On Properties of Adjoint Polynomial of Graphs and its Applications

Haixing Zhao, ${ }^{1}$ Xueliang Li, ${ }^{2}$ Ruying Liu, ${ }^{1}$ Ligong Wang, ${ }^{3}$
${ }^{1}$ Department of Mathematics, Qinghai Normal University
Xining, Qinghai 810008, P.R. China
E-mail: h.x.zhao@eyou.com
${ }^{2}$ Center for Combinatorics, Nankai University
Tianjin 300071, P.R. China
E-mail: x.li@eyou.com
${ }^{3}$ Department of of Mathematics
Northwestern Polytechnical University
Xi'an, Shaanxi 710072, P.R. China

Abstract

For a graph G, we denote by $P(G, \lambda)$ the chromatic polynomial of G and by $h(G, x)$ the adjoint polynomial of G. A graph G is said to be chromatically unique if for any graph $H, P(H, \lambda)=P(G, \lambda)$ implies $H \cong G$. In this paper, we investigate some algebraic properties of the adjoint polynomials of some graphs. Using these properties, we obtain necessary and sufficient conditions for $K_{n}-E\left(\cup_{a, b} T_{1, a, b}\right)$ and $\left(\cup_{i} C_{n_{i}}\right) \cup\left(\cup_{i} D_{m_{j}}\right) \cup\left(\cup_{a, b} T_{1, a, b}\right)$ to be chromatically unique if $G_{i} \in\left\{C_{n}, D_{n}, T_{1, a, b} \mid n \geq 5,3 \leq a \leq 10, a \leq b\right\}$ and $h\left(P_{m}\right) \nmid h\left(G_{i}\right)$ for all $m \geq 2$. Moreover, many new chromatically unique graphs are given.

Key Words: Chromatic polynomial; Adjoint polynomial; Adjoint uniqueness; Chromatic uniqueness
AMS subject classifications(2000): 05C15, 05C60

1 Introduction

All graphs considered here are finite and simple. For notations and terminology not defined here, we refer to [1]. For a graph G, let $V(G), E(G), p(G)$ and $q(G)$ denote the set of vertices, the set of edges, the number of vertices and the number of edges of G, respectively. The degree of a vertex v of G is denoted by $d_{G}(v)$, or simply by d_{v}. We denote by \bar{G} the complement of G. Let G and H be two graphs. $G \cup H$ denotes the disjoint union of G and H, and $m H$ denotes the disjoint union of m copies of H.

Let C_{i} (resp., P_{j}) denote the cycle (resp., the path) with i (resp., j) vertices, where $i \geq 3$ (resp., $j \geq 2$). We denote by D_{k} the graph obtained from C_{3} and P_{k-2} by identifying a vertex of C_{3} with an end-vertex of P_{k-2} and by $T_{l_{1}, l_{2}, l_{3}}$ the tree with a vertex u of degree 3 such that $T_{l_{1}, l_{2}, l_{3}}-u=P_{l_{1}} \cup P_{l_{2}} \cup P_{l_{3}}$, where $k \geq 4$ and $l_{i} \geq 1, i=1,2,3$. We denote by K_{n} the complete graph with n vertices. Let G be a subgraph of K_{n}. We denote by $K_{n}-E(G)$ the graph obtained from K_{n} by deleting all the edges of G.

For a positive integer r, a partition $\left\{A_{1}, A_{2}, \cdots, A_{r}\right\}$ of $V(G)$ is called an r independent partition of a graph G if every A_{i} is a nonempty independent set of
G. Let $m_{r}(G)$ denote the number of r-independent partitions of $V(G)$. Then, the chromatic polynomial of G is $P(G, \lambda)=\sum_{r \geq 1} \alpha(G, r)(\lambda)_{r}$, where $(\lambda)_{r}=\lambda(\lambda-1)(\lambda-$ 2) $\cdots(\lambda-r+1)$ for all $r \geq 1$, see [13] for more details. Two graphs G and H are called chromatically equivalent, denoted by $G \sim H$, if $P(G, \lambda)=P(H, \lambda)$. A graph G is called chromatically unique (or simply χ-unique) if $H \cong G$ whenever $H \sim G$.
Definition 1.1. ([11,12]) Let G be a graph with p vertices. The polynomial

$$
h(G, x)=\sum_{i=0}^{p-1} \alpha(\bar{G}, p-i) x^{p-i}
$$

is called the adjoint polynomial of G. A graph G is called adjointly unique if $h(H, x)=h(G, x)$ implies that H is isomorphic to G.

From Definitions 1.1, we have
Theorem 1.1.([3-5]) For any graph G, G is adjointly unique if and only if \bar{G} is χ-unique.
Definition 1.2. ([11,12]) Let G be a graph and $h(G, x)=x^{\alpha(G)} h_{1}(G, x)$, where $h_{1}(G, x)$ is a polynomial with a nonzero constant term. If $h_{1}(G, x)$ is irreducible over the rational number field, then G is called an irreducible graph.

The adjoint polynomial of G has many algebraic properties, such as the recursive relation, divisibility, reducibility over the rational number field, etc., see $[3-6]$ and [10-12,14-16] for more details. These properties are very useful in the study of chromatic uniqueness of graphs. Many chromatically equivalent classes of graphs have been found by applying these properties, see [3-5] and [9-12]. In [6,9,14], Du, Liu, Li and Wang shown that if D_{n} and $T_{l_{1}, l_{2}, l_{3}}$ are irreducible, then $\overline{\bigcup_{l_{1}, l_{2}, l_{3}} T_{l_{1}, l_{2}, l_{3}}}$ and $\overline{\bigcup_{j=1}^{t} D_{m_{j}}}$ are χ-unique.

The main goal of this paper is to study the algebraic properties of $h\left(P_{n}\right)$ and $h\left(T_{l_{1}, l_{2}, l_{3}}\right)$. Using these properties, we investigate the chromaticity of $K_{n}-E\left(\cup_{a, b} T_{1, a, b}\right)$ and $\left(\cup_{i} C_{n_{i}}\right) \cup\left(\cup_{i} D_{m_{j}}\right) \cup\left(\cup_{a, b} T_{1, a, b}\right)$, where $3 \leq a \leq 10$ and $a \leq b$. Moreover we obtain many new chromatically unique graphs.

For convenience, sometimes we simply denote $h(G, x)$ by $h(G)$ and $h_{1}(G, x)$ by $h_{1}(G)$. Let $f(x)$ and $g(x)$ be two polynomials in x. We denote by $(g(x), f(x))$ the greatest common factor of $g(x)$ and $f(x) . g(x) \mid f(x)$ (resp., $g(x) \nmid f(x))$ means that $g(x)$ divides $f(x)$ (resp., $g(x)$ does not divide $f(x)$). We denote by $\partial f(x)$ the degree of $f(x)$. For any real number $a,\lfloor a\rfloor=\max \{x \mid x \leq a$ and x is a integer $\}$.

2 Preliminaries

Definition 2.1. ([12]) The character of a graph G is defined as follows:

$$
R(G)= \begin{cases}0, & \text { if } q(G)=0 \\ b_{2}(G)-\binom{b_{1}(G)-1}{2}+1, & \text { if } q(G)>0\end{cases}
$$

where $b_{1}(G)$ and $b_{2}(G)$ denote the second and the third coefficients of $h(G)$, respectively.

Lemma 2.1. ([12]) Let G and H be two graphs. If $h(G, x)=h(H, x)$ or $h_{1}(G, x)=$ $h_{1}(H, x)$, then $R(G)=R(H)$.

Lemma 2.2. ([12]) Let G be a graph with k components $G_{1}, G_{2}, \ldots, G_{k}$. Then
(i) $h(G)=\prod_{i=1}^{k} h\left(G_{i}\right)$,
(ii) $R(G)=\sum_{i=1}^{k} R\left(G_{i}\right)$.

Lemma 2.3.([12]) Let G be a graph with $e=u v \in E(G)$ and e does not belong to any triangle of G. Then

$$
h(G, x)=h(G-u v, x)+x h(G-\{u, v\}, x),
$$

where $G-u v$ denotes the graph obtained from G by deleting the edge $u v$ and $G-\{u, v\}$ denotes the graph obtained from G by deleting the vertices u and v together with their incident edges, respectively.
Lemma 2.4. ([12]) Let G be a connected graph with n vertices. Then
(i) $R(G) \leq 1$, and the equality holds if and only if $G \cong P_{n}(n \geq 2)$ or $G \cong K_{3}$.
(ii) $R(G)=0$ if and only if G is one of the graphs K_{1}, C_{n}, D_{n} and $T_{l_{1}, l_{2}, l_{3}}$, where $n \geq 4$ and $l_{i} \geq 1, i=1,2,3$.
Lemma 2.5.([12]) (i) For $n \geq 2, h\left(P_{n}\right)=\sum_{k \leq n}\binom{k}{n-k} x^{k}$;
(ii) For $n \geq 4, h\left(C_{n}\right)=\sum_{k \leq n} \frac{n}{k}\binom{k}{n-k} x^{k}$.

From Definition 1.2 and Lemma 2.5, we have
Lemma 2.6 (i) For $n \geq 2, \partial\left(h_{1}\left(P_{n}\right)\right)=\left\lfloor\frac{n}{2}\right\rfloor$ and $\alpha\left(P_{n}\right)=\left\lfloor\frac{n+1}{2}\right\rfloor$;
(ii) For $n \geq 3, h\left(P_{n}\right)=x\left(h\left(P_{n-1}\right)+h\left(P_{n-2}\right)\right)$.

Lemma 2.7.([15]) For $n \geq 2$, we have:
(i) $h\left(P_{n}\right) \mid h\left(P_{m}\right)$ if and only if $(n+1) \mid(m+1)$;
(ii) $h\left(P_{n}\right)$ is irreducible if and only if $n=3$ or $n+1$ is prime.

Lemma 2.8([14]) (i) For $n \geq 4, h\left(T_{1,1, n-2}, x\right)=x h\left(C_{n}, x\right)$;
(ii) For $n \geq 4, h\left(T_{1,2, n-3}, x\right)=x h\left(D_{n}, x\right)$.

3 Some Properties of Adjoint Polynomials of Graphs

Lemma 3.1. (i) For $t \geq 1$ and $m \geq 4, h\left(T_{1, t, m}\right)=x\left[h\left(T_{1, t, m-1}\right)+h\left(T_{1, t, m-2}\right)\right]$;
(ii) Let $n=\left|V\left(T_{1, t, m}\right)\right|=m+t+2$. Then

$$
\partial h_{1}\left(T_{1, t, m}\right)= \begin{cases}\left\lfloor\frac{n}{2}\right\rfloor, & \text { if } t \text { and } m \text { are even } \\ \left\lfloor\frac{n-1}{2}\right\rfloor, & \text { otherwise }\end{cases}
$$

(iii) Let $n=\left|V\left(T_{1, t, m}\right)\right|=m+t+2$. Then

$$
\alpha\left(T_{1, t, m}\right)= \begin{cases}\left\lfloor\frac{n}{2}\right\rfloor, & \text { if } t \text { and } m \text { are even }, \\ \left\lfloor\frac{n+2}{2}\right\rfloor, & \text { otherwise. }\end{cases}
$$

Proof. (i) From Lemma 2.3, it is obvious.
(ii) Choose the edge $e=u v \in E\left(T_{1, t, m}\right)$ such that $d_{u}=1$ and $d_{v}=3$. By Lemma 2.3, $h\left(T_{1, t, m}\right)=x\left[h\left(P_{m+t+1}\right)+h\left(P_{t}\right) h\left(P_{m}\right)\right]$. From Lemma 2.6, we have $\partial\left(h_{1}\left(P_{m+t+1}\right)\right)=\left\lfloor\frac{m+t+1}{2}\right\rfloor$ and $\partial\left(h_{1}\left(P_{t}\right) h_{1}\left(P_{m}\right)\right)=\left\lfloor\frac{m}{2}\right\rfloor+\left\lfloor\frac{t}{2}\right\rfloor$. Clearly, $\partial\left(h_{1}\left(P_{m+t+1}\right)\right) \geq$ $\partial\left(h_{1}\left(P_{t}\right) h_{1}\left(P_{m}\right)\right)$. Noticing that $\partial\left(h\left(P_{m+t+1}\right)\right)=\partial\left(h\left(P_{t}\right) h\left(P_{m}\right)\right)+1$, we have

$$
\partial\left(h_{1}\left(T_{1, t, m}\right)\right)=\partial\left(h_{1}\left(P_{m+t+1}\right)\right)+1 \text { for } \partial\left(h_{1}\left(P_{m+t+1}\right)\right)=\partial\left(h_{1}\left(P_{t}\right) h_{1}\left(P_{m}\right)\right)
$$

and

$$
\partial\left(h_{1}\left(T_{1, t, m}\right)\right)=\partial\left(h_{1}\left(P_{m+t+1}\right)\right) \text { for } \partial\left(h_{1}\left(P_{m+t+1}\right)\right)>\partial\left(h_{1}\left(P_{t}\right) h_{1}\left(P_{m}\right)\right) .
$$

It is not difficult to verify that $\partial\left(h_{1}\left(P_{m+t+1}\right)\right)=\partial\left(h_{1}\left(P_{t}\right) h_{1}\left(P_{m}\right)\right)$ only if m and t are even. So, (ii) of the lemma holds.

Clearly, (iii) follows from (ii) of the lemma.
Lemma 3.2. Let $\left\{g_{i}(x)\right\}_{i}(i \geq 0)$ be a sequence of polynomials with integral coefficients and $g_{n}(x)=x\left(g_{n-1}(x)+g_{n-2}(x)\right)$. Then
(i) $g_{n}(x)=h\left(P_{k}\right) g_{n-k}(x)+x h\left(P_{k-1}\right) g_{n-k-1}(x)$;
(ii) $h_{1}\left(P_{n}\right) \mid g_{n+1+i}(x)$ if and only if $h_{1}\left(P_{n}\right) \mid g_{i}(x)$, for any positive integers n and i.

Proof. (i) By induction on k. By $h\left(P_{1}\right)=x$ and $h\left(P_{0}\right)=1$, we have

$$
g_{n}(x)=h\left(P_{1}\right) g_{n-1}(x)+x h\left(P_{0}\right) g_{n-2}(x) .
$$

So, (i) of the lemma holds when $k=1$. Suppose that it is true for $k \leq l-1$. From the recursive relation of $g_{n}(x)$, Lemma 2.6(ii) and the induction hypothesis, we have

$$
\begin{aligned}
g_{n}(x)= & x\left(g_{n-1}(x)+g_{n-2}(x)\right) \\
= & x h\left(P_{l-1}\right) g_{n-l}(x)+x^{2} h\left(P_{l-2}\right) g_{n-l-1}(x)+ \\
& x h\left(P_{l-2}\right) g_{n-l}(x)+x^{2} h\left(P_{l-3}\right) g_{n-l-1}(x) \\
= & h\left(P_{l}\right) g_{n-l}(x)+x h\left(P_{l-1}\right) g_{n-l-1}(x) .
\end{aligned}
$$

(ii) From (i) of the lemma, for any integers n and i, it follows

$$
g_{n+1+i}(x)=h\left(P_{n+1}\right) g_{i}(x)+x h\left(P_{n}\right) g_{i-1}(x)
$$

It is not difficult to see that $\left(h_{1}\left(P_{n}\right), h_{1}\left(P_{n+1}\right)\right)=1$ and $\left(h_{1}\left(P_{n}\right), x\right)=1$ for $n \geq 2$. So, from the above equality we have $h_{1}\left(P_{n}\right) \mid g_{n+1+i}(x)$ if and only if $h_{1}\left(P_{n}\right) \mid g_{i}(x)$.
Lemma 3.3.([10]) Let $1 \leq r_{1} \leq r_{2}$ and $r_{1} \leq s_{1} \leq s_{2}$ such that $r_{1}+r_{2}=$ $s_{1}+s_{2}$. Then $h\left(P_{r_{1}}\right) h\left(P_{r_{2}}\right)-h\left(P_{s_{1}}\right) h\left(P_{s_{2}}\right)=(-1)^{r_{1}} x^{r_{1}+1} h\left(P_{s_{1}-r_{1}-1}\right) h\left(P_{s_{2}-r_{1}-1}\right)$, where $h\left(P_{0}\right)=1$.

Theorem 3.1. For $k \geq 1$ and $t \geq 1$ such that $k t>3$, we have that $h\left(P_{t-1}\right) \mid h\left(T_{1, t, k t-3}\right)$, $h\left(P_{t}\right) \mid h\left(T_{1, t, k t+k-1}\right)$ and $h\left(P_{t+2}\right) \mid h\left(T_{1, t, k(t+3)}\right)$.
Proof. Suppose that $g_{0}(x)=(-1)^{t} \frac{h\left(P_{t}\right)^{2}}{x^{t}}, g_{1}(x)=(-1)^{t-1} \frac{h\left(P_{t}\right) h\left(P_{t-3}\right)+h\left(P_{t-1}\right)^{2}}{x^{t-2}}$ and $g_{n}(x)=x\left[g_{n-1}(x)+g_{n-2}(x)\right]$. So, we have the following Claim.
Claim. For $n \geq t+3, g_{n}(x)=h\left(T_{1, t, n-t-2}\right)$.
Proof of the claim: Noticing that $h\left(P_{t}\right)^{2}=x\left(h\left(P_{t}\right) h\left(P_{t-2}\right)+h\left(P_{t}\right) h\left(P_{t-1}\right)\right)$, from Lemmas 3.2 and 3.3, we can obtain by calculating that

$$
\begin{aligned}
g_{t+3}(x)= & h\left(P_{t+2}\right) g_{1}(x)+x h\left(P_{t+1}\right) g_{0}(x) \\
= & \frac{(-1)^{t-1} h\left(P_{t}\right)}{x^{t-1}}\left[h\left(P_{t-3}\right) h\left(P_{t+2}\right)-h\left(P_{t-2}\right) h\left(P_{t+1}\right)\right] \\
& +\frac{(-1)^{t-1} 1\left(P_{t-1}\right)}{}\left[h\left(P_{t-1}\right) h\left(P_{t+2}\right)-h\left(P_{t}\right) h\left(P_{t+1}\right)\right] \\
= & h\left(P_{3}\right) h\left(P_{t}\right)+x^{3} h\left(P_{t-1}\right) .
\end{aligned}
$$

By Lemma 2.3, $h\left(T_{1, t, 1}\right)=h\left(P_{3}\right) h\left(P_{t}\right)+x^{3} h\left(P_{t-1}\right)$. Thus, $g_{t+3}(x)=h\left(T_{1, t, 1}\right)$.
Similarly, from Lemmas 2.3, 3.2 and 3.3, we can show that $g_{t+4}(x)=h\left(T_{1, t, 2}\right)=$ $h\left(P_{4}\right) h\left(P_{t}\right)+x^{2} h\left(P_{2}\right) h\left(P_{t-1}\right)$. Using the recursive relation of $g_{n}(x)$, from (i) of Lemma 3.1, we know that for $n \geq t+3, g_{n}(x)=h\left(T_{1, t, n-t-2}\right)$. This completes the proof of the claim.

Using the recursive relation of $g_{n}(x)$, from (i) of Lemma 3.2, we can obtain by calculating that $g_{t+2}(x)=\frac{g_{t+4}(x)-x g_{t+3}(x)}{x}=h\left(P_{t+2}\right), g_{t+1}(x)=\frac{g_{t+3}(x)-x g_{t+2}(x)}{x}=$ $x h\left(P_{t}\right)$ and $g_{t-1}(x)=\frac{(x+1) g_{t+1}(x)-g_{t+2}(x)}{x}=x h\left(P_{t-1}\right)$. Clearly, $h_{1}\left(P_{t-1}\right) \mid g_{t-1}(x)$, $h_{1}\left(P_{t}\right)\left|g_{t+1}(x), h_{1}\left(P_{t+2}\right)\right| g_{t+2}(x)$. So, by (ii) of Lemma 3.2, $h_{1}\left(P_{t-1}\right) \mid g_{k t+t-1}(x)$, $h_{1}\left(P_{t}\right) \mid g_{(t+1) k+t+1}(x)$ and $h_{1}\left(P_{t+2}\right) \mid g_{(t+3) k+t+2}(x)$. Namely, $h_{1}\left(P_{t-1}\right) \mid h\left(T_{1, t, k t-3}\right)$, $h_{1}\left(P_{t}\right) \mid h\left(T_{1, t, k t+k-1}\right)$ and $h_{1}\left(P_{t+2}\right) \mid h\left(T_{1, t, k(t+3)}\right)$. Thus, from (i) of Lemma 2.6 and (iii) of Lemma 3.1, it is not difficult to see that $h\left(P_{t-1}\right)\left|h\left(T_{1, t, k t-3}\right), h\left(P_{t}\right)\right| h\left(T_{1, t, k t+k-1}\right)$ and $h\left(P_{t+2}\right) \mid h\left(T_{1, t, k(t+3)}\right)$. This completes the proof of the theorem.
Theorem 3.2. For $l \geq 2, m \geq 1$ and $k \geq 1$, we have:
(i) $h\left(P_{l}\right) \mid h\left(T_{1,1, m}\right)$ if and only if $(l, m) \in\{(3,4 k)\}$;
(ii) $h\left(P_{l}\right) \mid h\left(T_{1,2, m}\right)$ if and only if $(l, m) \in\{(2,3 k-1),(4,5 k)\}$;
(iii) $h\left(P_{l}\right) \mid h\left(T_{1,3, m}\right)$ if and only if $(l, m) \in\{(2,3 k),(3,4 k-1),(5,6 k)\}$;
(iv) $h\left(P_{l}\right) \mid h\left(T_{1,4, m}\right)$ if and only if $(l, m) \in\{(3,4 k-3),(4,5 k-1),(6,7 k)\}$;
(v) $h\left(P_{l}\right) \mid h\left(T_{1,5, m}\right)$ if and only if $(l, m) \in\{(2,3 k-1),(3,4 k),(4,5 k-3),(5,6 k-$ 1), $(7,8 k)\}$;
(vi) $h\left(P_{l}\right) \mid h\left(T_{1,6, m}\right)$ if and only if $(l, m) \in\{(2,3 k),(5,6 k-3),(6,7 k-1),(8,9 k)\}$.

Proof. Let $g_{0}(x)=(-1)^{t} \frac{h\left(P_{t}\right)^{2}}{x^{t}}, g_{1}(x)=(-1)^{t-1} \frac{h\left(P_{t}\right) h\left(P_{t-3}\right)+h\left(P_{t-1}\right)^{2}}{x^{t-2}}$ and $g_{n}(x)=$ $x\left[g_{n-1}(x)+g_{n-2}(x)\right]$. From the proof of Theorem 3.1, one can see that if $n \geq t+3$, $g_{n}(x)=h\left(T_{1, t, n-t-2}\right)$.

Without loss of generality, assume that $n=(l+1) k+i$, where $0 \leq i \leq l$. By Lemma 3.2, $h_{1}\left(P_{l}\right) \mid g_{n}(x)$ if and only if $h_{1}\left(P_{l}\right) \mid g_{i}(x)$ for $0 \leq i \leq l$. Note that $g_{i}(x)=h\left(T_{1, t, i-t-2}\right)$ for $l \geq t+3$. From (i) of Lemma 2.6 and (ii) of Lemma 3.1, we have $\partial h_{1}\left(P_{l}\right)=\lfloor l / 2\rfloor$ and $\partial\left(g_{i}(x)\right)=\partial h_{1}\left(T_{1, t, i-t-2}\right) \leq\lfloor i / 2\rfloor \leq\lfloor l / 2\rfloor$. Thus, if $h_{1}\left(P_{l}\right) \mid h_{1}\left(T_{1, t, i-t-2}\right)$, then $\partial\left(h_{1}\left(P_{l}\right)\right)=\partial\left(h_{1}\left(T_{1, t, i-t-2}\right)\right)$. Moreover, it must hold that $h_{1}\left(P_{l}\right)=h_{1}\left(T_{1, t, i-t-2}\right)$. So, by Lemma $2.1, R\left(P_{l}\right)=R\left(T_{1, t, i-t-2}\right)$, which contradicts the fact that $R\left(P_{l}\right) \neq R\left(T_{1, t, i-t-2}\right)$. Therefore, we have that if $l \geq t+3$, then $h\left(P_{l}\right) \nless h\left(T_{1, t, i-t-2}\right)$. Thus, we only need to consider the cases of $l \leq t+2$.
Case 1. $t=1$. Clearly, $l \leq 3$.
By calculating we have that $g_{0}(x)=-x, g_{1}(x)=x, g_{2}(x)=x^{2}$ and $g_{3}(x)=$ $h\left(P_{3}\right)$. It is easy to verify that $h_{1}\left(P_{l}\right) \mid g_{i}(x)$ if and only if $l=i=3$ for $2 \leq l \leq 3$ and $0 \leq i \leq 3$. By Lemma 3.2(ii), $h_{1}\left(P_{3}\right) \mid g_{4 k+3}(x)$. Thus, $h_{1}\left(P_{l}\right) \mid h\left(T_{1,1, m}\right)$ if and only if $l=3$ and $m=4 k$, where $k \geq 1$. From (i) of Lemma 2.6 and (iii) of Lemma 3.1, we can obtain that if $m \geq 4$, then $h\left(P_{l}\right) \mid h\left(T_{1,1, m}\right)$ if and only if $l=3$ and $m=4 k$ for $k \geq 1$. This completes the proof of (i) of the theorem.
Case 2. $t=2$. So, $l \leq 4$.
By calculating, it is easy to obtain that $g_{0}(x)=\left[h_{1}\left(P_{2}\right)\right]^{2}, g_{1}(x)=-x^{2}, g_{2}(x)=$ $2 x^{2}+x, g_{3}(x)=x^{2} h\left(P_{2}\right)$ and $g_{4}(x)=x^{2} h_{1}\left(P_{4}\right)$. One can see that $h_{1}\left(P_{l}\right) \mid g_{i}(x)$ if and only if $(l, i) \in\{(2,0),(2,3),(4,4)\}$ for $2 \leq l \leq 4$ and $0 \leq i \leq 4$. From Lemma 3.2(ii), it is not difficult to see that $h_{1}\left(P_{2}\right) \mid g_{3 k+3}$ and $h_{1}\left(P_{4}\right) \mid g_{5 k+4}$. Hence, $h_{1}\left(P_{l}\right) \mid h\left(T_{1,2, m}\right)$ if and only if $(l, m) \in\{(2,3 k-1),(4,5 k)\}$. Similar to the proof of (i), we know that (ii) holds.

Case 3. $t=3$. So, $l \leq 5$.
By calculating, we have that $g_{0}(x)=-\left[h_{1}\left(P_{3}\right)\right]^{2}, g_{1}(x)=x\left(x^{2}+3 x+3\right), g_{2}(x)=$ $-x^{2} h_{1}\left(P_{2}\right), g_{3}(x)=x^{2}(2 x+3), g_{4}(x)=x^{3} h_{1}\left(P_{3}\right)$ and $g_{5}(x)=x^{3} h_{1}\left(P_{5}\right)$. One can verify that $h_{1}\left(P_{l}\right) \mid g_{i}(x)$ if and only if $(l, i) \in\{(3,0),(2,2),(3,4),(5,5)\}$ for $2 \leq l \leq 4$
and $0 \leq i \leq 5$. A completely similar proof of Case 1 , we can show that (iii) holds.
Similarly, we can show that (iv), (v) and (vi) hold. Here we give the expression of $g_{i}(x)$ whereas the details of the proof are omitted.
When $t=4, g_{0}(x)=\left[h_{1}\left(P_{4}\right)\right]^{2}, g_{1}(x)=-x\left(x^{3}+5 x^{2}+7 x+1\right), g_{2}(x)=x\left(x^{3}+\right.$ $\left.4 x^{2}+5 x+1\right), g_{3}(x)=-x^{3} h_{1}\left(P_{3}\right), g_{4}(x)=x^{2}\left(2 x^{2}+5 x+1\right), g_{5}(x)=x^{3} h_{1}\left(P_{4}\right)$ and $g_{6}(x)=x^{3} h_{1}\left(P_{6}\right)$.
When $t=5, g_{0}(x)=-\left[h_{1}\left(P_{5}\right)\right]^{2}, g_{1}(x)=x\left(x^{4}+7 x^{3}+16 x^{2}+13 x+4\right), g_{2}(x)=$ $-x^{2}\left(x^{3}+6 x^{2}+11 x+5\right), g_{3}(x)=x^{2} h_{1}\left(P_{2}\right) h_{1}\left(P_{3}\right), g_{4}(x)=-x^{3} h_{1}\left(P_{4}\right), g_{5}(x)=$ $x^{3}\left(2 x^{2}+7 x+4\right), g_{6}(x)=x^{4} h_{1}\left(P_{5}\right)$ and $g_{7}(x)=x^{4} h_{1}\left(P_{7}\right)$.
When $t=6, g_{0}(x)=\left[h_{1}\left(P_{6}\right)\right]^{2}, g_{1}(x)=-x\left(x^{5}+9 x^{4}+29 x^{3}+40 x^{2}+22 x+2\right)$, $g_{2}(x)=x h_{1}\left(P_{2}\right)\left(x^{4}+7 x^{3}+15 x^{2}+9 x+1\right), g_{3}(x)=-x\left(x^{4}+7 x^{3}+16 x^{2}+12 x+1\right)$, $g_{4}(x)=x^{2}\left(x^{4}+6 x^{3}+12 x^{2}+9 x+1\right), g_{5}(x)=-x^{4} h_{1}\left(P_{5}\right), g_{6}(x)=x^{3}\left(2 x^{3}+9 x^{2}+\right.$ $9 x+1), g_{7}(x)=-x^{4} h_{1}\left(P_{6}\right)$ and $g_{8}(x)=x^{4} h_{1}\left(P_{8}\right)$.

The proof of the theorem is complete.
From Theorem 3.2, it is not difficult to see that for $1 \leq t \leq 6$ and $n \geq 2$, $h\left(P_{n}\right) \mid h\left(T_{1, t, m}\right)$ if and only if $n+1 \mid t$, or $n+1 \mid t+1$, or $n+1 \mid t+3$. So, we propose the following problem.
Problem 3.1. For $n \geq 2$ and $m \geq t \geq 1$, find a necessary and sufficient condition of $h\left(P_{n}\right) \mid h\left(T_{1, t, m}\right)$. In particular, is it true that $h\left(P_{n}\right) \mid h\left(T_{1, t, m}\right)$ if and only if $n+1 \mid t$, or $n+1 \mid t+1$, or $n+1 \mid t+3$?

For a graph G, let $f(G, x)$ denote the characteristic polynomial of G. We denote respectively by $\gamma(G)$ and $\beta(G)$ the maximum root of $f(G, x)$ and the minimum root of $h(G, x)$.
Lemma 3.4. (i) ([14]) For a tree T, we have that $\beta(T)=-(\gamma(G))^{2}$;
(ii)([2]) For $T_{l_{1}, l_{2}, l_{3}}$, we have that $\gamma\left(T_{l_{1}, l_{2}, l_{3}}\right) \leq \sqrt{2+\sqrt{5}}$ if and only if l_{1}, l_{2}, l_{3} satisfy the followings: $l_{1}=1$, or $l_{1}=l_{2}=2$, or $l_{1}=2$ and $l_{2}=l_{3}=3$.

From Lemma 3.4, the following lemma can be obtained.
Lemma 3.5. For $T_{l_{1}, l_{2}, l_{3}}, \beta\left(T_{l_{1}, l_{2}, l_{3}}\right) \geq-(2+\sqrt{5})$ if and only if l_{1}, l_{2}, l_{3} satisfy the followings: $l_{1}=1$, or $l_{1}=l_{2}=2$, or $l_{1}=2$ and $l_{2}=l_{3}=3$.

We denote by A_{n} the graph obtained from C_{n-1} by adding a pendant edge. Let P_{a+b+3} be a path $x_{1} x_{2} \cdots x_{a+b+3}$. We denote by $A_{a, b}$ the graph obtained by adding pendant edges at x_{a+1} and x_{a+b+2} in P_{a+b+3}. In particular, $A_{1, n-2}$ is denoted simply by W_{n}. An internal $x_{1} x_{k}$-path of a graph G is a path $x_{1} x_{2} x_{3} \cdots x_{k}\left(\right.$ possibly $\left.x_{1}=x_{k}\right)$ of G such that $d_{x_{1}}$ and $d_{x_{k}}$ are at least 3 and $d_{x_{2}}=d_{x_{3}}=\cdots=d_{x_{k-1}}=2$ (unless $k=2$).
Lemma 3.6.([2]) (i) Let $G_{u v}$ denote the graph obtained from G by introducing a new vertex on the edge $u v$ of G. If $u v$ is an edge on an internal path of G and $G \not \approx W_{n}$, then $\gamma\left(G_{u v}\right)<\gamma(G)$;
(ii) If H is a proper subgraph of G, then $\gamma(H)<\gamma(G)$;
(iii) If $n \geq 2$, then $\gamma\left(W_{n}\right)=2$.

From Lemmas 3.4 and 3.6, we have
Lemma 3.7. Let G be a tree.
(i) If $u v$ is an edge on an internal path of G and $G \neq W_{n}$, then $\beta(G)<\beta\left(G_{u v}\right)$;
(ii) If H is a proper subgraph of G, then $\beta(G)<\beta(H)$;
(iii) If $n \geq 2$, then $\beta\left(W_{n}\right)=-4$.

Lemma 3.8.([14]) For any $n \geq 2$, we have:
(i) $h\left(T_{1, n, n+3}\right)=h\left(P_{n+1}\right) h\left(A_{n+3}\right)$,
(ii) $h\left(T_{1, n, n}\right)=h\left(P_{n}\right) h\left(A_{n+2}\right)$,
(iii) $h\left(T_{1, n, 2 n+5}\right)=h\left(C_{n+2}\right) h\left(T_{1, n+1, n+2}\right)$,
(iv) $h\left(T_{2,2, n}\right)=h\left(P_{2}\right) h\left(A_{n+3}\right)$,
(v) $h\left(T_{2,3,3}\right)=x^{3} h\left(P_{3}\right)\left(x^{3}+6 x^{2}+8 x+2\right)$,
(vi) $\beta\left(T_{1, n, n}\right)=\beta\left(T_{1, n-1, n+2}\right)$ and $\beta\left(T_{1, n, n+1}\right)=\beta\left(T_{1, n-1,2 n+3}\right)$.

Theorem 3.3. (i) For $n \geq 2$ and $m \geq 6$,

$$
\beta\left(T_{1,2, m+1}\right)<\beta\left(T_{1,2, m}\right)<\beta\left(T_{1,2,5}\right)<\beta\left(T_{1,1, n}\right)<\beta\left(T_{1,1, n-1}\right) .
$$

(ii) For $3 \leq l \leq 11, n \geq 3$ and $m \geq l+3$,

$$
\beta\left(T_{1, l, m+1}\right)<\beta\left(T_{1, l, m}\right)<\beta\left(T_{1, l, l+2}\right)<\beta\left(T_{1, l-1, n}\right)<\beta\left(T_{1, l-1, n-1}\right) .
$$

(iii) For $T_{1} \in\left\{T_{1, l_{1}, l_{2}} \mid 3 \leq l_{1} \leq 10, l_{1} \leq l_{2}\right\}$ and $T_{2} \in\left\{T_{1, l_{1}, l_{2}} \mid 1 \leq l_{1} \leq l_{2}\right\}$, we have $\beta\left(T_{1}\right)=\beta\left(T_{2}\right)$ and $T_{1} \not \not T_{2}$ if and only if $\beta\left(T_{1, n, n}\right)=\beta\left(T_{1, n-1, n+2}\right)$ and $\beta\left(T_{1, n, n+1}\right)=\beta\left(T_{1, n-1,2 n+3}\right)$.
Proof. The proof of (i) and (ii): By Lemmas 2.2 and 2.3,

$$
h\left(T_{1, l_{1}, l_{2}}\right)=x h\left(P_{l_{1}+l_{2}+1}\right)+x h\left(P_{l_{1}}\right) h\left(P_{l_{2}}\right)
$$

and

$$
h\left(A_{a, b}\right)=x h\left(T_{1,1, a+b+1}\right)+x h\left(P_{a}\right) h\left(T_{1,1, b}\right) .
$$

By calculating, we have $h\left(A_{1,1}\right)=x^{7}+6 x^{6}+8 x^{5}$. By Lemma 2.8, one can get that $h\left(A_{a, b}\right)=x^{2} h\left(C_{a+b+3}\right)+x^{2} h\left(C_{b+2}\right) h\left(P_{a}\right)$ for $b \geq 2$. From Lemma 2.5, by calculating we obtain the coefficients of $h\left(T_{1, l_{1}, l_{2}}\right)$ and $h\left(A_{a, b}\right)$, given in Tables 1 and 2.

$\left(l_{1}, l_{2}\right)$	The coefficients of $h\left(T_{1, l_{1}, l_{2}}\right): b_{0}, b_{1}, b_{2}, b_{3}, \cdots$
$(2,5)$	$1,8,20,17,4$
$(3,5)$	$1,9,27,31,11$
$(4,6)$	$1,11,44,78,59,15,1$
$(5,7)$	$1,13,65,157,188,102,19$
$(6,8)$	$1,15,90,276,458,400,164,24,1$
$(7,9)$	$1,17,119,443,945,1159,776,250,29$
$(8,10)$	$1,19,152,666,1741,2773,2636,1402,365,35,1$
$(9,11)$	$1,21,189,953,2954,5812,7237,5515,2393,515,41$
$(10,12)$	$1,23,230,1312,4708,11054,17120,17216,10787,3899,706,48,1$
$(11,13)$	$1,25,275,1751,7143,19517,36274,45644,37982,19958,6111,945,55$

Table 1. The coefficients of $h\left(T_{1, l_{1}, l_{2}}\right)$.

(a, b)	The coefficients of $h\left(A_{a, b}\right): b_{0}, b_{1}, b_{2}, b_{3}, \cdots$
$(1,1)$	$1,6,8$
$(2,7)$	$1,13,64,148,162,75,11$
$(3,7)$	$1,14,76,201,266,160,31$
$(4,9)$	$1,17,118,430,880,1002,589,152,13$
$(5,11)$	$1,20,169,785,2184,3718,3795,2177,610,58$
$(6,13)$	$1,23,229,1293,4556,10388,15379,14443,8152,2503,351,17$
$(7,15)$	$1,26,298,1981,8455,24225,47328,62764,55198,30744,10003,1636,93$
$(8,17)$	$1,29,376,2876,14421,49819,121296,209304,253878,211718,116689$, $39840,7574,671,21$
$(9,19)$	$1,32,463,4005,23075,93380,272734,581647,906015,1020680,814606$, $445093,157785,33292,3585,136$
$(10,21)$	$1,35,559,5395,35119,162981,555750,1414270,2700775,3860021,4085950$,
$3142790,1704795,623400,143448,18620,1140,25$	

Table 2. The coefficients of $h\left(A_{a, b}\right)$.
Note: For each $h(G)$ in Tables 1 and 2, $h(G, x)=\sum_{i=0}^{p(G)} b_{i} x^{p(G)-i}$, where $p\left(T_{1, l_{1}, l_{2}}\right)=$ $l_{1}+l_{2}+2$ and $p\left(A_{a, b}\right)=a+b+5$.

Using Software Mathematica, we get the minimum roots of $h\left(T_{1, l_{1}, l_{2}}\right)$ and $h\left(A_{a, b}\right)$, given in Table 3.

$\left(l_{1}, l_{2}\right)$	$\beta\left(T_{\left.1, l_{1}, l_{2}\right)}\right.$	(a, b)	$\beta\left(A_{a, b}\right)$
$(2,5)$	-4.0000	$(1,1)$	-4.00000
$(3,5)$	-4.09529	$(2,7)$	-4.09529
$(4,6)$	-4.16035	$(3,7)$	-4.15875
$(5,7)$	-4.19353	$(4,9)$	-4.18970
$(6,8)$	-4.21145	$(5,11)$	-4.20829
$(7,9)$	-4.22153	$(6,13)$	-4.21937
$(8,10)$	-4.22736	$(7,15)$	-4.22597
$(9,11)$	-4.23080	$(8,17)$	-4.22993
$(10,12)$	-4.23286	$(9,19)$	-4.23232
$(11,13)$	-4.23411	$(10,21)$	-4.23378

Table 3. The minimum roots of $h\left(T_{1, l_{1}, l_{2}}\right)$ and $h\left(A_{a, b}\right)$.
By Lemma 3.7, we have

$$
\begin{equation*}
\beta\left(A_{a, b}\right)<\beta\left(A_{a, b+1}\right)<\beta\left(A_{a, b+2}\right)<\cdots<\beta\left(A_{a, b+k}\right) \text { for } k \geq 3 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta\left(A_{a, b}\right)<\beta\left(T_{1, a, b+2}\right) . \tag{2}
\end{equation*}
$$

From Table 3, one see that $\beta\left(T_{1,2,5}\right)=\beta\left(A_{1,1}\right)$ and $\beta\left(T_{1,3,5}\right)=\beta\left(A_{2,7}\right)$, and $\beta\left(T_{1, l+1, l+3}\right)<$ $\beta\left(A_{l, 2 l+1}\right)$ for $3 \leq l \leq 10$. So, by (1), (2) and Lemma 3.7, we have:
(a) for $l=1, m \geq 6$ and $n \geq 2, \beta\left(T_{1,2, m+1}\right)<\beta\left(T_{1,2, m}\right)<\beta\left(T_{1,2,5}\right)=\beta\left(A_{1,1}\right)=$ $\beta\left(W_{n}\right)<\beta\left(T_{1,1, n}\right)<\beta\left(T_{1,1, n-1}\right)$,
(b) for $l=2, m \geq 6$ and $n \geq 2, \beta\left(T_{1,3, m+1}\right)<\beta\left(T_{1,3, m}\right)<\beta\left(T_{1,3,5}\right)=\beta\left(A_{2,7}\right)<$ $\beta\left(A_{2, n+6}\right)<\beta\left(T_{1,2, n}\right)<\beta\left(T_{1,2, n-1}\right)$,
(c) for $3 \leq l \leq 10, m \geq l+4$ and $n \geq 2, \beta\left(T_{1, l+1, m+1}\right)<\beta\left(T_{1, l+1, m}\right)<\beta\left(T_{1, l+1, l+3}\right)<$ $\beta\left(A_{l, 2 l+1}\right)<\beta\left(A_{l, n+2 l}\right)<\beta\left(T_{1, l, n}\right)<\beta\left(T_{1, l, n-1}\right)$.

Thus, from (a), (b) and (c), we know that (i) and (ii) of the theorem holds.
The proof of (iii). By (i) and (ii) of the theorem and (ii) of Lemma 3.7, we have: (d) for $m \geq 6$ and $n \geq 2, \beta\left(T_{1,3, m+1}\right)<\beta\left(T_{1,3, m}\right)<\beta\left(T_{1,3,5}\right)<\beta\left(T_{1,3,4}\right)<$ $\beta\left(T_{1,3,3}\right)=\beta\left(T_{1,2,5}\right)<\beta\left(T_{1,1, n}\right)<\beta\left(T_{1,1, n-1}\right)$,
(e) for $m \geq 6$ and $n \geq 12, \beta\left(T_{1,3, m+1}\right)<\beta\left(T_{1,3, m}\right)<\beta\left(T_{1,3,5}\right)<\beta\left(T_{1,2, n}\right)<$ $\beta\left(T_{1,2, n-1}\right)<\beta\left(T_{1,2,10}\right)<\beta\left(T_{1,2,9}\right)=\beta\left(T_{1,3,4}\right)<\beta\left(T_{1,2,8}\right)<\beta\left(T_{1,2,7}\right)<\beta\left(T_{1,2,6}\right)<$ $\beta\left(T_{1,3,3}\right)=\beta\left(T_{1,2,5}\right)<\beta\left(T_{1,2,4}\right)<\beta\left(T_{1,2,3}\right)<\beta\left(T_{1,2,2}\right)$,
(f) for $3 \leq l \leq 10, m \geq l+4$ and $n \geq 2 l+8, \beta\left(T_{1, l+1, m+1}\right)<\beta\left(T_{1, l+1, m}\right)<$ $\beta\left(T_{1, l+1, l+3}\right)<\beta\left(T_{1, l, n}\right)<\beta\left(T_{1, l, n-1}\right)<\beta\left(T_{1, l, 2 l+6}\right)<\beta\left(T_{1, l+1, l+2}\right)=\beta\left(T_{1, l, 2 l+5}\right)<$ $\beta\left(T_{1, l, 2 l+4}\right)<\cdots<\beta\left(T_{1, l, l+5}\right)<\beta\left(T_{1, l, l+4}\right)<\beta\left(T_{1, l+1, l+1}\right)=\beta\left(T_{1, l, l+3}\right)<\beta\left(T_{1, l, l+2}\right)<$ $\beta\left(T_{1, l, l+1}\right)<\beta\left(T_{1, l, l}\right)$,
(g) for $l \geq 11, m \geq l+1$ and $n \geq 2, \beta\left(T_{1, l+1, m}\right)<\beta\left(T_{1, l+1, l+1}\right) \leq \beta\left(T_{1,12,12}\right)=$ $\beta\left(T_{1,11,13}\right)<\beta\left(T_{1,10, n}\right)$ by (vi) of Lemma 3.8.

So, from (d), (e), (f) and (g), it is not difficult to see that (iii) holds.
The proof of the theorem is complete.
From the theorem, we propose the following.
Problem 3.2. Is it true that $\beta\left(T_{1, l, l+2}\right)<\beta\left(T_{1, l-1, n}\right)$ for all $l \geq 3$ and $n \geq 1$.

4 Some Chromatically Unique Graphs

Lemma 4.1. Let $f_{i}(x)$ be function with integral coefficients. If $h_{1}\left(P_{m}\right) \not \backslash f_{i}(x)$ for $m \geq 2$ and $i=1,2, \cdots, k$, then there is no $n \geq 2$ such that $h_{1}\left(P_{n}\right) \mid \prod_{i=1}^{k} f_{i}(x)$.
Proof. Suppose that there is an $n \geq 2$ such that $h_{1}\left(P_{n}\right) \mid \prod_{i=1}^{k} f_{i}(x)$. Clearly, $n+1 \geq 3$. So, there is an n_{1} such that $n+1=\left(n_{1}+1\right) n_{2}$ with $n_{1}+1=4$ or $n_{1}+1$ prime. From Lemma 2.7, $h_{1}\left(P_{3}\right)$ and $h_{1}\left(P_{n_{1}}\right)$ are irreducible and $h_{1}\left(P_{3}\right) \mid h_{1}\left(P_{n}\right)$ or $h_{1}\left(P_{n_{1}}\right) \mid h_{1}\left(P_{n}\right)$. Thus, $h_{1}\left(P_{3}\right) \mid \prod_{i=1}^{k} f_{i}(x)$ or $h_{1}\left(P_{n_{1}}\right) \mid \prod_{i=1}^{k} f_{i}(x)$, which implies that theists is an i such that $h_{1}\left(P_{3}\right) \mid f_{i}(x)$ or $h_{1}\left(P_{n_{1}}\right) \mid f_{i}(x)$. This contradicts to the condition of the theorem.

Lemma 4.2.([16]) For $j \geq 9$ and $n \geq 4, \beta\left(D_{j+1}\right)<\beta\left(D_{j}\right)<-4<\beta\left(C_{n}\right)<$ $\beta\left(C_{n-1}\right)$.
Lemma 4.3. $([4,6])$ For $j \geq 5, \cup_{j} C_{j}$ is adjointly unique.
Theorem 4.1. Let $n_{i} \geq 5$ and $m_{j} \geq 9$ for each i and j, and let $3 \leq l_{1} \leq 10$ and $l_{1} \leq l_{2}$. Let $G=\left(\cup_{i} C_{n_{i}}\right) \cup\left(\cup_{j} D_{m_{j}}\right) \cup\left(\cup_{l_{1}, l_{2}} T_{1, l_{1}, l_{2}}\right)$. If $h\left(P_{n}\right) \not\left\langle h\left(C_{n_{i}}\right), h\left(P_{n}\right) \not\left\langle h\left(D_{m_{j}}\right)\right.\right.$ and $h\left(P_{n}\right) \not \backslash h\left(T_{1, l_{1}, l_{2}}\right)$ for all $n \geq 2$, then \bar{G} is χ-unique if and only if $l_{2} \neq 2 l_{1}+3$ and $\left(l_{1}, l_{2}\right) \neq\left(n_{i}-1, n_{i}\right)$ for all i.

Proof. From Theorem 1.1, we only need to consider the necessary and sufficient conditions for G to be adjointly unique.

Let H be a graph such that $h(H)=h(G)$. Suppose that $H=\cup_{i} H_{i}$ and each H_{i}
is connected. By Lemmas 2.2 and 2.4,

$$
\begin{equation*}
\prod_{i} h\left(H_{i}\right)=\prod_{i} h\left(C_{n_{i}}\right) \prod_{j} h\left(D_{m_{j}}\right) \prod_{l_{1}, l_{2}} h\left(T_{1, l_{1}, l_{2}}\right) \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i} R\left(H_{i}\right)=\sum_{i} R\left(C_{n_{i}}\right)+\sum_{j} R\left(D_{m_{j}}\right)+\sum_{l_{1}, l_{2}} R\left(T_{1, l_{1}, l_{2}}\right)=0 . \tag{4}
\end{equation*}
$$

As $h\left(P_{n}\right) \not \backslash h(H)$ for $n \geq 2$, it is obvious from Lemma 4.1 that $h\left(P_{n}\right) \not \backslash h\left(H_{i}\right)$ for each i and $n \geq 2$. Thus, from (4) and Lemmas 2.2 and 2.4 and $h_{1}\left(P_{4}\right)=h_{1}\left(K_{3}\right)$, we have $R\left(H_{i}\right)=0$ for each component H_{i} in H. Recalling that $h\left(P_{n}\right) \nmid h\left(H_{i}\right)$ for each H_{i} and $n \geq 2$, by Lemmas 2.4 and 3.8, we have

$$
\begin{equation*}
H_{i} \in\left\{C_{n}, D_{m}, T_{a, b, c}, K_{1} \mid n \geq 4, m \geq 4,1 \leq a \leq b \leq c\right\} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
H_{i} \notin\left\{T_{1, a, a}, T_{1, b, b+3}, T_{2,2, c}, T_{2,3,3} \mid a \geq 2, b \geq 1, c \geq 2\right\} . \tag{6}
\end{equation*}
$$

By Lemma 2.8, $\beta\left(C_{n}\right)=\beta\left(T_{1,1, n-2}\right)$ and $\beta\left(D_{n}\right)=\beta\left(T_{1,2, n-3}\right)$ for $n \geq 4$. Therefore, by Lemma 3.5, $\beta(G)>-(2+\sqrt{5})$. So, $\beta(H)=\beta(G)>-(2+\sqrt{5})$. From Lemma 3.5 and (5) and (6), we have

$$
\begin{equation*}
H_{i} \in\left\{C_{n}, D_{m}, T_{1, b, c}, K_{1} \mid n \geq 4, m \geq 4,1 \leq b \leq c, b \neq c, c \neq b+3\right\} . \tag{7}
\end{equation*}
$$

We construct a graph H^{\prime} from H by replacing each component $T_{1, a, 2 a+5}$ by two components C_{a+2} and $T_{1, a+1, a+2}$ until none of the components is isomorphic to $T_{1, a, 2 a+5}$, where $a \geq 2$. Without loss of generality, let $H^{\prime}=\cup_{i} H_{i}^{\prime}$. From (3) and (7), we can easily get that

$$
\begin{gather*}
\prod_{i=1} h\left(H_{i}^{\prime}\right)=\prod_{i} h\left(C_{n_{i}}\right) \prod_{j} h\left(D_{m_{j}}\right) \prod_{l_{1}, l_{2}} h\left(T_{1, l_{1}, l_{2}}\right), \tag{8}\\
H_{i}^{\prime} \in\left\{C_{n}, D_{m}, T_{1, b, c}, K_{1} \mid n \geq 4, m \geq 4,1 \leq b \leq c, b \neq c, c \neq b+3, c \neq 2 b+5\right\} . \tag{9}
\end{gather*}
$$

In the following, we shall consider the minimum roots of the two sides of (8), namely, $\beta\left(H^{\prime}\right)$ and $\beta(G)$. Assume that $T_{1, s_{1}, s_{2}}$ is a component of G and $\beta(G)=$ $\beta\left(T_{1, s_{1}, s_{2}}\right)$. Clearly, $3 \leq s_{1} \leq 10$ and $s_{2} \geq s_{1}$. From (8), we see that H^{\prime} must have a component (say H_{1}^{\prime}) such that $\beta\left(H_{1}^{\prime}\right)=\beta\left(T_{1, s_{1}, s_{2}}\right)$. As $\beta\left(C_{n}\right)=\beta\left(T_{1,1, n-2}\right)$ and $\beta\left(D_{n}\right)=\beta\left(T_{1,2, n-3}\right)$ for $n \geq 4$, we know by Theorem 3.3(iii) and (9) that $H_{1}^{\prime} \in\left\{T_{1, s_{1}, s_{2}}, T_{1, a, a+1}\right\}$. Suppose that $H_{1}^{\prime} \cong T_{1, a, a+1}$ and $T_{1, a, a+1} \not \approx T_{1, s_{1}, s_{2}}$. From Theorem 3.3(iii) and $\beta\left(T_{1, a, a+1}\right)=\beta\left(T_{1, s_{1}, s_{2}}\right)$, we have $T_{1, a-1,2 a+3} \cong T_{1, s_{1}, s_{2}}$, which contradicts the fact that $s_{2} \neq 2 s_{1}+5$. Thus, $H_{1}^{\prime} \cong T_{1, s_{1}, s_{2}}$. Eliminating a factor $h\left(T_{1, s_{1}, s_{2}}\right)$ from the two sides of (8), we arrive at that

$$
\begin{equation*}
\prod_{i=2} h\left(H_{i}^{\prime}\right)=\prod_{i} h\left(C_{n_{i}}\right) \prod_{j} h\left(D_{m_{j}}\right) \prod_{l_{1}, l_{2}} h\left(T_{1, l_{1}, l_{2}}\right) / h\left(T_{1, s_{1}, s_{2}}\right) . \tag{10}
\end{equation*}
$$

From (10), we can obtain the following fact by repeating the above argument.
Fact 1. For each component $T_{1, l_{1}, l_{2}}$ of G, there must be a component H_{i}^{\prime} of H^{\prime} such that $H_{i}^{\prime} \cong T_{1, l_{1}, l_{2}}$.

Eliminating the factor $\prod_{l_{1}, l_{2}} h\left(T_{1, l_{1}, l_{2}}\right)$ of $h(G)$ from the two sides of (8), it follows immediately that

$$
\begin{equation*}
\prod_{i=1} h\left(H_{i}^{\prime \prime}\right)=\prod_{i} h\left(C_{n_{i}}\right) \prod_{j} h\left(D_{m_{j}}\right) \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
H_{i}^{\prime \prime} \in\left\{C_{n}, D_{m}, T_{1, b, c}, K_{1} \mid n \geq 4, m \geq 4,1 \leq b \leq c, b \neq c, c \neq b+3, c \neq 2 b+5\right\} . \tag{12}
\end{equation*}
$$

Since $p\left(\left(\cup_{i} C_{n_{i}}\right) \cup\left(\cup_{j} D_{m_{j}}\right)\right)=q\left(\left(\cup_{i} C_{n_{i}}\right) \cup\left(\cup_{j} D_{m_{j}}\right)\right)$, we have $p\left(\cup_{i} H_{i}^{\prime \prime}\right)=q\left(\cup_{i} H_{i}^{\prime \prime}\right)$. So, from (12), we have

$$
\begin{equation*}
H_{i}^{\prime \prime} \in\left\{C_{n}, D_{m} \mid n \geq 4, m \geq 4\right\} . \tag{13}
\end{equation*}
$$

From assumptions and Lemma 4.2, we have $\beta\left(D_{m_{j}}\right)<-4<\beta\left(C_{n}\right)$ for $m_{j} \geq 9$. Similar to the argument of (8), from Lemma 4.2, we can get the following fact by comparing the minimum roots of the two sides of equation (11).
Fact 2. For each component $D_{m_{j}}$ of G, there must be one component H_{i}^{\prime} such that $H_{i}^{\prime} \cong D_{m_{j}}$ in H^{\prime}.

Eliminating the factor $\prod_{j} h\left(D_{m_{j}}\right)$ of $h(G)$ from the two sides of (11), it follows that

$$
\begin{equation*}
\prod_{i} h\left(H_{i}^{\prime \prime \prime}\right)=\prod_{i} h\left(C_{n_{i}}\right), H_{i}^{\prime \prime \prime} \in\left\{C_{n}, D_{m} \mid n \geq 4, m \geq 4\right\} . \tag{14}
\end{equation*}
$$

The following fact is obtained from (14) and assumptions and Lemma 4.3.
Fact 3. $\cup_{i} H_{i}^{\prime \prime \prime} \cong \cup_{i} C_{n_{i}}$.
From Facts 1,2 and 3 , it is clear that $H^{\prime} \cong G$. Suppose that H has at least one component $T_{1, a, 2 a+5}$. Obviously, H^{\prime} must contain the components $T_{1, a+1, a+2}$ and C_{a+2}. Recalling that $H^{\prime} \cong G$, we have G must contain the components $T_{1, a+1, a+2}$ and C_{a+2}. This contradicts to the condition of the theorem. So, H does not contain the component $T_{1, a, 2 a+5}$. Therefore, $H \cong H^{\prime} \cong G$. This completes the proof of the sufficient condition of the theorem.

From Lemma 3.8(iii), the necessity of the theorem is obvious.
This completes the proof of the theorem.
From Lemma 2.8 and Theorem 3.2, we have that $h\left(P_{n}\right) \mid h\left(C_{m}\right)$ if and only if $n=3$ and $m=4 k+2$, and $h\left(P_{n}\right) \mid h\left(D_{m}\right)$ if and only if $n=2$ and $m=3 k+2$ or $n=4$ and $m=5 k+3$, where $k \geq 1$. So, from Theorems 3.2 and 4.1, we have
Corollary 4.1. Let $G_{i} \in\left\{C_{i} \mid i \geq 5, i \not \equiv 2(\bmod 4)\right\} \cup\left\{D_{j} \mid j \geq 9, j \not \equiv 2(\bmod 3), j \not \equiv\right.$ $3(\bmod 5)\} \cup\left\{T_{1, l_{1}, l_{2}} \mid 3 \leq l_{1} \leq 6, l_{1} \leq l_{2}, l_{1} \neq l_{2}, l_{1} \neq l_{2}+1, l_{2} \neq 2 l_{1}+5\right\}$ and $\left(l_{1}, l_{2}\right) \notin$ $\{(3,3 k),(3,4 k-1),(4,4 k+1),(4,5 k-1),(4,7 k),(5,3 k+2),(5,4 k+4),(5,5 k+$ $2),(6,3 k+3),(6,7 k-1) \mid k \geq 1\}$. Then $\overline{\cup_{i} G_{i}}$ is χ-unique.
Theorem 4.2. Let $3 \leq l_{1} \leq 10, l_{1} \leq l_{2}$. If $h\left(P_{m}\right) \nmid h\left(T_{1, l_{1}, l_{2}}\right)$ for any $m \geq 2$, then $K_{n}-E\left(\cup_{l_{1}, l_{2}} T_{1, l_{1}, l_{2}}\right)$ is χ-unique if and only if $l_{2} \neq 2 l_{1}+5$, where $n \geq \sum_{l_{1}, l_{2}}\left|V\left(T_{1, l_{1}, l_{2}}\right)\right|$.
Proof. Obviously, $\overline{K_{n}-E\left(\cup_{l_{1}, l_{2}} T_{\left.1, l_{1}, l_{2}\right)}\right.}=r K_{1} \cup\left(\cup_{l_{1}, l_{2}} T_{1, l_{1}, l_{2}}\right)$, where $r=n-$ $\sum_{l_{1}, l_{2}}\left|V\left(T_{1, l_{1}, l_{2}}\right)\right|$. Let $G=r K_{1} \cup\left(\cup_{l_{1}, l_{2}} T_{1, l_{1}, l_{2}}\right)$. From Theorem 1.1, we only consider the necessary and sufficient conditions for G to be adjointly unique.

Let H be a graph such that $h(H)=h(G)$. Suppose that $H=\cup_{i} H_{i}$, where each H_{i} is connected. By Lemmas 2.2 and 2.4, we have

$$
\begin{equation*}
\prod_{i} h\left(H_{i}\right)=x^{r} \prod_{l_{1}, l_{2}} h\left(T_{1, l_{1}, l_{2}}\right) \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i} R\left(H_{i}\right)=\sum_{l_{1}, l_{2}} R\left(T_{1, l_{1}, l_{2}}\right)=0 \tag{16}
\end{equation*}
$$

Similar to the proof of Theorem 4.1, by assumptions and Lemmas 3.7 and 4.1, we have

$$
\begin{equation*}
H_{i} \in\left\{C_{n}, D_{m}, T_{1, b, c}, K_{1} \mid n \geq 4, m \geq 4,1 \leq b \leq c, b \neq c, c \neq b+3\right\} . \tag{17}
\end{equation*}
$$

We construct a graph H^{\prime} from H by replacing each component $T_{1, a, 2 a+5}$ by two components C_{a+2} and $T_{1, a+1, a+2}$ until none of the components is isomorphic to $T_{1, a, 2 a+5}$, where $a \geq 2$. Without loss of generality, let $H^{\prime}=\cup_{i} H_{i}^{\prime}$. By (15) and (17), we obtain that

$$
\begin{equation*}
\prod h\left(H_{i}^{\prime}\right)=x^{r} \prod_{l_{1}, l_{2}} h\left(T_{1, l_{1}, l_{2}}\right) \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
H_{i}^{\prime} \in\left\{C_{n}, D_{m}, T_{1, b, c}, K_{1} \mid n \geq 4, m \geq 4,1 \leq b \leq c, b \neq c, c \neq b+3, c \neq 2 b+5\right\} . \tag{19}
\end{equation*}
$$

Similar to the proof of Theorem 4.1, by comparing the minimum roots of the two sides of (18) we have
Fact 4. For each component $T_{1, l_{1}, l_{2}}$ of G, there must be a component H_{i}^{\prime} of H^{\prime} such that $H_{i}^{\prime} \cong T_{1, l_{1}, l_{2}}$.

Eliminating the factor $\prod_{l_{1}, l_{2}} h\left(T_{1, l_{1}, l_{2}}\right)$ of $h(G)$ from the two sides of (18), it follows immediately that

$$
\begin{equation*}
\prod h\left(H_{i}^{\prime \prime}\right)=x^{r} \tag{20}
\end{equation*}
$$

From (19) and (20) and Fact 4, we have
Fact 5. H^{\prime} only has r isolated vertices and $H_{i}^{\prime} \in\left\{T_{1, b, c}, K_{1} \mid 1 \leq b \leq c, b \neq c, c \neq\right.$ $b+3, c \neq 2 b+5\}$.

By Facts 4 and $5, H^{\prime} \cong G$. Assume that H has at least one component $T_{1, a, 2 a+5}$. Then H^{\prime} must contain a component C_{a+2}. This contradicts Fact 5 . So, $H \cong H^{\prime} \cong G$. The proof of sufficient conditions of the theorem is complete.

From (iii) of Lemma 3.8, the necessity of the theorem is obvious.
This completes the proof of the theorem.
Corollary 4.2. Let $G_{i} \in\left\{T_{1, l_{1}, l_{2}} \mid 3 \leq l_{1} \leq 6, l_{1} \leq l_{2}, l_{1} \neq l_{2}, l_{1} \neq l_{2}+1, l_{2} \neq 2 l_{1}+5\right\}$ and $\left(l_{1}, l_{2}\right) \notin\{(3,3 k),(3,4 k-1),(4,4 k+1),(4,5 k-1),(4,7 k),(5,3 k+2),(5,4 k+$ $4),(5,5 k+2),(6,3 k+3),(6,7 k-1) \mid k \geq 1\}$. Then $K_{n}-E\left(\cup_{i} G_{i}\right)$ is χ-unique, where $n \geq \sum_{l_{1}, l_{2}}\left|V\left(T_{1, l_{1}, l_{2}}\right)\right|$. .

It is not difficult to see that many results in $[6,9,10,12,14]$ are special case of our Corollaries 4.1 and 4.2.

Acknowledgements

We would like to express our thanks to the referees for the valuable comments. The work is supported by National Science Foundation of China and the Science Foundation of the State Education Ministry of China.

References

[1] N. Biggs, Algebraic Graph Theory, Cambridge University Press, London (1993) 52-53.
[2] D. Cvetkovic, M. Doob and H. Sachs, Spectra of Graphs, Academic Press, New York (1980) 72-79.
[3] F.M. Dong, K.L. Teo, C.H.C. Little and M.D. Hendy, Two invariants for adjointly equivalent graphs, Australasian J. Combin. 25(2002) 133-145.
[4] F.M. Dong, K.L. Teo, C.H.C. Little and M.D. Hendy, Chromaticity of some families of dense graphs, Discrete Math. 258(2002) 303-321.
[5] F.M. Dong, K.L. Teo, C.H.C. Little and M.D. Hendy, The roots of the adjiont polynomials of paths and cycles, Australasian J. Combin. 25(2002) 167-174.
[6] Q. Du, Chromaticity of the complements of paths and cycles, Discrete Math. 162(1996) 109-125.
[7] K.M. Koh and K.L. Teo, The search for chromatically unique graphs, Graphs and Combinatorics 6(1990) 259-285.
[8] K.M. Koh and K.L. Teo, The search for chromatically unique graphs(II), Discrete Math. 172(1997) 59-78.
[9] N. Li, X. Bao and R. Liu, Chromatic uniqueness of the complement of certain forests, Discrete Math. 172(1997) 79-84.
[10] R. Liu, Chromatic uniqueness of complement of a class of tree, Math. Appl., 1996(Suppl) 170-173.
[11] R. Liu and L. Zhao, A new method for proving chromatic uniqueness of graphs, Discrete Math. 171(1997) 169-177.
[12] R. Liu, Adjoint polynomials and chromatically unique graphs, Discrete Math. 172(1997) 85-92.
[13] R.C. Read and W.T. Tutte, Chromatic polynomials, In: Selected Topics in Graph Theory III, L.W. Beineke and R.J. Wilson Eds, Academic Press, New York (1998) 15-42.
[14] L. Wang and R. Liu, Chromatic uniqueness of complement of union of a class of tree, Pure Appl. Math. 17 (2001) 126-132.
[15] H. Zhao and R. Liu, The necessary and sufficient condition of the irreducible paths, J. Northeast Normal University 33 (2) (2001) 18-21.
[16] H. Zhao, B. Huo and R. Liu, Chromaticity of the complement of paths, J. Math. Study 33 (4) (2000) 345-353.

