors u%‘ and u&‘ , from
$‘(u%‘ ; u&‘); 16 ‘6 (q − 1)=2, yield that potentially distinct, constructed designs could be parameterized by a
(q − 1)-sequence of distinct, nonzero marks:

1= u#1u�1u#2u�2 · · · u#(q−1)=2u�(q−1)=2 : (11)

We denote the set of all admissible 1’s by Nq. Here, each u# results from a ratio ua=uc and each u� results from a ratio
ub=ud. Then the actions of the 
’s, along with those of S(q−1)=2, would constitute the actions, on letter positions, of Bq−1.
Thus, potentially nonisomorphic, constructed designs would be parameterized by the perfect matchings of the elements of
GF(q)− u0:{

{u#1 ; u�1}; {u#2 ; u�2}; : : : ; {u#(q−1)=2 ; u�(q−1)=2}
}
: (12)

'(u%) multiplies all marks in each 1 by u% �= u0. ( inverts all the marks in each 1. Recalling that u‘ equals �‘−1,
16 ‘6 q − 1, with � a primitive root, the latter two classes of permutations of marks’ identities constitute an action of
D q−1 on matchings (cf. the generators given in Section 2.1). Therefore, the nonisomorphic designs would correspond to
orbits of the group Bq−1 ⊗D q−1, with the appropriate actions on the set of arrangements of the nonzero marks of GF(q).
Thus, the results of Section 2 have the following implication.

Corollary 2. Dq−1 constitutes an upper bound on the number of nonisomorphic lattice-square designs of order q.

Reinstating the +’s, we employ the normality of Nq to facilitate the application of the Burnside Lemma to Wq.

Lemma 1 (Burnside). Given a permutation group G, acting on a set U , and N/G, the number of G-orbits of U equals
1

[G:N]

∑
4

 N(4)
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with the summation over left coset representatives 4 for cosets of N, and with  N(4) denoting the number of N-orbits
of U @xed by 4.

For Wq, the Nq-orbits on sequences of (5) may 3rst be found. These may clearly be taken to be orbits of 1’s. The
application of Lemma 1 is straightforward, after specifying the actions of coset representatives upon Nq-orbits. These coset
representatives may be taken to be (the subsequently de3ned) ,̃ and ,̃+̃k , 16 k6 (q − 1)=2. These representatives may,
for simplicity, taken to act upon 1’s, from which the desired action upon Nq-orbits may be inferred, orbits enumerated
by Pq−1 (cf. (3)). It is easily seen that if one member of an orbit is transformed to another member of this orbit by an
element of G=N, then all members of the orbit are so transformed by this element.
From the permutability of design matrices, ,̃∈S(q−1)=2 acts by permuting “blocks” of length two in (11) corresponding

to individual matrices: e.g. interchanging u#‘ with u#,̃(l) and u�‘ with u�,̃(l) ; with 16 ‘¡m6 (q−1)=2. Also, (neglecting
a factor of −udk =uck because this is instantiated by “cyclic” actions of Nq) +̃k , derived from +k , maps Nq to itself; +̃k

transforms u#k u�k into u1 u�k =u#k and transforms u#‘ u�‘ into (u�k − u#‘)=(u#k − u#‘) (u�k − u�‘)=(u#k − u�‘); 16 l6
(q − 1)=2; ‘ �= k ∈ [(q − 1)=2].
Lemma 1 was evaluated using the program GAP [9] to ePect construction of the orbits, yielding the following enumer-

ation of Lq: the number of nonisomorphic designs of order q:

q Lq

3 1
5 2
7 4
9 9
11 31
13 128

For example, the following two pairs of matrices represent the nontrivial matrices from the two nonisomorphic lattice-
square designs of order 5. Here, we index the pairs of marks: [uiuj] �→ [5i+ j]; 06 i; j6 4. Therefore, u1u2u1u1u3u4u1u1
yields



0 11 17 23 9

6 22 4 15 13

12 19 8 1 20

18 5 21 14 2

24 3 10 7 16



;




0 21 7 13 19

16 12 4 5 23

22 9 18 1 10

8 15 11 24 2

14 3 20 17 6




and u1u3u1u1u2u4u1u1 yields


0 16 22 8 14

6 2 19 10 23

12 9 3 21 15

18 20 11 4 7

24 13 5 17 1



;




0 21 7 13 19

11 2 24 15 8

17 14 3 6 20

23 5 16 4 12

9 18 10 22 1



:

Our method of enumeration is impractical for q¿ 17, indicating the need for better, general methodologies.
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