Available at
www.ElsevierMathematics.com

POWERED BY SCIENCE @DIRECT@

APPLIED
MATHEMATICS

AND i
COMPUTATION

ELSEVIER Applied Mathematics and Computation xxx (2004) XXX—XXxX
www.elsevier.com/locate/amc

Matrix method for linear
sequential dynamical systems on digraphs

William Y.C. Chen, Xueliang Li *, Jie Zheng

Center for Combinatorics and LPMC, Nankai University, Tianjin 300071, PR China

Abstract

In this paper, we introduce the concept of sequential dynamical systems (SDS) on
digraphs. We focus on the discussion of linear sequential dynamical systems (LSDS).
Matrix method is given in their analysis. Two special LSDS, OR-SDS and PAR-SDS, are
particularly analyzed. Some structural properties on the image spaces of [ORp, 7] and
[PARp, 7] are obtained. The asymptotic behavior of [ORp, 7] is described in terms of the
properties of the digraph D with respect to the ordering 7. Our results show that LSDS
on digraphs have much more interesting properties than those on undirected graphs.
© 2003 Elsevier Inc. All rights reserved.
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1. Introduction

In the theory of computer simulation, a class of discrete dynamical systems,
sequential dynamical systems, is of very significance. Recently, Reidys and his
colleagues [1-4,8-10] have got a lot of results on this topic. Usually, an SDS is
defined on an undirected graph so that in a computer simulation, entities get
information from the ones in their own vicinity. However, in practice the
process of information exchange is not bidirectional, that is, an entity a can get
information from an entity b, but the entity » may not get information from the
entity a. This naturally suggests us to introduce the concept of an SDS defined
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on a digraph, i.e., an entity gets information from its out-neighbors. It turns
out that there are many interesting results for the directed case, and the flavor
is quite different from the undirected case. It seems that it is more natural that
an entity gets information from its in-neighbors. However, because we shall use
the concept of adjacency matrices of digraphs, the use of out-neighbors is more
suitable in our discussion. In any case, this kind of choice does not result in any
essential difference.

First, we introduce some definitions and notations that will be used in the
sequel. For terminology and notations on graphs and Boolean matrices not
given here, we refer to [6,7,11].

Let D, be the set of all digraphs with n vertices labelled as 1,2,...,n.D € D,
has vertex set denoted by V'[D] = {1,2,...,n} and arc set denoted by A[D]. For
a vertex i€ V[D], define N(i)={j€ V[D]|(i,j) € A[D]} and d; = |N(i)|.
Arranging the elements of N(i) in the increasing order, we get
N.(i) = (./llﬂ]lzv s 7]Id,)

There is a state x; € (A, @, ®) for every vertex i, where (A, ®,®) is a finite
algebra with operations & and ®, both of which are associative and have units
0 and 1, respectively. There is also a local function f; for every vertex i, i.e.,

fi A%SA,

. N _ v AN = (s d) (1.1)
ﬁ .le,.xjfﬂ...,lel = . .

R i 0 if N(G) = 0.

Each f; induces another function:
E: A"—A",
(1.2)

F;'(-xla ey X1 Xy X 1y e e e 7xn) = (X], CIR 7xi717f;7xi+17 LI axn>>

where f; is the local function (1.1). We can see that F; changes the state of the
vertex i and keeps the states of all other vertices invariable.

Denote fp = {fi|1 <i<n} and Fp = {F|1 <i<n}.

Here we would like to explain the philosophy that in formula (1.1), we set 0
if N(i) = 0. Because if N(i) = 0, the state of the vertex i does not receive any
new information. So, we can say that it has influence to other vertices initially,
but looses its influence to other vertices later. The state 0 of i plays such a role.
If in formula (1.1) we set the state x; to the vertex i when N (i) = 0, i.e., keeping
the state of i always unchanged. We can get another kind of system. Some of
the following results have to be modified a little bit. But there is no big dif-
ference. So, we omit its detailed discussion.

Definition 1.1. Let D € D, and n = mym, - - - 7w, € S, be an ordering. The com-
position of all functions in Fj according to the ordering =:
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[Fp, ] : A"—A",
[FDvn]:Fn ((FTZ (Fm))):Fﬂno"'oFﬂzoFﬂl

(1.3)

is called a sequential dynamical system (SDS) on the digraph D with the
ordering n. If for each 1 <i<n in (1.1), f; has the following form:

f;'(xj‘fl ,xjg, ce ’xjfii)
Uy @x) @ (kg @) @ @ (kyy @ ) B N(0) = (o)
0 if N(i) =0,
(1.4)
where k/"ﬁkj‘z’ . ’kfi}» € A, then [Fp,n] is called a linear sequential dynamical

system (LSDS).

The following are some notations and terminology which will be used in the
analysis of an SDS [Fp, 7] for an X € A",

L. if [Fp, n](X) = X, X is called a fixed state of [Fp, n]. FIX[Fp, ] represents the
set of all fixed states of [Fp,7];

2. if there exists an integer m > 1 such that [Fp, )" (X) = X, X is called a stable
state of [Fp,n]. STA[Fp, n] represents the set of all stable states of [Fp, 7).
Obviously, FIX[Fp, nt] C STA[Fp, n];

3. if there is no Z € A" such that [Fp, n|(Z) = X, X is called a Garden of Eden
(GOE) of [Fp, n]. Similarly, GOE[Fp, n] represents the set of all GOE’s of
[F'D7 TC] .

Definition 1.2. [Fp, 7] is called invertible if for every X € A", there is a Z € A"
such that [Fp, n](Z) = X.

Obviously, [Fp, n] is invertible if and only if GOE[Fp, ] = .

Definition 1.3. For a given n = mm, - - - m, € S,, we define n; <, n; if i < j; and
ﬂignﬂ:j lflg‘]

Definition 1.4. Let D € D,, n € S, and (i, /) € A[D]. If i < ., then (i, ) is called
an ordinal arc with respect to n. Otherwise, (i, j) is called a reversal arc with
respect to 7.

Definition 1.5 [5, p. 7]. For an SDS [Fp, 7], define a digraph I'[Fp, n] such that
VI[Fp,n)] = A" and A[[[Fp,n]] = {(X,Y)|X,Y € A" and [Fp,x](X) =Y},
which is called the functional digraph of the SDS [Fp, 7].
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Here we would like to point out that some results for SDS on undirected
graphs in [8] still hold for SDS on digraphs. For example, similar to Propo-
sition 2 of [8], we have the following result: Let D € ©,, & € S, and [Fp, ] be an
SDS. Then for any ¢ € S,, FIX[Fp, 0] = FIX[Fp, n]. However, as we will see,
there are plenty of new results for SDS on digraphs.

The paper is organized as follows. In Section 2 we introduce the matrix
method for a general LSDS, that means that the algebra is general and the local
functions are also general linear ones. Because it is too general, one can not do
much with it. In Section 3 we consider the LSDS over a special algebra, the
Boolean algebra, with the local functions “or;”’. We call it the OR-SDS. Many
interesting results are obtained. The theory of Boolean matrices plays a key
role in the discussion. In the last section we consider another kind of special
LSDS, the PAR-SDS. Results similar to those in Section 3 are obtained.

2. Matrix method

In this section we shall figure out our matrix method for LSDS over a
general algebra. In the subsequential sections we shall use the method to dis-
cuss two kinds of special LSDS, from which we can see that our matrix method
is very helpful.

The definition of an SDS in (1.3) tells us that for a state X € A", if one wants
to know the result of [Fp, 7](X), one has to act the functions F;, step by step,
which will take n steps. One can not immediately see the final result. For an
LSDS, in order to avoid these tedious operations, we shall introduce a matrix
method which enables us to get the final result directly. A matrix will be
constructed for an LSDS which faithfully describes the actions of the LSDS.

Definition 2.1. Let D € D,, fp consist of the local functions defined by (1.4)

and fp induce Fp. For each i € V[D], define a matrix B5(i) = (b,),,,,» Where
_ o P#I
bpq—{o pei (2.5)
if N(p) =0 and
Opg P F Iy

qu: kq P:l»qu(P)a
0 p=iqg&€N(p)

if N(p) # 0. Here 0, is the Kronecker function.

Definition 2.2. Let D € ©,, fp consist of the local functions defined by (1.4)
and fp induce Fp. For any n = mym, - - -, € S,,, the matrix
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Bpy(m) = Bj(m,) OB (m,-1)& -+ - OBy (m) (2.6)
is called the functional matrix with respect to Fp and n. Here ) represents the
usual product of two matrices over the algebra A.

Theorem 2.3. Let [Fp, 7] be an LSDS. If we regard BY(n) as a transformation on

the set of all n x 1 matrices over A, then

[Fp, ] = By (m), (2.7)

[FDv 71:]()(17)62, ce 7xn) = (yhyZ; s 7yn)
if and only if
Bg(n)((xlaxb oo 7xn)T) = (ylvyla “ee 7yn)T‘
Here T over a vector means the transpose of the vector.
Proof. Comparing (1.3) and (2.6), one can see that to prove (2.7) it is sufficient

to prove F; = Bf (i) for every 1 <i<n. From the construction of Bf (i) in (2.5),
for any

X = (xla sy Xie 1y Xiy Xig 1y - - - axn) S An7
we get
Bg(l)(XT) = (X], s 7x1'—17.f;'7xi+1a v 7xn)T7
where
fi= { Uy ®x7) © (ky, ®2) & - ® (ky @5 ) I Ne(i) = (o)
0 if N(i)=0.
From the definition of F; in (1.2), we also have
F(X) = (X1, s Xi1, f1,Xia 0y oy Xn)-
Then F; = B%(i), which completes the proof. [
Theorem 2.4. For an LSDS [Fp, ), if Bh(n) is nilpotent, then I'|Fp, ) is con-
nected and

FIX[Fp, 7] = STA[Fp, 7] = {(0,0,...,0)}.

Proof. If Bf(xn) is nilpotent, there exists an integer m > 1 such that for any
X € A", BE(n)"(XT) = (0,0,...,0)". From Theorem 2.3 and the property [5]
that in a functional digraph the out-degree of every vertex is equal to 1, I'[Fp, 7]
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must be connected, which also implies that FIX[Fp,n] = STA[Fp,n] = {(0,
0,...,00}. O

Theorem 2.5. For an LSDS [Fp, nt], we have
GOE[Fp, 7] = A"\ {(B5(m) (X)) IX € A"},

Proof. If Z ¢ {(B5(n)(X7))"|X € A"}, from Theorem 2.3 there is no state ¥ in
A" such that [Fp,n|(W)=Z. From the definition of GOE[Fp,n], we have
Z € GOE[Fp, n). This yields that A"\ {(B5(n)(XT))'|X € A"} C GOE[Fp, 1.
It is obvious that GOE[Fp, 7] C A"\ {(B5(n)(XT))'|X € A"}. O

Theorem 2.6. Let [Fp, nt] be an LSDS. For any integer 1 <m < |A|", denote by
E,(BY(n)) the set of all eigenvectors of (BE(w))" with respect to the eigenvalue 1.
Then [Fp, 7| is invertible if and only if

A"

UE.(B5(m) = (A",

m=1

where (A")" = {XT|X € A"}.

Corollary 2.7. For an LSDS [Fp, 7], the set of all eigenvectors of BE(m) with
respect to the eigenvalue 1 is exactly the set of all the fixed states of [Fp, 7.

The above results hold for general LSDS. However, if one wants to get more
and deep results, it seems not easy. In the following sections we shall investigate
two kinds of special LSDS. We shall see that special LSDS have special
interests.

3. The OR-SDS

In this section we shall consider a special kind of LSDS, i.e., the OR-SDS.
The structural properties of the image space and the asymptotic behavior of the
OR-SDS are obtained.

Let (A,®,®) be the binary Boolean algebra, ie., (A, ®,®)=
(By = {0,1}, Vv, A), where

Ov0o=0 Ovl=1v0o=1vl=1
INl=1 0A0=1A0=0A1=0

and for every 1 <i<n, kjll = kjg =...= kjf[_ = 11in (1.4). Then we get the local
functions of [ORp, nl: ‘
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m@ﬁwuwﬂ_{MVMvmvm #M@:UMb”%%

@ 0 if N(i) = 0.

Obviously, it is a linear function on the variables Xjis Xy X and so [ORp, 7]
is an LSDS. As a consequence of Theorem 2.3, BOR (n) can totally represent

[ORp, 7.
Tiile special form of or; leads to a close relation between B9%(i) and Adj[D],

the adjacency matrix of D. Actually, BO®(i) can be constructed from the unit
matrix by changing the i-th row of the unit matrix into the i-th row of Adj[D].
We can regard B(O_f (m) as a mapping that maps an » x n Boolean matrix, the
adjacency matrix of a digraph D, to another n x n Boolean matrix, or maps a
digraph of order n to another digraph of order n. However, this mapping is
neither injective nor surjective. For example, when n = 4, there are totally
2% = 65536 Boolean matrices. However, by employing a computer one can
easily get that only 5949 of them could be B9 (n) for some D € D, and some
7 € S;. Nevertheless, the following result holds.

Theorem 3.1. For any n,0 € S, we have
{BS¥(m)|D € D,} = {BY(0)|D € D, }.

Proof. To show the result, it is sufficient to show that
{B9%(12---n)|D € D,} = {BS*(mymy - m,)|D € D, }
forany n = mym, -+ -, € S,.

In fact, we have a natural one-to-one correspondence between the set of
labelled digraphs D, and the set of all n x n matrices over B,. In what follows,
we will not distinguish B9%(n) and the corresponding digraph. Let p, be the
mapping from D, to D, such that p (D) =D, where V[D']=VI[D] and
A[D'] = {(m;, m;)|(i, /) € A[D]}. Obviously, p, is a graph isomorphism. It is easy
to check that the following diagram is commutative:

DeD, LN D ed

B?f(ll--n)\l/ \LB(O_f(nlnz---n,,)v

B%*(12---n) — B¥(mmy---m,)
P

which implies that
{B*(12---n)|D € D,} = {BS(mimy -+ m,)|D € D, }.

The proof is complete. [
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It is interesting to enumerate the digraphs of order » that can be the images
of the mapping B{f'(n). We leave it for the readers.

When we examine the properties of B9®(n) we find the following phenom-
enon. For a same digraph D € D, but two different orderings n,o € S,, the
asymptotic behaviors of BYf(n) and BY%(s) could be quite different. For
example, let D be the following digraph, = = 1423 and ¢ = 4132:

1 2 01 00

. 0 01 0

3 AdIDI=11 ¢ ¢ ¢

4 0 01 0

Then we have

01 00 01 00
OR 10 0 1 0 OR {0 1 0 0
Bp(1423) = 010 0 B;t(4132) = 010 0
0010 0 010

By easy calculation, one can get that B9%(n) is an oscillatory Boolean matrix
and BS% (o) is a convergent one [7]. This means that the asymptotic behavior of
BS%(m) is not only dependent on the structure of the digraph D but also heavily
dependent on the ordering 7.

In the following we will investigate the structural properties of the image
space and the asymptotic behavior of the Boolean matrix BY®(x). It turns out
that the properties of B9%(n) are determined directly by the structure of D and 7.

Lemma 3.2. Let Ay, A4;,...,A4, be n X n matrices over an algebra (A, ®,®) in
which both ® and ® are associative and let B = A\ A -+ - OA,,. Then

Bij = @1 <hy gy <n(A1) gy, @ (A2) 0, @ -+ @ (An)

oMm—1 X

hm—1j"

Proof. It is easy to see by induction. [

Definition 3.3. Let De®, and neS, For any i,jeV[D], a trail
T=(iti,ta,...,t;,j) in Dis called a (D, n)-trail from i to j if the following two
conditions are satisfied:

Lt <p - <pth <.t <pli.
2 1< ).

From the definition it is easy to see that if i <, j and (i,)) € 4[D], (i,/) is a
(D, m)-trail from i to j; if j <, i and (i,), (j,j) € A[D), (i,/,j) is a (D, n)-trail
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from i to j; if (i,i) € A[D), (i,i) is a (D, n)-trail from i to i. The following result
plays a key role in our forthcoming discussions.

Lemma 3.4. The (i, j)-element in BS®(n) is equal to 1 if and only if there exists a
(D, m)-trail from i to j.

Proof. Without loss of generality, assume j <, i. From the definition of BY"(n)
and Lemma 3.2, it follows that

(BgR(n))[j = \/ (BgR(n"))ihl A (BLO)R(nﬂfl))hlhz ARRN

1<hyhyyeshy 1 <n

A (B (m))

hu1j*
If (BJ¥(n)),; = 1, then for some sequence (i, /1, k), ..., h, |, ), we have that
(BgR(n"))ih/l = (BgR(nn—l))h’lh’z == (BgR(nl))h;H/_ =1 (3.8)

From the special construction of the matrix BY%(i)(1 <i < n), one can easily see
the following three facts for (3.8) (h, =i and %, = j):

Fy: If b} # m,_; for some i(0<i < n), then i} =h,.

Fy: If hi = m,_; for some i(0 <i < n), then (A}, 1} ) € A[D].
F;: Every row of the adjacent matrix Adj[D] appears exactly once in the

matrices B (m;), Bk (m2), ..., B9R(m,).
From the above facts, (i, 4}, k), ..., h,_,,j) must be a sequence of the fol-
lowing form:
(i7...,i,tl,...,117[2,...,tz,...,t[,...,f[,j,...,j),

where ¢, <, - <.t <.t <, i and (i,t,),(t,%),...,(t;,]) € A[D]. Moreover,
t; < oj (Otherwise, (3.8) would not be satisfied). Therefore, T = (i, 4,5, ...,,J)
is a (D, n)-trail from i to j.

Conversely, assume that from i to j there exists a (D, n)-trail

T = (l = Tpgs Tpys Ty - -+ Topyy Tpyy :])’

Then, construct a sequence of length n + 1 as follows:

(i,il],ilz,...jz,,,l,j):(npo,...,npo,np],...,npl,...,np,,...,npl,nplﬂ,...,npm).
e N —_———— —— ———
n—py+1 Po—P1 Pi-1-PI Pl
Therefore,
B2 ()i, = (B (a1 )y = - = (B (m))s, ;= L,

which implies that (B9%(n)),, =1. O

ij
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Theorem 3.5. Let D € ©, and n € S,. Then, [ORp,n|(X) = (0,0,...,0) for any
X € B if and only if there is no ordinal arc in D with respect to m, or all arcs of D
are reversal with respect to m.

Proof. If there no ordinal arc in D, there is no (D, n)-trail. From Lemma 3.4, we
know that BY®(n) = (0),.,- So, BOR( Y(XT) = (0,0,...,0)", which is equiva-
lent to [ORp, #](X) = (0,0,...,0).

Conversely, if there is an ordinal arc (i,j) € A[D], from definition it is a
(D, m)-trail from i to j. Hence, (Bp®(n)), = 1. Let

X=(0,...,0, 1 ,0,...,0).
position j

Then, B (n)(XT) # (0,0, ...,0)", which implies that [ORp, 7](X) # (0,0,...,
0). O

From this theorem one can see that there are many D under the action of
B(Of(n) corresponding to the empty digraph, i.e., the digraph without any arcs.
In fact, for a given ordering =, we construct a digraph D, such that
V(D) ={1,2,...,n} and (i,j) € A[D] if and only if (i, j) is a reversal arc with
respect to the ordering n. Since for any pair of different i and j, one of (i, j) and
(, i) must be reversal with respect to =, the number of arcs in D, is 2 . Then,
from the theorem we know that for any subgraph D of D,, B9%(r) is the empty

digraph. There are 2(2) subgraphs of D,, and therefore there are 2(2) di-
graphs corresponding to one digraph, the empty digraph. This again shows
that the mapping Bf'(n) is far from injective or surjective.

Theorem 3.6. If every vertex of D has a loop, then for any & € S,,,
[ORp, T|(X) = (0,0,...,0) if and only if X = (0,0,...,0).

Proof. Since every loop is a (D, n)-trail, all the diagonal elements of BY*(r)
must be 1 if every vertex of D has a loop. The result follows from the proof of
the “if”’ part of the above proposition. [

Lemma 3.7. BY®(n) is acyclic if and only if D is acyclic. So, BS®(n) is nilpotent if
and only if D is acyclic.

Proof. We only need to prove that D has a directed cycle if and only if B9%(x)
has a directed cycle.

Lemma 3.4 tells us that if B9%(n) has a directed cycle, D must have a closed
directed walk, from which one can easily get a directed cycle.

Conversely, assume that there is a directed cycle

C= (iajlvj27‘"7jp7;7k17k2~”7kqvi)
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in D, where i is the element in C which is as small as possible under the ordering
of m while i is the element in C which is as large as possible under the ordering
of m. When i =17, C is a loop in D. From Lemma 3.4, there is also a loop in
B9 (), a directed cycle. When i # i, from the sequences

Cl = (l :j(];jlija s 7jpai :jp+1)
and

G = (i =ko, ki, k2, ... 7kqai = kq+1)7
one can construct two new sequences C; and C; such that (1) Cj is constructed
from C; by preserving j; if j, 1 <;j.(1<d<p+1); and removing j,
(removing jp) if not. (2) C} is constructed from C, by preserving k, (preserving
ko) if kg1 <n kq(1 <d < g+ 1); and removing k, if not. From the definition of a
(D, m)-trail, it is easy to check that the union of C} and C’ forms a directed cycle
in B9%(r). The proof is now complete. [J

Theorem 3.8. The following four statements are equivalent:

1. D € D, is acyclic.

2. There exists an integer m = 1 such that [ORp,n])"(X) = (0,0,...,0) for any
X e By.

3. I'lORp, ] is connected.

4. FIX[ORp, 7] = STA[ORp, 7] = {(0,0,...,0)}.

Proof. From Lemma 3.7, it follows immediately that statement 1 is equivalent
to statement 2.

From the fact that [ORp, 7](0,0,...,0) = (0,0,...,0) and the property [5]
that in a functional digraph the out-degree of every vertex is equal to 1, it is not
difficult to see that 2 <=3 <= 4. O

For given D € D, and = € §,, in the following we always denote the follgwing
statement as condition (%): For any vertex j of D, if there is a reversal arc i; in D
—

with respect to 7, then there is an ordinal arc i j in D with respect to .

Lemma 3.9. B (rn) is strongly connected if and only if D is strongly connected
with condition (%).

Proof. Assume . = n;7m;, - - - ,. We separate our proof into the following steps:

1. If B9%(n) is strongly connected, then D is strongly connected.

From the definition of a (D, n)-trail and Lemma 3.4, it follows that if a
vertex i can reach a vertex j in B9%(x), then i can also reach j in D, which
completes the proof of the statement.
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2. If BY® (=) is strongly connected, then D satisfies the condition ().

Suppose that for a vertex i of D, there is a reversal arc towards it, but no
ordinal arc towards it. From the definition of a (D, n)-trail and Lemma 3.4, the
in-degree of i in B9X(n) must be zero. This contradicts to that B9% () is strongly
connected, and hence D satisfies the condition ().

3. If D is strongly connected with condition (%), then Vr;(1 <i<n), m; can

reach 7, in B9% (7).

Because D is strongly connected with condition (%), there must be a loop at
the vertex 7 in D (this observation is very crucial). Assume that P = (m; =
JosJ1sJ2s -« Jk, T1 = jrt1) s a directed path in D from 7; to 7;. A new sequence
P' can be constructed from P by preserving j; (preserving j, and j,) if
Ja1 <a ja(1<d <k); and removing j,; if j; <. ja1(1<d<k). It is easy to
check that P’ is a directed path in B9®(x) from =, to m;. The same method is
used in the proof of Lemma 3.7.

4. If D is strongly connected with condition (%), then Vr;(1 <i<n), m can
reach 7; in B9®(x).

By induction. Firstly, let us show that m; can reach 7. If (n;,n) & A[D],
obviously, 7, can reach m, in B9 (). If (m,ny) & A[D], since D is strongly
connected with condition (%), there is a directed path P = (m,ji,...,
Jpiyki, ... ks, 1) in D, where i is the element of P which is as large as possible
under the ordering of ©#. Moreover, there is a loop at the vertex m, (this
observation is crucial). Also, following the method in the proof of Lemma 3.7
(at this time, 7;,7 and 7, are all preserved), we can construct a directed path in
BS®(n) from m; to 7.

Secondly, assume that 7; can reach any vertex located before 7, in n. We
want to show that 7, can reach m;. Assume that P = (7,1, 2, .-, Js, ) 1S @
directed path in D from n; to ;. If j, <, m;, using the method in the proof of
Lemma 3.7, a new path in B9®(n) from =, to m; can be constructed. If m; <, ji,
from the condition (%), either there is an ordinal arc from a vertex / located
before n; in = towards m; or there is a loop at m;. For the first case, by the
induction hypothesis we have that 7, can reach I in B9 (n). Since (I,m,) is a
(D, m)-trail from [ to m;, there is an arc in B9 (m) from 1to ;. So, m; can reach =
in B9, (n). The second case can be dealt with the method in the proof of the
statement that m; can reach n, if (7, mp) € A[D]. O

Lemma 3.10. B9%(n) is strongly connected if and only if BS®(n) is primitive.

Proof. From Lemma 3.9 we can get that there must be a loop at the vertex «; if
BY9R(7) is strongly connected. Then, the greatest common divisor of the lengths
of all cycles in B9%(n) is 1, and so BY*(r) is primitive [7]. The proof for the
other side is trivial. [
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Theorem 3.11. For any state X # (0,0, ...,0), there exists an integer m > 1 such
that [ORp,n]"(X) = (1,1,...,1) if and only if D is strongly connected with
condition (%).

Proof. If D is strongly connected with condition (%), from Lemmas3.9 and
3.10, the powers of B9%(m) converge to the universal matrix [7]. So, for
X #(0,0,...,0) there must exist an integer m > 1 such that [ORp,n]"(X) =
(L, 1,...,1).

Conversely, if for any state X # (0,0,...,0) there exists an integer m > 1
such that [ORp, n]"(X) = (1,1,...,1), then since the space Bj; has 2" elements,
we can choose a sufficiently large m such that [ORp, )" (X) = (1,1,...,1) for
any state X # (0,0,...,0). This will imply that B9%(n) must be primitive, and
so D is strongly connected with condition (). [

Remark 3.12. For an SDS on an undirected graph G studied in [1-4,8-10], the
state of a vertex i is changed according to the states of its neighbors and itself.
So one can always regard an SDS on an undirected graph G as an SDS on the
digraph D(G), where V[D(G)] = V[G], every vertex has a loop and an edge of G
is replaced by a pair of symmetric arcs. Obviously, if G is connected, then D(G)
is strongly connected and satisfies the condition (%). From Theorem 3.11, after
some iterations of [ORg, 7], any nonzero state can be changed into (1,1,...,1)
if G is connected.

Lemma 3.13. [f BY® () is the union of some vertex-disjoint directed cycles, then
no directed cycle among them has a length greater than 1, or each of these di-
rected cycles is a loop.

Proof. If among them there is a directed cycle

Cyc = (icvj?aj;a s 7].;77071{?‘; ks, ...k, i)

) q?
in BY®(n) of length greater than 1, where i¢ is the element of Cyc which is as
small as possible under the ordering of 7 and i is the element of Cyc which is as
large as possible under the ordering of #. Since there is an arc from & to i in
B9 (), there must be a loop at the vertex i¢ in D and this loop will be preserved
in B9%(m). Then, there are two directed cycles in B9%(n) intersecting at the
vertex i€, a contradiction. [

Theorem 3.14. The following five statements are equivalent:

1. [ORp, 7] is invertible.
2. [ORp, 7] is the identity mapping.
3. I'lORp, ] is the union of some vertex-disjoint directed cycles.
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4. T'[ORp, 7] is the union of 2" loops.
5. D is the union of n loops.

Proof. Since a permutation matrix corresponds to a digraph each strongly
connected component of which is a directed cycle of length at least 1, Lemma
3.13 implies that B9%(n) can not be a permutation matrix except the identity
matrix. Because of (2.7), [ORp, 7] can not be a bijection unless it is the identity
mapping. Based on this argument, all the equivalencies can be proved. The
details are omitted. [

4. The PAR-SDS

In this section we consider another special LSDS. Let (A, @, ®) be the finite
field (F, = {0, 1}, +, x), where

0+0=1+1=0 0+1=1+0=1
O0x1=1x0=0x0=0 1x1=1

and for every 1<i<n, kjli = kjé == k/‘l} =1 in (1.4). Then we get local
functions of [PARp, =]: '

pari(xs, X, -5 Xy,
- g

- {xfl a0 NG@) = G dy),
0 if N(i) = 0.

Obviously, [PARp, n] is an LSDS. Then
[PARp, ] = BY®(x).

So we can obtain properties of [PARp, ] from B (x).

It is easy to see that B9%(i) = BZ*®(i). However, because the operations of the
algebras are different, in general, BS%(n) # B5*®(n). In spite of this, we can
deduce some similar results for BX&(n) to those for BY*(m). We will not
demonstrate them in details.

Similar to Lemma 3.4, there is also a combinatorial significance for BZ*(r).

Theorem 4.1. The (i, j)-element in B¥® (n) is equal to 1 if and only if the number
of the (D, mt)-trails from i to j is odd.

Proof. The proof is completely similar to that of Lemma 3.4 except for the
operations of the elements in matrices. [J

Theorem 4.2. [PARp, 7] is invertible if and only if every vertex of D has a loop.
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Proof. [PARp, 7| is invertible if and only if rank(B%*®(n)) = n, if and only if
rank(B2®(i)) = n for every 1 <i < n, which is equivalent to that every vertex of
D has aloop. [

Here we want to point out that the result on the invertibility of PAR-SDS in
[8] is a direct corollary of the above proposition.

Theorem 4.3. Let rank(B%R(n)) = k. Then |GOE[PARp, n]| = 2" — 2%,

Proof. Since rank(B%*® (%)) = k, the dimension of the image space of [PARp, 7] is
k, which deduces that there are only 2* states in F; which have original images.
Therefore, |GOE[PARp, ]| =2" — 25, O

Corollary 4.4. For X € [, if rank(BH®(n)) # rank([B5®(n), X]), then X €
GOE[PAR), .
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