On a Conjecture on k-Walks of Graphs *

Zemin Jin and Xueliang Li
Center for Combinatorics
Nankai University
Tianjin 300071
P.R. China
x.li@eyou.com

Abstract

In this paper we give examples to show that a conjecture on k-walks of graphs, due to B. Jackson and N.C. Wormald, is false. We also give a maximum degree condition for the existence of k-walks and k-trees in 2 connected graphs.

Key Words: k-Walks, k-Trees, Maximum degree condition, 2-Connected graph.

AMS Subject Classification(2000): 05C45, 05C38, 05C05

1 Introduction

All graphs considered here are simple and finite. We use G to denote a graph, and use $V(G)$ and $E(G)$ to denote its vertex set and edge set, respectively. For any $v \in V(G), N_{G}(v)$ denotes the set of neighbors of v in G, and $\left|N_{G}(v)\right|$ the degree of v in G. Sometimes, we simply use $N(v)$ and $d(v)$ to denote them, respectively, if no confusion occurs. Let $\delta(G)=\min \{d(v) \mid v \in V(G)\}$ and $\Delta(G)=\max \{d(v) \mid v \in V(G)\}$. A k-walk of G is a spanning closed walk of G using each vertex at most k times. When $k=1$, a k-walk of G is a hamiltonian cycle of G. We say that G is $K_{1, r}$-free if no induced subgraph of G is isomorphic to $K_{1, r}$. A graph G is t-tough if for any $S \subseteq V(G)$, the number of components $c(G-S) \leq|S| / t$. For notations and terminology not defined here, we refer to [1].

A well known conjecture by Chvatál [8] states that every sufficiently tough graph has a hamiltonian cycle. Many results for a $K_{1,3}$-free graph to be hamiltonian have been obtained. Since the concept of a k-walk is a generalization of the concept of a hamiltonian cycle, in [3] B. Jackson and N.C. Wormald investigated k-walks and

[^0]obtained the following results.
Theorem 1.1. [3] Let $k \geq 2$ be an integer. If G is connected and for any $S \subseteq V(G)$, $c(G-S) \leq(k-2)|S|+2$, then G has a k-walk.

As a consequence, the following result is immediate.
Theorem 1.2. [3] Every $1 /(k-2)$-tough graph has a k-walk.
A well known conjecture related to k-walks is stated as follows, which is still open.
Conjecture A. [3] Every $1 /(k-1)$-tough graph has a k-walk.
Theorem 1.3. [3] If G is connected and $K_{1, k+1}$-free, then G has a k-walk.
Theorem 1.4. [3] Let $j \geq 1, k \geq 3$ be integers. If G is j-connected and $K_{1, j(k-2)+1^{-}}$ free, then G has a k-walk.

The authors of [3] believe that Theorem 1.4 can be sharpened as follows.
Conjecture B. [3] Let $j \geq 1, k \geq 2$ be integers. If G is j-connected and $K_{1, j k+1^{-}}$ free, then G has a k-walk.

Clearly, Conjecture B holds for $j=1$. But, as we will see in Section 2, it is false for $j \geq 2$. Our counterexamples are based on a result of [4], where the author constructed a family of graphs $G_{j}, j \geq 3$, which are j-connected, j-regular and nonhamiltonian. From their graphs G_{j}, we employ a similar technique to construct counterexamples to Conjecture B for $j \geq 3$. Also, we give a minimally 2-connected graph to show that Conjecture B is false for $j=2$. So, perhaps $1 / k$-tough graphs do not have k-walks. In some sense, we feel that Conjecture A, if true, is best possible.

In Section 3, we give a maximum degree condition for the existence of k-walks and k-trees in 2 -connected graphs, which is best possible for k-trees. But, we know that under this condition it is impossible for graphs to have a hamiltonian cycle.

2 Negative Answer for Conjecture B

In order to construct our counterexamples for $j \geq 3$, first of all, we need the following lemmas.

Lemma 2.1. [4] For any integer $j \geq 3$, there always exist j-connected and j regular non-hamiltonian graphs.

The counterexamples are constructed as follows. Let G be a j-connected and j-regular non-hamiltonian graph, $j \geq 3$. For every $x \in V(G)$, we create $j k-1$ new vertices $x^{1}, x^{2}, \cdots, x^{j k-1}$, and for every edge $\alpha \in E(G)$ incident to x, we create a new vertex x_{α}. Denote

$$
D(x)=\left\{x_{\alpha} \mid \alpha \in E(G) \text { and is incident to } x\right\},
$$

$$
S(x)=\left\{x^{i} \mid i=1,2, \cdots, j k-1\right\} .
$$

Obviously, $|D(x)|=d_{G}(x)=j$ and $|S(x)|=j k-1$. We construct a new graph G^{*} as follows:

$$
\begin{gathered}
V\left(G^{*}\right)=\bigcup_{x \in V(G)}(D(x) \cup S(x)), \\
E\left(G^{*}\right)=E_{1} \cup E_{2},
\end{gathered}
$$

in which,

$$
\begin{gathered}
E_{1}=\left\{x_{\alpha} y_{\alpha} \mid \alpha=x y \in E(G)\right\} \\
E_{2}=\{u v \mid u \in D(x), v \in S(x) \text { for some } x \in V(G)\} .
\end{gathered}
$$

From the construction, the following result follows immediately.
Lemma 2.2. G^{*} is j-connected and $K_{1, j k+1}$-free.
Next, we shall show the following result.
Lemma 2.3. G^{*} does not have any k-walks.
Proof. Suppose that G^{*} has a k-walk W. Then we can show that, for every vertex $x \in V(G)$, there exists a sub-walk $W_{x}=v_{1} v_{2} \cdots v_{2 j k-1}$ in W such that $S(x)=\left\{v_{2 i} \mid 1 \leq i \leq j k-1\right\}$ and $D(x)=\bigcup_{i=1}^{j k}\left\{v_{2 i-1}\right\}$.

Otherwise, in order to meet all vertices of $S(x)$, the sum of the meeting times of vertices in $D(x)$ is at least $|S(x)|+2=j k+1$. Since $N_{G}(S(x))=D(x)$ and both $D(x)$ and $S(x)$ are independent sets in G^{*}, there exists at least one vertex in $D(x)$ which is met at least $k+1$ times in W, a contradiction.

Then every vertex in $D(x)$ is met exactly k times, since the sum of meeting times of all vertices in $D(x)$ is $|S(x)|+1=j k$ and $|D(x)|=j$. We can denote W by $x_{\alpha} W_{x_{1}} W_{x_{2}} \cdots W_{x_{n}} y_{\alpha}$, where $n=|V(G)|, x=x_{1}, y=x_{n}, \alpha=x y \in E(G)$ and $x_{i} \neq x_{l}, i \neq l$. Since W is a k-walk, there must exist an edge $e_{i} \in E(G)$ such that $e_{i}=x_{i} x_{i+1}$ for each $1 \leq i \leq n-1$. Thus, we can obtain a hamiltonian cycle of G, a contradiction. The proof is complete.

From above, we can see that Conjecture B is false for $j \geq 3$. Now we consider the case $j=2$. The following Figure 1 shows a 2-connected graph G with $\Delta(G)=2 k$ and without any k-walks.

Figure 1. A counterexample graph G
In fact, as shown in Figure 1, we can see that $\left|N\left(a_{i}\right) \cap N\left(b_{i}\right)\right|=\left|N\left(c_{i}\right) \cap N\left(d_{i}\right)\right|=$ $2 k-1, i=1,2,3, k \geq 2$, and G is 2 -connected with $\Delta(G)=2 k$. Both $N\left(a_{i}\right) \cap N\left(b_{i}\right)$ and $N\left(c_{i}\right) \cap N\left(d_{i}\right)$ are independent sets, $i=1,2,3$. By a proof analogous to that in Lemma 2.3, we know that there exists a walk W_{i} with ends a_{i} and d_{i} which contains only $N\left(a_{i}\right) \cup N\left(c_{i}\right) \cup\left\{a_{i}, b_{i}, c_{i}, d_{i}, w_{i}\right\}$, since $N\left(w_{i}\right)=\left\{c_{i}, b_{i}\right\}$; whereas $W-W_{i}$ does not contain any vertex of $N\left(a_{i}\right) \cup N\left(c_{i}\right) \cup\left\{a_{i}, b_{i}, c_{i}, d_{i}, w_{i}\right\}$. So, W can be written as $u W_{1} v W_{2} u W_{3} v$, a contradiction.

Thus, we obtain the following negative answer to Conjecture B of [3].
Theorem 2.1. Conjecture B is false for $j \geq 2$.

3 Maximum Degree Condition for the Existence of k-Walks and k-Trees in 2-Connected Graphs

A k-tree of a connected graph G is a spanning tree of G with maximum degree at most k. In this section we consider only 2 -connected graphs. A graph G is minimally 2-connected if, for any $e \in E(G), G-e$ has a cut vertex.

Lemma 3.1. [2] If G is a minimally 2-connected graph, then every 2-connected subgraph of G is minimally 2 -connected.
Lemma 3.2. [2] If G is a minimally 2-connected graph, then for any $e \in E(G)$, e is not a chord of any cycle of G.

More results on minimally 2-connected graphs can be found in [2].
Let G be a minimally 2 -connected graph. We say that G satisfies Ω on a vertexcut $\{u, v\}$ if one of the following conditions holds
(P_{1}) $c(G-\{u, v\})$ is even, and for every component G_{i} of $G-\{u, v\}$, both $\left|N_{G}(u) \cap V\left(G_{i}\right)\right|$ and $\left|N_{G}(v) \cap V\left(G_{i}\right)\right|$ are odd;
$\left(P_{2}\right)$ For every component G_{i} of $G-\{u, v\}$, every block of $G_{i}+\{u, v\}$ satisfies $\left(P_{1}\right)$ on the vertex-cut $\{x, y\}$, in which $N_{G}(x) \cap V(G-B) \neq \varnothing$ and $N_{G}(y) \cap V(G-B) \neq \varnothing$;
$\left(P_{3}\right) G=G^{\prime} \cup G^{\prime \prime}, G^{\prime} \cap G^{\prime \prime}=\{u, v\}$, and G^{\prime} and $G^{\prime \prime}$ satisfies $\left(P_{1}\right)$ and $\left(P_{2}\right)$, respectively, on the vertex-cut $\{u, v\}$.
Lemma 3.3. Let $k \geq 2$ be an integer, G be minimally 2-connected, $\Delta(G) \leq 2 k-2$, and $\{u, v\}$ be a vertex-cut of G. Then, G contains a spanning tree T such that if G satisfies Ω on $\{u, v\}$, then
(i) $d_{T}(u) \leq d(u) / 2, d_{T}(v) \leq d(v) / 2+1$ and $d_{T}(x) \leq k, x \in V(G)-\{u, v\}$, or
(ii) $d_{T}(u) \leq\lceil d(u) / 2\rceil, d_{T}(v) \leq\lceil d(v) / 2\rceil$ and $d_{T}(x) \leq k, x \in V(G)-\{u, v\}$.

Proof. By induction on $|V(G)|$. For $|V(G)|=3,4,5,6$, the lemma holds obviously. We assume that the lemma holds for graphs with order less than $|V(G)|$. Let $G_{1}, G_{2}, \cdots, G_{r}$ be the components of $G-\{u, v\}, r \geq 2$, and let $H_{i}=G_{i}+\{u, v\}, i=1,2, \cdots, r$. Then, H_{i} has at least two blocks, and each block is minimally 2 -connected or a K_{2}, see [2]. Let $B_{i, 1}, B_{i, 2}, \cdots, B_{i, s_{i}}$, be the blocks of H_{i} such that $B_{i, j} \cap B_{i, j+1}=\left\{x_{i, j+1}\right\}, u=x_{i, 1}, v=x_{i, s_{i}+1}$, and $d_{H_{i}}\left(u, B_{i, t}\right)<d_{H_{i}}\left(u, B_{i, j}\right)$ if and only if $t<j$. We distinguish the following two cases to consider $H_{i}, i=1,2, \cdots, r$.

Case 1. If $B_{i, j}, 1 \leq j \leq s_{i}$, satisfies Ω on $\left\{x_{i, j}, x_{i, j+1}\right\}$, then by the induction hypothesis, $B_{i, j}$ contains a spanning tree $T_{i, j}$ such that

$$
d_{T_{i, j}}\left(x_{i, j}\right) \leq d_{B_{i, j}}\left(x_{i, j}\right) / 2, d_{T_{i, j}}\left(x_{i, j+1}\right) \leq d_{B_{i, j}}\left(x_{i, j+1}\right) / 2+1
$$

and $d_{T_{i, j}}(x) \leq k, x \in V\left(B_{i, j}\right)-\left\{x_{i, j}, x_{i, j+1}\right\}$. Let $T_{i}=\bigcup_{j=1}^{s_{i}} T_{i, j}$. Then, T_{i} is a spanning tree of H_{i} such that

$$
d_{T_{i}}(u) \leq d_{H_{i}}(u) / 2, \quad d_{T_{i}}(v) \leq d_{H_{i}}(v) / 2+1
$$

and $d_{T_{i}}(x) \leq k, x \in V\left(G_{i}\right)$.
Case 2. There exists a subset $I \subseteq\left\{1,2, \cdots, s_{i}\right\}$ and $I \neq \emptyset$ such that $B_{i, t}, t \in I$, does not satisfy Ω on $\left\{x_{i}, x_{i+1}\right\}$. Let $T_{i, t}=K_{2}$, if $B_{i, t}=K_{2}$. If $B_{i, t}, t \in I$, is minimally 2 -connected, then by the induction hypothesis, it contains a spanning tree $T_{i, t}$ such that

$$
d_{T_{i, t}}\left(x_{i, t}\right) \leq\left\lceil d_{B_{i, t}}\left(x_{i, t}\right) / 2\right\rceil, d_{T_{i, t}}\left(x_{i, t+1}\right) \leq\left\lceil d_{B_{i, t}}\left(x_{i, t+1}\right) / 2\right\rceil
$$

and $d_{T_{i, t}}(x) \leq k, x \in V\left(B_{i, t}\right)-\left\{x_{i, t}, x_{i, t+1}\right\}$. Let $t_{0}=\max \{t \mid t \in I\}$. Note that for every $j \in\left\{1,2, \cdots, s_{i}\right\}-I, B_{i, j}$ satisfies Ω on $\left\{x_{i, j}, x_{i, j+1}\right\}$. Then,
(1) If $j<t_{0}$, then $B_{i, j}$ contains a spanning tree $T_{i, j}$ such that

$$
d_{T_{i, j}}\left(x_{i, j}\right) \leq d_{B_{i, j}}\left(x_{i, j}\right) / 2, d_{T_{i, j}}\left(x_{i, j+1}\right) \leq d_{B_{i, j}}\left(x_{i, j+1}\right) / 2+1
$$

and $d_{T_{i, j}}(x) \leq k, x \in V\left(B_{i, j}\right)-\left\{x_{i, j}, x_{i, j+1}\right\}$.
(2) If $j>t_{0}$, then by the symmetry of $x_{i, j+1}$ and $x_{i, j}$, we have that $B_{i, j}$ has a spanning tree $T_{i, j}$ such that

$$
d_{T_{i, j}}\left(x_{i, j}\right) \leq d_{B_{i, j}}\left(x_{i, j}\right) / 2+1, d_{T_{i, j}}\left(x_{i, j+1}\right) \leq d_{B_{i, j}}\left(x_{i, j+1}\right) / 2
$$

and $d_{T_{i, j}}(x) \leq k, x \in V\left(B_{i, j}\right)-\left\{x_{i, j}, x_{i, j+1}\right\}$.
Next, let $T_{i}=\bigcup_{j=1}^{s_{i}} T_{i, j}$. Then, T_{i} is a spanning tree of H_{i} such that

$$
d_{T_{i}}(u) \leq\left\lceil d_{H_{i}}(u) / 2\right\rceil, d_{T_{i}}(v) \leq\left\lceil d_{H_{i}}(v) / 2\right\rceil
$$

and $d_{T_{i}}(x) \leq k, x \in V\left(G_{i}\right)$. In both cases, we use e_{i} and f_{i} to denote the edges incident to u and v, respectively, on the $u-v$ path in T_{i}. Now we distinguish two cases to consider G.

Case a. G satisfies Ω on $\{u, v\}$.
Subcase a.1. (P_{1}) is true.
Then, r is even, $d_{H_{i}}(u)$ and $d_{H_{i}}(v)$ are odd, and

$$
d_{T_{i}}(u) \leq\left(d_{H_{i}}(u)+1\right) / 2, d_{T_{i}}(v) \leq\left(d_{H_{i}}(v)+1\right) / 2
$$

and $d_{T_{i}}(x) \leq k, x \in V\left(G_{i}\right)$. Let $T=\bigcup_{i=1}^{r} T_{i}-\bigcup_{i=1}^{r / 2} e_{2 i}-\bigcup_{i=1}^{(r-2) / 2} f_{2 i+1}$.
Subcase a.2. $\left(P_{2}\right)$ is true.
Then,

$$
d_{T_{i}}(u) \leq d_{H_{i}}(u) / 2, \quad d_{T_{i}}(v) \leq d_{H_{i}}(v) / 2+1
$$

and $d_{T_{i}}(x) \leq k, x \in V\left(G_{i}\right)$. Let $T=\bigcup_{i=1}^{r} T_{i}-\bigcup_{i=2}^{r} f_{i}$.
Subcase a.3. $\left(P_{3}\right)$ is true.
Then, $G=G^{\prime} \cup G^{\prime \prime}, G^{\prime} \cap G^{\prime \prime}=\{u, v\}, G^{\prime}$ and $G^{\prime \prime}$ satisfies $\left(P_{1}\right)$ and $\left(P_{2}\right)$, respectively, on the vertex-cut $\{u, v\}$. Without loss of generality, let $G^{\prime}=\bigcup_{i=1}^{2 l} H_{i}, G^{\prime \prime}=$ $\bigcup_{i=2 l+1}^{r} H_{i}, 2 l<r$. Now, let $T=\bigcup_{i=1}^{r} T_{i}-\bigcup_{i=1}^{l} e_{2 i-1}-\bigcup_{i=1}^{l} f_{2 i}-\bigcup_{i=2 l+1}^{r-1} f_{i}$.

Thus, in all the above subcases we have obtained a tree T which is a spanning tree of G such that

$$
d_{T}(u) \leq d(u) / 2, \quad d_{T}(v) \leq d(v) / 2+1
$$

and $d_{T}(x) \leq k, x \in V(G)-\{u, v\}$.
Case b. G does not satisfy Ω on $\{u, v\}$. Without loss of generality, let $G=$ $G^{*} \cup G^{* *}$, in which $G^{*}\left(G^{* *}\right)$ satisfies (does not satisfy) Ω on $\{u, v\}$. Clearly $G^{* *} \neq \varnothing$.

Subcase b.1. $G^{*}=\emptyset$.
Then, G^{*} has a spanning tree T^{*} such that

$$
d_{T^{*}}(u) \leq d_{G^{*}}(u) / 2, \quad d_{T^{*}}(v) \leq d_{G^{*}}(v) / 2+1
$$

and $d_{T^{*}}(x) \leq k, x \in V\left(G^{*}\right)-\{u, v\}$.
(1) If $G^{* *}$ is minimally 2 -connected, then $G^{* *}$ has a spanning tree $T^{* *}$ such that

$$
d_{T^{* *}}(u) \leq\left\lceil d_{G^{* *}}(u) / 2\right\rceil, d_{T^{* *}}(v) \leq\left\lceil d_{G^{* *}}(v) / 2\right\rceil
$$

and $d_{T^{* *}}(x) \leq k, x \in V\left(G^{* *}\right)-\{u, v\}$.
(2) If $G^{* *}$ contains a vertex-cut, then $G^{* *}$ has at least two blocks, each of which is a K_{2} or minimally 2-connected. From Case 1 and Case 2 we know that $G^{* *}$ has a spanning tree $T^{* *}$ such that

$$
d_{T^{* *}}(u) \leq\left\lceil d_{G^{* *}}(u) / 2\right\rceil, d_{T^{* *}}(v) \leq\left\lceil d_{G^{* *}}(v) / 2\right\rceil
$$

and $d_{T^{* *}}(x) \leq k, x \in V\left(G^{* *}\right)-\{u, v\}$.
In both (1) and (2), let $T=T^{*} \cup T^{* *}-f^{*}$, in which f^{*} is the edge incident to v on the $u-v$ path in T^{*}. Then, T is a spanning tree of G such that (ii) holds.

Subcase b.2. $G^{*}=\varnothing$.
By an analogous analysis, we can show that (ii) holds, and the details are omitted.

The proof is now complete.
Lemma 3.4. [3] If G has a k-tree, then G has a k-walk.
Lemma 3.5. [2] Every 2-connected graph contains a minimally 2-connected spanning subgraph.

Thus, we get our main results as follows.
Theorem 3.1. Let $k \geq 2$ be an integer and G be a 2 -connected graph with $\Delta(G) \leq 2 k-2$. Then, G contains a k-tree. And, for $k \geq 3$ the result is best possible.

Theorem 3.2. Let $k \geq 2$ be an integer and G be a 2-connected graph with $\Delta(G) \leq 2 k-2$. Then, G contains a k-walk.

Now we construct an example to show that Theorem 3.1 is best possible. Let $K_{2,2 k-3}=K(X, Y), X=\{x, y\}$. Add four new vertices $a_{1}, b_{1}, a_{2}, b_{2}$, and connect a_{i} with x and b_{i} with y, respectively. Denote thus obtained graph by H. Take $k-1$ copies of H. Let u, v be two new vertices and connect u with all a_{i} and
v with all b_{i}, respectively. Denote thus obtained graph by G. Obviously, G is a 2 -connected graph with $\Delta(G)=2 k-1$. However, G does not have any k-trees. But, interestingly, G contains k-walks.

4 Concluding Remark

We have obtained a maximum degree condition for the existence of k-walks in 2connected graphs. The problem to find an analogous condition for the existence of k-walks in j-connected graphs is still left for further investigation. In [3] the authors proved that the k-walk problem is NP-complete. In fact, using the technique in our Section 2, we can also prove it.

Acknowledgement: The authors would like to thank an anonymous referee for his/her comments and suggestions. One of the author Z.M. Jin would like to thank Professors Z.H. Liu and L.M. Xiong for their discussion.

References

[1] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, Macmillan Press Ltd., London 1976.
[2] B. Bollobás, Extremal Graph Theory, Academic Press, New York 1978.
[3] B. Jackson and N.C. Wormald, k-walks of graphs, The Australasian J. Combin. 2(1990) 135-146.
[4] G.H.J. Meredith, Regular n-valent n-connected non-hamiltonian non- n-edgecolorable graphs, J. Combin. Theory Ser.B 14(1973) 55-60.
[5] M.N. Ellingham and Xiaoya Zha, Toughness, trees and walks, J. Graph Theory 33(2000) 125-137.
[6] D. Oberly and D. Sumner, Every connected, locally connected non-trival graph with no induced claw is hamiltonian, J. Graph Theory 3(1979) 351-356.
[7] M.M. Matthews and D.P. Sumner, Longest paths and cycles in $K_{1,3}$-free graphs, J. Graph Theory 9(1985) 269-277.
[8] V. Chvatál, Tough graphs and hamiltonian circuits, Discrete Math. 5(1973) 215-228.
[9] Sein Win, On a connection between the existence of k-trees and the toughness of a graph, Graphs and Combinatorics 5(1989) 201-205.

[^0]: *Research supported by National Science Foundation of China, and the Key Laboratory for Pure Mathematics and Combinatorics of Education Ministry of China.

