On a Conjecture on k-Walks of Graphs *

Zemin Jin and Xueliang Li
Center for Combinatorics
Nankai University
Tianjin 300071
P.R. China
x.li@eyou.com

Abstract

In this paper we give examples to show that a conjecture on k-walks of graphs, due to B. Jackson and N.C. Wormald, is false. We also give a maximum degree condition for the existence of k-walks and k-trees in 2-connected graphs.

Key Words: k-Walks, k-Trees, Maximum degree condition, 2-Connected graph.

AMS Subject Classification(2000): 05C45, 05C38, 05C05

1 Introduction

All graphs considered here are simple and finite. We use G to denote a graph, and use V(G) and E(G) to denote its vertex set and edge set, respectively. For any $v \in V(G)$, $N_G(v)$ denotes the set of neighbors of v in G, and $|N_G(v)|$ the degree of v in G. Sometimes, we simply use N(v) and d(v) to denote them, respectively, if no confusion occurs. Let $\delta(G) = \min\{d(v) \mid v \in V(G)\}$ and $\Delta(G) = \max\{d(v) \mid v \in V(G)\}$. A k-walk of G is a spanning closed walk of G using each vertex at most k times. When k = 1, a k-walk of G is a hamiltonian cycle of G. We say that G is $K_{1,r}$ -free if no induced subgraph of G is isomorphic to $K_{1,r}$. A graph G is t-tough if for any $S \subseteq V(G)$, the number of components $c(G - S) \leq |S|/t$. For notations and terminology not defined here, we refer to [1].

A well known conjecture by Chvatál [8] states that every sufficiently tough graph has a hamiltonian cycle. Many results for a $K_{1,3}$ -free graph to be hamiltonian have been obtained. Since the concept of a k-walk is a generalization of the concept of a hamiltonian cycle, in [3] B. Jackson and N.C. Wormald investigated k-walks and

^{*}Research supported by National Science Foundation of China, and the Key Laboratory for Pure Mathematics and Combinatorics of Education Ministry of China.

obtained the following results.

Theorem 1.1. [3] Let $k \geq 2$ be an integer. If G is connected and for any $S \subseteq V(G)$, $c(G-S) \leq (k-2)|S|+2$, then G has a k-walk.

As a consequence, the following result is immediate.

Theorem 1.2. [3] Every 1/(k-2)-tough graph has a k-walk.

A well known conjecture related to k-walks is stated as follows, which is still open.

Conjecture A. [3] Every 1/(k-1)-tough graph has a k-walk.

Theorem 1.3. [3] If G is connected and $K_{1,k+1}$ -free, then G has a k-walk.

Theorem 1.4. [3] Let $j \ge 1$, $k \ge 3$ be integers. If G is j-connected and $K_{1,j(k-2)+1}$ -free, then G has a k-walk.

The authors of [3] believe that Theorem 1.4 can be sharpened as follows.

Conjecture B. [3] Let $j \ge 1$, $k \ge 2$ be integers. If G is j-connected and $K_{1,jk+1}$ -free, then G has a k-walk.

Clearly, Conjecture B holds for j=1. But, as we will see in Section 2, it is false for $j \geq 2$. Our counterexamples are based on a result of [4], where the author constructed a family of graphs G_j , $j \geq 3$, which are j-connected, j-regular and non-hamiltonian. From their graphs G_j , we employ a similar technique to construct counterexamples to Conjecture B for $j \geq 3$. Also, we give a minimally 2-connected graph to show that Conjecture B is false for j=2. So, perhaps 1/k-tough graphs do not have k-walks. In some sense, we feel that Conjecture A, if true, is best possible.

In Section 3, we give a maximum degree condition for the existence of k-walks and k-trees in 2-connected graphs, which is best possible for k-trees. But, we know that under this condition it is impossible for graphs to have a hamiltonian cycle.

2 Negative Answer for Conjecture B

In order to construct our counterexamples for $j \geq 3$, first of all, we need the following lemmas.

Lemma 2.1. [4] For any integer $j \geq 3$, there always exist j-connected and j-regular non-hamiltonian graphs.

The counterexamples are constructed as follows. Let G be a j-connected and j-regular non-hamiltonian graph, $j \geq 3$. For every $x \in V(G)$, we create jk-1 new vertices $x^1, x^2, \dots, x^{jk-1}$, and for every edge $\alpha \in E(G)$ incident to x, we create a new vertex x_{α} . Denote

$$D(x) = \{x_{\alpha} \mid \alpha \in E(G) \text{ and is incident to } x\},\$$

$$S(x) = \{x^i \mid i = 1, 2, \dots, jk - 1\}.$$

Obviously, $|D(x)| = d_G(x) = j$ and |S(x)| = jk - 1. We construct a new graph G^* as follows:

$$V(G^*) = \bigcup_{x \in V(G)} (D(x) \cup S(x)),$$
$$E(G^*) = E_1 \cup E_2,$$

in which,

$$E_1 = \{ x_{\alpha} y_{\alpha} \mid \alpha = xy \in E(G) \},$$

$$E_2 = \{ uv \mid u \in D(x), \ v \in S(x) \text{ for some } x \in V(G) \}.$$

From the construction, the following result follows immediately.

Lemma 2.2. G^* is j-connected and $K_{1,jk+1}$ -free. \square

Next, we shall show the following result.

Lemma 2.3. G^* does not have any k-walks.

Proof. Suppose that G^* has a k-walk W. Then we can show that, for every vertex $x \in V(G)$, there exists a sub-walk $W_x = v_1 \ v_2 \ \cdots \ v_{2jk-1}$ in W such that $S(x) = \{v_{2i} | 1 \le i \le jk-1\}$ and $D(x) = \bigcup_{i=1}^{jk} \{v_{2i-1}\}.$

Otherwise, in order to meet all vertices of S(x), the sum of the meeting times of vertices in D(x) is at least |S(x)| + 2 = jk + 1. Since $N_G(S(x)) = D(x)$ and both D(x) and S(x) are independent sets in G^* , there exists at least one vertex in D(x) which is met at least k + 1 times in W, a contradiction.

Then every vertex in D(x) is met exactly k times, since the sum of meeting times of all vertices in D(x) is |S(x)| + 1 = jk and |D(x)| = j. We can denote W by $x_{\alpha}W_{x_1}W_{x_2}\cdots W_{x_n}y_{\alpha}$, where n = |V(G)|, $x = x_1$, $y = x_n$, $\alpha = xy \in E(G)$ and $x_i \neq x_l, i \neq l$. Since W is a k-walk, there must exist an edge $e_i \in E(G)$ such that $e_i = x_ix_{i+1}$ for each $1 \leq i \leq n-1$. Thus, we can obtain a hamiltonian cycle of G, a contradiction. The proof is complete. \square

From above, we can see that Conjecture B is false for $j \geq 3$. Now we consider the case j=2. The following Figure 1 shows a 2-connected graph G with $\Delta(G)=2k$ and without any k-walks.

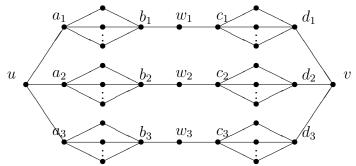


Figure 1. A counterexample graph G

In fact, as shown in Figure 1, we can see that $|N(a_i) \cap N(b_i)| = |N(c_i) \cap N(d_i)| = 2k-1$, i=1, 2, 3, $k \geq 2$, and G is 2-connected with $\Delta(G) = 2k$. Both $N(a_i) \cap N(b_i)$ and $N(c_i) \cap N(d_i)$ are independent sets, i=1, 2, 3. By a proof analogous to that in Lemma 2.3, we know that there exists a walk W_i with ends a_i and d_i which contains only $N(a_i) \cup N(c_i) \cup \{a_i, b_i, c_i, d_i, w_i\}$, since $N(w_i) = \{c_i, b_i\}$; whereas $W - W_i$ does not contain any vertex of $N(a_i) \cup N(c_i) \cup \{a_i, b_i, c_i, d_i, w_i\}$. So, W can be written as $uW_1vW_2uW_3v$, a contradiction.

Thus, we obtain the following negative answer to Conjecture B of [3].

Theorem 2.1. Conjecture B is false for $j \geq 2$. \square

3 Maximum Degree Condition for the Existence of k-Walks and k-Trees in 2-Connected Graphs

A k-tree of a connected graph G is a spanning tree of G with maximum degree at most k. In this section we consider only 2-connected graphs. A graph G is minimally 2-connected if, for any $e \in E(G)$, G - e has a cut vertex.

Lemma 3.1. [2] If G is a minimally 2-connected graph, then every 2-connected subgraph of G is minimally 2-connected.

Lemma 3.2. [2] If G is a minimally 2-connected graph, then for any $e \in E(G)$, e is not a chord of any cycle of G.

More results on minimally 2-connected graphs can be found in [2].

Let G be a minimally 2-connected graph. We say that G satisfies Ω on a vertexcut $\{u, v\}$ if one of the following conditions holds

(P₁) $c(G - \{u, v\})$ is even, and for every component G_i of $G - \{u, v\}$, both $|N_G(u) \cap V(G_i)|$ and $|N_G(v) \cap V(G_i)|$ are odd;

(P₂) For every component G_i of $G - \{u, v\}$, every block of $G_i + \{u, v\}$ satisfies (P₁) on the vertex-cut $\{x, y\}$, in which $N_G(x) \cap V(G-B) \neq \emptyset$ and $N_G(y) \cap V(G-B) \neq \emptyset$;

(P₃) $G = G' \cup G''$, $G' \cap G'' = \{u, v\}$, and G' and G'' satisfies (P₁) and (P₂), respectively, on the vertex-cut $\{u, v\}$.

Lemma 3.3. Let $k \geq 2$ be an integer, G be minimally 2-connected, $\Delta(G) \leq 2k-2$, and $\{u,v\}$ be a vertex-cut of G. Then, G contains a spanning tree T such that if G satisfies Ω on $\{u,v\}$, then

(i)
$$d_T(u) \le d(u)/2$$
, $d_T(v) \le d(v)/2 + 1$ and $d_T(x) \le k$, $x \in V(G) - \{u, v\}$, or

(ii)
$$d_T(u) \leq \lceil d(u)/2 \rceil$$
, $d_T(v) \leq \lceil d(v)/2 \rceil$ and $d_T(x) \leq k$, $x \in V(G) - \{u, v\}$.

Proof. By induction on |V(G)|. For |V(G)|=3, 4, 5, 6, the lemma holds obviously. We assume that the lemma holds for graphs with order less than |V(G)|. Let G_1, G_2, \dots, G_r be the components of $G - \{u, v\}, r \geq 2$, and let $H_i = G_i + \{u, v\}, i = 1, 2, \dots, r$. Then, H_i has at least two blocks, and each block is minimally 2-connected or a K_2 , see [2]. Let $B_{i, 1}, B_{i, 2}, \dots, B_{i, s_i}$, be the blocks of H_i such that $B_{i, j} \cap B_{i, j+1} = \{x_{i, j+1}\}, u = x_{i, 1}, v = x_{i, s_i+1}$, and $d_{H_i}(u, B_{i, t}) < d_{H_i}(u, B_{i, j})$ if and only if t < j. We distinguish the following two cases to consider H_i , $i = 1, 2, \dots, r$.

Case 1. If $B_{i,j}$, $1 \le j \le s_i$, satisfies Ω on $\{x_{i,j}, x_{i,j+1}\}$, then by the induction hypothesis, $B_{i,j}$ contains a spanning tree $T_{i,j}$ such that

$$d_{T_{i,j}}(x_{i,j}) \le d_{B_{i,j}}(x_{i,j})/2, \ d_{T_{i,j}}(x_{i,j+1}) \le d_{B_{i,j}}(x_{i,j+1})/2 + 1$$

and $d_{T_{i,j}}(x) \leq k$, $x \in V(B_{i,j}) - \{x_{i,j}, x_{i,j+1}\}$. Let $T_i = \bigcup_{j=1}^{s_i} T_{i,j}$. Then, T_i is a spanning tree of H_i such that

$$d_{T_i}(u) \le d_{H_i}(u)/2, \ d_{T_i}(v) \le d_{H_i}(v)/2 + 1$$

and $d_{T_i}(x) \leq k, \ x \in V(G_i).$

Case 2. There exists a subset $I \subseteq \{1, 2, \dots, s_i\}$ and $I \neq \emptyset$ such that $B_{i, t}, t \in I$, does not satisfy Ω on $\{x_i, x_{i+1}\}$. Let $T_{i, t} = K_2$, if $B_{i, t} = K_2$. If $B_{i, t}, t \in I$, is minimally 2-connected, then by the induction hypothesis, it contains a spanning tree $T_{i, t}$ such that

$$d_{T_{i,t}}(x_{i,t}) \le \lceil d_{B_{i,t}}(x_{i,t})/2 \rceil, \ d_{T_{i,t}}(x_{i,t+1}) \le \lceil d_{B_{i,t}}(x_{i,t+1})/2 \rceil$$

and $d_{T_{i,t}}(x) \leq k$, $x \in V(B_{i,t}) - \{x_{i,t}, x_{i,t+1}\}$. Let $t_0 = max\{t \mid t \in I\}$. Note that for every $j \in \{1, 2, \dots, s_i\} - I$, $B_{i,j}$ satisfies Ω on $\{x_{i,j}, x_{i,j+1}\}$. Then,

(1) If $j < t_0$, then $B_{i,j}$ contains a spanning tree $T_{i,j}$ such that

$$d_{T_{i,j}}(x_{i,j}) \le d_{B_{i,j}}(x_{i,j})/2, \ d_{T_{i,j}}(x_{i,j+1}) \le d_{B_{i,j}}(x_{i,j+1})/2 + 1$$

and $d_{T_{i,j}}(x) \le k$, $x \in V(B_{i,j}) - \{x_{i,j}, x_{i,j+1}\}$.

(2) If $j > t_0$, then by the symmetry of $x_{i, j+1}$ and $x_{i, j}$, we have that $B_{i, j}$ has a spanning tree $T_{i, j}$ such that

$$d_{T_{i,j}}(x_{i,j}) \le d_{B_{i,j}}(x_{i,j})/2 + 1, \ d_{T_{i,j}}(x_{i,j+1}) \le d_{B_{i,j}}(x_{i,j+1})/2$$

and $d_{T_{i,j}}(x) \le k$, $x \in V(B_{i,j}) - \{x_{i,j}, x_{i,j+1}\}.$

Next, let $T_i = \bigcup_{j=1}^{s_i} T_{i,j}$. Then, T_i is a spanning tree of H_i such that

$$d_{T_i}(u) \le \lceil d_{H_i}(u)/2 \rceil, \ d_{T_i}(v) \le \lceil d_{H_i}(v)/2 \rceil$$

and $d_{T_i}(x) \leq k$, $x \in V(G_i)$. In both cases, we use e_i and f_i to denote the edges incident to u and v, respectively, on the u-v path in T_i . Now we distinguish two cases to consider G.

Case a. G satisfies Ω on $\{u, v\}$.

Subcase a.1. (P_1) is true.

Then, r is even, $d_{H_i}(u)$ and $d_{H_i}(v)$ are odd, and

$$d_{T_i}(u) \le (d_{H_i}(u) + 1)/2, \ d_{T_i}(v) \le (d_{H_i}(v) + 1)/2$$

and
$$d_{T_i}(x) \leq k$$
, $x \in V(G_i)$. Let $T = \bigcup_{i=1}^r T_i - \bigcup_{i=1}^{r/2} e_{2i} - \bigcup_{i=1}^{(r-2)/2} f_{2i+1}$.

Subcase a.2. (P_2) is true.

Then,

$$d_{T_i}(u) \le d_{H_i}(u)/2, \ d_{T_i}(v) \le d_{H_i}(v)/2 + 1$$

and
$$d_{T_i}(x) \leq k$$
, $x \in V(G_i)$. Let $T = \bigcup_{i=1}^r T_i - \bigcup_{i=2}^r f_i$.

Subcase a.3. (P_3) is true.

Then, $G = G' \cup G''$, $G' \cap G'' = \{u, v\}$, G' and G'' satisfies (P_1) and (P_2) , respectively, on the vertex-cut $\{u, v\}$. Without loss of generality, let $G' = \bigcup_{i=1}^{2l} H_i$, $G'' = \bigcup_{i=2l+1}^r H_i$, 2l < r. Now, let $T = \bigcup_{i=1}^r T_i - \bigcup_{i=1}^l e_{2i-1} - \bigcup_{i=1}^l f_{2i} - \bigcup_{i=2l+1}^{r-1} f_i$.

Thus, in all the above subcases we have obtained a tree T which is a spanning tree of G such that

$$d_T(u) \le d(u)/2, \ d_T(v) \le d(v)/2 + 1$$

and $d_T(x) \le k, x \in V(G) - \{u, v\}.$

Case b. G does not satisfy Ω on $\{u, v\}$. Without loss of generality, let $G = G^* \cup G^{**}$, in which $G^*(G^{**})$ satisfies (does not satisfy) Ω on $\{u, v\}$. Clearly $G^{**} \neq \emptyset$.

Subcase b.1. $G^* = \emptyset$.

Then, G^* has a spanning tree T^* such that

$$d_{T^*}(u) \le d_{G^*}(u)/2, \ d_{T^*}(v) \le d_{G^*}(v)/2 + 1$$

and $d_{T^*}(x) \le k$, $x \in V(G^*) - \{u, v\}$.

(1) If G^{**} is minimally 2-connected, then G^{**} has a spanning tree T^{**} such that

$$d_{T^{**}}(u) \le \lceil d_{G^{**}}(u)/2 \rceil, \ d_{T^{**}}(v) \le \lceil d_{G^{**}}(v)/2 \rceil$$

and $d_{T^{**}}(x) \le k, x \in V(G^{**}) - \{u, v\}.$

(2) If G^{**} contains a vertex-cut, then G^{**} has at least two blocks, each of which is a K_2 or minimally 2-connected. From Case 1 and Case 2 we know that G^{**} has a spanning tree T^{**} such that

$$d_{T^{**}}(u) \le \lceil d_{G^{**}}(u)/2 \rceil, \ d_{T^{**}}(v) \le \lceil d_{G^{**}}(v)/2 \rceil$$

and $d_{T^{**}}(x) \le k, x \in V(G^{**}) - \{u, v\}.$

In both (1) and (2), let $T = T^* \cup T^{**} - f^*$, in which f^* is the edge incident to v on the u-v path in T^* . Then, T is a spanning tree of G such that (ii) holds.

Subcase b.2. $G^* = \emptyset$.

By an analogous analysis, we can show that (ii) holds, and the details are omitted.

The proof is now complete. \square

Lemma 3.4. [3] If G has a k-tree, then G has a k-walk.

Lemma 3.5. [2] Every 2-connected graph contains a minimally 2-connected spanning subgraph.

Thus, we get our main results as follows.

Theorem 3.1. Let $k \geq 2$ be an integer and G be a 2-connected graph with $\Delta(G) \leq 2k-2$. Then, G contains a k-tree. And, for $k \geq 3$ the result is best possible. \square

Theorem 3.2. Let $k \geq 2$ be an integer and G be a 2-connected graph with $\Delta(G) \leq 2k - 2$. Then, G contains a k-walk. \square

Now we construct an example to show that Theorem 3.1 is best possible. Let $K_{2, 2k-3} = K(X, Y)$, $X = \{x, y\}$. Add four new vertices a_1 , b_1 , a_2 , b_2 , and connect a_i with x and b_i with y, respectively. Denote thus obtained graph by H. Take k-1 copies of H. Let u, v be two new vertices and connect u with all a_i and

v with all b_i , respectively. Denote thus obtained graph by G. Obviously, G is a 2-connected graph with $\Delta(G) = 2k - 1$. However, G does not have any k-trees. But, interestingly, G contains k-walks.

4 Concluding Remark

We have obtained a maximum degree condition for the existence of k-walks in 2-connected graphs. The problem to find an analogous condition for the existence of k-walks in j-connected graphs is still left for further investigation. In [3] the authors proved that the k-walk problem is NP-complete. In fact, using the technique in our Section 2, we can also prove it.

Acknowledgement: The authors would like to thank an anonymous referee for his/her comments and suggestions. One of the author Z.M. Jin would like to thank Professors Z.H. Liu and L.M. Xiong for their discussion.

References

- [1] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, Macmillan Press Ltd., London 1976.
- [2] B. Bollobás, Extremal Graph Theory, Academic Press, New York 1978.
- [3] B. Jackson and N.C. Wormald, k-walks of graphs, The Australasian J. Combin. 2(1990) 135-146.
- [4] G.H.J. Meredith, Regular *n*-valent *n*-connected non-hamiltonian non-*n*-edge-colorable graphs, J. Combin. Theory Ser.B 14(1973) 55-60.
- [5] M.N. Ellingham and Xiaoya Zha, Toughness, trees and walks, J. Graph Theory 33(2000) 125-137.
- [6] D. Oberly and D. Sumner, Every connected, locally connected non-trival graph with no induced claw is hamiltonian, J. Graph Theory 3(1979) 351-356.
- [7] M.M. Matthews and D.P. Sumner, Longest paths and cycles in $K_{1,3}$ -free graphs, J. Graph Theory 9(1985) 269-277.
- [8] V. Chvatál, Tough graphs and hamiltonian circuits, Discrete Math. 5(1973) 215-228.
- [9] Sein Win, On a connection between the existence of k-trees and the toughness of a graph, Graphs and Combinatorics 5(1989) 201-205.