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Abstract

In this paper we give examples to show that a conjecture on k-walks
of graphs, due to B. Jackson and N.C. Wormald, is false. We also give a
maximum degree condition for the existence of k-walks and k-trees in 2-
connected graphs.
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1 Introduction

All graphs considered here are simple and finite. We use GG to denote a graph,
and use V(G) and F(G) to denote its vertex set and edge set, respectively. For
any v € V(G), Ng(v) denotes the set of neighbors of v in G, and |Ng(v)| the
degree of v in G. Sometimes, we simply use N(v) and d(v) to denote them,
respectively, if no confusion occurs. Let 6(G) = min{d(v) | v € V(G)} and
A(G) = max{d(v) | v € V(G)}. A k-walk of G is a spanning closed walk of
G using each vertex at most k times. When k£ = 1, a k-walk of GG is a hamiltonian
cycle of G. We say that G is K ,-free if no induced subgraph of G is isomorphic
to Ky,. A graph G is t-tough if for any S C V(G), the number of components
c(G — S) < |S|/t. For notations and terminology not defined here, we refer to [1].

A well known conjecture by Chvatal [8] states that every sufficiently tough graph
has a hamiltonian cycle. Many results for a K; s3-free graph to be hamiltonian have
been obtained. Since the concept of a k-walk is a generalization of the concept of
a hamiltonian cycle, in [3] B. Jackson and N.C. Wormald investigated k-walks and
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obtained the following results.

Theorem 1.1. [3] Let £ > 2 be an integer. If G is connected and for any S C V(G),
c(G—=S) < (k—2)|S|+ 2, then G has a k-walk.

As a consequence, the following result is immediate.

Theorem 1.2. [3] Every 1/(k — 2)-tough graph has a k-walk.

A well known conjecture related to k-walks is stated as follows, which is still
open.

Conjecture A. [3] Every 1/(k — 1)-tough graph has a k-walk.
Theorem 1.3. [3] If G is connected and K j4i-free, then G has a k-walk.

Theorem 1.4. [3] Let 7 > 1, k > 3 be integers. If G is j-connected and Ky j(k—2)41-
free, then G has a k-walk.

The authors of [3] believe that Theorem 1.4 can be sharpened as follows.

Conjecture B. [3] Let j > 1, k > 2 be integers. If G is j-connected and K7 jji1-
free, then GG has a k-walk.

Clearly, Conjecture B holds for j = 1. But, as we will see in Section 2, it is
false for j > 2. Our counterexamples are based on a result of [4], where the author
constructed a family of graphs G, j > 3, which are j-connected, j-regular and non-
hamiltonian. From their graphs G;, we employ a similar technique to construct
counterexamples to Conjecture B for j > 3. Also, we give a minimally 2-connected
graph to show that Conjecture B is false for j = 2. So, perhaps 1/k-tough graphs do
not have k-walks. In some sense, we feel that Conjecture A, if true, is best possible.

In Section 3, we give a maximum degree condition for the existence of k-walks
and k-trees in 2-connected graphs, which is best possible for k-trees. But, we know
that under this condition it is impossible for graphs to have a hamiltonian cycle.

2 Negative Answer for Conjecture B

In order to construct our counterexamples for j > 3, first of all, we need the fol-
lowing lemmas.

Lemma 2.1. [4] For any integer j > 3, there always exist j-connected and j-
regular non-hamiltonian graphs.

The counterexamples are constructed as follows. Let G' be a j-connected and
j-regular non-hamiltonian graph, j > 3. For every z € V(G), we create jk — 1 new
vertices 2!, 22 -+, 27¥71 and for every edge a € E(QG) incident to z, we create a
new vertex x,. Denote



D(z) ={z, | « € E(G) and is incident to x},

S(x)={a"]i=1,2,---,jk —1}.

Obviously, |D(z)| = dg(z) = j and |S(x)| = jk — 1. We construct a new graph G*
as follows:

V(@)= U (D) us),

z€V(Q)
E(G") = By U By,

in which,

By ={zaya | @ =2y € E(G)},
Ey ={uv |ue D(z), ve S(x) for some z € V(G)}.
From the construction, the following result follows immediately.

Lemma 2.2. G* is j-connected and K j,41-free. O

Next, we shall show the following result.
Lemma 2.3. GG* does not have any k-walks.

Proof. Suppose that G* has a k-walk W. Then we can show that, for every
vertex ¢ € V(G), there exists a sub-walk W, = w1 va -+ vgjp—1 in W such that
S(z) = {vy]l < i < jk —1} and D(z) = UF {vy1}.

Otherwise, in order to meet all vertices of S(x), the sum of the meeting times
of vertices in D(x) is at least [S(z)| +2 = jk + 1. Since Ng(S(z)) = D(x) and
both D(z) and S(x) are independent sets in G*, there exists at least one vertex in
D(z) which is met at least k£ + 1 times in W, a contradiction.

Then every vertex in D(z) is met exactly k times, since the sum of meeting
times of all vertices in D(z) is |S(x)| + 1 = jk and |D(z)| = j. We can denote W
by xoWa,Wey + - Wa Yo, where n = |V(G)|, x = 21, y = z,, o = 2y € E(G) and
x; # x1,1 # 1. Since W is a k-walk, there must exist an edge e; € E(G) such that
e; = x;x;41 for each 1 <4 <n — 1. Thus, we can obtain a hamiltonian cycle of G,
a contradiction. The proof is complete. O

From above, we can see that Conjecture B is false for ;7 > 3. Now we consider the
case j = 2. The following Figure 1 shows a 2-connected graph G with A(G) = 2k
and without any k-walks.



Figure 1. A counterexample graph G

In fact, as shown in Figure 1, we can see that |N(a;) "N (b;)| = |N(c;)NN(d;)| =
2k—1,i=1, 2, 3, k > 2, and G is 2-connected with A(G) = 2k. Both N(a;)NN(b;)
and N(c;) N N(d;) are independent sets, i = 1, 2, 3. By a proof analogous to that
in Lemma 2.3, we know that there exists a walk W; with ends a; and d; which
contains only N(a;) U N(¢;) U{ai, bi, ¢, diy, w;}, since N(w;) = {c;, b;}; whereas
W — W, does not contain any vertex of N(a;) U N(¢;)U{a;, b;, ¢, di, w;}. So, W
can be written as ulWivWouWsv, a contradiction.

Thus, we obtain the following negative answer to Conjecture B of [3].

Theorem 2.1. Conjecture B is false for j > 2. O

3 Maximum Degree Condition for the Existence
of k-Walks and k-Trees in 2-Connected Graphs

A k-tree of a connected graph G is a spanning tree of G with maximum degree
at most k. In this section we consider only 2-connected graphs. A graph G is
minimally 2-connected if, for any e € F(G), G — e has a cut vertex.

Lemma 3.1. [2] If G is a minimally 2-connected graph, then every 2-connected
subgraph of G is minimally 2-connected.

Lemma 3.2. 2] If G is a minimally 2-connected graph, then for any e € F(G), e
is not a chord of any cycle of G.

More results on minimally 2-connected graphs can be found in [2].

Let GG be a minimally 2-connected graph. We say that G satisfies {2 on a vertex-
cut {u,v} if one of the following conditions holds

(P) (G — {u,v}) is even, and for every component G; of G — {u,v}, both
|Ng(u) NV(G;)] and |[Ng(v) NV (G;)| are odd;

(P2) For every component G; of G —{u, v}, every block of G; + {u, v} satisfies (P;)
on the vertex-cut {z, y}, in which Ng(z)NV(G—B) # @ and Ng(y)NV (G—B) # O;
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(P3) G=GUG", G'NG" = {u,v}, and G' and G” satisfies (P;) and (P,), respec-
tively, on the vertex-cut {u,v}.

Lemma 3.3. Let £ > 2 be an integer, G be minimally 2-connected, A(G) < 2k—2,
and {u,v} be a vertex-cut of G. Then, G contains a spanning tree 7" such that if
G satisfies Q on {u,v}, then

(i) dr(u) < d(u)/2, dr(v) <d(v)/2+ 1 and dr(z) < k, 2 € V(G) — {u,v}, or

(ii) dr(u) < [d(w)/2], dr(v) < [d(v)/2] and dp(z) < k, z € V(G) — {u,v}.

Proof. By induction on |[V(G)|. For |V(G)| = 3, 4, 5, 6, the lemma holds
obviously. We assume that the lemma holds for graphs with order less than

[V(G)|. Let G1, Ga, --+, G, be the components of G — {u,v}, r > 2, and let
H;, = G;+{u,v},i =1, 2, ---, r. Then, H; has at least two blocks, and each
block is minimally 2-connected or a K, see [2|. Let B; 1, B; 2, ---, B 5, be

the blocks of H; such that B; ; N B; j41 = {z;, j41}, v =25 1, vV = 24, 5,41, and
dg,(u, B; 1) < dg,(u, B;, ;) if and only if ¢ < j. We distinguish the following two
cases to consider H;, 1 =1, 2, ---, r.

Case 1. If B, ;, 1 < j <, satisfies Q on {x; ;, x; j41}, then by the induction
hypothesis, B; ; contains a spanning tree 7; ; such that

de‘, j(xl} j) < dBi, j(xi, j>/27 dTi, j(xi, j-‘rl) < dBi, j(xl} j+1)/2 +1
and dp, (z) <k, v € V(B ;) —{zi j, vi jy1}. Let Ty = UL, Ti ;. Then, T is
a spanning tree of H; such that

and dp, () < k, z € V(G;).

Case 2. There exists asubset I C {1, 2, ---, s;} and [ # @ such that B; 4, t € I,
does not satisfy Q on {x;, i1} Let T, + = Ko, if B 1 = Ko. If B; +, t € 1, is
minimally 2-connected, then by the induction hypothesis, it contains a spanning
tree T} , such that

dr, (vs, ) < [dp, (i ¢)/2], dr, (23 e41) < [dB, (T3, 141)/2]

and dr, ,(z) <k, x € V(B; ) — {2i, ¢, %i, 1+1}. Let to = max{t | t € I}. Note
that for every j € {1, 2, ---, s;} — I, B, ; satisfies Q on {x; ;, =; ;+1}. Then,

(1) If j < to, then B; ; contains a spanning tree 7; ; such that



2) If 7 > ty, then by the symmetry of z; ;.1 and x; ;, we have that B; ; has a
K ]+ b ] b ]
spanning tree 7; ; such that

dr, (zi ) < dp, (i, ;)/2+ 1, dr, (2 ) <dp, (23 j41)/2
and dy, (z) <k, v € V(B ;) —{xi j, T3 jo1}-
Next, let T; = Uji:l T;, ;. Then, T; is a spanning tree of H; such that
dr,(u) < [dp,(u)/2], dr,(v) < [dy,(v)/2]

and dr,(z) < k, z € V(G;). In both cases, we use e; and f; to denote the edges
incident to u and v, respectively, on the u-v path in 7;. Now we distinguish two
cases to consider G.

Case a. G satisfies 2 on {u,v}.
Subcase a.l. ( ;) is true.
Then, r is even, dy,(u) and dy,(v) are odd, and
dr, (u) < (dp; () +1)/2, dr,(v) < (dp,(v) +1)/2
and dr,(z) <k, x € V(G,). Let T =Ui_, T; — U3 eai — U™ foisn.
Subcase a.2. (P) is true.

Then,
dTi (u) < dHi(u)/27 dTi(v) < de(’U)/2 +1

and dp, () <k, x € V(G;). Let T=Ul_, T; — U, fi.
Subcase a.3. ( P;) is true.

Then, G = G'UG", G'NG" = {u,v}, G’ and G” satisfies (P;) and (F2), respec-
tively, on the vertex-cut {u,v}. Without loss of generality, let G' = U, H;, G" =
Uimor1 Hiy 20 <r. Now, let T'= Ui, T; — Ui:l €2i—1 — Ué:1 Jai — UZ-";zlm i

Thus, in all the above subcases we have obtained a tree T" which is a spanning
tree of G such that

dr(u) < d(u)/2, dr(v) < d(v)/2+1

and dr(z) <k, x € V(G) — {u,v}.

Case b. G does not satisfy © on {u,v}. Without loss of generality, let G =
G*UG™, in which G*(G**) satisfies (does not satisfy) Q2 on {u, v}. Clearly G** # @.



Subcase b.1. G* = @.

Then, G* has a spanning tree T* such that
dr«(u) < dg«(u)/2, dps(v) < dg(v)/2+ 1
and dr-(z) <k, z € V(G*) — {u,v}.
(1) If G** is minimally 2-connected, then G** has a spanning tree 7% such that
dp-+(u) < [dge(u)/2], dp+(v) < [dg(v)/2]
and dp(z) <k, x € V(G*) — {u,v}.
(2) If G** contains a vertex-cut, then G** has at least two blocks, each of which is

a Ky or minimally 2-connected. From Case 1 and Case 2 we know that G** has a
spanning tree T™* such that

dpe (1) < [dge(w) /2], dps(v) < [dg(v)/2]
and dp(z) <k, x € V(G*) — {u,v}.

In both (1) and (2), let T'=T* U T** — f* in which f* is the edge incident to
v on the u-v path in 7*. Then, T" is a spanning tree of G such that (ii) holds.

Subcase b.2. G* = Q.

By an analogous analysis, we can show that (ii) holds, and the details are omit-
ted.

The proof is now complete. O
Lemma 3.4. [3] If G has a k-tree, then G has a k-walk.

Lemma 3.5. [2] Every 2-connected graph contains a minimally 2-connected span-
ning subgraph.

Thus, we get our main results as follows.

Theorem 3.1. Let £ > 2 be an integer and G be a 2-connected graph with
A(G) < 2k — 2. Then, G contains a k-tree. And, for k& > 3 the result is best
possible. O

Theorem 3.2. Let £ > 2 be an integer and G be a 2-connected graph with
A(G) < 2k — 2. Then, G contains a k-walk. O

Now we construct an example to show that Theorem 3.1 is best possible. Let
Ky o3 =K(X, Y), X ={z,y}. Add four new vertices ay, by, as, by, and con-
nect a; with  and b; with y, respectively. Denote thus obtained graph by H. Take
k — 1 copies of H. Let u, v be two new vertices and connect u with all a; and

7



v with all b;, respectively. Denote thus obtained graph by G. Obviously, G is a
2-connected graph with A(G) = 2k — 1. However, G does not have any k-trees.
But, interestingly, G' contains k-walks.

4 Concluding Remark

We have obtained a maximum degree condition for the existence of k-walks in 2-
connected graphs. The problem to find an analogous condition for the existence of
k-walks in j-connected graphs is still left for further investigation. In [3] the au-
thors proved that the k-walk problem is NP-complete. In fact, using the technique
in our Section 2, we can also prove it.
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