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Abstract

In this paper, we introduce the concept of sequential dynamical systems (SDS) on

digraphs. We focus on the discussion of linear sequential dynamical systems (LSDS).

Matrix method is given in their analysis. Two special LSDS, OR-SDS and PAR-SDS, are

particularly analyzed. Some structural properties on the image spaces of ½ORD; p� and

½PARD; p� are obtained. The asymptotic behavior of ½ORD; p� is described in terms of the

properties of the digraph D with respect to the ordering p. Our results show that LSDS

on digraphs have much more interesting properties than those on undirected graphs.
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1. Introduction

In the theory of computer simulation, a class of discrete dynamical systems,

sequential dynamical systems, is of very significance. Recently, Reidys and his

colleagues [1–4,8–10] have got a lot of results on this topic. Usually, an SDS is

defined on an undirected graph so that in a computer simulation, entities get

information from the ones in their own vicinity. However, in practice the

process of information exchange is not bidirectional, that is, an entity a can get
information from an entity b, but the entity bmay not get information from the

entity a. This naturally suggests us to introduce the concept of an SDS defined
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on a digraph, i.e., an entity gets information from its out-neighbors. It turns

out that there are many interesting results for the directed case, and the flavor
is quite different from the undirected case. It seems that it is more natural that

an entity gets information from its in-neighbors. However, because we shall use

the concept of adjacency matrices of digraphs, the use of out-neighbors is more

suitable in our discussion. In any case, this kind of choice does not result in any

essential difference.

First, we introduce some definitions and notations that will be used in the

sequel. For terminology and notations on graphs and Boolean matrices not

given here, we refer to [6,7,11].
Let Dn be the set of all digraphs with n vertices labelled as 1; 2; . . . ; n. D 2 Dn

has vertex set denoted by V ½D� ¼ f1; 2; . . . ; ng and arc set denoted by A½D�. For

a vertex i 2 V ½D�, define NðiÞ ¼ fj 2 V ½D�jði; jÞ 2 A½D�g and di ¼ jNðiÞj.
Arranging the elements of NðiÞ in the increasing order, we get

N<ðiÞ ¼ ðji1; ji2; . . . ; jidiÞ.
There is a state xi 2 ðA;
;�Þ for every vertex i, where ðA;
;�Þ is a finite

algebra with operations 
 and �, both of which are associative and have units

0 and 1, respectively. There is also a local function fi for every vertex i, i.e.,
fi : A
di 7!A;

fi xji
1
; xji

2
; . . . ; xji

di

� �
¼ yi if N<ðiÞ ¼ ji1; j

i
2; . . . ; j

i
di

� �
;

0 if NðiÞ ¼ ;:

� ð1:1Þ
Each fi induces another function:
Fi : A
n 7!An;

Fi x1; . . . ; xi�1; xi; xiþ1; . . . ; xnð Þ ¼ x1; . . . ; xi�1; fi; xiþ1; . . . ; xnð Þ;
ð1:2Þ
where fi is the local function (1.1). We can see that Fi changes the state of the

vertex i and keeps the states of all other vertices invariable.

Denote fD ¼ ffij16 i6 ng and FD ¼ fFij16 i6 ng.
Here we would like to explain the philosophy that in formula (1.1), we set 0

if NðiÞ ¼ ;. Because if NðiÞ ¼ ;, the state of the vertex i does not receive any

new information. So, we can say that it has influence to other vertices initially,

but looses its influence to other vertices later. The state 0 of i plays such a role.

If in formula (1.1) we set the state xi to the vertex i when NðiÞ ¼ ;, i.e., keeping
the state of i always unchanged. We can get another kind of system. Some of

the following results have to be modified a little bit. But there is no big dif-

ference. So, we omit its detailed discussion.
Definition 1.1. Let D 2 Dn and p ¼ p1p2 � � � pn 2 Sn be an ordering. The com-

position of all functions in FD according to the ordering p:
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½FD; p� : An 7!An;

½FD; p� ¼ Fpnð� � � ðFp2
ðFp1

ÞÞÞ ¼ Fpn � � � � � Fp2
� Fp1

ð1:3Þ
is called a sequential dynamical system (SDS) on the digraph D with the

ordering p. If for each 16 i6 n in (1.1), fi has the following form:
fiðxji
1
;xji

2
; . . . ;xjidi

Þ

¼
ðkji

1
� xji

1
Þ 
 ðkji

2
� xji

2
Þ 
 � � � 
 ðkjidi � xjidi

Þ if N<ðiÞ ¼ ðji1; ji2; . . . ; jidiÞ;

0 if NðiÞ ¼ ;;

(

ð1:4Þ
where kji
1
; kji

2
; . . . ; kjidi

2 A, then ½FD; p� is called a linear sequential dynamical
system (LSDS).

The following are some notations and terminology which will be used in the

analysis of an SDS ½FD; p�: for an X 2 An,

1. if ½FD; p�ðX Þ ¼ X , X is called a fixed state of ½FD; p�. FIX ½FD; p� represents the
set of all fixed states of ½FD; p�;

2. if there exists an integer mP 1 such that ½FD; p�mðX Þ ¼ X , X is called a stable
state of ½FD; p�. STA½FD; p� represents the set of all stable states of ½FD; p�.
Obviously, FIX ½FD; p� � STA½FD; p�;

3. if there is no Z 2 An such that ½FD; p�ðZÞ ¼ X , X is called a Garden of Eden
(GOE) of ½FD; p�. Similarly, GOE½FD; p� represents the set of all GOE�s of

½FD; p�.
Definition 1.2. ½FD; p� is called invertible if for every X 2 An, there is a Z 2 An

such that ½FD; p�ðZÞ ¼ X .

Obviously, ½FD; p� is invertible if and only if GOE½FD; p� ¼ ;.

Definition 1.3. For a given p ¼ p1p2 � � � pn 2 Sn, we define pi <p pj if i < j; and
pi6 ppj if i6 j.

Definition 1.4. Let D 2 Dn, p 2 Sn and ði; jÞ 2 A½D�. If i6 pj, then ði; jÞ is called

an ordinal arc with respect to p. Otherwise, ði; jÞ is called a reversal arc with

respect to p.

Definition 1.5 [5, p. 7]. For an SDS ½FD; p�, define a digraph C½FD; p� such that

V ½C½FD; p�� ¼ An and A½C½FD; p�� ¼ fðX ; Y ÞjX ; Y 2 An and ½FD; p�ðX Þ ¼ Y g,
which is called the functional digraph of the SDS ½FD; p�.
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Here we would like to point out that some results for SDS on undirected

graphs in [8] still hold for SDS on digraphs. For example, similar to Propo-
sition 2 of [8], we have the following result: Let D 2 Dn, p 2 Sn and ½FD; p� be an

SDS. Then for any r 2 Sn, FIX ½FD; r� ¼ FIX ½FD; p�. However, as we will see,

there are plenty of new results for SDS on digraphs.

The paper is organized as follows. In Section 2 we introduce the matrix

method for a general LSDS, that means that the algebra is general and the local

functions are also general linear ones. Because it is too general, one can not do

much with it. In Section 3 we consider the LSDS over a special algebra, the

Boolean algebra, with the local functions ‘‘ori’’. We call it the OR-SDS. Many
interesting results are obtained. The theory of Boolean matrices plays a key

role in the discussion. In the last section we consider another kind of special

LSDS, the PAR-SDS. Results similar to those in Section 3 are obtained.
2. Matrix method

In this section we shall figure out our matrix method for LSDS over a

general algebra. In the subsequential sections we shall use the method to dis-

cuss two kinds of special LSDS, from which we can see that our matrix method

is very helpful.

The definition of an SDS in (1.3) tells us that for a state X 2 An, if one wants
to know the result of ½FD; p�ðX Þ, one has to act the functions Fpi step by step,

which will take n steps. One can not immediately see the final result. For an

LSDS, in order to avoid these tedious operations, we shall introduce a matrix

method which enables us to get the final result directly. A matrix will be

constructed for an LSDS which faithfully describes the actions of the LSDS.

Definition 2.1. Let D 2 Dn, fD consist of the local functions defined by (1.4)

and fD induce FD. For each i 2 V ½D�, define a matrix BFDðiÞ ¼ ðbpqÞn�n, where
bpq ¼
dpq p 6¼ i;
0 p ¼ i

�
ð2:5Þ
if NðpÞ ¼ ; and
bpq ¼
dpq p 6¼ i;
kq p ¼ i; q 2 NðpÞ;
0 p ¼ i; q 62 NðpÞ

8<
:

if NðpÞ 6¼ ;. Here dpq is the Kronecker function.

Definition 2.2. Let D 2 Dn, fD consist of the local functions defined by (1.4)

and fD induce FD. For any p ¼ p1p2 � � � pn 2 Sn, the matrix
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BFDðpÞ ¼ BFDðpnÞ}BFDðpn�1Þ} � � � }BFDðp1Þ ð2:6Þ
is called the functional matrix with respect to FD and p. Here } represents the

usual product of two matrices over the algebra A.

Theorem 2.3. Let ½FD; p� be an LSDS. If we regard BFDðpÞ as a transformation on
the set of all n� 1 matrices over A, then
½FD; p� ¼ BFDðpÞ; ð2:7Þ
i.e.,
½FD; p�ðx1; x2; . . . ; xnÞ ¼ ðy1; y2; . . . ; ynÞ
if and only if
BFDðpÞððx1; x2; . . . ; xnÞ
>Þ ¼ ðy1; y2; . . . ; ynÞ>:
Here > over a vector means the transpose of the vector.

Proof. Comparing (1.3) and (2.6), one can see that to prove (2.7) it is sufficient

to prove Fi ¼ BFDðiÞ for every 16 i6 n. From the construction of BFDðiÞ in (2.5),

for any
X ¼ ðx1; . . . ; xi�1; xi; xiþ1; . . . ; xnÞ 2 An;
we get
BFDðiÞðX>Þ ¼ ðx1; . . . ; xi�1; fi; xiþ1; . . . ; xnÞ>;
where
fi ¼
ðkji

1
� xji

1
Þ 
 ðkji

2
� xji

2
Þ 
 � � � 
 ðkjidi � xjidi

Þ if N<ðiÞ ¼ ðji1; ji2; . . . ; jidiÞ;
0 if NðiÞ ¼ ;:

�

From the definition of Fi in (1.2), we also have
FiðX Þ ¼ ðx1; . . . ; xi�1; fi; xiþ1; . . . ; xnÞ:
Then Fi ¼ BFDðiÞ, which completes the proof. h

Theorem 2.4. For an LSDS ½FD; p�, if BFDðpÞ is nilpotent, then C½FD; p� is con-
nected and
FIX ½FD; p� ¼ STA½FD; p� ¼ fð0; 0; . . . ; 0Þg:
Proof. If BFDðpÞ is nilpotent, there exists an integer mP 1 such that for any

X 2 An, BFDðpÞ
mðX>Þ ¼ ð0; 0; . . . ; 0Þ>. From Theorem 2.3 and the property [5]

that in a functional digraph the out-degree of every vertex is equal to 1, C½FD;p�
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must be connected, which also implies that FIX ½FD; p� ¼ STA½FD;p� ¼ fð0;
0; . . . ; 0Þg. h

Theorem 2.5. For an LSDS ½FD; p�, we have
GOE½FD; p� ¼ An n fðBFDðpÞðX>ÞÞ>jX 2 Ang:
Proof. If Z 62 fðBFDðpÞðX>ÞÞ>jX 2 Ang, from Theorem 2.3 there is no state W in

An such that ½FD; p�ðW Þ ¼ Z. From the definition of GOE½FD; p�, we have

Z 2 GOE½FD; p�. This yields that An n fðBFDðpÞðX>ÞÞ>jX 2 Ang � GOE½FD; p�.
It is obvious that GOE½FD; p� � An n fðBFDðpÞðX>ÞÞ>jX 2 Ang. h

Theorem 2.6. Let ½FD; p� be an LSDS. For any integer 16m6 jAjn, denote by
EmðBFDðpÞÞ the set of all eigenvectors of ðBFDðpÞÞ

m with respect to the eigenvalue 1.
Then ½FD; p� is invertible if and only if
[jAjn

m¼1

EmðBFDðpÞÞ ¼ ðAnÞ>;
where ðAnÞ> ¼ fX>jX 2 Ang.

Corollary 2.7. For an LSDS ½FD; p�, the set of all eigenvectors of BFDðpÞ with
respect to the eigenvalue 1 is exactly the set of all the fixed states of ½FD; p�.

The above results hold for general LSDS. However, if one wants to get more

and deep results, it seems not easy. In the following sections we shall investigate

two kinds of special LSDS. We shall see that special LSDS have special
interests.
3. The OR-SDS

In this section we shall consider a special kind of LSDS, i.e., the OR-SDS.

The structural properties of the image space and the asymptotic behavior of the

OR-SDS are obtained.

Let ðA;
;�Þ be the binary Boolean algebra, i.e., ðA;
;�Þ ¼
ðB0 ¼ f0; 1g;_;^Þ, where
0 _ 0 ¼ 0 0 _ 1 ¼ 1 _ 0 ¼ 1 _ 1 ¼ 1

1 ^ 1 ¼ 1 0 ^ 0 ¼ 1 ^ 0 ¼ 0 ^ 1 ¼ 0
and for every 16 i6 n, kji
1
¼ kji

2
¼ � � � ¼ kjidi

¼ 1 in (1.4). Then we get the local

functions of ½ORD; p�:
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oriðxji
1
; xji

2
; . . . ; xjidi

Þ ¼
xji

1
_ xji

2
_ � � � _ xjidi if N<ðiÞ ¼ ðji1; ji2; . . . ; jidiÞ;

0 if NðiÞ ¼ ;:

�

Obviously, it is a linear function on the variables xji

1
; xji

2
; . . . ; xjidi

, and so ½ORD; p�
is an LSDS. As a consequence of Theorem 2.3, BORD ðpÞ can totally represent

½ORD; p�.
The special form of ori leads to a close relation between BORD ðiÞ and Adj½D�,

the adjacency matrix of D. Actually, BORD ðiÞ can be constructed from the unit
matrix by changing the i-th row of the unit matrix into the i-th row of Adj½D�.
We can regard BORð�Þ ðpÞ as a mapping that maps an n� n Boolean matrix, the

adjacency matrix of a digraph D, to another n� n Boolean matrix, or maps a

digraph of order n to another digraph of order n. However, this mapping is

neither injective nor surjective. For example, when n ¼ 4, there are totally

242 ¼ 65536 Boolean matrices. However, by employing a computer one can

easily get that only 5949 of them could be BORD ðpÞ for some D 2 D4 and some

p 2 S4. Nevertheless, the following result holds.

Theorem 3.1. For any p; r 2 Sn, we have
fBORD ðpÞjD 2 Dng ¼ fBORD ðrÞjD 2 Dng:
Proof. To show the result, it is sufficient to show that
fBORD ð12 � � � nÞjD 2 Dng ¼ fBORD ðp1p2 � � � pnÞjD 2 Dng
for any p ¼ p1p2 � � � pn 2 Sn.
In fact, we have a natural one-to-one correspondence between the set of

labelled digraphs Dn and the set of all n� n matrices over B0. In what follows,

we will not distinguish BORD ðpÞ and the corresponding digraph. Let qp be the
mapping from Dn to Dn such that qpðDÞ ¼ D0, where V ½D0� ¼ V ½D� and

A½D0� ¼ fðpi; pjÞjði; jÞ 2 A½D�g. Obviously, qp is a graph isomorphism. It is easy

to check that the following diagram is commutative:
;

which implies that
fBORD ð12 � � � nÞjD 2 Dng ¼ fBORD ðp1p2 � � � pnÞjD 2 Dng:
The proof is complete. h
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It is interesting to enumerate the digraphs of order n that can be the images

of the mapping BORð�Þ ðpÞ. We leave it for the readers.
When we examine the properties of BORD ðpÞ we find the following phenom-

enon. For a same digraph D 2 Dn but two different orderings p; r 2 Sn, the

asymptotic behaviors of BORD ðpÞ and BORD ðrÞ could be quite different. For

example, let D be the following digraph, p ¼ 1423 and r ¼ 4132:
Adj½D� ¼

0 1 0 0

0 0 1 0

1 0 0 0

0 0 1 0

0
BB@

1
CCA:
Then we have
BORD ð1423Þ ¼

0 1 0 0

0 0 1 0
0 1 0 0

0 0 1 0

0
BB@

1
CCA BORD ð4132Þ ¼

0 1 0 0

0 1 0 0
0 1 0 0

0 0 1 0

0
BB@

1
CCA:
By easy calculation, one can get that BORD ðpÞ is an oscillatory Boolean matrix

and BORD ðrÞ is a convergent one [7]. This means that the asymptotic behavior of

BORD ðpÞ is not only dependent on the structure of the digraph D but also heavily

dependent on the ordering p.
In the following we will investigate the structural properties of the image

space and the asymptotic behavior of the Boolean matrix BORD ðpÞ. It turns out

that the properties of BORD ðpÞ are determined directly by the structure ofD and p.
Lemma 3.2. Let A1;A2; . . . ;Am be n� n matrices over an algebra ðA;
;�Þ in
which both 
 and � are associative and let B ¼ A1}A2} � � �}Am. Then
Bij ¼ 
16 h1;h2;...;hm�1 6 nðA1Þih1 � ðA2Þh1h2 � � � � � ðAmÞhm�1j
:

Proof. It is easy to see by induction. h
Definition 3.3. Let D 2 Dn and p 2 Sn. For any i; j 2 V ½D�, a trail

T ¼ ði; t1; t2; . . . ; tl; jÞ in D is called a ðD; pÞ-trail from i to j if the following two

conditions are satisfied:

1. tl <p � � � <p t2 <p t1 <p i.
2. tl6 pj.

From the definition it is easy to see that if i <p j and ði; jÞ 2 A½D�, ði; jÞ is a

ðD; pÞ-trail from i to j; if j <p i and ði; jÞ; ðj; jÞ 2 A½D�, ði; j; jÞ is a ðD; pÞ-trail
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from i to j; if ði; iÞ 2 A½D�, ði; iÞ is a ðD; pÞ-trail from i to i. The following result

plays a key role in our forthcoming discussions.

Lemma 3.4. The ði; jÞ-element in BORD ðpÞ is equal to 1 if and only if there exists a
ðD; pÞ-trail from i to j.

Proof. Without loss of generality, assume j <p i. From the definition of BORD ðpÞ
and Lemma 3.2, it follows that
ðBORD ðpÞÞij ¼
_

16 h1;h2;...;hn�1 6 n

ðBORD ðpnÞÞih1 ^ ðBORD ðpn�1ÞÞh1h2 ^ � � �

^ ðBORD ðp1ÞÞhn�1j
:

If ðBORD ðpÞÞij ¼ 1, then for some sequence ði; h01; h02; . . . ; h0n�1; j), we have that
ðBORD ðpnÞÞih0
1
¼ ðBORD ðpn�1ÞÞh0

1
h0
2
¼ � � � ¼ ðBORD ðp1ÞÞh0

n�1j
¼ 1: ð3:8Þ
From the special construction of the matrix BORD ðiÞð16 i6 nÞ, one can easily see
the following three facts for (3.8) ðh00 ¼ i and h0n ¼ jÞ:

F1: If h0i 6¼ pn�i for some ið06 i < nÞ, then h0i ¼ h0iþ1.

F2: If h0i ¼ pn�i for some ið06 i < nÞ, then ðh0i; h0iþ1Þ 2 A½D�.
F3: Every row of the adjacent matrix Adj½D� appears exactly once in the

matrices BORD ðp1Þ;BORD ðp2Þ; . . . ;BORD ðpnÞ.

From the above facts, ði; h01; h02; . . . ; h0n�1; jÞ must be a sequence of the fol-
lowing form:
ði; . . . ; i; t1; . . . ; t1; t2; . . . ; t2; . . . ; tl; . . . ; tl; j; . . . ; jÞ;
where tl <p � � � <p t2 <p t1 <p i and ði; t1Þ; ðt1; t2Þ; . . . ; ðtl; jÞ 2 A½D�. Moreover,

tl6 pj (Otherwise, (3.8) would not be satisfied). Therefore, T ¼ ði; t1; t2; . . . ; tl; jÞ
is a ðD; pÞ-trail from i to j.

Conversely, assume that from i to j there exists a ðD; pÞ-trail

T ¼ ði ¼ pp0 ; pp1 ; pp2 ; . . . ; ppl ; pplþ1

¼ jÞ:
Then, construct a sequence of length nþ 1 as follows:
ði;�hh1;�hh2; . . . ;�hhn�1;jÞ¼ ðpp0 ; . . . ;pp0|fflfflfflfflfflffl{zfflfflfflfflfflffl}
n�p0þ1

;pp1 ; . . . ;pp1|fflfflfflfflfflffl{zfflfflfflfflfflffl}
p0�p1

; . . . ;ppl ; . . . ;ppl|fflfflfflfflfflffl{zfflfflfflfflfflffl}
pl�1�pl

;pplþ1
; . . . ;pplþ1|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
pl

Þ:
Therefore,
ðBORD ðpnÞÞi�hh1 ¼ ðBORD ðpn�1ÞÞ�hh1�hh2 ¼ � � � ¼ ðBORD ðp1ÞÞ�hhn�1j
¼ 1;
which implies that ðBORD ðpÞÞij ¼ 1. h
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Theorem 3.5. Let D 2 Dn and p 2 Sn. Then, ½ORD; p�ðX Þ ¼ ð0; 0; . . . ; 0Þ for any
X 2 Bn

0 if and only if there is no ordinal arc in D with respect to p, or all arcs of D
are reversal with respect to p.

Proof. If there no ordinal arc in D, there is no ðD; pÞ-trail. From Lemma 3.4, we
know that BORD ðpÞ ¼ ð0Þn�n. So, BORD ðpÞðX>Þ ¼ ð0; 0; . . . ; 0Þ>, which is equiva-

lent to ½ORD; p�ðX Þ ¼ ð0; 0; . . . ; 0Þ.
Conversely, if there is an ordinal arc ði; jÞ 2 A½D�, from definition it is a

ðD; pÞ-trail from i to j. Hence, ðBORD ðpÞÞij ¼ 1. Let
X ¼ ð0; . . . ; 0; 1
position j

; 0; . . . ; 0Þ:
Then, BORD ðpÞðX>Þ 6¼ ð0; 0; . . . ; 0Þ>; which implies that ½ORD; p�ðX Þ 6¼ ð0; 0; . . . ;
0Þ. h

From this theorem one can see that there are many D under the action of

BORð�Þ ðpÞ corresponding to the empty digraph, i.e., the digraph without any arcs.

In fact, for a given ordering p, we construct a digraph Dp such that

V ðDpÞ ¼ f1; 2; . . . ; ng and ði; jÞ 2 A½D� if and only if ði; jÞ is a reversal arc with

respect to the ordering p. Since for any pair of different i and j, one of ði; jÞ and

ðj; iÞ must be reversal with respect to p, the number of arcs in Dp is
n
2

� �
. Then,

from the theorem we know that for any subgraph D of Dp, BORD ðpÞ is the empty

digraph. There are 2

�
n
2

�
subgraphs of Dp, and therefore there are 2

�
n
2

�
di-

graphs corresponding to one digraph, the empty digraph. This again shows

that the mapping BORð�Þ ðpÞ is far from injective or surjective.

Theorem 3.6. If every vertex of D has a loop, then for any p 2 Sn,

½ORD; p�ðX Þ ¼ ð0; 0; . . . ; 0Þ if and only if X ¼ ð0; 0; . . . ; 0Þ:
Proof. Since every loop is a ðD; pÞ-trail, all the diagonal elements of BORD ðpÞ
must be 1 if every vertex of D has a loop. The result follows from the proof of
the ‘‘if’’ part of the above proposition. h

Lemma 3.7. BORD ðpÞ is acyclic if and only if D is acyclic. So, BORD ðpÞ is nilpotent if
and only if D is acyclic.

Proof. We only need to prove that D has a directed cycle if and only if BORD ðpÞ
has a directed cycle.

Lemma 3.4 tells us that if BORD ðpÞ has a directed cycle, D must have a closed

directed walk, from which one can easily get a directed cycle.

Conversely, assume that there is a directed cycle
C ¼ ði; j1; j2; . . . ; jp;�ii; k1; k2 . . . ; kq; iÞ
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in D, where i is the element in C which is as small as possible under the ordering

of p while �ii is the element in C which is as large as possible under the ordering
of p. When i ¼ �ii, C is a loop in D. From Lemma 3.4, there is also a loop in

BORD ðpÞ, a directed cycle. When i 6¼ �ii, from the sequences
C1 ¼ ði ¼ j0; j1; j2; . . . ; jp;�ii ¼ jpþ1Þ

and
C2 ¼ ð�ii ¼ k0; k1; k2; . . . ; kq; i ¼ kqþ1Þ;

one can construct two new sequences C0

1 and C0
2 such that (1) C0

1 is constructed

from C1 by preserving jd if jd�1 <p jdð16 d 6 p þ 1Þ; and removing jd
(removing j0) if not. (2) C0

2 is constructed from C2 by preserving kd (preserving
k0) if kd�1 <p kdð16 d 6 qþ 1Þ; and removing kd if not. From the definition of a

ðD; pÞ-trail, it is easy to check that the union of C0
1 and C0

2 forms a directed cycle

in BORD ðpÞ. The proof is now complete. h

Theorem 3.8. The following four statements are equivalent:

1. D 2 Dn is acyclic.
2. There exists an integer mP 1 such that ½ORD; p�mðX Þ ¼ ð0; 0; . . . ; 0Þ for any
X 2 Bn

0.
3. C½ORD; p� is connected.
4. FIX ½ORD; p� ¼ STA½ORD; p� ¼ fð0; 0; . . . ; 0Þg.

Proof. From Lemma 3.7, it follows immediately that statement 1 is equivalent

to statement 2.

From the fact that ½ORD; p�ð0; 0; . . . ; 0Þ ¼ ð0; 0; . . . ; 0Þ and the property [5]

that in a functional digraph the out-degree of every vertex is equal to 1, it is not

difficult to see that 2 () 3 () 4. h

For givenD 2 Dn and p 2 Sn, in the following we always denote the following
statement as condition (H): For any vertex j ofD, if there is a reversal arc ij

!
inD

with respect to p, then there is an ordinal arc i
0
j

!
in D with respect to p.

Lemma 3.9. BORD ðpÞ is strongly connected if and only if D is strongly connected
with condition ðHÞ.

Proof. Assume p ¼ p1p2 � � � pn. We separate our proof into the following steps:

1. If BORD ðpÞ is strongly connected, then D is strongly connected.
From the definition of a ðD; pÞ-trail and Lemma 3.4, it follows that if a

vertex i can reach a vertex j in BORD ðpÞ, then i can also reach j in D, which

completes the proof of the statement.



12 W.Y.C. Chen et al. / Appl. Math. Comput. xxx (2004) xxx–xxx

ARTICLE IN PRESS
2. If BORD ðpÞ is strongly connected, then D satisfies the condition (H).

Suppose that for a vertex i of D, there is a reversal arc towards it, but no
ordinal arc towards it. From the definition of a ðD; p)-trail and Lemma 3.4, the

in-degree of i in BORD ðpÞ must be zero. This contradicts to that BORD ðpÞ is strongly

connected, and hence D satisfies the condition (H).

3. If D is strongly connected with condition (H), then 8pið16 i6 nÞ, pi can

reach p1 in BORD ðpÞ.
Because D is strongly connected with condition (H), there must be a loop at

the vertex p1 in D (this observation is very crucial). Assume that P ¼ ðpi ¼
j0; j1; j2; . . . ; jk; p1 ¼ jkþ1Þ is a directed path in D from pi to p1. A new sequence
P 0 can be constructed from P by preserving jd (preserving j0 and jkþ1) if

jd�1 <p jdð16 d 6 kÞ; and removing jd if jd <p jd�1ð16 d 6 kÞ. It is easy to

check that P 0 is a directed path in BORD ðpÞ from pi to p1. The same method is

used in the proof of Lemma 3.7.

4. If D is strongly connected with condition (H), then 8pið16 i6 nÞ, p1 can

reach pi in BORD ðpÞ.
By induction. Firstly, let us show that p1 can reach p2. If ðp1; p2Þ 62 A½D�,

obviously, p1 can reach p2 in BORD ðpÞ. If ðp1; p2Þ 62 A½D�, since D is strongly
connected with condition (H), there is a directed path P ¼ ðp1; �j1j1; . . . ;
�jjp;��ii�ii; �kk1; . . . ; �kkq; p2Þ in D, where ��ii�ii is the element of P which is as large as possible

under the ordering of p. Moreover, there is a loop at the vertex p2 (this

observation is crucial). Also, following the method in the proof of Lemma 3.7

(at this time, p1;
��ii�ii and p2 are all preserved), we can construct a directed path in

BORD ðpÞ from p1 to p2.

Secondly, assume that p1 can reach any vertex located before pi in p. We

want to show that p1 can reach pi. Assume that �PP ¼ ðp1;�jj1;�jj2; . . . ;�jjk; piÞ is a
directed path in D from p1 to pi. If �jjk <p pi, using the method in the proof of

Lemma 3.7, a new path in BORD ðpÞ from p1 to pi can be constructed. If pi <p �jjk,
from the condition ðH), either there is an ordinal arc from a vertex �ll located

before pi in p towards pi or there is a loop at pi. For the first case, by the

induction hypothesis we have that p1 can reach �ll in BORD ðpÞ. Since (�ll; piÞ is a

(D; p)-trail from �ll to pi, there is an arc in BORD ðpÞ from �ll to pi. So, p1 can reach pi
in BORD ; ðpÞ. The second case can be dealt with the method in the proof of the

statement that p1 can reach p2 if ðp1; p2Þ 62 A½D�. h
Lemma 3.10. BORD ðpÞ is strongly connected if and only if BORD ðpÞ is primitive.
Proof. From Lemma 3.9 we can get that there must be a loop at the vertex p1 if
BORD ðpÞ is strongly connected. Then, the greatest common divisor of the lengths

of all cycles in BORD ðpÞ is 1, and so BORD ðpÞ is primitive [7]. The proof for the

other side is trivial. h
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Theorem 3.11. For any state X 6¼ ð0; 0; . . . ; 0Þ, there exists an integer mP 1 such
that ½ORD; p�mðX Þ ¼ ð1; 1; . . . ; 1Þ if and only if D is strongly connected with
condition (H).
Proof. If D is strongly connected with condition (H), from Lemmas3.9 and

3.10, the powers of BORD ðpÞ converge to the universal matrix [7]. So, for

X 6¼ ð0; 0; . . . ; 0Þ there must exist an integer mP 1 such that ½ORD; p�mðX Þ ¼
ð1; 1; . . . ; 1Þ.

Conversely, if for any state X 6¼ ð0; 0; . . . ; 0Þ there exists an integer mP 1

such that ½ORD; p�mðX Þ ¼ ð1; 1; . . . ; 1Þ, then since the space Bn
0 has 2n elements,

we can choose a sufficiently large m such that ½ORD; p�mðX Þ ¼ ð1; 1; . . . ; 1Þ for

any state X 6¼ ð0; 0; . . . ; 0Þ. This will imply that BORD ðpÞ must be primitive, and

so D is strongly connected with condition (H). h

Remark 3.12. For an SDS on an undirected graph G studied in [1–4,8–10], the

state of a vertex i is changed according to the states of its neighbors and itself.

So one can always regard an SDS on an undirected graph G as an SDS on the

digraph DðGÞ, where V ½DðGÞ� ¼ V ½G�; every vertex has a loop and an edge of G
is replaced by a pair of symmetric arcs. Obviously, if G is connected, then DðGÞ
is strongly connected and satisfies the condition (H). From Theorem 3.11, after

some iterations of ½ORG; p�, any nonzero state can be changed into ð1; 1; . . . ; 1Þ
if G is connected.
Lemma 3.13. If BORD ðpÞ is the union of some vertex-disjoint directed cycles, then
no directed cycle among them has a length greater than 1, or each of these di-
rected cycles is a loop.
Proof. If among them there is a directed cycle
Cyc ¼ ðic; jc1; jc2; . . . ; jcp;�iic; kc1; kc2; . . . ; kcq; icÞ
in BORD ðpÞ of length greater than 1, where ic is the element of Cyc which is as

small as possible under the ordering of p and�iic is the element of Cyc which is as
large as possible under the ordering of p. Since there is an arc from kcq to ic in

BORD ðpÞ, there must be a loop at the vertex ic in D and this loop will be preserved

in BORD ðpÞ. Then, there are two directed cycles in BORD ðpÞ intersecting at the

vertex ic, a contradiction. h
Theorem 3.14. The following five statements are equivalent:

1. ½ORD; p� is invertible.
2. ½ORD; p� is the identity mapping.
3. C½ORD; p� is the union of some vertex-disjoint directed cycles.
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4. C½ORD; p� is the union of 2n loops.
5. D is the union of n loops.
Proof. Since a permutation matrix corresponds to a digraph each strongly
connected component of which is a directed cycle of length at least 1, Lemma

3.13 implies that BORD ðpÞ can not be a permutation matrix except the identity

matrix. Because of (2.7), ½ORD; p� can not be a bijection unless it is the identity

mapping. Based on this argument, all the equivalencies can be proved. The

details are omitted. h
4. The PAR-SDS

In this section we consider another special LSDS. Let ðA;
;�Þ be the finite

field ðF2 ¼ f0; 1g;þ;�Þ, where
0 þ 0 ¼ 1 þ 1 ¼ 0 0 þ 1 ¼ 1 þ 0 ¼ 1

0 � 1 ¼ 1 � 0 ¼ 0 � 0 ¼ 0 1 � 1 ¼ 1
and for every 16 i6 n, kji
1
¼ kji

2
¼ � � � ¼ kjidi

¼ 1 in (1.4). Then we get local

functions of ½PARD; p�:
pariðxji
1
; xji

2
; . . . ; xjidi

Þ ¼
xji

1
þ xji

2
þ � � � þ xjidi

if N<ðiÞ ¼ ðji1; ji2; . . . ; jidiÞ;
0 if NðiÞ ¼ ;:

�

Obviously, ½PARD; p� is an LSDS. Then
½PARD; p� ¼ BPARD ðpÞ:
So we can obtain properties of ½PARD; p� from BPARD ðpÞ.
It is easy to see that BORD ðiÞ ¼ BPARD ðiÞ. However, because the operations of the

algebras are different, in general, BORD ðpÞ 6¼ BPARD ðpÞ. In spite of this, we can

deduce some similar results for BPARD ðpÞ to those for BORD ðpÞ. We will not

demonstrate them in details.
Similar to Lemma 3.4, there is also a combinatorial significance for BPARD ðpÞ.

Theorem 4.1. The ði; jÞ-element in BPARD ðpÞ is equal to 1 if and only if the number
of the ðD; pÞ-trails from i to j is odd.

Proof. The proof is completely similar to that of Lemma 3.4 except for the

operations of the elements in matrices. h

Theorem 4.2. ½PARD; p� is invertible if and only if every vertex of D has a loop.



W.Y.C. Chen et al. / Appl. Math. Comput. xxx (2004) xxx–xxx 15

ARTICLE IN PRESS
Proof. ½PARD; p� is invertible if and only if rankðBPARD ðpÞÞ ¼ n, if and only if

rankðBPARD ðiÞÞ ¼ n for every 16 i6 n, which is equivalent to that every vertex of
D has a loop. h

Here we want to point out that the result on the invertibility of PAR-SDS in

[8] is a direct corollary of the above proposition.

Theorem 4.3. Let rankðBPARD ðpÞÞ ¼ k. Then jGOE½PARD; p�j ¼ 2n � 2k.

Proof. Since rankðBPARD ðpÞÞ ¼ k, the dimension of the image space of ½PARD; p� is
k, which deduces that there are only 2k states in Fn2 which have original images.

Therefore, jGOE½PARD; p�j ¼ 2n � 2k. h

Corollary 4.4. For X 2 Fn2, if rankðBPARD ðpÞÞ 6¼ rankð½BPARD ðpÞ;X �Þ, then X 2
GOE½PARD; p�.
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