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Abstract

A (k; g)-graph is a k-regular graph with girth g. A (k; g)-cage is a
(k; g)-graph with the least number of vertices. The order of a (k; g)-
cage is denoted by f(k; g). In this paper we show that f(k + 2; g) ≥
f(k; g) for k ≥ 2 and present some partial results to support the
conjecture that f(k1; g) < f(k2; g) if k1 < k2.

1 Introduction

In this paper, we consider only finite simple graphs, and refer to them as
graphs.

Suppose that V ′ (or E′) is a nonempty subset of V (or E). The induced
subgraph (or the edge-induced subgraph) of G by V ′ is denoted by G[V ′]
(or G[E′]). The subgraph obtained from G by deleting the vertices in V ′

together with their incident edges is denoted by G−V ′. The graph obtained
from G by adding a set of edges E′ is denoted by G ∪ E′. For a vertex
v of G and a set of vertices S ⊆ V (G), we use NS(v) to denote the set
of vertices in S that are adjacent to v. A component in a graph is odd if
it has an odd number of vertices. We denote by o(G) the number of odd
components of G. The number of edges between subgraphs H1 and H2 in
a graph G is denoted by eG(H1, H2).

∗Both authors would like to thank the support by the Natural Sciences and Engi-
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The length of a shortest cycle in a graph G is called the girth of G.
Clearly, adding edges to a graph G might decrease the girth of G. If G′ is
obtained from G by adding edges, we use the term smaller cycle of G′ to
denote any cycle of G′ having length less than the girth.

A k-regular graph with girth g is called a (k; g)-graph and a (k; g)-cage
is a (k; g)-graph with the least number of vertices. We use f(k; g) to denote
the number of vertices in any (k; g)-cage.

Cages were introduced by Tutte [11] in 1947, and since then have been
widely studied. The problem of finding cages has a prominent place in
both extremal graph theory and algebraic graph theory. A survey paper
by Wong [12] in 1982 refers to 70 publications. The study of cages has
led to interesting applications of algebra to graph theory. Recently, it has
also attracted some attention from researchers in computer science (see [2],
[8]). In these papers, new computer search algorithms are used to find new
cages or provide better bounds for f(k; g). However, most of the work so
far is on the existence problem, i.e. finding cages, or estimating f(k; g).
Very little is known on the structural properties of cages.

The first fundamental properties of cages, girth monotonicity, were es-
tablished by Erdős and Sachs [4], Holton and Sheeham [6], Fu, Huang and
Rodger [5], independently. They proved the following monotonicity result
with respect of girth of the cages which turns out to be the foundation in
exploring the connectivity of cages.

Girth Monotonicity Theorem. If k ≥ 3 and 3 ≤ g1 < g2, then
f(k; g1) < f(k; g2).

Fu, Huang and Rodger [5] proved that all cages are 2-connected, and
then subsequently showed that all cubic cages are 3-edge-connected. It
follows from this theorem that all cubic cages are 3-connected. They then
conjectured that (k; g)-cages are k-connected. Daven and Rodger [3], and
independently Jiang and Mubayi [9], proved that all (k; g)-cages are 3-
connected for k ≥ 3. It was proven in [14] that (4; g)-cages are 4-connected
and in [13] that (k; g)-cages are k-edge-connected when g is odd. Recently,
Lin, Miller and Rodger [7] prove that (k; g)-cages are k-edge-connected
when g is even.

Jiang and Mubayi also provided some structural properties of cages.
They showed that diam(G[S]) ≥ �g/2� where S is a cut-set of a (k; g)-
cage G and every (k; g)-cage contains a non-separating g-cycle for g ≥ 5.
Moreover, they showed that every g-cycle in a (g; k)-cage is non-separating
for k ≥ 3 and g ≥ 4 even. Related to this, it is easy to show that every
vertex in a (k; g)-cage is contained in a g-cycle if g is even. The case of g
odd is still open.

Similar to the Girth Monotonicity Theorem, we consider the following
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conjecture.

Degree Monotonicity Conjecture. If k1 < k2, then f(k1; g) < f(k2; g).

We shall give some partial results to support this conjecture in the next
section.

2 Results

It is well-known that a (k; 3)-cage is Kk+1, a complete graph on k + 1
vertices and a (k; 4)-cage is Kk,k, a complete bipartite graph with k vertices
in each partite set. Thus the Degree Monotonicity Conjecture is true when
g = 3 or 4. It is also true for the known cages. For example, f(3; 5) =
10 < f(4; 5) = 19 < f(5; 5) = 30 < f(6; 5) = 40 < f(7; 5) = 50 and
f(3; 6) = 14 < f(4; 6) = 26 < f(5; 6) = 42 < f(6; 6) = 62 < f(7; 6) = 90 <
f(8, 6) = 104.

Proposition 2.1. f(2; g) < f(3; g)

Proof. Since any (3; g)-cage contains a cycle of length ≥ g, f(3; g) ≥
f(2; g) = g. If f(3; g) = f(2; g) = g, any vertex on the g-cycle in the
(3; g)-cage has to be adjacent to another vertex on a g-cycle. This leads to
a cycle of length less than g in the (3; g)-cage, a contradiction.

Let v be any vertex of a (k; g)-cage G, where g is even, Vi be the set

of vertices of distance i from v and X = V (G) − v − ∪ 1
2 g−1
i=1 Vi. It follows

that |Vi| = k(k − 1)i−1 for 1 ≤ i ≤ 1
2g − 1. Since G has girth at least g,

|E(G[V 1
2 g−1])| = 0. Hence, there are k(k − 1)

1
2 g−1 edges between V 1

2 g−1

and X , and, in turn, |X | ≥ (k− 1)
1
2 g−1. Thus, f(k; g) ≥ 1 + k + k(k− 1)+

... + k(k − 1)
1
2 g−2 + (k − 1)

1
2 g−1 for g is even. For g = 6, 8 or 12 and k − 1

is a prime power, (k; g)-cages exist and they are the generalized triangles,
the generalized quadrangles and the generalized hexagons of order k − 1.
Thus f(k; g) = 1+k+k(k−1)+ ...+k(k−1)

1
2 g−2 +(k−1)

1
2 g−1 for g = 6, 8

or 12 and k − 1 is a prime power. This leads to the following theorem.

Proposition 2.2. f(k1; g) < f(k2; g) where k1 < k2 and k1 − 1 is a prime
power, and g = 6, 8 or 12.

Proof. f(k1; g) = 1+k1 +k1(k1 −1)+ ...+k1(k1−1)
1
2 g−2 +(k1−1)

1
2 g−1 <

1 + k2 + k2(k2 − 1) + ... + k2(k2 − 1)
1
2 g−2 + (k2 − 1)

1
2 g−1 ≤ f(k2; g) for

k1 < k2 and k1 − 1 is a prime power, and g = 6, 8 or 12.

In 1973, Berge (see [1]) conjectured that every 4-regular graph contains
a 3-regular graph. Tashkinov [10] proved this conjecture in 1984. We
restate this result in terms of cages as follows.
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Proposition 2.3. f(4; g) ≥ f(3; g) and f(4; g) > f(3; g) if f(4; g) is odd.

In order to extend the above result to general k, we study the perfect
matching (i.e., 1-factor) in cages. We need the following recent result as a
lemma.

Lemma 2.1. ([7] and [13]) (k; g)-cages are k-edge connected.

Now we are ready to prove the existence of perfect matching in cages.
In fact, we show that there are many perfect matchings in a cage with even
order.

Theorem 2.1. If the order of (k; g)-cage G is even, then for any edge
e ∈ E(G) there exists a 1-factor containing e.

Proof. We proceed the proof with a contradiction. If there exists an edge
e ∈ E(G) so that there does not exists a 1-factor containing it, then G−V (e)
has no 1-factor. By Tutte’s 1-factor Theorem, there exists a set S′ ⊆
V (G) − V (e) so that o(G − V (e) − S′) > |S′|. By the parity, we can see
that o(G − V (e) − S′) ≥ |S′| + 2.

Let S = S′ ∪ V (e), we have o(G − S) ≥ |S|. Let C1, C2, ..., Cw be
the odd components of G − S. From Lemma 2.1, we have eG(Ci, S) ≥ k.
Counting the edges between S and ∪iCi. We conclude that

kw ≤ e(∪iCi, S) ≤ k|S| − 2

This implies that o(G − S) = w < |S|, a contradiction.

Theorem 2.2. If f(k; g) is even, then f(k− 1; g) ≤ f(k; g). In particular,
for any r ≥ 1 and g ≥ 3, f(2r; g) ≤ f(2r + 1; g).

Proof. From Theorem 2.1, G has a 1-factor, says M . Then G − M is
a (k − 1)-regular graph and its girth, g′, is greater than or equal to g.
Therefore f(k; g) = |V (G−M)| ≥ f(k−1; g′) ≥ f(k−1; g), from the Girth
Monotonicity Theorem.

Since a regular graph of odd degree has an even number of vertices. Let
k = 2r + 1. It follows that f(2r; g) ≤ f(2r + 1; g).

Theorem 2.1 shows that there exists a 1-factor in (k; g)-cages if f(k; g)
is even. However, because the number of vertices in a (k; g)-cage may be
odd, some (k; g)-cages may not contain a 1-factor. For example, the (4; 5)-
cage has 19 vertices. However, the (4; 5)-cage is the only known cage with
an odd number of vertices.

To provide further support for the Degree Monotonicity Conjecture, we
prove a weaker form of this conjecture.
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Theorem 2.3. For k ≥ 2, f(k; g) ≤ f(k + 2; g).

This result follows immediately from the next theorem, which is of in-
dependent interest. However, we need the next classic result from Petersen
first.

Lemma 2.2. (Petersen, see [1]). A 2r-regular graph is 2-factorable.

Theorem 2.4. Every (k, g)-cage has a 2-factor.

Proof. Let G be a (k, g)-cage. Then G is k-regular. If k is even, by Lemma
2.2, G has a 2-factor. If k is odd, then the order of G must be even. From
the proof of Theorem 2.1, we see that in this case G has a 1-factor F . Thus
G − F is a (k − 1)-regular graph (note that k − 1 is even) and thus has a
2-factor T by Lemma 2.2 again. Of course, T is a 2-factor of G as well.
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