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Abstract: Let G be an infinite plane graph such that G is locally finite and
every face of G is bounded by a cycle. Then G is said to be positively curved

if, for every vertex x of G, 1ÿ dðxÞ
2 þ

P
x2F

1
jF j > 0, where the summation is

taken over all facial cycles F of G containing x and jF denotes the number of
vertices in F . Note that if G is positively curved then the maximum degree
of G is at most 5. As a discrete analog of a result in Riemannian geometry,
Higuchi conjectured that if G is positively curved then G is finite. In this
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1 INTRODUCTION

The graphs considered in this paper are simple, but may be finite or infinite.

Let G be a graph. Then VðGÞ and EðGÞ denote the vertex set and edge set of G,

respectively. We use jGj to denote the number of vertices of G. For any

x 2 VðGÞ; dGðxÞ denotes the number of edges of G incident with x. (We use dðxÞ
if no confusion arises.) We say that G is cubic if dðxÞ ¼ 3 for all x 2 VðGÞ. We

say that G is locally finite if dðxÞ is finite for all x 2 VðGÞ. If there is no danger of

confusion, we write x 2 G instead of x 2 VðGÞ. A cycle in G is a finite connected

subgraph of G in which every vertex has degree 2. Let X � VðGÞ. Then Gÿ X

denotes the graph obtained from G by deleting X and all edges of G incident with

vertices in X. If G is connected and Gÿ X is not connected, then X is called a

vertex cut of G. If X is a vertex cut of G and jXj ¼ k, then X is called a k-cut. We

say that a vertex x 2 VðGÞ ÿ X is adjacent to X if x is adjacent to some vertex in X.

For subgraphs G and H of a graph, we use G [ H and G \ H to denote the

union and intersection of G and H, respectively.

A plane graph is a graph drawn in the plane with no pair of edges crossing.

The vertices and edges incident with a common face of a plane graph are said to

be cofacial. Let G be a plane graph. We say that a face of G is bounded by a cycle

if the edges of G incident with that face induce a cycle in G, and such a cycle is

called a facial cycle of G. Let C be a cycle in a plane graph. Then we can speak of

two orientations on C: clockwise orientation and counter-clockwise orientation.

Let u; v be distinct vertices of C. We use C½u; v� to denote the clockwise path in C

from u to v. We use Cðu; vÞ to denote the graph obtained from C½u; v� by deleting

u and v. We define C½u; vÞ and Cðu; v� in the obvious way.

In [2], the curvature of a plane graph is introduced as a discrete analog of the

sectional curvature of a Riemannian manifold, and a criterion is given for the

hyperbolicity of a plane graph. For more details, see [2] and the references in [2].

Let G be a plane graph (finite or infinite) such that (1) G is locally finite and (2)

every face of G is bounded by a cycle. Then the combinatorial curvature of G is

the function �G from VðGÞ to the set of real numbers such that, for any x 2 VðGÞ,

�GðxÞ ¼ 1ÿ dðxÞ
2
þ
X
x2F

1

jFj ;

where the summation is taken over all facial cycles of G containing x. See

Figure 1 for an example. We say that a vertex x of G is non-positive if �GðxÞ � 0.

If �GðxÞ > 0 for all x 2 VðGÞ, then we say that G is positively curved.
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As pointed out in [2], �GðxÞ may be interpreted as the degree of difficulty for

tiling the plane at x, and it is dual to another curvature introduced by Gromov [1].

Higuchi in [2] proves that under some minor requirements, if �GðxÞ < 0 for

all x 2 VðGÞ then there exists a constant � > 0 such that �GðxÞ < ÿ � for all

x 2 VðGÞ. This is then used to derive a discrete analog of a fact in Riemannian

geometry concerning isoperimetric inequalities.

The conjecture below is posed in [2] as a discrete analog of the following result

of Myers [3]: A complete Riemannian manifold with Ricci curvature bounded

below by a positive number is compact and has finite fundamental group.

Conjecture 1.1. Let G be a locally finite plane graph such that every face of G

is bounded by a cycle. If G is positively curved, then G is a finite graph.

The plane graph in Figure 2 is obtained from two vertex disjoint cycles u1u2 � � �
unu1 and v1v2 � � � vnv1 by adding a perfect matching fuivi : i ¼ 1; 2; . . . ; ng. It is

easy to verify that this graph is positively curved. Hence, there exist arbitrarily

large cubic graphs which are positively curved. This example suggests that

Conjecture 1.1 is not easy to prove.

Higuchi verified Conjecture 1.1 for some special classes of graphs, and he

noted that his method brings no insight to Conjecture 1.1. Note that if G is

positively curved then dðxÞ � 5 for all x 2 VðGÞ. The main result of this paper is

the following, which establishes Conjecture 1.1 for all cubic graphs. We believe

that our method offers a possible approach to establish Conjecture 1.1 completely.

Theorem 1.1. Let G be a cubic plane graph such that every face of G is

bounded by a cycle. If G is positively curved then G is a finite graph.

FIGURE 1. �G(x)¼ 1ÿ 3/2þ (1/3þ 1/4þ 1/5)¼ 17/60.

FIGURE 2. A positively curved graph on 2n vertices, n � 3.
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The main idea of our proof is as follows. Assume (by way of contradiction)

that G is infinite. First, we prove the existence of an infinite sequence ðC0;C1; . . .Þ
of disjoint cycles in G which captures certain structural information of G. This is

done without requiring G be cubic. We then assume that G is positively curved,

and derive a contradiction by showing that, for all sufficiently large n; jCnj >
jCnþ1j. This is done through case analysis.

This paper is organized as follows. In Section 2, we first show how to produce

an infinite sequence of cycles mentioned above. We then use that sequence to

derive a plane embedding of the same graph (with the same curvature function)

that is easier to deal with. In Section 3, we introduce necessary notation and

derive further structural information about positively curved cubic plane graphs.

In Sections 4–7, we prove Theorem 1.1.

2. NICE SEQUENCES

The main objective of this section is to derive some useful structural information

about infinite plane graphs. To this end, we need the following convenient

concept.

Definition 2.1. Let H be a subgraph (finite or infinite) of a graph G (finite or

infinite). An H-bridge of G is a subgraph of G which is induced by either (1) an

edge e 2 EðKÞ ÿ EðHÞ with both incident vertices on H or (2) edges in a com-

ponent D of Gÿ VðHÞ and edges from D to H. If B is an H-bridge of G, then the

vertices in VðHÞ \ VðBÞ are attachments of B on H. Note that an H-bridge of G

may be infinite. For any S � VðGÞ, we may view S as a graph with vertex set S

and no edges, and hence, we may speak of S-bridges.

In Figure 3, H ¼ uwy is a path. The H-bridges of G are the subgraphs induced

by the following sets of edges: fuv; vwg; fwx; xyg; fzu; zw; zyg, and fuyg.
We now turn our attention to the description of a ‘‘nice’’ sequence of cycles.

Let G be an infinite plane graph such that G is locally finite and every face of G is

bounded by a cycle. Let F be a facial cycle of G and let RðFÞ denote the closure

of the face of G bounded by F. (Thus, F is the boundary of RðFÞ.) For any cycle

C in G, we define RFðCÞ as follows. By the Jordan curve theorem, C divides

the plane into two closed regions whose intersection is C, and we use RFðCÞ to

denote the closed region containing RðFÞ. Hence, RFðFÞ ¼ RðFÞ. For any cycle

C in G, we use GFðCÞ to denote the subgraph of G contained in RFðCÞ.

FIGURE 3. A path H and its bridges.
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Definition 2.2. Let G be an infinite plane graph such that G is locally finite and

every face of G is bounded by a cycle, and let F be a facial cycle of G. A sequence

of disjoint cycles ðC0;C1; . . .Þ in G is called a nice sequence starting with F if the

following conditions hold:

(1) C0 ¼ F,

(2) for i � 0; RFðCiÞ � RFðCiþ1Þ (and hence, GFðCiÞ � GFðCiþ1Þ),
(3) for i � 0, every ðGFðCiÞ [ Ciþ1Þ-bridge of GFðCiþ1Þ has at most one

attachment on Ciþ1, and

(4) for i � 0; Gÿ VðGFðCiÞÞ is infinite.

Figure 4 illustrates a nice sequence ðC0;C1; . . .Þ, where, for i � 0; RFðCiÞ is

the closed disc bounded by Ci. The shaded regions represent subgraphs which

may be finite or infinite. Notice that a ðGFðCiÞ [ Ciþ1Þ-bridge B of GFðCiþ1Þ may

be infinite, but the vertices and edges of B cofacial with a vertex of Ciþ1 form a

finite subgraph B* of G. In fact, B� is the union of two finite paths, because every

face of G is bounded by a cycle.

We are now ready to state and prove the main result of this section.

Theorem 2.1. Let G be an infinite plane graph such that G is locally finite and

every face of G is bounded by a cycle, and let F be a facial cycle of G. Then G has

a nice sequence starting with F.

Proof. Let C0 ¼ F, let GFðC0Þ ¼ C0, and let RFðC0Þ be the closure of the

face bounded by F. Suppose that we have constructed ðC0; . . . ;CkÞ for some

k � 0 such that

(1) C0 ¼ F,

(2) for 0 � i � k ÿ 1; RFðCiÞ � RFðCiþ1Þ and GFðCiÞ � GFðCiþ1Þ,
(3) for 0 � i � k ÿ 1, every ðGFðCiÞ [ Ciþ1Þ-bridge of GFðCiþ1Þ has at most

one attachment on Ciþ1, and

(4) for 0 � i � k; Gÿ VðGFðCiÞÞ is infinite.

FIGURE 4. An example of a nice sequence ðC0;C1;C2; . . .Þ.

POSITIVELY CURVED CUBIC PLANE GRAPHS 5



Author Proo

A
The remainder of this proof shows how to construct the next cycle for the

desired sequence.

Consider the graph H :¼ Gÿ VðGFðCkÞÞ. Note that H needs not be connected,

but every block of H contains a vertex that is cofacial with some vertex of Ck.

Since G is locally finite and jCkj is finite, there are only finitely many facial cycles

of G intersecting Ck. Since all faces of G are bounded by cycles, H has only

finitely many blocks.

Therefore, since H is infinite, some block of H, say B, is infinite. Let Ckþ1

denote the subgraph of H consisting of vertices and edges of B cofacial with a

vertex of Ck. Observe that Ckþ1 is finite; because Ck is finite, G is locally finite,

and every face of G is bounded by a cycle. Since B is 2-connected, Ckþ1 is a

cycle.

Obviously, RFðCkÞ � RFðCkþ1Þ and GFðCkÞ � GFðCkþ1Þ. Because B is a block

of Gÿ VðGFðCkÞÞ, every ðGFðCkÞ [ Ckþ1Þ-bridge of GFðCkþ1Þ has at most one

attachment on Ckþ1. Because B is infinite and Ckþ1 is finite, Bÿ VðCkþ1Þ is

infinite. Hence Gÿ VðGFðCkþ1ÞÞ is infinite. So the sequence ðC0; . . . ;Ckþ1Þ
satisfies (1)–(4) above with k þ 1 replacing k. This process can be continued

with ðC0; . . . ;Ckþ1Þ replacing ðC0; . . . ;CkÞ. Hence, the desired nice sequence

ðC0;C1; . . .Þ exists. &

To facilitate later discussions, we will work with a ‘‘nice’’ embedding of a

plane graph G which has the same combinatorial curvature as G. Such an

embedding is guaranteed to exist by a nice sequence.

Theorem 2.2. Let G be an infinite plane graph such that G is locally finite and

every face of G is bounded by a cycle, and let F be a facial cycle of G, and let

ðC0;C1;C2; . . .Þ be a nice sequence in G starting with F. Then G has an

embedding G0 in the plane such that

(1) F is a facial cycle of G0,
(2) for i � 0; G0FðCiÞ is contained in the closed disc bounded by Ci, and

(3) G and G0 have the same combinatorial curvature.

Proof. Consider the graphs Hi :¼ GFðCiþ1Þ ÿ ðVðGFðCiÞÞ ÿ VðCiÞÞ for all

i � 0. Each Hi is a subgaph of G. Hence, Hi is a plane graph and both Ci and

Ciþ1 are facial cycles of Hi. Therefore, Hi has an embedding H0i in the plane such

that

(a) for any cycle C in Hi; C is a facial cycle of H0i if, and only if, C is a facial

cycle of Hi,

(b) the face of H0i bounded by Ci is an open disc in the plane,

(c) the face of H0i bounded by Ciþ1 is an unbounded region in the plane.

By assembling the embeddings H0i , for all i � 0, we obtain an embedding G0 of

G satisfying (1), (2), and (3). &
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We say that G is nicely embedded with respect to a nice sequence ðC0;C1; . . .Þ

if, for each i � 0; GFðCiÞ is contained in the closed disc bounded by Ci.

3. NOTATION AND CONVENTION

Let G be an infinite plane graph such that G is cubic and every face of G is

bounded by a cycle. Let v be a vertex of G. Let F1; F2, and F3 be the facial cycles

of G containing v, and assume that jF1j � jF2j � jF3j. We define ‘ðvÞ ¼
ðjF1j; jF2j; jF3jÞ. If jF1j � m1; jF2j � m2, and jF3j � m3, then we write ‘ðvÞ �
ðm1;m2;m3Þ. For a vertex v of G with ‘ðvÞ ¼ ðm1;m2;m3Þ; �GðvÞ > 0 if, and

only if, 1=m1 þ 1=m2 þ 1=m3 > 1=2. The following lemma is easy to verify.

Lemma 3.1. Let G be a cubic, infinite, plane graph such that every face of G is

bounded by a cycle. Let T be the set consisting of the following triples:

ð3; 7; 42Þ; ð3; 8; 24Þ; ð3; 9; 18Þ; ð3; 10; 15Þ; ð3; 11; 14Þ; ð3; 12; 12Þ; ð4; 5; 20Þ;
ð4; 6; 12Þ; ð4; 7; 10Þ; ð4; 8; 8Þ; ð5; 5; 10Þ; ð5; 6; 8Þ; ð5; 7; 7Þ, or ð6; 6; 6Þ. If v 2
VðGÞ such that ‘ðvÞ � ðm1;m2;m3Þ for some ðm1;m2;m3Þ 2 T , then v is non-

positive.

We note that ð3; 7; 42Þ; ð3; 8; 24Þ; ð3; 9; 18Þ, and ð4; 5; 20Þ are not needed for

our arguments; their inclusion is for the sake of completeness. Throughout the

rest of the paper, we will use Lemma 3.1 to derive contradictions by showing that

in a positively curved cubic infinite plane graph, there is a non-positive vertex v.

When understood, Lemma 3.1 will not be referred explicitly.

Let G be a cubic, infinite, plane graph such that every face of G is bounded by

a cycle. Let F be a facial cycle of G. By Theorem 2.1, G has a nice sequence

ðC0;C1; . . .Þ starting with F. By Theorem 2.2, we may assume that G is nicely

embedded with respect to ðC0;C2; . . .Þ. A vertex v of G is called an in-vertex

(respectively, out-vertex) if v 2 Ci for some i � 1 (respectively, i � 0) and v is

incident with an edge contained in the annulus region between Ci and Ciÿ1

(respectively, Ciþ1). If v is an in-vertex on Ci, then we use AðvÞ;LðvÞ;RðvÞ to

denote the facial cycles of G containing v, where AðvÞ is between Ci and Ciþ1 and

AðvÞ;RðvÞ;LðvÞ occur in that clockwise order around v. (Intuitively, AðvÞ is

above v, LðvÞ is to the left of v, and RðvÞ is to the right of v.) If w is an out-vertex

on Ci, then we use BðwÞ; LðwÞ;RðwÞ to denote the facial cycles of G containing

w, where BðwÞ is between Ci and Ciÿ1 and BðwÞ; LðwÞ;RðwÞ occur around w in

that clockwise order. (Again, BðwÞ is below w; LðwÞ is to the left of w, and RðwÞ
is to the right of w.) See Figure 5.

FIGURE 5. v is an in-vertex and w is an out-vertex.
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By the choice of ðC0;C1; . . .Þ, we have the following two observations which

will be used frequently (often without explicit reference).

Lemma 3.2. Let G be a cubic, infinite, plane graph such that every face of G is

bounded by a cycle. Let ðC0;C1; . . .Þ be a nice sequence in G, and assume that G

is nicely embedded with respect to ðC0;C1; . . .Þ. Then for any in-vertex

v; jLðvÞj � 4 � jRðvÞj; and for any out-vertex w; jBðwÞj � 5.

Lemma 3.3. Let G be a cubic, infinite, plane graph such that every face of G is

bounded by a cycle. Let ðC0;C1; . . .Þ be a nice sequence in G, and assume that G

is nicely embedded with respect to ðC0;C1; . . .Þ. Then for any facial cycle F of

length 4 and for any i � 1; jF \ Cij 6¼ 1.

The next lemma allows us to discard certain 2-cuts of G in the proof of

Theorem 1.1.

Lemma 3.4. If there is a positively curved, cubic, infinite, plane graph, then

there is a positively curved, cubic, infinite, plane graph G such that

(1) G has a nice sequence ðC0;C1; . . .Þ, and

(2) for any k � 1 and for any 2-cut T of G contained in VðCkÞ;
S

0�i�kÿ1 Ci

and
S

i�kþ1 Ci belong to different components of Gÿ T .

Proof. Let G be a positively curved, cubic, infinite, plane graph such that

every face of G is bounded by a cycle. Then by Definition 2.2, G has a nice

sequence ðC0;C1;C2; . . .Þ. Suppose that there is some k � 1 and a 2-cut T ¼
fu; vg of G contained in VðCkÞ such that

S
0�i�kÿ1 Ci and

S
i�kþ1 Ci belong to the

same component of Gÿ T . Let B denote the T-bridge of G not containingS
i6¼k Ci. We may assume that T is chosen so that B is maximal. Then, since G is

cubic, B contains exactly one neighbor of u and exactly one neighbor of v. So let

H denote the plane graph obtained from G by replacing B with the edge uv. Then

H is a cubic, infinite, plane graph. Moreover, for each vertex x of H, the length

of any facial cycle of H containing x is not longer than the corresponding

facial cycle of G. So H is also positively curved. Since jCkj is finite, there are

only finitely many 2-cuts contained in VðCkÞ. Thus, we can repeatedly perform

the above operation to eliminate all 2-cuts contained in VðCkÞ that do not satisfy

(2). We can deal with C0;C1;C2; . . . in that order, and we see that Lemma 3.4

holds. &

The proof of Theorem 1.1 is divided into the following stages. Assume that G

is a positively curved, cubic, infinite, plane graph such that every face of G

bounded by a cycle. Then, by the results in Section 2, G has a nice sequence

ðC0;C1; . . .Þ and we can assume that G is nicely embedded with respect to that

sequence. First, we will show that, for all sufficiently large i, there are at most

three vertices of Ci between any two consecutive in-vertices on Ci. This is done in

Section 4. We will then use the result in Section 4 to show that, for all sufficiently
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large i, there are at most two vertices of Ci between any two consecutive in-

vertices on Ci, and this is done in Section 5. In Section 6, we will further show

that, for all sufficiently large i, there are at most one vertex of Ci between any two

consecutive in-vertices on Ci. Finally, we will complete the proof in Section 7 by

showing that, for all sufficiently large i, jCiþ1j < jCij.

4. FOUR VERTICES BETWEEN CONSECUTIVE IN-VERTICES

For convenience, we assume, throughout this section, that G is a positively

curved, cubic, infinite, plane graph. So G contains no non-positive vertices. By

Definition 2.2 and Theorem 2.2, G has a nice sequence ðC0;C1; . . .Þ and we may

assume that G is nicely embedded with respect to ðC0;C1; . . .Þ.
The main result of this section is the following: if i is large enough, then there

are at most three vertices of Ci between any two consecutive in-vertices on Ci.

This is done through a series of lemmas. For the statement and proof of the first

lemma, we refer to Figure 6.

Lemma 4.1. Let i � 3, and let a1 and a2 be consecutive in-vertices on Ci such

that (i) Rða1Þ ¼ Lða2Þ and (ii) jCiða1; a2Þj � 4. Let b1; b2 be the out-vertices on

Ciÿ1 such that Rðb1Þ ¼ Lðb2Þ ¼ Rða1Þ. Then Ciÿ1ðb1; b2Þ 6¼ ; or jLðb1Þj ¼
jRðb2Þj ¼ 3.

Proof. Suppose Ciÿ1ðb1; b2Þ ¼ ;. Since G is cubic, Bðb1Þ ¼ Bðb2Þ. So let

c1; c2 be the out-vertices on Ciÿ2 such that Rðc1Þ ¼ Bðb1Þ ¼ Lðc2Þ. By (ii),

jRðb1Þj ¼ jLðb2Þj � 8. Since Ciÿ1ðb1; b2Þ ¼ ;; jBðb1Þj ¼ jBðb2Þj � 6.

Therefore, jLðb1Þj � 4 and jRðb2Þj � 4; for otherwise, there would exist

i 2 f1; 2g such that ‘ðbiÞ � ð5; 6; 8Þ and bi is non-positive (by Lemma 3.1). If

jLðb1Þj ¼ jRðb2Þj ¼ 3, then we have Lemma 4.1. Therefore, we have two cases to

consider.

Case 1. jLðb1Þj ¼ jRðb2Þj ¼ 4.

FIGURE 6. Proof of Lemma 4.1.
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Then, by Lemma 3.3, jLðb1Þ \ Ciÿ1j 2 f2; 3g and jRðb2Þ \ Ciÿ1j 2 f2; 3g.
First, assume that jLðb1Þ \ Ciÿ1j ¼ 2 ¼ jRðb2Þ \ Ciÿ1j. Then, since G is cubic

and Ciÿ1ðb1; b2Þ ¼ ;; jBðb1Þj � 8. Hence ‘ðb1Þ � ð4; 8; 8Þ and b1 is non-positive

(by (3.1)), a contradiction.

Now assume that jLðb1Þ \ Ciÿ1j ¼ 2 and jRðb2Þ \ Ciÿ1j 6¼ 2 or jLðb1Þ \
Ciÿ1j 6¼ 2 and jRðb2Þ \ Ciÿ1j ¼ 2. By symmetry, we may assume the former.

See Figure 6(a). Then jRðb1Þj ¼ jLðb2Þj � 9, and since G is cubic and Ciÿ1

ðb1; b2Þ ¼ ;; jBðb1Þj ¼ jBðb2Þj � 7. Thus, ‘ðb1Þ ¼ ‘ðb2Þ ¼ ð4; 7; 9Þ; for other-

wise, there would exist i 2 f1; 2g such that ‘ðbiÞ � ð4; 8; 9Þ or ð4; 7; 10Þ and bi is

non-positive. Hence, Ciÿ2ðc1; c2Þ ¼ ; and c2 is adjacent to Ciÿ1. So jBðc2Þj � 6

and jRðc2Þj � 5 (because jRðb2Þ \ Ciÿ1j ¼ 3). If jRðc2Þj ¼ 5 then jBðc2Þj � 7,

and hence, ‘ðc2Þ�ð5; 7; 7Þ and c2 is non-positive, a contradiction. So jRðc2Þj � 6:
Then ‘ðc2Þ � ð6; 6; 7Þ and c2 is non-positive, a contradiction.

So jLðb1Þ \ Ciÿ1j ¼ 3 ¼ jRðb2Þ \ Ciÿ1j. See Figure 6(b). Hence, jRðb1Þj ¼
jLðb2Þj � 10. Since jBðb1Þj ¼ jBðb2Þj � 6; ‘ðb1Þ � ð4; 6; 10Þ, and ‘ðb2Þ �
ð4; 6; 10Þ. In fact, jBðb1Þj ¼ jBðb2Þj ¼ 6, as otherwise, there would exist i 2
f1; 2g such that ‘ðbiÞ � ð4; 7; 10Þ and bi is non-positive. So Ciÿ2ðc1; c2Þ ¼ ;;
jLðc1Þj � 5 � jRðc2Þj, and jBðc1Þj ¼ jBðc2Þj � 6. Suppose jLðc1Þj ¼ jRðc2Þj ¼ 5.

Then jLðc1Þ \ Ciÿ2j ¼ 2 ¼ jRðc2Þ \ Ciÿ2j. Since G is 2-connected and Ciÿ2

ðc1; c2Þ ¼ ;; jBðc1Þj ¼ jBðc2Þj � 8. Hence ‘ðc1Þ � ð5; 6; 8Þ and c1 is non-

positive, a contradiction. So jLðc1Þj � 6 or jRðc2Þj � 6. Then there exists

i 2 f1; 2g, such that ‘ðciÞ � ð6; 6; 6Þ and ci is non-positive, a contradiction.

Case 2. jLðb1Þj ¼ 4 and jRðb2Þj ¼ 3, or jLðb1Þj ¼ 3 and jRðb2Þj ¼ 4.

By symmetry, we may assume the former. Since jRðb2Þj ¼ 3; jLðb2Þj ¼
jRðb1Þj � 9. First, assume that jLðb1Þ \ Ciÿ1j ¼ 2. See Figure 6(c). Then

since G is cubic and Ciÿ1ðb1; b2Þ ¼ ;; jBðb1Þj � 8. Therefore, ‘ðb1Þ � ð4; 8; 9Þ
and b1 is non-positive, a contradiction. So jLðb1Þ \ Ciÿ1j ¼ 3. See Figure 6(d).

Then jBðb1Þj � 7 and jRðb1Þj � 10. So ‘ðb1Þ � ð4; 7; 10Þ and b1 is non-positive, a

contradiction. &

Lemma 4.2. Let i � 5, and let a1 and a2 be consecutive in-vertices on Ci such

that (i) Rða1Þ ¼ Lða2Þ and (ii) jCiða1; a2Þj � 4. Let b1 and b2 be the out-vertices

on Ciÿ1 such that Rðb1Þ ¼ Lðb2Þ ¼ Rða1Þ. Then

(1) jCiÿ1ðb1; b2Þj 6¼ 1, and

(2) jCiÿ1ðb1; b2Þj 6¼ 2 if i � 7.

Proof. (1) Suppose jCiÿ1ðb1; b2Þj ¼ 1. Let b be the only vertex in

Ciÿ1ðb1; b2Þ. Since G is 2-connected, b is an in-vertex and Bðb1Þ ¼ LðbÞ and

RðbÞ ¼ Bðb2Þ. Let c1; c; c2 be the out-vertices on Ciÿ2 such that Rðc1Þ ¼ LðcÞ ¼
Bðb1Þ and Lðc2Þ ¼ Bðb2Þ. See Figure 7.

Note that jRðb1Þj ¼ jAðbÞj ¼ jLðb2Þj � 9; jLðbÞj ¼ jBðb1Þj � 5, and jRðbÞj ¼
jBðb2Þj � 5. Hence ‘ðbÞ � ð5; 5; 9Þ. Therefore, jLðbÞj ¼ jRðbÞj ¼ 5 and jAðbÞj ¼
9; otherwise, ‘ðbÞ � ð5; 6; 9Þ or ð5; 5; 10Þ and b is non-positive, a contradiction.

10 JOURNAL OF GRAPH THEORY



Author Proo

A
Since jAðbÞj ¼ 9; ai is adjacent to bi for i ¼ 1; 2. Since jLðbÞj ¼ jRðbÞj ¼ 5;
jLðb1Þj � 5 � jRðb2Þj; Ciÿ2ðc1; cÞ ¼ ; ¼ Ciÿ2ðc; c2Þ; b is adjacent to c, and

both c1 and c2 are adjacent to Ciÿ1. Therefore, jBðc1Þj ¼ jBðcÞj ¼ jBðc2Þj � 7.

So jLðb1Þj ¼ 5 ¼ jRðb2Þj, for otherwise, there exists i 2 f1; 2g such that ‘ðbiÞ �
ð5; 6; 9Þ and bi is non-positive, a contradiction.

Since G is 2-connected, let c01; c
0
2 be the in-vertices on Ciÿ2 such that

Rðc01Þ ¼ Lðc02Þ, and let d1; d2 be the out-vertices on Ciÿ3 such that Rðd1Þ ¼
Lðd2Þ ¼ Bðc1Þ.

We claim that Ciÿ2ðc01; c1Þ ¼ ; or Ciÿ2ðc2; c
0
2Þ ¼ ;. Otherwise, jCiÿ2ðc01; c02Þj �

5. Since iÿ 2 � 3, it follows from Lemma 4.1 that jLðd1Þj ¼ 3 ¼ jRðd2Þj or

Ciÿ1ðd1; d2Þ 6¼ ;. So jBðcÞj � 10, and hence ‘ðcÞ � ð5; 5; 10Þ and c is non-

positive, a contradiction.

By symmetry, we may assume that Ciÿ2ðc01; c1Þ ¼ ;. Since jLðb1Þj ¼ 5 and a1

is adjacent to b1, we have jAðc01Þj � 6. So jLðc1Þj ¼ jAðc01Þj ¼ 6 and jBðc1Þj ¼ 7,

as otherwise, c1 would be non-positive with ‘ðc1Þ � ð5; 6; 8Þ or ð5; 7; 7Þ. Thus c01
is adjacent to d1; Ciÿ3ðd1; d2Þ ¼ ; (and hence jBðd1Þj � 6), and jLðd1Þj � 5.

Moreover, if jLðd1Þj ¼ 5 then jBðd1Þj � 7. So ‘ðd1Þ � ð5; 7; 7Þ or ð6; 6; 7Þ, and

hence, d1 is non-positive, a contradiction.

(2) Now suppose i � 7 and jCiÿ1ðb1; b2Þj ¼ 2. Let b3; b4 denote the vertices in

Ciÿ1ðb1; b2Þ. By (2) of Lemma 3.4, both b3 and b4 are in-vertices. Without loss of

generality, we may assume that Rðb3Þ ¼ Lðb4Þ. See Figure 8.

Observe that jRðb1Þj ¼ jLðb2Þj ¼ jAðb3Þj ¼ jAðb4Þj � 10; jBðb1Þj ¼ jLðb3Þj �
5 � jRðb4Þj ¼ jBðb2Þj, and jRðb3Þj ¼ jLðb4Þj � 4. Therefore, jRðb3Þj ¼ jLðb4Þj ¼
4 and jLðb3Þj ¼ jBðb1Þj � 6 � jRðb4Þj ¼ jBðb2Þj; for otherwise, there would exist

FIGURE 7. jCiÿ1 (b1,b2)j ¼ 1.

FIGURE 8. i � 7 and jCiÿ1 (b1,b2Þj ¼ 2:
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i 2 f3; 4g such that ‘ðbiÞ � ð5; 5; 10Þ or ð4; 7; 10Þ, and so, bi is non-positive, a

contradiction.

Since jRðb3Þj ¼ 4, we let c3; c4 2 VðCiÿ3Þ such that b3c3; b4c4 2 EðGÞ and

Ciÿ2ðc3; c4Þ ¼ ;. Since G is cubic and 2-connected, Ciÿ2ðc4; c3Þ has at least two

in-vertices. We claim that Ciÿ2ðc4; c3Þ contains at least two out-vertices. For,

suppose Ciÿ2ðc4; c3Þ contains at most one out-vertex. Then, since jLðb3Þj � 6 �
jRðb4Þj, Ciÿ2ðc4; c3Þ contains exactly one out-vertex, and since G is 2-connected

and cubic, jLðb3Þj ¼ 6 ¼ jRðb4Þj. So jLðb1Þj � 5. Thus ‘ðb1Þ � ð5; 6; 10Þ and b1

is non-positive, a contradiction. So let c1; c2 be distinct out-vertices on Ciÿ2 such

that Rðc1Þ ¼ Bðb1Þ and Lðc2Þ ¼ Bðb2Þ.
We claim that Ciÿ2ðc1; c3Þ ¼ ; ¼ Ciÿ2ðc4; c2Þ. For otherwise, we may assume

by symmetry that Ciÿ2ðc1; c3Þ 6¼ ;. See Figure 8(a). Because jLðb3Þj � 6;
Ciÿ2ðc1; c3Þ consists of only one vertex, say c5. Since G is 2-connected, c5 is

an in-vertex. Thus, we see that jAðc5Þj ¼ 6; jLðc5Þj � 5, and jRðc5Þj � 6. So

jLðc5Þj ¼ 5 and jRðc5Þj � 7; otherwise ‘ðc5Þ � ð5; 6; 8Þ or ð6; 6; 6Þ, and c5 would

be non-positive. Hence c5 is adjacent to a vertex, say d, on Ciÿ3. Assume for the

moment that Ciÿ2ðc4; c2Þ ¼ ;. Then jRðc5Þj � 7, and hence jRðc5Þj ¼ 7 and

jRðc5Þ \ Ciÿ3j ¼ 2. Therefore, since jLðc5Þj ¼ 5; jBðdÞj � 7. So ‘ðdÞ � ð5; 7; 7Þ
and d is non-positive, a contradiction. Thus Ciÿ2ðc4; c2Þ 6¼ ;. Because jRðb4Þj �
6; Ciÿ2ðc4; c2Þ consists of only one vertex, say c6. Since G is 2-connected, c6 is

an in-vertex. Note that jLðc6Þj ¼ jRðc5Þj � 6 and jAðc6Þj ¼ 6. Also note that

jRðc6Þj ¼ 5, for otherwise ‘ðc6Þ � ð6; 6; 6Þ and c6 would be non-positive. Thus c6

is adjacent to a vertex, say d0, on Ciÿ3. If Ciÿ3ðd; d0Þ ¼ ;, then since jLðc5Þj ¼
jRðc6Þj ¼ 5; jBðdÞj � 8 and ‘ðdÞ � ð5; 6; 8Þ, and so, d would be non-positive.

Hence Ciÿ3ðd; d0Þ 6¼ ;. Since jRðc5Þj � 7; Ciÿ3ðd; d0Þ consists of only one vertex,

say d�. Because jLðc5Þj ¼ 5 ¼ jRðc6Þj; jLðd*Þj � 6 � jRðd*Þj. So ‘ðd*Þ �
ð6; 6; 7Þ and d� is non-positive, a contradiction.

Therefore, let c01; c
0
2 denote the in-vertices on Ciÿ2 such that Rðc01Þ ¼

Lðc02Þ ¼ Bðc1Þ, and let d1; d2 be the out-vertices on Ciÿ3 such that Rðd1Þ ¼
Lðd2Þ ¼ Bðc1Þ. See Figure 8(b). Since iÿ 2 � 5 and jCiÿ2ðc01; c02Þj � 4, it follows

from (1) that jCiÿ3ðd1; d2Þj 6¼ 1. So by Lemma 4.1, jLðd1Þj ¼ jRðd2Þj ¼ 3 or

jCiÿ3ðd1; d2Þj � 2. Thus jBðc1Þj ¼ jBðc2Þj � 10. Since jRðc1Þj � 5 � jLðc2Þj;
jLðc1Þj � 4 � jRðc2Þj, for otherwise, there exists i 2 f1; 2g such that ‘ðciÞ �
ð5; 5; 10Þ and ci is non-positive, a contradiction. Also jLðb1Þj � 4 � jRðb2Þj,
for otherwise, there exists i 2 f1; 2g such that ‘ðbiÞ � ð5; 5; 10Þ and bi is non-

positive, a contradiction.

We claim that jLðb1Þj ¼ 4 and jLðb1Þ \ Ciÿ1j ¼ 2 or jRðb2Þj ¼ 4 and

jRðb2Þ \ Ciÿ1j ¼ 2. Suppose this is false. Then jRðb1Þj ¼ jLðb2Þj � 12. Hence

jLðb3Þj ¼ jBðb1Þj ¼ 5; otherwise, ‘ðb3Þ � ð4; 6; 12Þ and b3 would be non-

positive. Therefore, jLðb1Þj ¼ 4 and jLðb1Þ \ Ciÿ1j ¼ 3. Then, since jLðb3Þj ¼
5; jLðc1Þj � 5, a contradiction.

Without loss of generality, we may assume that jLðb1Þj ¼ 4 and jLðb1Þ \
Ciÿ1j ¼ 2. See Figure 8(b). Then jBðb1Þj � 6. In fact, jBðb1Þj ¼ 6; otherwise,

‘ðb1Þ � ð4; 7; 10Þ and b1 is non-positive, a contradiction.
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If jLðc1Þj � 5, then ‘ðc1Þ � ð5; 6; 10Þ and c1 is non-positive, a contradiction.

So jLðc1Þj ¼ 4. Hence jLðc1Þ \ Ciÿ2j ¼ 2 and jBðc1Þj � 11. In fact, jBðc1Þj ¼ 11,

as otherwise ‘ðc1Þ � ð4; 6; 12Þ and c1 would be non-positive. So c01 is adjacent

to Lðc1Þ and Ciÿ2ðc2; c
0
2Þ ¼ ;. Thus jAðc01Þj � 5; jAðc02Þj ¼ jRðc2Þj ¼ 4, and

jAðc02Þ \ Ciÿ2j ¼ 3.

If Ciÿ3ðd1; d2Þ 6¼ ;, then since iÿ 2 � 5 and by (1), jCiÿ3ðd1; d2Þj � 2.

Thus jBðc1Þj ¼ 11 implies that c02 is adjacent to d2. Since jAðc02Þj ¼ 4 and

jAðc02Þ \ Ciÿ2j ¼ 3; jRðd2Þj ¼ jRðc02Þj � 5. Hence ‘ðd2Þ � ð5; 5; 11Þ and d2 is

non-positive, a contradiction. Therefore, Ciÿ3ðd1; d2Þ ¼ ;. Then by Lemma 4.1,

jLðd1Þj ¼ 3, and hence jLðc01Þj � 5. So ‘ðc01Þ � ð5; 5; 11Þ and c01 is non-positive, a

contradiction. &

Lemma 4.3. Let i � 7, and let a1 and a2 be consecutive in-vertices on Ci such

that (i) Rða1Þ ¼ Lða2Þ and (ii) jCiða1; a2Þj � 4. Let b1 and b2 be the out-vertices

on Ciÿ1 such that Rðb1Þ ¼ Lðb2Þ ¼ Rða1Þ. Assume that Ciÿ1ðb1; b2Þ ¼ ;, and let

c1; c2 denote the out-vertices on Ciÿ2 such that Rðc1Þ ¼ Lðc2Þ ¼ Bðb1Þ ¼ Bðb2Þ.
Then Ciÿ2ðc1; c2Þ 6¼ ;.

Proof. Suppose for a contradiction that Ciÿ2ðc1; c2Þ ¼ ;. Let b01; b
0
2 denote

the in-vertices on Ciÿ1 such that Rðb01Þ ¼ Lðb02Þ ¼ Bðb1Þ ¼ Bðb2Þ; let c01; c
0
2 be the

in-vertices on Ciÿ2 such that Rðc01Þ ¼ Lðc02Þ ¼ Bðc1Þ ¼ Bðc2Þ; and let d1; d2

denote the out-vertices on Ciÿ3 such that Rðd1Þ ¼ Lðd2Þ ¼ Bðc1Þ. See Figure 9.

Since G is 2-connected and cubic, the above vertices are well defined.

Since Ciÿ1ðb1; b2Þ ¼ ; and i � 7, it follows from Lemma 4.1 that jLðb1Þj ¼
jRðb2Þj ¼ 3. Therefore, since G is cubic, there are at least four consecutive out-

vertices in Ciÿ1ðb01; b02Þ. Since Ciÿ2ðc1; c2Þ ¼ ; and since iÿ 1 � 6, it follows

from Lemma 4.1 that jLðc1Þj ¼ jRðc2Þj ¼ 3. Hence jRðb01Þj ¼ jBðb1Þj ¼
jBðb2Þj � 10.

We claim that jBðb1Þj ¼ jBðb2Þj � 12. For otherwise, b01 is adjacent to both

Lðb1Þ and Lðc1Þ, or b02 is adjacent to both Rðb2Þ and Rðc2Þ. By symmetry, we

may assume the former. Then since G is cubic, jLðb01Þj � 5 � jAðb01Þj. Since

jRðb01Þj � 10; ‘ðb01Þ � ð5; 5; 10Þ and b01 is non-positive, a contradiction.

Then jBðc1Þj ¼ jBðc2Þj < 12; for otherwise, ‘ðc1Þ � ð3; 12; 12Þ and c1 is non-

positive, a contradiction.

FIGURE 9. Proof of Lemma 4.3.
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Since iÿ 2 � 5, it follows from Lemma 4.1 that jLðd1Þj ¼ jRðd2Þj ¼ 3 or

jCiÿ3ðd1; d2Þj 6¼ 0. So by Lemma 4.2, jLðd1Þj ¼ jRðd2Þj ¼ 3 or jCiÿ3ðd1; d2Þj � 2.

Thus jBðc1Þj ¼ jBðc2Þj � 10. Since jBðc1Þj ¼ jBðc2Þj < 12, either c01 is adjacent

to Lðc1Þ, or c02 is adjacent to Rðc2Þ. By symmetry, we may assume the former.

Then jAðc01Þj � 5. So jLðc01Þj ¼ 4, or else ‘ðc01Þ � ð5; 5; 10Þ and c01 would be non-

positive. Hence jAðc01Þj � 6. Since jRðc01Þj � 10, jAðc01Þj ¼ 6 (or else, ‘ðc01Þ
eð4; 7; 10Þ and c01 would be non-positive). So G has an edge xy such that

x 2 VðCiÿ2Þ; y is strictly between Ciÿ1 and Ciÿ2, and y is adjacent to Lðc1Þ. See

Figure 9. Since G is cubic, we can check that ‘ðyÞ � ð4; 6; 12Þ and y is non-

positive, a contradiction. &

Lemma 4.4. Let i � 8, and let a1 and a2 be consecutive in-vertices on Ci such

that (i) Rða1Þ ¼ Lða2Þ and (ii) jCiða1; a2Þj � 4. Let b1 and b2 be the out-vertices

on Ciÿ1 such that Rðb1Þ ¼ Lðb2Þ ¼ Rða1Þ, and assume jCiÿ1ðb1; b2Þj � 3. Let

b3; b4 be the vertices on Ciÿ1ðb1; b2Þ such that Ciÿ1ðb1; b3Þ ¼ ; ¼ Ciÿ1ðb4; b2Þ.
Then

(1) both b3 and b4 are out-vertices on Ciÿ1,

(2) jLðb1Þj ¼ jRðb2Þj ¼ 3 and jRðb3Þj ¼ jLðb4Þj ¼ 3, and

(3) both Rðb3Þ and Lðb4Þ use three consecutive vertices on Ciÿ1.

Proof. Since jCiða1; a2Þj � 4 and jCiÿ1ðb1; b2Þj � 3; jRðb1Þj ¼ jLðb2Þj � 10.

(1) Suppose b3 is an in-vertex on Ciÿ1. See Figure 10. Then jAðb3Þj ¼
jRðb1Þj � 11; jLðb3Þj ¼ jBðb1Þj � 5, and jRðb3Þj � 4. Hence, jRðb3Þj ¼ 4; other-

wise, ‘ðb3Þ � ð5; 5; 11Þ and b3 would be non-positive. So let b; c; c3 be the

vertices of Rðb3Þ such that b 2 Ciÿ1; fc; c3g � VðCiÿ2Þ; c is adjacent to b, and

c3 is adjacent to b3.

Since jBðb1Þj � 5; jLðb1Þj � 4; for otherwise, ‘ðb1Þ � ð5; 5; 11Þ and b1 would

be non-positive. In fact jLðb1Þj ¼ 4, for otherwise, jAðb3Þj ¼ jRðb1Þj � 12 and

jLðb3Þj ¼ jBðb1Þj � 6, and hence, ‘ðb3Þ � ð4; 6; 12Þ and b3 would be non-

positive. Therefore, by Lemma 3.3, we see that jLðb1Þ \ Ciÿ1j 2 f2; 3g. Hence we

have two cases to consider.

First, assume that jLðb1Þ \ Ciÿ1j ¼ 2. See Figure 10(a). Then jBðb1Þj � 6.

Hence jRðb1Þj ¼ 11 and jBðb1Þj ¼ 6, for otherwise, ‘ðb1Þ � ð4; 6; 12Þ or

FIGURE 10. (1) of Lemma 4.4.
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ð4; 7; 11Þ, and b1 would be non-positive. Then jCiÿ1ðb1; b2Þj ¼ 3, and b4 is also

an in-vertex. Hence, jRðb4Þj � 5; jLðb4Þj � 4, and jAðb4Þj ¼ 11. If jLðb4Þj � 5,

then ‘ðb4Þ � ð5; 5; 11Þ and b4 would be non-positive. So jLðb4Þj ¼ 4. Thus b4

is adjacent to a vertex c4 on Ciÿ2 and Ciÿ2ðc3; cÞ ¼ ; ¼ Ciÿ2ðc; c4Þ. Since

jLðb2Þj ¼ 11; a2 is adjacent to b2, and hence jRðb2Þj � 4. Moreover, jRðb2Þj ¼ 4

and jBðb2Þj ¼ 6; otherwise, ‘ðb2Þ � ð5; 5; 11Þ and b2 would be non-positive.

So jBðb2Þj � 6, for otherwise, ‘ðb2Þ � ð4; 7; 11Þ and b2 would be non-positive.

Let c1; c2 be the out-vertices on Ciÿ2 such that Rðc1Þ ¼ Bðb1Þ and Lðc2Þ ¼ Bðb2Þ.
See Figure 10(a). Since jBðb1Þj ¼ jBðb2Þj ¼ 6, Ciÿ2ðc1; c3Þ ¼ ; ¼ Ciÿ2ðc4; c2Þ.
So c1 6¼ c2 (since iÿ 2 � 5 and G is 2-connected). Let c01; c

0
2 be the in-vertices

on Ciÿ2 such that Rðc01Þ ¼ Lðc02Þ ¼ Bðc1Þ ¼ Bðc2Þ. Then jCiÿ2ðc01; c02Þj � 5. Since

iÿ 2 � 5, it follows from Lemma 4.1 and (1) of Lemma 4.2 that jBðc1Þj ¼
jBðc2Þj � 11. So jLðc1Þj � 4, or else, ‘ðc1Þ � ð5; 6; 11Þ and c1 would be

non-positive. Since jRðc1Þj ¼ 6, we have jLðc1Þj ¼ 4 and jLðc1Þ \ Ciÿ2j ¼ 2.

Therefore, jBðc1Þj � 12 and ‘ðc1Þ � ð4; 6; 12Þ, and so, c1 is non-positive, a

contradiction.

So jLðb1Þ \ Ciÿ1j ¼ 3. See Figure 10(b) and (c). Then jRðb1Þj � 12 (since

jCiÿ1ðb1; b2Þj � 3 and both b3 and b are in-vertices). So jBðb1Þj ¼ 5, otherwise

‘ðb3Þ � ð4; 6; 12Þ and b3 would be non-positive. Let c1 denote the out-vertex on

Ciÿ2, such that Rðc1Þ ¼ Bðb1Þ. Since jBðb1Þj ¼ 5 and jLðb1Þj ¼ 4; jLðc1Þj � 5

and Ciÿ2ðc1; c3Þ ¼ ;. Hence jBðc1Þj ¼ jBðcÞj � 7. Note that jLðc1Þj 2 f5; 6g,
otherwise ‘ðc1Þ � ð5; 7; 7Þ and c1 would be non-positive. Let d1; d2 be the out-

vertices on Ciÿ3 such that Rðd1Þ ¼ Lðd2Þ ¼ Bðc1Þ. Assume jLðc1Þj ¼ 6. See

Figure 10(b). Then jBðc1Þj ¼ jRðd1Þj ¼ 7, or else, ‘ðc1Þ � ð5; 6; 8Þ and c1 would

be non-positive. Thus Ciÿ3ðd1; d2Þ ¼ ;, and so, jBðd1Þj � 6. So jLðd1Þj ¼ 5,

or ‘ðd1Þ � ð6; 6; 7Þ and d1 would be non-positive. Therefore, jLðd1Þ \ Ciÿ3j ¼ 2

and jBðd1Þj � 7. Hence ‘ðd1Þ � ð5; 7; 7Þ and d1 is non-positive, a contradiction.

Now assume jLðc1Þj ¼ 5. See Figure 10(c). Then jLðc1Þ \ Ciÿ2j ¼ 2. Let c01; c
0
2

denote the in-vertices on Ciÿ2 such that Rðc01Þ ¼ Lðc02Þ ¼ Bðc1Þ. Then

jCiÿ2ðc01; c02Þj � 4. Since iÿ 2 � 5, it follows from Lemma 4.1 and (1) of

Lemma 4.2 that jBðc1Þj � 10. Thus ‘ðc1Þ � ð5; 5; 10Þ and c1 is non-positive, a

contradiction.

Similarly, we can prove that b4 is an out-vertex.

(2) By symmetry, we only prove (2) for b3 and b1. By (1), b3 is an out-vertex,

and so, jLðb3Þj ¼ jRðb1Þj � 10 and jBðb1Þj ¼ jBðb3Þj � 6. Hence jLðb1Þj � 4; for

otherwise, ‘ðb1Þ � ð5; 6; 10Þ and b1 would be non-positive.

First, assume that jLðb1Þj ¼ 4. Then jLðb1Þ \ Ciÿ1j 2 f2; 3g. If jLðb1Þ \
Ciÿ1j ¼ 2, then jBðb1Þj � 7 and ‘ðb1Þ � ð4; 7; 10Þ, and hence b1 is non-positive,

a contradiction. So jLðb1Þ \ Ciÿ1j ¼ 3. Then jRðb1Þj � 11. Further, jRðb1Þj ¼ 11

and jBðb1Þj ¼ 6; otherwise, ‘ðb1Þ � ð4; 6; 12Þ or ‘ðb1Þ � ð4; 7; 11Þ, and b1 would

be non-positive. Because jRðb1Þj ¼ 11, b3 is adjacent to b4 and a2 is adjacent to

b2. See Figure 11(a). So jBðb2Þj � 6 and jRðb2Þj � 4, and if jRðb2Þj ¼ 4 then

jBðb2Þj � 7. Thus ‘ðb2Þ � ð4; 7; 11Þ or ð5; 6; 11Þ, and b2 is non-positive, a

contradiction.
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Therefore, jLðb1Þj ¼ 3. So jBðb1Þj ¼ jBðb3Þj � 7 and jLðb3Þj ¼ jRðb1Þj � 11.

Therefore, jRðb3Þj ¼ 3, or b3 would be non-positive with ‘ðb3Þ � ð4; 7; 11Þ.
(3) By symmetry, we will only show that Rðb3Þ uses three consecutive vertices

on Ciÿ1. Suppose on the contrary that Rðb3Þ contains a vertex, say b, not on Ciÿ1.

See Figure 11(b). Let b0 denote the vertex in Rðb3Þ ÿ fb; b3g. Note that

Ciÿ1ðb3; b
0Þ ¼ ; and jRðb1Þj � 13 (by (2)). Let b01; b* denote the in-vertices on

Ciÿ1 such that Rðb01Þ ¼ Lðb*Þ ¼ Bðb1Þ. Note that jCiÿ1ðb01; b*Þj � 4.

Then b* 2 Ciÿ1ðb0; b2Þ. For otherwise, jCiÿ1ðb01; b*Þj � 7, and it follows from

Lemma 4.1 that jBðb1Þj � 12. So ‘ðb1Þ � ð3; 12; 13Þ and b1 is non-positive, a

contradiction. Therefore, since b4 is an out-vertex and jLðb4Þj ¼ 3 (by (2)), b is

not adjacent to b4, and so, jRðb1Þj ¼ jLðb2Þj � 14. Hence, jBðb1Þj � 10, or else,

‘ðb1Þ � ð3; 11; 14Þ and b1 would be non-positive.

Let c1; c* denote the out-vertices on Ciÿ2 such that Rðc1Þ ¼ Lðc*Þ ¼ Bðb1Þ.
Since jCiÿ1ðb01; b*Þj � 4 and iÿ 1 � 7, it follows from Lemma 4.1 that

jLðc1Þj ¼ jRðc*Þj ¼ 3 or jCiÿ2ðc1; c
�Þj 6¼ 0. Moreover, if jCiÿ2ðc1; c*Þj 6¼ 0, then

it follows from (4.2) that jCiÿ2ðc1; c*Þj � 3. Therefore jBðb1Þj � 10. Since

jBðb1Þj � 10, we have jBðb1Þj ¼ 10. So b01 is adjacent to Lðb1Þ. Hence

jAðb01Þj � 5. Then jLðb01Þj ¼ 4 (or else ‘ðb01Þ � ð5; 5; 10Þ and b01 would be non-

positive), and so, jAðb01Þj ¼ 6 (or else ‘ðb01Þ � ð4; 7; 10Þ and b01 would be non-

positive). So a1 is not adjacent to Lðb1Þ, and therefore, jRðb1Þj � 15. But then

‘ðb1Þ � ð3; 10; 15Þ and b1 is non-positive, a contradiction. &

Lemma 4.5. Let i � 8, and let a1 and a2 be consecutive in-vertices on Ci such

that (i) Rða1Þ ¼ Lða2Þ and (ii) jCiða1; a2Þj � 4. Let b1 and b2 be the out-vertices

on Ciÿ1 such that Rðb1Þ ¼ Lðb2Þ ¼ Rða1Þ. Then jLðb1Þj ¼ jRðb2Þj ¼ 3.

Proof. Ciÿ1ðb1; b2Þ ¼ ;, then Lemma 4.5 follows from Lemma 4.1. If

Ciÿ1ðb1; b2Þ 6¼ ;, then by Lemma 4.2, jCiÿ1ðb1; b2Þj � 3. Therefore, Lemma 4.5

follows from Lemma 4.4. &

Lemma 4.6. Let i � 9, and let a1 and a2 be consecutive in-vertices on Ci such

that (i) Rða1Þ ¼ Lða2Þ and (ii) jCiða1; a2Þj � 4. Let b1 and b2 be the out-vertices

on Ciÿ1 such that Rðb1Þ ¼ Lðb2Þ ¼ Rða1Þ, and assume that jCiÿ1ðb1; b2Þj � 3. Let

b3; b4 be the vertices on Ciÿ1ðb1; b2Þ such that Ciÿ1ðb1; b3Þ ¼ ; ¼ Ciÿ1ðb4; b2Þ.

FIGURE 11. (2) and (3) of Lemma 4.4.
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Let b; b* be the vertices in Ciÿ1ðb3; b4Þ such that Ciÿ1ðb3; bÞ ¼ ; ¼ Ciÿ1ðb*; b4Þ,
and let b0 be the neighbor of b not on Ciÿ1 and let b00 be the neighbor of b* not on

Ciÿ1. Then

(1) b; b* are in-vertices and b0; b00 =2 Ciÿ2, and

(2) b0 is contained in a facial triangle of G which also contains two con-

secutive vertices on Ciÿ2, and b00 is contained in a facial triangle of G

which also contains two consecutive vertices on Ciÿ2.

Proof. By Lemma 4.4, jLðb1Þj ¼ jRðb2Þj ¼ 3; Rðb3Þ ¼ AðbÞ, and Lðb4Þ ¼
Aðb*Þ are facial triangles of G, and b and b� are in-vertices on Ciÿ1. By

symmetry, we only need to prove (1) and (2) for b0.
(1) Suppose b0 2 Ciÿ2. See Figure 12(a). Then b0 is an out-vertex on Ciÿ2.

Hence jBðb0Þj � 5; jRðb0Þj � 5, and jLðb0Þj ¼ jBðb1Þj � 7. If jBðb0Þj ¼ 5, then

jLðb0Þj � 8 and jRðb0Þj � 6, and hence, ‘ðb0Þ � ð5; 6; 8Þ and b0 would be non-

positive. So jBðb0Þj � 6. Then jRðb0Þj ¼ 5 or else ‘ðb0Þ � ð6; 6; 7Þ and b0 would be

non-positive. Therefore, jRðb0Þ \ Ciÿ2j ¼ 2, and so, if jBðb0Þj ¼ 6 then

jLðb0Þj � 8. So ‘ðb0Þ � ð5; 6; 8Þ or ð5; 7; 7Þ, and hence, b0 is non-positive, a

contradiction.

(2) First we show that b0 is contained in a facial triangle of G. Suppose

on the contrary that b0 is not contained in any facial triangle. Since b0 =2
Ciÿ2; jLðbÞj � 8. Hence jRðbÞj � 7, otherwise, ‘ðb0Þ � ð4; 8; 8Þ and b0 would be

non-positive. Thus b 6¼ b*, and so, jRðb1Þj � 14. See Figure 12(b).

Let x denote the vertex on Ciÿ1ðb; b*Þ ÿ AðbÞ such that x is adjacent to AðbÞ.
Then x is an out-vertex; for otherwise, jLðxÞj � 6 and jRðxÞj � 4, and so,

‘ðxÞ � ð4; 6; 14Þ and x would be non-positive. Thus jRðbÞj ¼ 7. This implies that

RðxÞ is a triangle (otherwise ‘ðxÞ � ð4; 7; 14Þ and x would be non-positive) and

RðxÞ uses three consecutive vertices of Ciÿ1. Now let c denote the out-vertex

on Ciÿ2 such that LðcÞ ¼ RðbÞ. Then since jLðcÞj ¼ 7, c is adjacent to Ciÿ1

and jLðcÞ \ Ciÿ2j ¼ 2. Hence jRðcÞj � 5 and jBðcÞj � 6. Furthermore, if jRðcÞj ¼
5 then jBðcÞj � 7. So ‘ðcÞ � ð5; 7; 7Þ or ð6; 6; 7Þ and c is non-positive, a

contradiction.

Next we show that the facial triangle of G containing b0 also contains two

consecutive vertices on Ciÿ2. Note that jRðb1Þj ¼ jLðb2Þj � 12 and jBðb1Þj � 8 �
jBðb2Þj (because b0; b00 =2 Ciÿ2 by (1)). Also note that jBðb1Þj � 11 � jBðb2Þj, as

FIGURE 12. b 0 is not contained in a triangle.
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otherwise, there exists i 2 f1; 2g such that ‘ðbiÞ � ð3; 12; 12Þ and bi is non-

positive, a contradiction.

Let b01; b
0
2 denote the in-vertices on Ciÿ1 such that Rðb01Þ ¼ Bðb1Þ and Lðb02Þ ¼

Bðb2Þ. Let c1; c2; c3; c4 be the out-vertices on Ciÿ2 such that Rðc1Þ ¼ Lðc3Þ ¼
Bðb1Þ and Lðc2Þ ¼ Rðc4Þ ¼ Bðb2Þ. See Figure 13.

For convenience, let P denote the clockwise subpath of Bðb1Þ from b0 to c3.

We show that jPj ¼ 2, and therefore, since G is cubic, the facial triangle of G

containing b0 also contains two consecutive vertices on Ciÿ2.

Suppose jPj � 4. Then jBðb1Þj � 10. Recall that jBðb1Þj � 11. First, assume

that Ciÿ2ðc1; c3Þ 6¼ ;. Then jBðb1Þj ¼ 11, and Ciÿ2ðc1; c3Þ consists of only one

vertex, say c. It is easy to see that ‘ðcÞ � ð5; 5; 11Þ and c is non-positive, a

contradiction. So Ciÿ2ðc1; c3Þ ¼ ;. Thus jBðc1Þj � 6. So jLðc1Þj � 4, otherwise,

‘ðc1Þ � ð5; 6; 10Þ and c1 would be non-positive. If jLðc1Þj ¼ 4 and jLðc1Þ \
Ciÿ2j ¼ 2, then jBðc1Þj � 7 and ‘ðc1Þ � ð4; 7; 10Þ, and hence, c1 is non-positive,

a contradiction. So jLðc1Þj ¼ 3 or jLðc1Þj ¼ 4 and jLðc1Þ \ Ciÿ2j ¼ 3. Then c1 is

not adjacent to b01. So jBðb1Þj ¼ 11, and hence, b01 is adjacent to Lðb1Þ. Therefore

jAðb01Þj � 5 � jLðb01Þj, and so, ‘ðb01Þ � ð5; 5; 11Þ and b01 is non-positive, a

contradiction.

Now assume that jPj ¼ 3. Note that 9 � jBðb1Þj � 11. Also note that c1 6¼ c4,

and so, c3 =2 Lðc1Þ. Since b0 is contained in a facial triangle and jPj ¼ 3;
jRðc3Þj � 4. Therefore, it follow from Lemma 4.5 that jCiÿ1ðb01; bÞj � 3. So b01 is

adjacent to Lðb1Þ, and hence, jAðb01Þj � 5.

Assume jAðb01Þj ¼ 5. See Figure 13(a). Then jLðb01Þj ¼ 5 and jRðb01Þj ¼
jBðb1Þj ¼ 9, for otherwise, ‘ðb01Þ � ð5; 6; 9Þ or ð5; 5; 10Þ and b01 would be non-

positive. Hence Ciÿ2ðc1; c3Þ ¼ ; and jBðc1Þj � 7. Therefore, ‘ðc1Þ � ð5; 7; 9Þ and

c1 is non-positive, a contradiction.

So jAðb01Þj � 6. Then jLðb01Þj ¼ 4, or else, ‘ðb01Þ � ð5; 6; 9Þ and b01 would be

non-positive. Thus b01 is adjacent to c1 and jLðb01Þ \ Ciÿ1j ¼ jLðb01Þ \ Ciÿ2j ¼ 2.

See Figure 13(b). Assume Ciÿ2ðc1; c3Þ ¼ ;. Then jBðc1Þj � 7. In fact, jBðc1Þj ¼
7, for otherwise, ‘ðc1Þ � ð4; 8; 9Þ and c1 would be non-positive. So jRðc3Þj � 5

and ‘ðc3Þ � ð5; 7; 9Þ, and hence, c3 is non-positive, a contradiction. Thus

Ciÿ2ðc1; c3Þ 6¼ ;, and so, jBðb1Þj � 10. This implies that jAðb01Þj ¼ 6, or else,

‘ðb01Þ � ð4; 7; 10Þ and b01 would be non-positive. Thus Aðb01Þ has an edge xy such

FIGURE 13. b 0 is contained in a triangle.

18 JOURNAL OF GRAPH THEORY



Author Proo

A
that x 2 Ciÿ1; y 2 Rða1Þ \ Aðb01Þ, and x; y =2 Lðb1Þ. Now it is easy to see that

‘ðyÞ � ð4; 6; 12Þ and y is non-positive, a contradiction. &

Lemma 4.7. Let i � 10, and let a1 and a2 be consecutive in-vertices on Ci such

that (i) Rða1Þ ¼ Lða2Þ and (ii) jCiða1; a2Þj � 4. Let b1 and b2 be the out-vertices

on Ciÿ1 such that Rðb1Þ ¼ Lðb2Þ ¼ Rða1Þ, and assume that jCiÿ1ðb1; b2Þj � 3.

Then jCiÿ1ðb1; b2Þj ¼ 3.

Proof. See Figure 14. Let b3; b4 be the vertices on Ciÿ1ðb1; b2Þ such that

Ciÿ1ðb1; b3Þ ¼ ; ¼ Ciÿ1ðb4; b2Þ. Let b; b* be the vertices in Ciÿ1ðb3; b4Þ such that

Ciÿ1ðb3; bÞ ¼ ; ¼ Ciÿ1ðb*; b4Þ. By Lemma 4.6, b and b* are in-vertices on Ciÿ1.

By Lemma 4.4, jAðbÞj ¼ jAðb*Þj ¼ 3 ¼ jLðb1Þj ¼ jRðb2Þj, and AðbÞ and

Aðb*Þ each contain three consecutive vertices on Ciÿ1. So if b ¼ b* then

jCiÿ1ðb1; b2Þj ¼ 3. Hence we may assume that b 6¼ b*.

Let b0 be the neighbor of b not on Ciÿ1 and let b00 be the neighbor of b� not on

Ciÿ1. Since i � 10, it follows from Lemma 4.6 that b0; b00 =2 Ciÿ2, there is a facial

triangle containing b0 and two consecutive vertices on Ciÿ2, and there is a facial

triangle containing b00 and two consecutive vertices on Ciÿ2. See Figure 14(a).

Since G is cubic, AðbÞ \ Aðb*Þ ¼ ;. So jRðb1Þj ¼ jLðb2Þj � 14. Also jBðb1Þj �
8 � jBðb2Þj (since b0; b00 =2 Ciÿ2), and jBðb1Þj � 10 � jBðb2Þj (otherwise, there

would exist i 2 f1; 2g such that ‘ðbiÞ � ð3; 11; 14Þ and bi is non-positive).

Let b01; b
0
2 be the in-vertices on Ciÿ1 such that Rðb01Þ ¼ Bðb1Þ and Lðb02Þ ¼

Bðb2Þ, and let c1; c2; c3; c4 be the out-vertices on Ciÿ2 such that Rðc1Þ ¼ Lðc3Þ ¼
Bðb1Þ and Rðc4Þ ¼ Lðc2Þ ¼ Bðb2Þ. Then c3 is adjacent to b0; c4 is adjacent to b00,
and jRðc3Þj ¼ jLðc4Þj ¼ 3.

FIGURE 14. Proof of Lemma 4.7.
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Case 1. b01 is adjacent to Lðb1Þ or b02 is adjacent to Rðb2Þ.

By symmetry, we may assume that b01 is adjacent to Lðb1Þ. Thus jAðb01Þj � 5.

See Figure 14(b).

We claim that jBðb1Þj � 9. For otherwise, jBðb1Þj ¼ 10. So jRðb1Þj ¼ 14, or

else, ‘ðb1Þ � ð3; 10; 15Þ and b1 would be non-positive. Then a1 is adjacent to

Lðb1Þ, and so, jAðb01Þj � 6. So jLðb01Þj ¼ 4; otherwise, ‘ðb01Þ � ð5; 6; 10Þ and b01
would be non-positive. Hence, jLðb01Þ \ Ciÿ1j ¼ 2 and jAðb01Þj � 7. Therefore,

‘ðb01Þ � ð4; 7; 10Þ and b01 is non-positive, a contradiction.

Since jBðb1Þj � 9; jCiÿ2ðc1; c3Þj � 1. Suppose jCiÿ2ðc1; c3Þj ¼ 1. Let c denote

the only vertex in Ciÿ2ðc1; c3Þ. Then c is an in-vertex, jAðcÞj ¼ jBðb1Þj ¼ 9 and

jLðcÞj � 5. Since jRðc3Þj ¼ 3; jRðcÞj � 6. Thus ‘ðcÞ � ð5; 6; 9Þ and c is non-

positive, a contradiction. Therefore jCiÿ2ðc1; c3Þj ¼ 0, and hence jBðc1Þj � 7.

So jLðc1Þj � 4, for otherwise, ‘ðc1Þ � ð5; 7; 8Þ and c1 would be non-positive.

If jLðc1Þj ¼ 4 and jLðc1Þ \ Ciÿ2j ¼ 2, then jBðc1Þj � 8 and c1 is non-positive

with ‘ðc1Þ � ð4; 8; 8Þ, a contradiction. So jLðc1Þj ¼ 3 or jLðc1Þj ¼ 4 and

jLðc1Þ \ Ciÿ2j ¼ 3. Then jRðb01Þj ¼ jRðc1Þj ¼ 9 and jLðb01Þj � 5. Further, if

jLðb01Þj ¼ 5, then jAðb01Þj � 6. Thus b01 is non-positive with ‘ðb01Þ � ð5; 6; 9Þ, a

contradiction.

Case 2. b01 is not adjacent to Lðb1Þ and b02 is not adjacent to Rðb2Þ.

Then jCiÿ1ðb01; bÞj � 4 � jCiÿ1ðb�; b02Þj. Thus, since iÿ 1 � 9 and by

Lemma 4.5, jLðc1Þj ¼ jRðc2Þj ¼ 3. Hence jBðb1Þj � 10 � jBðb2Þj. In fact,

jBðb1Þj ¼ 10 ¼ jBðb2Þj and jRðb1Þj ¼ 14 ¼ jLðb2Þj; for otherwise, ‘ðb1Þ �
ð3; 11; 14Þ or ð3; 10; 15Þ, and so, b1 would be non-positive. So there are exactly

six vertices in Ciÿ1ðb1; b2Þ, and Ciÿ2ðc1; c3Þ ¼ ; ¼ Ciÿ2ðc4; c2Þ.
Let c01 and c0 denote the in-vertices on Ciÿ2 such that Rðc01Þ ¼ Lðc0Þ ¼ Bðc1Þ.

We claim that c0 2 Ciÿ2ðc3; c4Þ. Otherwise, c0 2 Ciÿ2ðc2; c
0
1Þ and jCiÿ2ðc01; c0Þj �

8. Since iÿ 2 � 8, it follows from Lemma 4.5 that jRðc01Þj � 14. Thus

jRðc01Þj ¼ 14 ¼ jBðc1Þj, or else ‘ðc1Þ � ð3; 10; 15Þ and c1 would be non-positive.

Then c01 is adjacent to Lðc1Þ and jAðc01Þj � 6. Therefore ‘ðc01Þ � ð4; 6; 14Þ and c01
is non-positive, a contradiction.

So c0 2 Ciÿ2ðc3; c4Þ. See Figure 14(c). If c0 is adjacent to Rðc3Þ or Lðc4Þ, then it

is easy to check that ‘ðc0Þ � ð4; 8; 8Þ or ð5; 7; 8Þ, and c0 is non-positive, a

contradiction.

So c0 is adjacent to neither Rðc3Þ nor Lðc4Þ.
Let x be the vertex in Ciÿ2ðc3; c

0Þ ÿ VðRðc3ÞÞ such that x is adjacent to Rðc3Þ.
By the choice of c0, x is an out-vertex on Ciÿ2 and jLðxÞj ¼ jRðbÞj � 10. Further,

jLðxÞj ¼ jRðbÞj ¼ 10, or else ‘ðbÞ � ð3; 11; 14Þ and b would be non-positive.

Also jRðxÞj ¼ 3, as otherwise ‘ðxÞ � ð4; 10; 10Þ and x would be non-positive. So

Ciÿ2ðx; c0Þ ¼ ; and Aðc0Þ ¼ RðxÞ.
Let y denote the vertex in Ciÿ2ðc0; c4Þ ÿ VðLðc4ÞÞ such that y is adjacent to

Lðc4Þ. By the same arguement as above for x, we can show that Ciÿ2ðc0; yÞ ¼ ;
and Aðc0Þ ¼ LðyÞ.
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Let c02 be the in-vertex on Ciÿ2 such that Lðc02Þ ¼ Bðc2Þ. Let d1; d2; d3; d4

be the out-vertices on Ciÿ3 such that Rðd1Þ ¼ Lðd3Þ ¼ Bðc1Þ ¼ Bðc3Þ and

Rðd4Þ ¼ Lðd2Þ ¼ Bðc2Þ ¼ Bðc4Þ. Since Ciÿ2ðc1; c3Þ ¼ ; and jCiÿ1ðb01; bÞj � 4,

it follows from Lemma 4.3 that Ciÿ3ðd1; d3Þ 6¼ ;. Since Ciÿ2ðc4; c2Þ ¼ ;
and Ciÿ1ðb*; b02Þj � 4, it follows from Lemma 4.3 that Ciÿ3ðd4; d2Þ 6¼ ;.
Since iÿ 2 � 8 and by Lemma 4.5, jLðd1Þj ¼ jRðd3Þj ¼ 3 ¼ jLðd4Þj ¼ jRðd2Þj.
So jLðc0Þj � 12 � jRðc0Þj. Thus ‘ðc0Þ � ð3; 12; 12Þ and c0 is non-positive, a

contradiction. &

Lemma 4.8. Let i � 11, and let a1 and a2 be consecutive in-vertices on Ci

such that (i) Rða1Þ ¼ Lða2Þ and (ii) jCiða1; a2Þj � 4. Let b1; b2 denote the out-

vertices on Ciÿ1 such that Rðb1Þ ¼ Lðb2Þ ¼ Rða1Þ. Then jCiÿ1ðb1; b2Þj ¼ 0.

Proof. Suppose on the contrary that jCiÿ1ðb1; b2Þj 6¼ 0. Since iÿ 1 � 10, it

follows from Lemma 4.2 that jCiÿ1ðb1; b2Þj � 3. Therefore, by Lemma 4.7,

jCiÿ1ðb1; b2Þj ¼ 3. Let b3; b; b4 be the vertices on Ciÿ1ðb1; b2Þ in that clockwise

order from b1 to b2. See Figure 15. By Lemma 4.4, jLðb1Þj ¼ jRðb2Þj ¼ 3 and

jAðbÞj ¼ jRðb3Þj ¼ jLðb4Þj ¼ 3. Let b0 be the neighbor of b not on Ciÿ1. By

Lemma 4.6, b0 =2 Ciÿ2 and there is a facial triangle of G containing b0 and two

consecutive vertices on Ciÿ2. Let b01; b
0
2 denote the in-vertices on Ciÿ1 such that

Rðb01Þ ¼ Bðb1Þ and Lðb02Þ ¼ Bðb2Þ. Let c1; c2; c3; c4 denote the out-vertices on

Ciÿ2 such that Rðc1Þ ¼ Lðc3Þ ¼ Bðb1Þ and Rðc2Þ ¼ Lðc4Þ ¼ Bðb2Þ.
Note that jRðb1Þj ¼ jLðb2Þj � 12 and jBðb1Þj � 8 � jBðb2Þj. So jBðb1Þj �

11 � jBðb2Þj, for otherwise, there exists i 2 f1; 2g such that ‘ðbiÞ � ð3; 12; 12Þ
and bi is non-positive, a contradiction.

Case 1. b01 is adjacent to Lðb1Þ, or b02 is adjacent to Rðb2Þ.
By symmetry we may assume that b01 is adjacent to Lðb1Þ. Then jAðb01Þj � 5.

First, assume jAðb01Þj ¼ 5. See Figure 15(a). Then jAðb01Þ \ Ciÿ1j ¼ 3 and

jLðb01Þj � 5. In fact jLðb01Þj ¼ 5 and jLðb01Þ \ Ciÿ2j ¼ 2, as otherwise, ‘ðb01Þ �
ð5; 6; 8Þ and b01 would be non-positive. So b01 is adjacent to c1 and jBðc1Þj � 6.

Therefore, ‘ðc1Þ � ð5; 6; 8Þ and c1 is non-positive, a contradiction.

So jAðb01Þj � 6. Then jLðb01Þj � 4, or else ‘ðb01Þ � ð5; 6; 8Þ and b01 would be

non-positive. In fact jLðb01Þj ¼ 4 (since G is cubic), b01 is adjacent to c1, and

jLðb01Þ \ Ciÿ2j ¼ 2. See Figure 15(b). Then Ciÿ2ðc1; c3Þ 6¼ ;; otherwise, jBðc1Þj �

FIGURE 15. Proof of Lemma 4.8.
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8 and ‘ðc1Þ � ð4; 8; 8Þ, and so, c1 is non-positive, a contradiction. Suppose

Ciÿ2ðc1; c3Þ consists of only one vertex, say c. Then jLðcÞj � 6; jRðcÞj � 6, and

jAðcÞj � 9. So ‘ðcÞ � ð6; 6; 9Þ and c is non-positive, a contradiction. Hence,

jCiÿ2ðc1; c3Þj � 2. Then jBðb1Þj � 10. So jAðb01Þj ¼ 6; otherwise, ‘ðb01Þ �
ð4; 7; 10Þ and b01 would be non-positive. Thus Aðb01Þ has an edge xy such that

x 2 Ciÿ1; y 2 Rða1Þ \ Aðb01Þ, and x; y =2 Lðb1Þ. Now it is easy to see that ‘ðyÞ �
ð4; 6; 12Þ and y is non-positive, a contradiction.

Case 2. b01 is not adjacent to Lðb1Þ, and b02 is not adjacent to Rðb2Þ.
Then jCiÿ1ðb01; bÞj � 4 and jCiÿ1ðb; b02Þj � 4. Since iÿ 1 � 10, it follows from

Lemma 4.5 that jLðc1Þj ¼ jRðc3Þj ¼ jLðc4Þj ¼ jRðc2Þj ¼ 3. Thus jBðb1Þj � 10 �
jBðb2Þj and jBðc1Þj � 6 � jBðc2Þj.

We claim that Ciÿ2ðc1; c3Þ ¼ ; ¼ Ciÿ2ðc4; c2Þ. For otherwise, we may assume

by symmetry that Ciÿ2ðc1; c3Þ 6¼ ;. Then jBðb1Þj � 11. Thus jBðb1Þj ¼ 11 and

Ciÿ2ðc1; c3Þ consists of only one vertex, say c. Now ‘ðcÞ � ð6; 6; 11Þ and c is non-

positive, a contradiction.

Let c01; c
0
2 denote the in-vertices on Ciÿ2 such that Rðc01Þ ¼ Lðc02Þ ¼ Bðc1Þ, and

let d1; d2 denote the out-vertices on Ciÿ3 such that Rðd1Þ ¼ Lðd2Þ ¼ Bðc1Þ. See

Figure 15(c).

Since iÿ 2 � 9 and jCiÿ2ðc01; c02Þj � 6, it follows from Lemma 4.5 that

jLðd1Þj ¼ jRðd2Þj ¼ 3. Thus jBðc1Þj � 12. Since jCiÿ1ðb01; bÞj � 4 and Ciÿ2

ðc1; c3Þ ¼ ;, it follows from Lemma 4.3 that jCiÿ3ðd1; d2Þj 6¼ 0. So by

Lemma 4.2, jCiÿ3ðd1; d2Þj � 3. Therefore, jBðc1Þj � 14. In fact jBðc1Þj ¼ 14, or

else ‘ðc1Þ � ð3; 10; 15Þ and c1 would be non-positive. So c01 is adjacent to Lðc1Þ.
Then jAðc01Þj � 5. Since jLðd1Þj ¼ 3; jLðc01Þj � 5. So ‘ðc01Þ � ð5; 5; 14Þ and c01 is

non-positive, a contradiction. &

We are now ready to prove our main lemma in this section.

Lemma 4.9. Let i � 12, let a1 and a2 be consecutive in-vertices on Ci such that

Rða1Þ ¼ Lða2Þ. Then jCiða1; a2Þj � 3.

Proof. Let b1; b2 be the out-vertices on Ciÿ1 such that Rðb1Þ ¼
Rða1Þ ¼ Lðb2Þ. Suppose for a contradiction that jCiða1; a2Þj � 4. Then by

Lemma 4.8, jCiÿ1ðb1; b2Þj ¼ 0. So by Lemma 4.5, jLðb1Þj ¼ jRðb2Þj ¼ 3. Let

b01; b
0
2 be the in-vertices on Ciÿ1 such that Rðb01Þ ¼ Lðb02Þ ¼ Bðb1Þ, and let c1; c2

be the out-vertices on Ciÿ2 such that Rðc1Þ ¼ Lðc2Þ ¼ Bðb1Þ. See Figure 16.

FIGURE 16. Proof of Lemma 4.9.
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Then jCiÿ1ðb01; b02Þj � 4. Since iÿ 1 � 11, it follows from Lemma 4.3 that

jCiÿ2ðc1; c2Þj 6¼ 0. On the other hand, since iÿ 1 � 11, it follows from Lemma

4.8 that jCiÿ2ðc1; c2Þj ¼ 0, a contradiction. &

5. THREE VERTICES BETWEEN CONSECUTIVE IN-VERTICES

Assume that G is a positively curved, cubic, infinite plane graph, which is nicely

embedded in the plane with respect to a nice sequence ðC0;C1; . . .Þ. In this

section, we show that, for sufficiently large i, there are at most two vertices

between any two consecutive in-vertices on Ci. As in Section 4, this is done

through a series of lemmas.

Lemma 5.1. Let i � 15, and let a1 and a2 be consecutive in-vertices on Ci such

that (i) Rða1Þ ¼ Lða2Þ and (ii) jCiða1; a2Þj ¼ 3. Let b1; b2 denote the out-vertices

on Ciÿ1 such that Rðb1Þ ¼ Lðb2Þ ¼ Rða1Þ. Then jCiÿ1ðb1; b2Þj � 2.

Proof. Suppose on the contrary that jCiÿ1ðb1; b2Þj � 1. Let b01; b
0
2 denote the

in-vertices on Ciÿ1 such that Rðb01Þ ¼ Bðb1Þ and Bðb2Þ ¼ Lðb02Þ. Let c1; c2 be the

out-vertices on Ciÿ2 such that Rðc1Þ ¼ Rðb01Þ and Lðc2Þ ¼ Lðb02Þ. See Figure 17.

Case 1. jCiÿ1ðb1; b2Þj ¼ 1.

Let b be the only vertex in Ciÿ1ðb1; b2Þ. See Figure 17(a). Since G is 2-

connected, b is an in-vertex. Note that jAðbÞj � 8 and jLðbÞj � 5 � jRðbÞj.
In fact, jLðbÞj ¼ jRðbÞj ¼ 5, or else ‘ðbÞ � ð5; 6; 8Þ and b would be non-positive.

So Ciÿ1ðb01; b1Þ ¼ ; ¼ Ciÿ1ðb2; b
0
2Þ; jCiÿ2ðc1; c2Þj ¼ 1, and both b01 and b02 are

adjacent to Ci. Hence, jBðc1Þj � 7.

Moreover, a1 is adjacent to b1, or a2 is adjacent to b2; for otherwise,

jRðb1Þj � 10, and so, ‘ðbÞ � ð5; 5; 10Þ and b1 is non-positive, a contradiction.

By symmetry, we may assume that a1 is adjacent to b1. Then jLðb1Þj � 5.

Furthermore, jLðb1Þj ¼ 5, as otherwise, ‘ðb1Þ � ð5; 6; 8Þ and b1 would be non-

positive. So jLðb1Þ \ Ciÿ1j ¼ 3. This implies that jLðc1Þj ¼ jLðb01Þj � 5.

We claim that jLðc1Þj ¼ 6 and jLðc1Þ \ Ciÿ2j ¼ 3. If jLðc1Þ \ Ciÿ2j ¼ 2, then

there are four consecutive out-vertices on Ciÿ2, contradicting Lemma 4.9.

So jLðc1Þ \ Ciÿ2j � 3. Then jLðc1Þj � 6. In fact, jLðc1Þj ¼ 6; otherwise, ‘ðc1Þ �

FIGURE 17. Proof of Lemma 5.1.
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ð5; 7; 7Þ and c1 would be non-positive. Since jLðb1Þ \ Ciÿ1j ¼ 3 and jLðc1Þ \
Ciÿ2j � 3, we have jLðc1Þ \ Ciÿ2j ¼ 3.

So jBðc1Þj ¼ 7, or else ‘ðc1Þ � ð5; 6; 8Þ and c1 would be non-positive. Now

let d1; d2 denote the out-vertices on Ciÿ3 such that Rðd1Þ ¼ Lðd2Þ ¼ Bðc1Þ.
Since jBðc1Þj ¼ 7 ¼ jRðd1Þj, Ciÿ3ðd1; d2Þ ¼ ;. So jBðd1Þj � 6. Since jLðc1Þ \
Ciÿ2j ¼ 3; jLðd1Þj � 5, and jLðd1Þj ¼ 5 implies jBðd1Þj � 7. So ‘ðd1Þ � ð5; 7; 7Þ
or ð6; 6; 7Þ, and hence, d1 is non-positive, a contradiction.

Case 2. jCiÿ1ðb1; b2Þj ¼ 0.

By Lemma 4.9, Ciÿ1ðb01; b1Þ ¼ ; or Ciÿ1ðb2; b
0
2Þ ¼ ;. By symmetry, we may

assume Ciÿ1ðb01; b1Þ ¼ ;. So jLðb1Þj � 4; jRðb1Þj � 7, and jBðb1Þj � 6. See

Figure 17(b).

Claim 5.1. jLðb1Þj ¼ 4 and jLðb1Þ \ Ciÿ1j ¼ 3.

Suppose jLðb1Þj � 5. Then jLðb1Þj ¼ 5; otherwise, ‘ðb1Þ � ð6; 6; 7Þ and b1

would be non-positive. Moreover, a2 is adjacent to b2 and a1 is adjacent to b1, for

otherwise ‘ðb1Þ � ð5; 6; 8Þ and b1 would be non-positive. So jLðb1Þ \ Ciÿ1j ¼ 3.

Also jBðb1Þj ¼ 6, or else ‘ðb1Þ � ð5; 7; 7Þ and b1 would be non-positive. So

Ciÿ2ðc1; c2Þ ¼ ;; c1 is adjacent to b01; c2 is adjacent to b02, and Ciÿ1ðb2; b
0
2Þ ¼ ;.

Thus jRðc1Þj ¼ 6 and jBðc1Þj � 6. Hence jLðc1Þj ¼ 5, as otherwise ‘ðc1Þ �
ð6; 6; 6Þ and c1 would be non-positive. Therefore, jLðc1Þ \ Ciÿ2j ¼ 2.

Since Ciÿ1ðb2; b
0
2Þ ¼ ; and because a2 is adjacent to b2; jRðb2Þj � 5. So by a

symmetric argument as above, we have jRðb2Þj ¼ 5; jRðc2Þj ¼ 5, and jRðc2Þ \
Ciÿ2j ¼ 2. Then Ciÿ2 has four distinct consecutive out-vertices, contradicting

Lemma 4.9.

So jLðb1Þj ¼ 4. Therefore, since jCiÿ1ðb01; b1Þj ¼ 0; jLðb1Þ \ Ciÿ1j ¼ 3.

Claim 5.2. jRðb2Þj ¼ 4 and jRðb2Þ \ Ciÿ1j ¼ 3.

Since jLðb1Þj ¼ 4 and jLðb1Þ \ Ciÿ1j ¼ 3, jRðb1Þj � 8 and jLðc1Þj � 5.

Assume Ciÿ1ðb2; b
0
2Þ 6¼ ;. Then jBðb1Þj � 7. In fact, jBðb1Þj ¼ 7; otherwise,

‘ðb1Þ � ð4; 8; 8Þ and b1 would be non-positive. So Ciÿ2ðc1; c2Þ ¼ ; and c1 is

adjacent to b01. Therefore, jBðc1Þj � 6; jLðc1Þj � 5, and jRðc1Þj ¼ jBðb1Þj ¼ 7.

Moreover, if jLðc1Þj ¼ 5 then jBðc1Þj � 7. Hence ‘ðc1Þ � ð5; 7; 7Þ or ð6; 6; 7Þ and

c1 is non-positive, a contradiction.

Thus Ciÿ1ðb2; b
0
2Þ ¼ ;. Therefore jRðb2Þj � 4. In fact jRðb2Þj ¼ 4, otherwise

‘ðb2Þ � ð5; 6; 8Þ and b2 would be non-positive. So jRðb2Þ \ Ciÿ1j ¼ 3.

By Claims 5.1 and 5.2, jRðb1Þj ¼ jLðb2Þj � 9; jLðc1Þj � 5, and jRðc2Þj � 5.

See Figure 17(c).

Claim 5.3. jCiÿ2ðc1; c2Þj ¼ 1.

Suppose jCiÿ2ðc1; c2Þj ¼ 0. Then jBðc2Þj ¼ jBðc1Þj � 6. Hence jRðc2Þj ¼
jLðc1Þj ¼ 5, for otherwise, there would exist i 2 f1; 2g such that c1 is non-

positive with ‘ðciÞ � ð6; 6; 6Þ. So jLðc1Þ \ Ciÿ2j ¼ 2 ¼ jRðc2Þ \ Ciÿ2j. Then there
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are four consecutive out-vertices on Ciÿ2, contradicting Lemma 4.9. So

Ciÿ2ðc1; c2Þ 6¼ ;. Then jCiÿ2ðc1; c2Þj ¼ 1; otherwise jBðb1Þj � 8 and ‘ðb1Þ �
ð4; 8; 9Þ, and so, b1 would be non-positive.

By Claim 5.3, let c denote the only vertex in Ciÿ2ðc1; c2Þ. Then jLðcÞj �
5 � jRðcÞj. Moreover, jLðcÞj ¼ 5 or jRðcÞj ¼ 5, for otherwise, ‘ðcÞ � ð6; 6; 6Þ and

c would be non-positive. By symmetry, we may assume that jLðcÞj ¼ 5. So c is

a adjacent to a vertex on Ciÿ3, say d. Then jLðc1Þj � 6. In fact jLðc1Þj ¼ 6,

or ‘ðc1Þ � ð5; 7; 7Þ and c1 would be non-positive. Also, jRðcÞj 2 f5; 6g, for

otherwise, ‘ðcÞ � ð5; 7; 7Þ and c would be non-positive. Let d1; d2 denote the out-

vertices on Ciÿ3 such that Rðd1Þ ¼ Bðc1Þ and Lðd2Þ ¼ Bðc2Þ. Because

jLðcÞj ¼ 5; Ciÿ3ðd1; dÞ ¼ ;.
We claim that Ciÿ3ðd; d2Þ ¼ ;. For otherwise, jBðc2Þj ¼ jRðcÞj ¼ 6 (since

jRðcÞj 2 f5; 6g). So jRðc2Þj � 6. Then ‘ðc2Þ � ð6; 6; 7Þ and c2 is non-positive, a

contradiction.

Hence d1; d; d2 are consecutive out-vertices on Ciÿ3. Let d01; d
0
2 denote the

in-vertices on Ciÿ3 such that Rðd01Þ ¼ Bðd1Þ ¼ Bðd2Þ ¼ Lðd02Þ. Let e1 be the

out-vertex on Ciÿ4 such that Rðe1Þ ¼ Bðd1Þ. Then, since iÿ 3 � 12 and by

Lemma 4.9, Ciÿ3ðd01; d1Þ ¼ ; ¼ Ciÿ3ðd2; d
0
2Þ. So jBðd1Þj ¼ jRðd01Þj � 7 and

jAðd01Þj � 6. Hence jLðd01Þj ¼ 5, or else ‘ðd01Þ � ð6; 6; 7Þ and d01 would be non-

positive. Therefore, d01 is adjacent to e1; jLðe1Þj ¼ 5, and jBðe1Þj � 6. Since

jLðe1Þj ¼ 5, either jBðe1Þj � 7 or jRðe1Þj � 8. So ‘ðe1Þ � ð5; 7; 7Þ or ð5; 6; 8Þ, and

e1 is non-positive, a contradiction. &

Lemma 5.2. Let i � 15, and let a1 and a2 be consecutive in-vertices on Ci such

that (i) Rða1Þ ¼ Lða2Þ and (ii) jCiða1; a2Þj ¼ 3. Let b1; b2 denote the out-vertices

on Ciÿ1 such that Rðb1Þ ¼ Lðb2Þ ¼ Rða1Þ. Then jCiÿ1ðb1; b2Þj � 3.

Proof. Suppose on the contrary that jCiÿ1ðb1; b2Þj � 2. By Lemma 5.1,

Ciÿ1ðb1; b2Þ has exactly two vertices, say b3 and b4. See Figure 18. Without loss

of generality, we may assume that b3 2 Ciÿ1ðb1; b4Þ. Since G is 2-connected and

by Lemma 3.4, both b3 and b4 are in-vertices. So jRðb1Þj ¼ jLðb2Þj � 9. Note that

jLðb3Þj ¼ jBðb1Þj � 5 � jBðb2Þj ¼ jRðb4Þj. So jRðb3Þj ¼ jLðb4Þj � 5, for other-

wise, ‘ðb3Þ � ð5; 6; 9Þ and b3 would be non-positive.

Case 1. jRðb3Þj ¼ jLðb4Þj ¼ 5.

Then jBðb1Þj ¼ jBðb2Þj ¼ 5, for otherwise, there exists i 2 f1; 2g such that

‘ðbiÞ � ð5; 6; 9Þ and bi is non-positive, a contradiction. Therefore jRðb3Þ \
Ciÿ2j ¼ 3. Let c be the vertex in Rðb3Þ \ Ciÿ2 not adjacent to b3 or b4. Then c is

an in-vertex on Ciÿ2 and jLðcÞj � 6 � jRðcÞj. See Figure 18(a). Note that c has a

neighbor, say d, on Ciÿ3; for otherwise, ‘ðcÞ � ð5; 7; 7Þ and c would be non-

positive. Also note that jBðdÞj � 5, and if jBðdÞj ¼ 5 then jLðdÞj � 7 � jRðdÞj.
So ‘ðdÞ � ð5; 7; 7Þ or ð6; 6; 6Þ, and d is non-positive, a contradiction.

Case 2. jRðb3Þj ¼ jLðb4Þj ¼ 4.
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Let c3; c4 2 Ciÿ2 be the neighbors of b3; b4, respectively. Let c1; c2 be the out-

vertices on Ciÿ2 such that Rðc1Þ ¼ Bðb1Þ and Lðc2Þ ¼ Bðb2Þ. See Figures 18(b)

and (c).

We claim that jCiÿ2ðc1; c3Þj � 1 � jCiÿ2ðc4; c2Þj. For otherwise, we may

assume by symmetry that jCiÿ2ðc1; c3Þj � 2. Then jLðb3Þj � 7. In fact, jLðb3Þj ¼
7; otherwise, ‘ðb3Þ � ð4; 8; 9Þ and b3 would be non-positive. So b01 is adjacent to

b1 and jLðb1Þj � 4. Moreover, if jLðb1Þj ¼ 4 then jRðb1Þj � 10. Therefore,

‘ðb1Þ � ð5; 7; 9Þ or ð4; 7; 10Þ, and b1 is non-positive, a contradiction.

We further claim that Ciÿ2ðc1; c3Þ [ Ciÿ2ðc4; c2Þ 6¼ ;. For otherwise,

Ciÿ2ðc1; c3Þ [ Ciÿ2ðc4; c2Þ ¼ ;. Since G is cubic and 2-connected, c1 6¼ c2 and

jCiÿ2ðc2; c1Þj 6¼ ;. Therefore, Ciÿ2 has four consecutive out-vertices, contra-

dicting Lemma 4.9.

So by symmetry, we may assume that Ciÿ2ðc1; c3Þ 6¼ ;. Let c denote the only

vertex in Ciÿ2ðc1; c3Þ. See Figure 18(b). Then jAðcÞj � 6, jRðcÞj � 6, and

jLðcÞj � 5. Hence jLðcÞj ¼ 5, otherwise ‘ðcÞ � ð6; 6; 6Þ and c would be non-

positive. So c is adjacent to some vertex d on Ciÿ3.

Suppose Ciÿ2ðc4; c2Þ ¼ ;. Then jRðcÞj � 7. Indeed jRðcÞj ¼ 7; otherwise,

‘ðcÞ � ð5; 6; 8Þ, and c would be non-positive. Then jLðdÞj ¼ 5; jRðdÞj ¼ 7, and

jBðdÞj � 7. So ‘ðdÞ � ð5; 7; 7Þ and c is non-positive, a contradiction.

So jCiÿ2ðc4; c2Þj ¼ 1. Let c* denote the only vertex in Ciÿ2ðc4; c2Þ. See

Figure 18(c). Then c* is adjacent to some vertex d* on Ciÿ3; otherwise,

‘ðc*Þ � ð6; 6; 6Þ and c* would be non-positive. Note that jRðcÞj ¼ jLðc*Þj � 6.

So jLðcÞj ¼ 5 ¼ jRðc*Þj; for otherwise, ‘ðcÞ � ð6; 6; 6Þ and c would be non-

positive or ‘ðc*Þ � ð6; 6; 6Þ and c* would be positive. Therefore, jRðcÞj ¼
jLðc*Þj � 7, as otherwise, ‘ðcÞ � ð5; 6; 8Þ and c would be non-positive. Then,

since iÿ 3 � 12 and by Lemma 4.9, Ciÿ3ðd; d*Þ 6¼ ;. So jCiÿ3ðd; d*Þj ¼ 1

(because jRðcÞj � 7). Let d0 denote the only vertex in Ciÿ3ðd; d�Þ. It is easy to see

that ‘ðd0Þ � ð6; 6; 7Þ, and so, d0 is non-positive, a contradiction. &

Lemma 5.3. Let i � 17, and let a1 and a2 be consecutive in-vertices on Ci such

that (i) Rða1Þ ¼ Lða2Þ and (ii) jCiða1; a2Þj ¼ 3. Let b1; b2 denote the out-vertices

on Ciÿ1 such that Rðb1Þ ¼ Lðb2Þ ¼ Rða1Þ, and let b3; b4 be the vertice in

Ciÿ1ðb1; b2Þ such that Ciÿ1ðb1; b3Þ ¼ ; ¼ Ciÿ1ðb4; b2Þ. Then both b3 and b4 are

in-vertices.

FIGURE 18. Proof of Lemma 5.2.
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Proof. Note that b3 and b4 are well defined by Lemma 5.2. Suppose this

lemma is false. By symmetry, we may assume that b3 is an out-vertex. See

Figure 19. Then jBðb1Þj ¼ jBðb3Þj � 6. By Lemma 5.2, jCiÿ1ðb1; b2Þj � 3, and

so, jRðb1Þj ¼ jLðb2Þj � 9. Hence jLðb1Þj � 4, for otherwise, ‘ðb1Þ � ð5; 6; 9Þ and

b1 would be non-positive. Let b01; b be the in-vertices on Ciÿ1 such that Rðb01Þ ¼
LðbÞ ¼ Bðb1Þ, and let c1; c be the out-vertices on Ciÿ2 such that Rðc1Þ ¼
LðcÞ ¼ Bðb1Þ. Note that b 2 Ciÿ1ðb3; b4Þ, as otherwise, fb3; b4g is a 2-cut in G

that is contained in VðCiÿ1Þ, contradicting Lemma 3.4. Since jLðb1Þj � 4, we

have two cases to consider.

Case 1. jLðb1Þj ¼ 3.

Then jRðb1Þj � 10. Since iÿ 1 � 16 and jCiÿ1ðb01; bÞj � 3, it follows from

Lemma 4.9 that jCiÿ1ðb01; bÞj ¼ 3. Hence, b01 is adjacent to Lðb1Þ and

Ciÿ1ðb3; bÞ ¼ ;. So jAðb01Þj � 5. By Lemma 5.2, jCiÿ2ðc1; cÞj � 3, and so,

jBðb1Þj � 9. Therefore, jRðb3Þj ¼ 3, as otherwise ‘ðb3Þ � ð4; 9; 10Þ and b3 would

be non-positive. So VðRðb3ÞÞ � VðCiÿ1Þ. See Figure 19(a).

Note that b is not adjacent to c. For otherwise, jLðcÞj � 9 and jRðcÞj �
5 � jBðcÞj. Further, if jBðcÞj ¼ 5 then jRðcÞj � 6. So ‘ðcÞ � ð5; 6; 9Þ and c is non-

positive, a contradiction.

Hence, jLðcÞj ¼ jRðb01Þj � 10. Then jLðb01Þj ¼ 4, as otherwise, ‘ðb01Þ �
ð5; 5; 10Þ and b01 would be non-positive. Therefore jAðb01Þj � 6. In fact,

jAðb01Þj ¼ 6; otherwise, ‘ðb01Þ � ð4; 7; 10Þ and b01 is non-positive, a contradiction.

So Rða1Þ \ Aðb01Þ 6¼ ; and jRða1Þj � 11. Let y be the vertex in Rða1Þ \ Aðb01Þ
such that the clockwise path in Rða1Þ from y to a1 is shortest. Let C denote the

facial cycle of G containing y such that C 6¼ Rða1Þ and C 6¼ Aðb01Þ. Note that

jCj � 4. If jCj � 5, then ‘ðyÞ � ð5; 6; 11Þ and y is non-positive, a contradiction.

So jCj ¼ 4. Then jRða1Þj � 12, and so, ‘ðyÞ � ð4; 6; 12Þ and y is non-positive, a

contradiction.

Case 2. jLðb1Þj ¼ 4.

First, assume that jLðb1Þ \ Ciÿ1j ¼ 2. See Figure 19(b). Then jCiÿ1ðb01; bÞj � 3.

By Lemma 4.9, jCiÿ1ðb01; bÞj ¼ 3. Since iÿ 1 � 16 and by Lemma 5.2,

jCiÿ2ðc1; cÞj � 3. So jBðb1Þj � 9. Hence, ‘ðb1Þ � ð4; 9; 9Þ and b1 is non-positive,

a contradiction.

FIGURE 19. Proof of Lemma 5.3.
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So jLðb1Þ \ Ciÿ1j ¼ 3. See Figure 19(c). Then jRðb1Þj � 10. Thus jBðb1Þj ¼ 6,

as otherwise, ‘ðb1Þ � ð4; 7; 10Þ and b1 would be non-positive. So b is adjacent

to c; b01 is adjacent to c1; jCiÿ1ðb01; bÞj ¼ 2, and Ciÿ2ðc1; cÞ ¼ ;. Note that

jBðc1Þj � 6. Because jLðb1Þ \ Ciÿ1j ¼ 3 and jLðb1Þj ¼ 4; jLðb01Þj ¼ jLðc1Þj � 5.

In fact, jLðc1Þj ¼ 5 and jLðc1Þ \ Ciÿ2j ¼ 2, as otherwise, ‘ðc1Þ � ð6; 6; 6Þ and c1

would be non-positive. Let c0 be the vertex on Ciÿ2 such that Rðc0Þ ¼ Lðc1Þ. Then

c0; c1 and c are three consecutive out-vertices on Ciÿ2. Since iÿ 2 � 15 and

by Lemma 5.2, jBðc1Þj � 9. Thus ‘ðc1Þ � ð5; 6; 9Þ and c1 is non-positive, a

contradiction. &

Lemma 5.4. Let i � 17, and let a1 and a2 be consecutive in-vertices on Ci such

that Rða1Þ ¼ Lða2Þ. Then jCiða1; a2Þj � 2.

Proof. Suppose this lemma is false. Then by Lemma 4.9, jCiða1; a2Þj ¼ 3.

Let b1; b2 denote the out-vertices on Ciÿ1 such that Rðb1Þ ¼ Lðb2Þ ¼ Rða1Þ. By

Lemma 5.2, jCiÿ1ðb1; b2Þj � 3. Let b3; b4 be the vertices in Ciÿ1ðb1; b2Þ such that

Ciÿ1ðb1; b3Þ ¼ ; ¼ Ciÿ1ðb4; b2Þ. By Lemma 5.3, both b3 and b4 are in-vertices.

See Figure 20. So jRðb1Þj ¼ jLðb2Þj � 10 and jBðb1Þj ¼ jLðb3Þj � 5 � jRðb4Þj ¼
jBðb2Þj.

Then jRðb3Þj ¼ 4 ¼ jLðb4Þj; for otherwise, there exists i 2 f3; 4g such that

‘ðbiÞ � ð5; 5; 10Þ and bi is non-positive, a contradiction. Also jLðb1Þj � 4 �
jRðb2Þj; otherwise, there exists i 2 f1; 2g such that ‘ðbiÞ � ð5; 5; 10Þ and bi is

non-positive, a contradiction.

Let b01 be the in-vertex on Ciÿ1 such that Rðb01Þ ¼ Bðb1Þ. Let c1; c3; c4 be out-

vertice on Ciÿ2 such that Rðc1Þ ¼ Lðc3Þ ¼ Bðb1Þ and Rðc4Þ ¼ Bðb2Þ. Since

jRðb3Þj ¼ jLðb4Þj ¼ 4; c3 is adjacent to b3, and c4 is adjacent to b4. Let c01; c* be

the in-vertices on Ciÿ2 such that Rðc01Þ ¼ Lðc*Þ ¼ Bðc1Þ.
We claim that jLðb1Þj ¼ 4 ¼ jRðb2Þj. For otherwise, we may assume by sym-

metry that jLðb1Þj ¼ 3. See Figure 20(a). Then jRðb1Þj � 11 and jBðb1Þj � 6.

Indeed, jRðb1Þj ¼ 11 and jBðb1Þj ¼ 6, as otherwise, ‘ðb3Þ � ð4; 7; 11Þ or

ð4; 6; 12Þ, and b3 would be non-positive. So jCiÿ1ðb1; b2Þj ¼ 3. Since jRðb3Þj ¼
jLðb4Þj ¼ 4; Ciÿ2½c3; c4� consists of three consecutive out-vertices on Ciÿ2. Since

iÿ 2 � 15 and by Lemma 4.9, c1 and c3 cannot be adjacent. Thus jBðb1Þj � 7,

a contradiction.

FIGURE 20. Proof of Lemma 5.4.
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We further claim that jLðb1Þ \ Ciÿ1j ¼ 3 ¼ jRðb2Þ \ Ciÿ1j. For otherwise,

we may assume by symmetry that jLðb1Þ \ Ciÿ1j ¼ 2. See Figure 20(b). Then

jBðb1Þj � 6. Indeed jBðb1Þj ¼ 6; otherwise ‘ðb1Þ � ð4; 7; 10Þ and b1 would be

non-positive. Thus b3 is adjacent to c3; b01 is adjacent to c1, and Ciÿ2ðc1; c3Þ ¼ ;.
Thus jCiÿ2ðc01; c*Þj � 3 (because jRðb3Þj ¼ 4). By Lemma 4.9, Ciÿ2ðc01; c1Þ ¼ ;,
and so jLðc1Þj � 5. By Lemma 5.2, jBðc1Þj � 9. Since jRðc1Þj ¼ jBðb1Þj ¼
6; ‘ðc1Þ � ð5; 6; 9Þ and c1 is non-positive, a contradiction.

So jRðb1Þj ¼ jLðb2Þj � 12. See Figure 20(c). Then jLðb3Þj ¼ 5, for otherwise,

‘ðb3Þ � ð4; 6; 12Þ and b3 would be non-positive. Thus b01 is adjacent to c1, and

Ciÿ2ðc1; c3Þ ¼ ;. Again, jCiÿ2ðc01; c*Þj � 3 (because jRðb3Þj ¼ 4). By Lemma 4.9,

Ciÿ2ðc01; c1Þ ¼ ;, and so jLðc1Þj � 6. By Lemma 5.2, jBðc1Þj � 9. Therefore

‘ðc1Þ � ð5; 6; 9Þ and c1 is non-positive, a contradiction. &

6. TWO VERTICES BETWEEN CONSECUTIVE IN-VERTICES

Let G be a positively curved, cubic, infinite, plane graph that is nicely embedded

with respect to a nice sequence ðC0;C1; . . .Þ. In this section, we show that,

for sufficiently large i, there is at most one vertex between any two consecutive

in-vertices on Ci. Again, this is done through a series of lemmas.

Lemma 6.1. Let i � 20, and let a1 and a2 be consecutive in-vertices on Ci such

that (i) Rða1Þ ¼ Lða2Þ and (ii) jCiða1; a2Þj ¼ 2. Let b1; b2 denote the out-vertices

on Ciÿ1 such that Rðb1Þ ¼ Lðb2Þ ¼ Rða1Þ. Then jCiÿ1ðb1; b2Þj 6¼ 0.

Proof. Suppose jCiÿ1ðb1; b2Þj ¼ 0. Then jBðb1Þj ¼ jBðb2Þj � 6. Let b01; b
0
2 be

the in-vertices on Ciÿ1 such that Rðb01Þ ¼ Bðb1Þ ¼ Lðb02Þ, and let c1; c2 denote the

out-vertices on Ciÿ2 such that Rðc1Þ ¼ Lðc2Þ ¼ Bðb1Þ. Because iÿ 1 � 19 and

by Lemma 5.4, jCiÿ1ðb01; b02Þj ¼ 2. Hence Ciÿ1ðb01; b1Þ ¼ ; ¼ Ciÿ1ðb2; b
0
2Þ. So

jLðb1Þj � 4 � jRðb2Þj.
Case 1. jCiÿ2ðc1; c2Þj ¼ 0.

Let c01; c
0
2 denote the in-vertices on Ciÿ2 such that Rðc01Þ ¼ Bðc1Þ ¼ Lðc02Þ.

See Figure 21(a). Since iÿ 2 � 18 and by Lemma 5.4, jCiÿ2ðc01; c02Þj ¼ 2. Thus

Ciÿ2ðc01; c1Þ¼ ;¼ Ciÿ2ðc2; c
0
2Þ. Note that jBðc2Þj� 6. Then jLðc1Þj ¼ jRðc2Þj ¼ 5;

FIGURE 21. Proof of Lemma 6.1.
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otherwise, there exists i 2 f1; 2g such that ‘ðciÞ � ð6; 6; 6Þ and ci is non-positive,

a contradiction. This forces jLðb1Þj � 5 � jRðb2Þj. Further jLðb1Þj ¼ 5 ¼ jRðb2Þj,
for otherwise, there exists i 2 f1; 2g such that ‘ðbiÞ � ð6; 6; 6Þ and bi is non-

positive, a contradiction. Therefore, jRðb1Þj ¼ jLðb2Þj � 8. But then ‘ðb1Þ �
ð5; 6; 8Þ and b1 is non-positive, a contradiction.

Case 2. jCiÿ2ðc1; c2Þj ¼ 1.

Let c be the only vertex in Ciÿ2ðc1; c2Þ. See Figure 21(b). Then jAðcÞj � 7 and

jLðcÞj � 5 � jRðcÞj. If jLðcÞ \ Ciÿ3j ¼ 2 ¼ jRðcÞ \ Ciÿ3j, then Ciÿ3 has three

consecutive out-vertices, contradicting Lemma 5.4 (because iÿ 3 � 17). So by

symmetry, we may assume that jRðcÞ \ Ciÿ3j � 3. Hence jRðcÞj � 6. Indeed

jRðcÞj ¼ 6 and jLðcÞj ¼ 5, for otherwise, ‘ðcÞ � ð5; 7; 7Þ or ð6; 6; 7Þ and c would

be non-positive. So jRðcÞ \ Ciÿ2j ¼ 3, and hence, jRðc2Þj � 5. In fact,

jRðc2Þj ¼ 5, as otherwise, ‘ðc2Þ � ð6; 6; 7Þ and c2 would be non-positive.

Therefore jRðb2Þj � 5. Further, if jRðb2Þj ¼ 5 then jLðb2Þj � 7. So ‘ðb2Þ �
ð5; 7; 7Þ or ð6; 6; 7Þ, and c2 is non-positive, a contradicton.

Case 3. jCiÿ2ðc1; c2Þj � 2.

Then jBðb1Þj ¼ jBðb2Þj � 8. Hence jLðb1Þj ¼ jRðb2Þj ¼ 4; otherwise there

exists i 2 f1; 2g such that ‘ðbiÞ � ð5; 6; 8Þ and bi is non-positive, a contradiction.

Since Ciÿ1ðb01; b1Þ ¼ ; ¼ Ciÿ1ðb2; b
0
2Þ; jLðb1Þ \ Ciÿ1j=3=jRðb2Þ \ Ciÿ1j. Hence,

jRðb1Þj � 8 and ‘ðb1Þ � ð4; 8; 8Þ, and so, b1 is non-positive, a contradiction. &

Lemma 6.2. Let i � 21, and let a1 and a2 be consecutive in-vertices on Ci such

that (i) Rða1Þ ¼ Lða2Þ and (ii) jCiða1; a2Þj ¼ 2. Let b1; b2 denote the out-vertices

on Ciÿ1 such that Rðb1Þ ¼ Lðb2Þ ¼ Rða1Þ. Then jCiÿ1ðb1; b2Þj 6¼ 1.

Proof. Suppose jCiÿ1ðb1; b2Þj ¼ 1. Then jRðb1Þj ¼ jLðb2Þj � 7. Let b be the

only vertex in Ciÿ1ðb1; b2Þ. Since G is 2-connected, b is an in-vertex. See

Figure 22. Note that jLðbÞj ¼ jBðb1Þj � 5 � jBðb2Þj ¼ jRðbÞj.
Now jLðbÞj ¼ 5 or jRðbÞj ¼ 5, as otherwise, ‘ðbÞ � ð6; 6; 7Þ and b would be

non-positive. By symmetry, we may assume that jLðbÞj ¼ 5. Then b is adjacent

to a vertex on Ciÿ3, say c. Let c1 denote the out-vertex on Ciÿ2 such that

Rðc1Þ ¼ Bðb1Þ, and let b01 be the in-vertex on Ciÿ1 such that Rðb01Þ ¼ Bðb1Þ.
Since jLðbÞj ¼ 5, Ciÿ2ðc1; cÞ ¼ ; ¼ Ciÿ1ðb01; b1Þ, and b01 is adjacent to c1.

FIGURE 22. Proof of Lemma 6.2.
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Let c01; c

0 denote the in-vertices on Ciÿ2 such that Rðc01Þ ¼ Lðc0Þ ¼ Bðc1Þ.
Since iÿ 2 � 19 and by Lemma 5.4, jCiÿ2ðc01; c0Þj ¼ 2. Hence Ciÿ2ðc; c0Þ ¼ ; ¼
Ciÿ2ðc01; c1Þ. Thus jAðc0Þj � 6. Indeed, jAðc0Þj ¼ 6, as otherwise ‘ðbÞ � ð5; 7; 7Þ
and b would be non-positive. Now jRðc0Þj ¼ 5 and jLðc0Þj � 7, for otherwise,

‘ðc0Þ � ð5; 6; 8Þ or ð6; 6; 6Þ and c0 would be non-positive.

Let d1; d2 denote the out-vertices on Ciÿ3 such that Rðd1Þ ¼ Lðd2Þ ¼ Bðc1Þ.
Since jRðc0Þj ¼ 5 and jAðc0Þj ¼ 6; c0 is adjacent to d2 and jRðc0Þ \ Ciÿ3j ¼ 2. So

jBðd2Þj � 6. Moreover, since iÿ 3 � 18 and by Lemma 5.4, Ciÿ3ðd1; d2Þ 6¼ ;.
Therefore, since jLðc0Þj � 7, jLðc0Þj ¼ 7. So let d be the only vertex in

Ciÿ3ðd1; d2Þ. Then jRðdÞj ¼ jBðd2Þj � 6, and jLðdÞj ¼ jBðd1Þj � 5. In fact,

jLðdÞj ¼ 5 and jRðdÞj ¼ 6, for otherwise, ‘ðdÞ � ð6; 6; 7Þ or ð5; 7; 7Þ and d

would be non-positive. Thus jLðdÞ \ Ciÿ4j ¼ 2 ¼ jRðdÞ \ Ciÿ4j. Hence Ciÿ4 has

three consecutive out-vertices. Since iÿ 4 � 17, this contradicts Lemma 5.4. &

Lemma 6.3. Let i � 24, and let a1 and a2 be consecutive in-vertices on Ci such

that (i) Rða1Þ ¼ Lða2Þ and (ii) jCiða1; a2Þj ¼ 2. Let b1; b2 denote the out-vertices

on Ciÿ1 such that Rðb1Þ ¼ Lðb2Þ ¼ Rða1Þ, and assume that jCiÿ1ðb1; b2Þj � 2. Let

b3; b4 be the vertices in Ciÿ1ðb1; b2Þ such that Ciÿ1ðb1; b3Þ ¼ ; ¼ Ciÿ1ðb4; b2Þ.
Then both b3 and b4 are out-vertices.

Proof. Suppose this is false. Without loss of generality, we may assume that

b3 is an in-vertex. See Figure 23. Since jCiÿ1ðb1; b2Þj � 2; jAðb3Þj ¼ jRðb1Þj ¼
jLðb2Þj � 8. Hence b3 is adjacent to Ciÿ2; otherwise, jLðb3Þj � 6 and jRðb3Þj � 5,

and so, ‘ðb3Þ � ð5; 6; 8Þ and b3 is non-positive, a contradiction. Let c denote the

neighbor of b3 on Ciÿ2. We consider two cases.

Case 1. jRðb3Þj ¼ 4.

Let c2 be the out-vertex on Ciÿ2 such that Lðc2Þ ¼ RðcÞ. See Figure 23(a).

Since jRðb3Þj ¼ 4; Ciÿ2ðc; c2Þ ¼ ;. Let c01; c
0
2 denote the in-vertices on Ciÿ2

such that Rðc01Þ ¼ BðcÞ ¼ Lðc02Þ, and let d1; d2 be the out-vertices on Ciÿ3 such

that Rðd1Þ ¼ BðcÞ ¼ Lðd2Þ. Since iÿ 2 � 22 and by Lemmas 6.1 and 6.2,

jCiÿ3ðd1; d2Þj � 2. Hence jBðcÞj ¼ jBðc2Þj � 8. By Lemma 5.4, Ciÿ2ðc01; cÞ ¼
; ¼ Ciÿ2ðc2; c

0
2Þ. So jBðb1Þj ¼ jAðc01Þj � 6 and jRðc01Þj ¼ jBðcÞj � 8. Hence

jLðc01Þj ¼ 4, as otherwise ‘ðc01Þ � ð5; 6; 8Þ and c01 would be non-positive.

FIGURE 23. Proof of Lemma 6.3.
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Therefore, c01 is adjacent to d1. So jLðd1Þj ¼ jLðc01Þj ¼ 4. Note that jRðd1Þj ¼
jRðc01Þj � 8. Since iÿ 3 � 21 and since Lðd1Þ \ Ciÿ3 consists of two consecutive

out-vertices on Ciÿ3, it follows from Lemmas 6.1 and 6.2 that jBðd1Þj � 8. Thus

‘ðd1Þ � ð4; 8; 8Þ and d1 is non-positive, a contradiction.

Case 2. jRðb3Þj � 5.

Then jLðb3Þj ¼ jRðb3Þj ¼ 5, for otherwise, ‘ðb3Þ � ð5; 6; 8Þ and b3 would be

non-positive. Also jRðb1Þj � 9, or else, ‘ðb3Þ � ð5; 5; 10Þ and b3 would be non-

positive.

Let b01 be the in-vertex on Ciÿ1 such that Rðb01Þ ¼ Bðb1Þ, and let c1; c be the

out-vertices on Ciÿ2 such that Rðc1Þ ¼ LðcÞ ¼ Bðb1Þ. See Figure 23(b). Since

jLðb3Þj ¼ 5; Ciÿ2ðc1; cÞ ¼ ;; b3 is adjacent to c, and b01 is adjacent to c1.

Let c01; c
0 be the in-vertices on Ciÿ2 such that Rðc01Þ ¼ Lðc0Þ ¼ Bðc1Þ. Let d1; d2

denote the out-vertices on Ciÿ3 such that Rðd1Þ ¼ Lðd2Þ ¼ Bðc1Þ. Since

iÿ 2 � 22 and by Lemma 5.4, Ciÿ2ðc01; c1Þ ¼ ; ¼ Ciÿ2ðc; c0Þ. Since iÿ 3 � 21

and by Lemmas 6.1 and 6.2, jCiÿ3ðd1; d2Þj � 2. Hence jBðc1Þj ¼ jBðcÞj ¼
jLðc0Þj � 8.

Since jRðb3Þj ¼ 5, b3 is adjacent to c, and Ciÿ2ðc; c0Þ ¼ ;, we have jRðcÞ \
Ciÿ2j ¼ 3. Thus c0 is adjacent to d2, for otherwise, ‘ðc0Þ � ð5; 6; 8Þ and c0 would

be non-positive. So jRðd2Þj � 5. Further, if jRðd2Þj ¼ 5, then jBðd2Þj � 6.

Therefore, ‘ðd2Þ � ð5; 6; 8Þ and d2 is non-positive, a contradiction. &

Lemma 6.4. Let i � 24, and let a1 and a2 be consecutive in-vertices on Ci such

that Rða1Þ ¼ Lða2Þ. Then jCiða1; a2Þj � 1.

Proof. Suppose jCiða1; a2Þj � 2. Then by Lemmas 5.4, jCiða1; a2Þj ¼ 2. Let

b1; b2 denote the out-vertices on Ciÿ1 such that Rðb1Þ ¼ Lðb2Þ ¼ Rða1Þ. See

Figure 24. By Lemmas 6.1 and 6.2, jCiÿ1ðb1; b2Þj � 2, and so, jRðb1Þj ¼
jLðb2Þj � 8. Let b3; b4 be the vertices in Ciÿ1ðb1; b2Þ such that Ciÿ1ðb1; b3Þ ¼
; ¼ Ciÿ1ðb4; b2Þ. By Lemma 6.3, both b3 and b4 are out-vertices. Let c1; c be

the out-vertices on Ciÿ2 such that Rðc1Þ ¼ Bðb1Þ ¼ LðcÞ. Since iÿ 1 � 23, it

follows from Lemmas 6.1 and 6.2 that jCiÿ2ðc1; cÞj � 2. Hence jBðb1Þj ¼
jBðb3Þj � 8.

By Lemma 5.4, Ciÿ1ðb01; b1Þ ¼ ;. Thus jLðb1Þj � 4. Therefore ‘ðb1Þ � ð4; 8; 8Þ
and b1 is non-positive, a contradiction. &

FIGURE 24. Proof of Lemma 6.4.

32 JOURNAL OF GRAPH THEORY



Author Proo

A
7. PROOF OF THE MAIN RESULT

In this section, we complete the proof of Theorem 1.1. Let G be a positively

curved, cubic, infinite plane graph. By Theorem 2.1, G has a nice sequence

ðC0;C1; . . .Þ. By Theorem 2.2, we may assume that G is nicely embedded with

respect to ðC0;C1; . . .Þ.
Lemma 7.1. For i � 26; jCiÿ1j > jCij.

Proof. Let a1; a2; . . . ; an denote the in-vertices occuring on Ci in that

clockwise order. For each j 2 f1; . . . ; ng, let bj; b
0
j be the out-vertices on Ciÿ1

such that RðbjÞ ¼ RðajÞ and Lðb0jÞ ¼ LðajÞ. See Figure 25(a). For convenience,

let bnþ1 ¼ b1; b0nþ1 ¼ b01, and anþ1 ¼ a1.

To prove the lemma, it suffices to show that, for each j 2 f1; . . . ; ng,
jCiÿ1ðbj; b

0
jþ1Þj � jCiðaj; ajþ1Þj, and there is some k 2 f1; . . . ; ng such that

jCiÿ1ðbk; b
0
kþ1Þj > jCiðak; akþ1Þj.

By Lemma 6.4, jCiðaj; ajþ1Þj � 1.

If jCiðaj; ajþ1Þj ¼ 0, then clearly jCiÿ1ðbj; b
0
jþ1Þj � jCiðaj; ajþ1Þj. Now assume

that jCiðaj; ajþ1Þj ¼ 1. Since iÿ 1 � 25, it follows from Lemma 6.4 that Ciÿ1 has

no consecutive out-vertices. Hence jCiÿ1ðbj; b
0
jþ1Þj � 1. So jCiÿ1ðbj; b

0
jþ1Þj �

jCiðaj; ajþ1Þj.
Hence we may assume that bj ¼ b0j for all j 2 f1; . . . ; ng, for otherwise,

we have jCiÿ1j > jCij. Because G is connected and ðC0;C1; . . .Þ is an infinite

sequence, there is some k 2 f1; . . . ; ng such that jCiðak; akþ1Þj ¼ 1. So

jRðbkÞj � 6. See Figure 25(b). Note that jBðbkÞj � 5.

If jBðbkÞj ¼ 5, then jBðbkÞ \ Ciÿ2j ¼ 2 and Ciÿ2 has consecutive out-

vertices, contradicting Lemma 6.4 (because iÿ 2 � 24). So jBðbkÞj � 6. Hence

jLðbkÞj � 5, or else ‘ðbkÞ � ð6; 6; 6Þ and bk would be non-positive. In fact,

jLðbkÞ \ Ciÿ1j � 3 by Lemma 6.4 (since iÿ 1 � 25 and Ciÿ1 has no consecutive

out-vertices). So jCiÿ1ðbkÿ1; b
0
kÞj ¼ jCiÿ1ðbkÿ1; bkÞj > jCiðakÿ1; akÞj. Therefore,

jCiÿ1j > jCij. &

It is now easy to see that Theorem 1.1 holds because of the contradiction

caused by Lemma 7.1 and the infinite sequence ðC0;C1; . . .Þ.

FIGURE 25. Proof of Lemma 7.1.
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