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Abstract

For a graph G, we denote by P (G,λ) the chromatic polynomial of G and
by h(G, x) the adjoint polynomial of G. A graph G is said to be chromatically
unique if for any graph H, P (H, λ) = P (G,λ) implies H ∼= G. In this paper,
we investigate some algebraic properties of the adjoint polynomials of some
graphs. Using these properties, we obtain necessary and sufficient conditions
for Kn−E(∪a,bT1,a,b) and (∪iCni) ∪ (∪iDmj ) ∪ (∪a,bT1,a,b) to be chromatically
unique if Gi ∈ {Cn, Dn, T1,a,b|n ≥ 5, 3 ≤ a ≤ 10, a ≤ b} and h(Pm) 6 |h(Gi) for
all m ≥ 2. Moreover, many new chromatically unique graphs are given.
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1 Introduction

All graphs considered here are finite and simple. For notations and terminology not
defined here, we refer to [1]. For a graph G, let V (G), E(G), p(G) and q(G) denote
the set of vertices, the set of edges, the number of vertices and the number of edges
of G, respectively. The degree of a vertex v of G is denoted by dG(v), or simply by
dv. We denote by G the complement of G. Let G and H be two graphs. G ∪ H
denotes the disjoint union of G and H, and mH denotes the disjoint union of m
copies of H.

Let Ci (resp., Pj) denote the cycle (resp., the path) with i (resp., j) vertices,
where i ≥ 3 (resp., j ≥ 2). We denote by Dk the graph obtained from C3 and Pk−2

by identifying a vertex of C3 with an end-vertex of Pk−2 and by Tl1,l2,l3 the tree
with a vertex u of degree 3 such that Tl1,l2,l3 − u = Pl1 ∪ Pl2 ∪ Pl3 , where k ≥ 4 and
li ≥ 1, i = 1, 2, 3. We denote by Kn the complete graph with n vertices. Let G be a
subgraph of Kn. We denote by Kn−E(G) the graph obtained from Kn by deleting
all the edges of G.

For a positive integer r, a partition {A1, A2, · · · , Ar} of V (G) is called an r-
independent partition of a graph G if every Ai is a nonempty independent set of
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G. Let mr(G) denote the number of r-independent partitions of V (G). Then, the
chromatic polynomial of G is P (G,λ) =

∑
r≥1

α(G, r)(λ)r, where (λ)r = λ(λ− 1)(λ−
2) · · · (λ − r + 1) for all r ≥ 1, see [13] for more details. Two graphs G and H are
called chromatically equivalent, denoted by G ∼ H, if P (G,λ) = P (H,λ). A graph
G is called chromatically unique ( or simply χ-unique) if H ∼= G whenever H ∼ G.

Definition 1.1. ([11,12]) Let G be a graph with p vertices. The polynomial

h(G, x) =
p−1∑

i=0

α(G, p− i)xp−i

is called the adjoint polynomial of G. A graph G is called adjointly unique if
h(H, x) = h(G, x) implies that H is isomorphic to G.

From Definitions 1.1, we have

Theorem 1.1.([3-5]) For any graph G, G is adjointly unique if and only if G is
χ-unique.2

Definition 1.2. ([11,12]) Let G be a graph and h(G, x) = xα(G)h1(G, x), where
h1(G, x) is a polynomial with a nonzero constant term. If h1(G, x) is irreducible
over the rational number field, then G is called an irreducible graph.

The adjoint polynomial of G has many algebraic properties, such as the recursive
relation, divisibility, reducibility over the rational number field, etc., see [3-6] and
[10-12,14-16] for more details. These properties are very useful in the study of
chromatic uniqueness of graphs. Many chromatically equivalent classes of graphs
have been found by applying these properties, see [3-5] and [9-12]. In [6,9,14], Du,
Liu, Li and Wang shown that if Dn and Tl1,l2,l3 are irreducible, then

⋃
l1,l2,l3 Tl1,l2,l3

and
⋃t

j=1 Dmj are χ–unique.
The main goal of this paper is to study the algebraic properties of h(Pn) and

h(Tl1,l2,l3). Using these properties, we investigate the chromaticity of Kn−E(∪a,bT1,a,b)
and (∪iCni) ∪ (∪iDmj ) ∪ (∪a,bT1,a,b), where 3 ≤ a ≤ 10 and a ≤ b. Moreover we
obtain many new chromatically unique graphs.

For convenience, sometimes we simply denote h(G, x) by h(G) and h1(G, x) by
h1(G). Let f(x) and g(x) be two polynomials in x. We denote by (g(x), f(x)) the
greatest common factor of g(x) and f(x). g(x)|f(x) (resp., g(x) 6 |f(x)) means that
g(x) divides f(x) (resp., g(x) does not divide f(x)). We denote by ∂f(x) the degree
of f(x). For any real number a, bac = max{x|x ≤ a and x is a integer}.

2 Preliminaries

Definition 2.1. ([12]) The character of a graph G is defined as follows:

R(G) =





0, if q(G) = 0,

b2(G)−
(

b1(G)− 1
2

)
+ 1, if q(G) > 0,

where b1(G) and b2(G) denote the second and the third coefficients of h(G), respec-
tively.

Lemma 2.1. ([12]) Let G and H be two graphs. If h(G, x) = h(H,x) or h1(G, x) =
h1(H, x), then R(G) = R(H).
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Lemma 2.2. ([12]) Let G be a graph with k components G1, G2, . . . , Gk. Then

(i) h(G) =
k∏

i=1
h(Gi),

(ii) R(G) =
k∑

i=1
R(Gi).

Lemma 2.3.([12]) Let G be a graph with e = uv ∈ E(G) and e does not belong to
any triangle of G. Then

h(G, x) = h(G− uv, x) + xh(G− {u, v}, x),

where G − uv denotes the graph obtained from G by deleting the edge uv and
G − {u, v} denotes the graph obtained from G by deleting the vertices u and v to-
gether with their incident edges, respectively.

Lemma 2.4. ([12]) Let G be a connected graph with n vertices. Then

(i) R(G) ≤ 1, and the equality holds if and only if G ∼= Pn(n ≥ 2) or G ∼= K3.

(ii) R(G) = 0 if and only if G is one of the graphs K1, Cn, Dn and Tl1,l2,l3 , where
n ≥ 4 and li ≥ 1, i = 1, 2, 3.

Lemma 2.5.([12]) (i) For n ≥ 2, h(Pn) =
∑

k≤n

(
k

n− k

)
xk;

(ii) For n ≥ 4, h(Cn) =
∑

k≤n

n
k

(
k

n− k

)
xk.

From Definition 1.2 and Lemma 2.5, we have

Lemma 2.6 (i) For n ≥ 2, ∂(h1(Pn)) = bn
2 c and α(Pn) = bn+1

2 c;
(ii) For n ≥ 3, h(Pn) = x(h(Pn−1) + h(Pn−2)). 2

Lemma 2.7.([15]) For n ≥ 2, we have:

(i) h(Pn)|h(Pm) if and only if (n + 1)|(m + 1);

(ii) h(Pn) is irreducible if and only if n = 3 or n + 1 is prime.

Lemma 2.8([14]) (i) For n ≥ 4, h(T1,1,n−2, x) = xh(Cn, x);

(ii) For n ≥ 4, h(T1,2,n−3, x) = xh(Dn, x).

3 Some Properties of Adjoint Polynomials of Graphs

Lemma 3.1. (i) For t ≥ 1 and m ≥ 4, h(T1,t,m) = x[h(T1,t,m−1) + h(T1,t,m−2)];
(ii) Let n = |V (T1,t,m)| = m + t + 2. Then

∂h1(T1,t,m) =

{ ⌊
n
2

⌋
, if t and m are even,⌊

n−1
2

⌋
, otherwise.

(iii) Let n = |V (T1,t,m)| = m + t + 2. Then

α(T1,t,m) =

{ ⌊
n
2

⌋
, if t and m are even,⌊

n+2
2

⌋
, otherwise.

Proof. (i) From Lemma 2.3, it is obvious.
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(ii) Choose the edge e = uv ∈ E(T1,t,m) such that du = 1 and dv = 3. By
Lemma 2.3, h(T1,t,m) = x[h(Pm+t+1) + h(Pt)h(Pm)]. From Lemma 2.6, we have
∂(h1(Pm+t+1)) = bm+t+1

2 c and ∂(h1(Pt)h1(Pm)) = bm
2 c+b t

2c. Clearly, ∂(h1(Pm+t+1)) ≥
∂(h1(Pt)h1(Pm)). Noticing that ∂(h(Pm+t+1)) = ∂(h(Pt)h(Pm)) + 1, we have

∂(h1(T1,t,m)) = ∂(h1(Pm+t+1)) + 1 for ∂(h1(Pm+t+1)) = ∂(h1(Pt)h1(Pm))

and

∂(h1(T1,t,m)) = ∂(h1(Pm+t+1)) for ∂(h1(Pm+t+1)) > ∂(h1(Pt)h1(Pm)).

It is not difficult to verify that ∂(h1(Pm+t+1)) = ∂(h1(Pt)h1(Pm)) only if m and t
are even. So, (ii) of the lemma holds.

Clearly, (iii) follows from (ii) of the lemma.2

Lemma 3.2. Let {gi(x)}i (i ≥ 0) be a sequence of polynomials with integral
coefficients and gn(x) = x(gn−1(x) + gn−2(x)). Then

(i) gn(x) = h(Pk)gn−k(x) + xh(Pk−1)gn−k−1(x);

(ii) h1(Pn)|gn+1+i(x) if and only if h1(Pn)|gi(x), for any positive integers n and i.

Proof. (i) By induction on k. By h(P1) = x and h(P0) = 1, we have

gn(x) = h(P1)gn−1(x) + xh(P0)gn−2(x).

So, (i) of the lemma holds when k = 1. Suppose that it is true for k ≤ l − 1. From
the recursive relation of gn(x), Lemma 2.6(ii) and the induction hypothesis, we have

gn(x) = x(gn−1(x) + gn−2(x))
= xh(Pl−1)gn−l(x) + x2h(Pl−2)gn−l−1(x)+

xh(Pl−2)gn−l(x) + x2h(Pl−3)gn−l−1(x)
= h(Pl)gn−l(x) + xh(Pl−1)gn−l−1(x).

(ii) From (i) of the lemma, for any integers n and i, it follows

gn+1+i(x) = h(Pn+1)gi(x) + xh(Pn)gi−1(x).

It is not difficult to see that (h1(Pn), h1(Pn+1)) = 1 and (h1(Pn), x) = 1 for n ≥ 2.
So, from the above equality we have h1(Pn)|gn+1+i(x) if and only if h1(Pn)|gi(x). 2

Lemma 3.3.([10]) Let 1 ≤ r1 ≤ r2 and r1 ≤ s1 ≤ s2 such that r1 + r2 =
s1 + s2. Then h(Pr1)h(Pr2) − h(Ps1)h(Ps2) = (−1)r1xr1+1h(Ps1−r1−1)h(Ps2−r1−1),
where h(P0) = 1.

Theorem 3.1. For k ≥ 1 and t ≥ 1 such that kt > 3, we have that h(Pt−1)|h(T1,t,kt−3),
h(Pt)|h(T1,t,kt+k−1) and h(Pt+2)|h(T1,t,k(t+3)).

Proof. Suppose that g0(x) = (−1)t h(Pt)2

xt , g1(x) = (−1)t−1 h(Pt)h(Pt−3)+h(Pt−1)2

xt−2 and
gn(x) = x[gn−1(x) + gn−2(x)]. So, we have the following Claim.

Claim. For n ≥ t + 3, gn(x) = h(T1,t,n−t−2).
Proof of the claim: Noticing that h(Pt)2 = x(h(Pt)h(Pt−2) + h(Pt)h(Pt−1)), from
Lemmas 3.2 and 3.3, we can obtain by calculating that

gt+3(x) = h(Pt+2)g1(x) + xh(Pt+1)g0(x)
= (−1)t−1h(Pt)

xt−2 [h(Pt−3)h(Pt+2)− h(Pt−2)h(Pt+1)]
+ (−1)t−1h(Pt−1)

xt−2 [h(Pt−1)h(Pt+2)− h(Pt)h(Pt+1)]
= h(P3)h(Pt) + x3h(Pt−1).
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By Lemma 2.3, h(T1,t,1) = h(P3)h(Pt) + x3h(Pt−1). Thus, gt+3(x) = h(T1,t,1).
Similarly, from Lemmas 2.3, 3.2 and 3.3, we can show that gt+4(x) = h(T1,t,2) =

h(P4)h(Pt) + x2h(P2)h(Pt−1). Using the recursive relation of gn(x), from (i) of
Lemma 3.1, we know that for n ≥ t + 3, gn(x) = h(T1,t,n−t−2). This completes the
proof of the claim.

Using the recursive relation of gn(x), from (i) of Lemma 3.2, we can obtain by
calculating that gt+2(x) = gt+4(x)−xgt+3(x)

x = h(Pt+2), gt+1(x) = gt+3(x)−xgt+2(x)
x =

xh(Pt) and gt−1(x) = (x+1)gt+1(x)−gt+2(x)
x = xh(Pt−1). Clearly, h1(Pt−1)|gt−1(x),

h1(Pt)|gt+1(x), h1(Pt+2)|gt+2(x). So, by (ii) of Lemma 3.2, h1(Pt−1)|gkt+t−1(x),
h1(Pt)|g(t+1)k+t+1(x) and h1(Pt+2)|g(t+3)k+t+2(x). Namely, h1(Pt−1)|h(T1,t,kt−3),
h1(Pt)|h(T1,t,kt+k−1) and h1(Pt+2)|h(T1,t,k(t+3)). Thus, from (i) of Lemma 2.6 and
(iii) of Lemma 3.1, it is not difficult to see that h(Pt−1)|h(T1,t,kt−3), h(Pt)|h(T1,t,kt+k−1)
and h(Pt+2)|h(T1,t,k(t+3)). This completes the proof of the theorem.2

Theorem 3.2. For l ≥ 2, m ≥ 1 and k ≥ 1, we have:
(i) h(Pl)|h(T1,1,m) if and only if (l,m) ∈ {(3, 4k)};
(ii) h(Pl)|h(T1,2,m) if and only if (l, m) ∈ {(2, 3k − 1), (4, 5k)};
(iii) h(Pl)|h(T1,3,m) if and only if (l, m) ∈ {(2, 3k), (3, 4k − 1), (5, 6k)};
(iv) h(Pl)|h(T1,4,m) if and only if (l, m) ∈ {(3, 4k − 3), (4, 5k − 1), (6, 7k)};
(v) h(Pl)|h(T1,5,m) if and only if (l, m) ∈ {(2, 3k − 1), (3, 4k), (4, 5k − 3), (5, 6k −
1), (7, 8k)};
(vi) h(Pl)|h(T1,6,m) if and only if (l, m) ∈ {(2, 3k), (5, 6k − 3), (6, 7k − 1), (8, 9k)}.
Proof. Let g0(x) = (−1)t h(Pt)2

xt , g1(x) = (−1)t−1 h(Pt)h(Pt−3)+h(Pt−1)2

xt−2 and gn(x) =
x[gn−1(x) + gn−2(x)]. From the proof of Theorem 3.1, one can see that if n ≥ t + 3,
gn(x) = h(T1,t,n−t−2).

Without loss of generality, assume that n = (l + 1)k + i, where 0 ≤ i ≤ l.
By Lemma 3.2, h1(Pl)|gn(x) if and only if h1(Pl)|gi(x) for 0 ≤ i ≤ l. Note that
gi(x) = h(T1,t,i−t−2) for l ≥ t + 3. From (i) of Lemma 2.6 and (ii) of Lemma 3.1,
we have ∂h1(Pl) = bl/2c and ∂(gi(x)) = ∂h1(T1,t,i−t−2) ≤ bi/2c ≤ bl/2c. Thus, if
h1(Pl)|h1(T1,t,i−t−2), then ∂(h1(Pl)) = ∂(h1(T1,t,i−t−2)). Moreover, it must hold that
h1(Pl) = h1(T1,t,i−t−2). So, by Lemma 2.1, R(Pl) = R(T1,t,i−t−2), which contradicts
the fact that R(Pl) 6= R(T1,t,i−t−2). Therefore, we have that if l ≥ t + 3, then
h(Pl) 6 |h(T1,t,i−t−2). Thus, we only need to consider the cases of l ≤ t + 2.
Case 1. t = 1. Clearly, l ≤ 3.

By calculating we have that g0(x) = −x, g1(x) = x, g2(x) = x2 and g3(x) =
h(P3). It is easy to verify that h1(Pl)|gi(x) if and only if l = i = 3 for 2 ≤ l ≤ 3 and
0 ≤ i ≤ 3. By Lemma 3.2(ii), h1(P3)|g4k+3(x). Thus, h1(Pl)|h(T1,1,m) if and only if
l = 3 and m = 4k, where k ≥ 1. From (i) of Lemma 2.6 and (iii) of Lemma 3.1, we
can obtain that if m ≥ 4, then h(Pl)|h(T1,1,m) if and only if l = 3 and m = 4k for
k ≥ 1. This completes the proof of (i) of the theorem.
Case 2. t = 2. So, l ≤ 4.

By calculating, it is easy to obtain that g0(x) = [h1(P2)]2, g1(x) = −x2, g2(x) =
2x2 +x, g3(x) = x2h(P2) and g4(x) = x2h1(P4). One can see that h1(Pl)|gi(x) if and
only if (l, i) ∈ {(2, 0), (2, 3), (4, 4)} for 2 ≤ l ≤ 4 and 0 ≤ i ≤ 4. From Lemma 3.2(ii),
it is not difficult to see that h1(P2)|g3k+3 and h1(P4)|g5k+4. Hence, h1(Pl)|h(T1,2,m)
if and only if (l, m) ∈ {(2, 3k− 1), (4, 5k)}. Similar to the proof of (i), we know that
(ii) holds.
Case 3. t = 3. So, l ≤ 5.

By calculating, we have that g0(x) = −[h1(P3)]2, g1(x) = x(x2 +3x+3), g2(x) =
−x2h1(P2), g3(x) = x2(2x + 3), g4(x) = x3h1(P3) and g5(x) = x3h1(P5). One can
verify that h1(Pl)|gi(x) if and only if (l, i) ∈ {(3, 0), (2, 2), (3, 4), (5, 5)} for 2 ≤ l ≤ 4
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and 0 ≤ i ≤ 5. A completely similar proof of Case 1, we can show that (iii) holds.
Similarly, we can show that (iv), (v) and (vi) hold. Here we give the expression

of gi(x) whereas the details of the proof are omitted.

When t = 4, g0(x) = [h1(P4)]2, g1(x) = −x(x3 + 5x2 + 7x + 1), g2(x) = x(x3 +
4x2 + 5x + 1), g3(x) = −x3h1(P3), g4(x) = x2(2x2 + 5x + 1), g5(x) = x3h1(P4) and
g6(x) = x3h1(P6).

When t = 5, g0(x) = −[h1(P5)]2, g1(x) = x(x4 + 7x3 + 16x2 + 13x + 4), g2(x) =
−x2(x3 + 6x2 + 11x + 5), g3(x) = x2h1(P2)h1(P3), g4(x) = −x3h1(P4), g5(x) =
x3(2x2 + 7x + 4), g6(x) = x4h1(P5) and g7(x) = x4h1(P7).

When t = 6, g0(x) = [h1(P6)]2, g1(x) = −x(x5 + 9x4 + 29x3 + 40x2 + 22x + 2),
g2(x) = xh1(P2)(x4 + 7x3 + 15x2 + 9x + 1), g3(x) = −x(x4 + 7x3 + 16x2 + 12x + 1),
g4(x) = x2(x4 + 6x3 + 12x2 + 9x + 1), g5(x) = −x4h1(P5), g6(x) = x3(2x3 + 9x2 +
9x + 1), g7(x) = −x4h1(P6) and g8(x) = x4h1(P8).

The proof of the theorem is complete.2

From Theorem 3.2, it is not difficult to see that for 1 ≤ t ≤ 6 and n ≥ 2,
h(Pn)|h(T1,t,m) if and only if n + 1|t, or n + 1|t + 1, or n + 1|t + 3. So, we propose
the following problem.

Problem 3.1. For n ≥ 2 and m ≥ t ≥ 1, find a necessary and sufficient condition
of h(Pn)|h(T1,t,m). In particular, is it true that h(Pn)|h(T1,t,m) if and only if n+1|t,
or n + 1|t + 1, or n + 1|t + 3?

For a graph G, let f(G, x) denote the characteristic polynomial of G. We denote
respectively by γ(G) and β(G) the maximum root of f(G, x) and the minimum root
of h(G, x).

Lemma 3.4. (i)( [14]) For a tree T , we have that β(T ) = −(γ(G))2;

(ii)([2]) For Tl1,l2,l3 , we have that γ(Tl1,l2,l3) ≤
√

2 +
√

5 if and only if l1, l2, l3
satisfy the followings: l1 = 1, or l1 = l2 = 2, or l1 = 2 and l2 = l3 = 3.

From Lemma 3.4, the following lemma can be obtained.

Lemma 3.5. For Tl1,l2,l3 , β(Tl1,l2,l3) ≥ −(2 +
√

5) if and only if l1, l2, l3 satisfy the
followings: l1 = 1, or l1 = l2 = 2, or l1 = 2 and l2 = l3 = 3. 2

We denote by An the graph obtained from Cn−1 by adding a pendant edge. Let
Pa+b+3 be a path x1x2 · · ·xa+b+3. We denote by Aa,b the graph obtained by adding
pendant edges at xa+1 and xa+b+2 in Pa+b+3. In particular, A1,n−2 is denoted simply
by Wn. An internal x1xk-path of a graph G is a path x1x2x3 · · ·xk(possibly x1 = xk)
of G such that dx1 and dxk

are at least 3 and dx2 = dx3 = · · · = dxk−1
= 2 (unless

k = 2).

Lemma 3.6.([2]) (i) Let Guv denote the graph obtained from G by introducing a
new vertex on the edge uv of G . If uv is an edge on an internal path of G and
G 6∼= Wn, then γ(Guv) < γ(G);
(ii) If H is a proper subgraph of G, then γ(H) < γ(G);
(iii) If n ≥ 2, then γ(Wn) = 2.

From Lemmas 3.4 and 3.6, we have

Lemma 3.7. Let G be a tree.

6



(i) If uv is an edge on an internal path of G and G 6= Wn, then β(G) < β(Guv);
(ii) If H is a proper subgraph of G, then β(G) < β(H);
(iii) If n ≥ 2, then β(Wn) = −4. 2

Lemma 3.8.([14]) For any n ≥ 2, we have:
(i) h(T1,n,n+3) = h(Pn+1)h(An+3),
(ii) h(T1,n,n) = h(Pn)h(An+2),
(iii) h(T1,n,2n+5) = h(Cn+2)h(T1,n+1,n+2),
(iv) h(T2,2,n) = h(P2)h(An+3),
(v) h(T2,3,3) = x3h(P3)(x3 + 6x2 + 8x + 2),
(vi) β(T1,n,n) = β(T1,n−1,n+2) and β(T1,n,n+1) = β(T1,n−1,2n+3).

Theorem 3.3. (i) For n ≥ 2 and m ≥ 6,

β(T1,2,m+1) < β(T1,2,m) < β(T1,2,5) < β(T1,1,n) < β(T1,1,n−1).

(ii) For 3 ≤ l ≤ 11, n ≥ 3 and m ≥ l + 3,

β(T1,l,m+1) < β(T1,l,m) < β(T1,l,l+2) < β(T1,l−1,n) < β(T1,l−1,n−1).

(iii) For T1 ∈ {T1,l1,l2 |3 ≤ l1 ≤ 10, l1 ≤ l2} and T2 ∈ {T1,l1,l2 |1 ≤ l1 ≤ l2}, we
have β(T1) = β(T2) and T1 6∼= T2 if and only if β(T1,n,n) = β(T1,n−1,n+2) and
β(T1,n,n+1) = β(T1,n−1,2n+3).

Proof. The proof of (i) and (ii): By Lemmas 2.2 and 2.3,

h(T1,l1,l2) = xh(Pl1+l2+1) + xh(Pl1)h(Pl2)

and
h(Aa,b) = xh(T1,1,a+b+1) + xh(Pa)h(T1,1,b).

By calculating, we have h(A1,1) = x7 + 6x6 + 8x5. By Lemma 2.8, one can get that
h(Aa,b) = x2h(Ca+b+3)+x2h(Cb+2)h(Pa) for b ≥ 2. From Lemma 2.5, by calculating
we obtain the coefficients of h(T1,l1,l2) and h(Aa,b), given in Tables 1 and 2.

(l1, l2) The coefficients of h(T1,l1,l2): b0, b1, b2, b3, · · ·
(2, 5) 1, 8, 20, 17, 4
(3, 5) 1, 9, 27, 31, 11
(4, 6) 1, 11, 44, 78, 59, 15, 1
(5, 7) 1, 13, 65, 157, 188, 102, 19
(6, 8) 1, 15, 90, 276, 458, 400, 164, 24, 1
(7, 9) 1, 17, 119, 443, 945, 1159, 776, 250, 29
(8, 10) 1, 19, 152, 666, 1741, 2773, 2636, 1402, 365, 35, 1
(9, 11) 1, 21, 189, 953, 2954, 5812, 7237, 5515, 2393, 515, 41
(10, 12) 1, 23, 230, 1312, 4708, 11054, 17120, 17216, 10787, 3899, 706, 48, 1
(11, 13) 1, 25, 275, 1751, 7143, 19517, 36274, 45644, 37982, 19958, 6111, 945, 55

Table 1. The coefficients of h(T1,l1,l2).
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(a, b) The coefficients of h(Aa,b): b0, b1, b2, b3, · · ·
(1, 1) 1, 6, 8
(2, 7) 1, 13, 64, 148, 162, 75, 11
(3, 7) 1, 14, 76, 201, 266, 160, 31
(4, 9) 1, 17, 118, 430, 880, 1002, 589, 152, 13
(5, 11) 1, 20, 169, 785, 2184, 3718, 3795, 2177, 610, 58
(6, 13) 1, 23, 229, 1293, 4556, 10388, 15379, 14443, 8152, 2503, 351, 17
(7, 15) 1, 26, 298, 1981, 8455, 24225, 47328, 62764, 55198, 30744, 10003, 1636, 93
(8, 17) 1, 29, 376, 2876, 14421, 49819, 121296, 209304, 253878, 211718, 116689,

39840, 7574, 671, 21
(9, 19) 1, 32, 463, 4005, 23075, 93380, 272734, 581647, 906015, 1020680, 814606,

445093, 157785, 33292, 3585, 136
(10, 21) 1, 35, 559, 5395, 35119, 162981, 555750, 1414270, 2700775, 3860021, 4085950,

3142790, 1704795, 623400, 143448, 18620, 1140, 25

Table 2. The coefficients of h(Aa,b).

Note: For each h(G) in Tables 1 and 2, h(G, x) =
p(G)∑
i=0

bix
p(G)−i, where p(T1,l1,l2) =

l1 + l2 + 2 and p(Aa,b) = a + b + 5.

Using Software Mathematica, we get the minimum roots of h(T1,l1,l2) and h(Aa,b),
given in Table 3.

(l1, l2) β(T1,l1,l2) (a, b) β(Aa,b)
(2, 5) −4.0000 (1, 1) −4.00000
(3, 5) −4.09529 (2, 7) −4.09529
(4, 6) −4.16035 (3, 7) −4.15875
(5, 7) −4.19353 (4, 9) −4.18970
(6, 8) −4.21145 (5, 11) −4.20829
(7, 9) −4.22153 (6, 13) −4.21937
(8, 10) −4.22736 (7, 15) −4.22597
(9, 11) −4.23080 (8, 17) −4.22993
(10, 12) −4.23286 (9, 19) −4.23232
(11, 13) −4.23411 (10, 21) −4.23378

Table 3. The minimum roots of h(T1,l1,l2) and h(Aa,b).

By Lemma 3.7, we have

β(Aa,b) < β(Aa,b+1) < β(Aa,b+2) < · · · < β(Aa,b+k) for k ≥ 3 (1)

and
β(Aa,b) < β(T1,a,b+2). (2)

From Table 3, one see that β(T1,2,5) = β(A1,1) and β(T1,3,5) = β(A2,7), and β(T1,l+1,l+3) <
β(Al,2l+1) for 3 ≤ l ≤ 10. So, by (1), (2) and Lemma 3.7, we have:

(a) for l = 1, m ≥ 6 and n ≥ 2, β(T1,2,m+1) < β(T1,2,m) < β(T1,2,5) = β(A1,1) =
β(Wn) < β(T1,1,n) < β(T1,1,n−1),

(b) for l = 2, m ≥ 6 and n ≥ 2, β(T1,3,m+1) < β(T1,3,m) < β(T1,3,5) = β(A2,7) <
β(A2,n+6) < β(T1,2,n) < β(T1,2,n−1),
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(c) for 3 ≤ l ≤ 10, m ≥ l+4 and n ≥ 2, β(T1,l+1,m+1) < β(T1,l+1,m) < β(T1,l+1,l+3) <
β(Al,2l+1) < β(Al,n+2l) < β(T1,l,n) < β(T1,l,n−1).

Thus, from (a), (b) and (c), we know that (i) and (ii) of the theorem holds.

The proof of (iii). By (i) and (ii) of the theorem and (ii) of Lemma 3.7, we have:

(d) for m ≥ 6 and n ≥ 2, β(T1,3,m+1) < β(T1,3,m) < β(T1,3,5) < β(T1,3,4) <
β(T1,3,3) = β(T1,2,5) < β(T1,1,n) < β(T1,1,n−1),

(e) for m ≥ 6 and n ≥ 12, β(T1,3,m+1) < β(T1,3,m) < β(T1,3,5) < β(T1,2,n) <
β(T1,2,n−1) < β(T1,2,10) < β(T1,2,9) = β(T1,3,4) < β(T1,2,8) < β(T1,2,7) < β(T1,2,6) <
β(T1,3,3) = β(T1,2,5) < β(T1,2,4) < β(T1,2,3) < β(T1,2,2),

(f) for 3 ≤ l ≤ 10, m ≥ l + 4 and n ≥ 2l + 8, β(T1,l+1,m+1) < β(T1,l+1,m) <
β(T1,l+1,l+3) < β(T1,l,n) < β(T1,l,n−1) < β(T1,l,2l+6) < β(T1,l+1,l+2) = β(T1,l,2l+5) <
β(T1,l,2l+4) < · · · < β(T1,l,l+5) < β(T1,l,l+4) < β(T1,l+1,l+1) = β(T1,l,l+3) < β(T1,l,l+2) <
β(T1,l,l+1) < β(T1,l,l),

(g) for l ≥ 11, m ≥ l + 1 and n ≥ 2, β(T1,l+1,m) < β(T1,l+1,l+1) ≤ β(T1,12,12) =
β(T1,11,13) < β(T1,10,n) by (vi) of Lemma 3.8.

So, from (d), (e), (f) and (g), it is not difficult to see that (iii) holds.
The proof of the theorem is complete. 2

From the theorem, we propose the following.

Problem 3.2. Is it true that β(T1,l,l+2) < β(T1,l−1,n) for all l ≥ 3 and n ≥ 1.

4 Some Chromatically Unique Graphs

Lemma 4.1. Let fi(x) be function with integral coefficients. If h1(Pm) 6 |fi(x) for

m ≥ 2 and i = 1, 2, · · · , k, then there is no n ≥ 2 such that h1(Pn)|
k∏

i=1
fi(x).

Proof. Suppose that there is an n ≥ 2 such that h1(Pn)|
k∏

i=1
fi(x). Clearly, n+1 ≥ 3.

So, there is an n1 such that n+1 = (n1 +1)n2 with n1 +1 = 4 or n1 +1 prime. From
Lemma 2.7, h1(P3) and h1(Pn1) are irreducible and h1(P3)|h1(Pn) or h1(Pn1)|h1(Pn).

Thus, h1(P3)|
k∏

i=1
fi(x) or h1(Pn1)|

k∏
i=1

fi(x), which implies that theists is an i such

that h1(P3)|fi(x) or h1(Pn1)|fi(x). This contradicts to the condition of the theorem.
2

Lemma 4.2.([16]) For j ≥ 9 and n ≥ 4, β(Dj+1) < β(Dj) < −4 < β(Cn) <
β(Cn−1).

Lemma 4.3.([4,6]) For j ≥ 5, ∪jCj is adjointly unique.

Theorem 4.1. Let ni ≥ 5 and mj ≥ 9 for each i and j, and let 3 ≤ l1 ≤ 10 and
l1 ≤ l2. Let G = (∪iCni)∪(∪jDmj )∪(∪l1,l2T1,l1,l2). If h(Pn) 6 |h(Cni), h(Pn) 6 |h(Dmj )
and h(Pn) 6 |h(T1,l1,l2) for all n ≥ 2, then G is χ–unique if and only if l2 6= 2l1 + 3
and (l1, l2) 6= (ni − 1, ni) for all i.

Proof. From Theorem 1.1, we only need to consider the necessary and sufficient
conditions for G to be adjointly unique.

Let H be a graph such that h(H) = h(G). Suppose that H = ∪iHi and each Hi
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is connected. By Lemmas 2.2 and 2.4,
∏

i

h(Hi) =
∏

i

h(Cni)
∏

j

h(Dmj )
∏

l1,l2

h(T1,l1,l2) (3)

and ∑

i

R(Hi) =
∑

i

R(Cni) +
∑

j

R(Dmj ) +
∑

l1,l2

R(T1,l1,l2) = 0. (4)

As h(Pn) 6 |h(H) for n ≥ 2, it is obvious from Lemma 4.1 that h(Pn) 6 |h(Hi) for
each i and n ≥ 2. Thus, from (4) and Lemmas 2.2 and 2.4 and h1(P4) = h1(K3),
we have R(Hi) = 0 for each component Hi in H. Recalling that h(Pn) 6 |h(Hi) for
each Hi and n ≥ 2, by Lemmas 2.4 and 3.8, we have

Hi ∈ {Cn, Dm, Ta,b,c,K1|n ≥ 4, m ≥ 4, 1 ≤ a ≤ b ≤ c} (5)

and
Hi 6∈ {T1,a,a, T1,b,b+3, T2,2,c, T2,3,3|a ≥ 2, b ≥ 1, c ≥ 2}. (6)

By Lemma 2.8, β(Cn) = β(T1,1,n−2) and β(Dn) = β(T1,2,n−3) for n ≥ 4. Therefore,
by Lemma 3.5, β(G) > −(2 +

√
5). So, β(H) = β(G) > −(2 +

√
5). From Lemma

3.5 and (5) and (6), we have

Hi ∈ {Cn, Dm, T1,b,c,K1|n ≥ 4,m ≥ 4, 1 ≤ b ≤ c, b 6= c, c 6= b + 3}. (7)

We construct a graph H ′ from H by replacing each component T1,a,2a+5 by two
components Ca+2 and T1,a+1,a+2 until none of the components is isomorphic to
T1,a,2a+5, where a ≥ 2. Without loss of generality, let H ′ = ∪iH

′
i. From (3) and (7),

we can easily get that
∏

i=1

h(H ′
i) =

∏

i

h(Cni)
∏

j

h(Dmj )
∏

l1,l2

h(T1,l1,l2), (8)

H ′
i ∈ {Cn, Dm, T1,b,c,K1|n ≥ 4,m ≥ 4, 1 ≤ b ≤ c, b 6= c, c 6= b + 3, c 6= 2b + 5}. (9)

In the following, we shall consider the minimum roots of the two sides of (8),
namely, β(H ′) and β(G). Assume that T1,s1,s2 is a component of G and β(G) =
β(T1,s1,s2). Clearly, 3 ≤ s1 ≤ 10 and s2 ≥ s1. From (8), we see that H ′ must
have a component (say H ′

1) such that β(H ′
1) = β(T1,s1,s2). As β(Cn) = β(T1,1,n−2)

and β(Dn) = β(T1,2,n−3) for n ≥ 4, we know by Theorem 3.3(iii) and (9) that
H ′

1 ∈ {T1,s1,s2 , T1,a,a+1}. Suppose that H ′
1
∼= T1,a,a+1 and T1,a,a+1 6∼= T1,s1,s2 . From

Theorem 3.3(iii) and β(T1,a,a+1) = β(T1,s1,s2), we have T1,a−1,2a+3
∼= T1,s1,s2 , which

contradicts the fact that s2 6= 2s1 + 5. Thus, H ′
1
∼= T1,s1,s2 . Eliminating a factor

h(T1,s1,s2) from the two sides of (8), we arrive at that
∏

i=2

h(H ′
i) =

∏

i

h(Cni)
∏

j

h(Dmj )
∏

l1,l2

h(T1,l1,l2)/h(T1,s1,s2). (10)

From (10), we can obtain the following fact by repeating the above argument.

Fact 1. For each component T1,l1,l2 of G, there must be a component H ′
i of H ′ such

that H ′
i
∼= T1,l1,l2 .

Eliminating the factor
∏

l1,l2 h(T1,l1,l2) of h(G) from the two sides of (8), it follows
immediately that ∏

i=1

h(H ′′
i ) =

∏

i

h(Cni)
∏

j

h(Dmj ) (11)
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and

H ′′
i ∈ {Cn, Dm, T1,b,c,K1|n ≥ 4,m ≥ 4, 1 ≤ b ≤ c, b 6= c, c 6= b + 3, c 6= 2b + 5}. (12)

Since p((∪iCni) ∪ (∪jDmj )) = q((∪iCni) ∪ (∪jDmj )), we have p(∪iH
′′
i ) = q(∪iH

′′
i ).

So, from (12), we have

H ′′
i ∈ {Cn, Dm|n ≥ 4,m ≥ 4}. (13)

From assumptions and Lemma 4.2, we have β(Dmj ) < −4 < β(Cn) for mj ≥ 9.
Similar to the argument of (8), from Lemma 4.2, we can get the following fact by
comparing the minimum roots of the two sides of equation (11) .

Fact 2. For each component Dmj of G, there must be one component H ′
i such that

H ′
i
∼= Dmj in H ′.
Eliminating the factor

∏
j h(Dmj ) of h(G) from the two sides of (11), it follows

that ∏

i

h(H ′′′
i ) =

∏

i

h(Cni), H ′′′
i ∈ {Cn, Dm|n ≥ 4,m ≥ 4}. (14)

The following fact is obtained from (14) and assumptions and Lemma 4.3.

Fact 3. ∪iH
′′′
i
∼= ∪iCni .

From Facts 1, 2 and 3, it is clear that H ′ ∼= G. Suppose that H has at least one
component T1,a,2a+5. Obviously, H ′ must contain the components T1,a+1,a+2 and
Ca+2. Recalling that H ′ ∼= G, we have G must contain the components T1,a+1,a+2

and Ca+2. This contradicts to the condition of the theorem. So, H does not contain
the component T1,a,2a+5. Therefore, H ∼= H ′ ∼= G. This completes the proof of the
sufficient condition of the theorem.

From Lemma 3.8(iii), the necessity of the theorem is obvious.
This completes the proof of the theorem. 2

From Lemma 2.8 and Theorem 3.2, we have that h(Pn)|h(Cm) if and only if n = 3
and m = 4k + 2, and h(Pn)|h(Dm) if and only if n = 2 and m = 3k + 2 or n = 4
and m = 5k + 3, where k ≥ 1. So, from Theorems 3.2 and 4.1, we have

Corollary 4.1. Let Gi ∈ {Ci|i ≥ 5, i 6≡ 2(mod4)} ∪ {Dj |j ≥ 9, j 6≡ 2(mod3), j 6≡
3(mod5)} ∪ {T1,l1,l2 |3 ≤ l1 ≤ 6, l1 ≤ l2, l1 6= l2, l1 6= l2 + 1, l2 6= 2l1 + 5} and (l1, l2) 6∈
{(3, 3k), (3, 4k − 1), (4, 4k + 1), (4, 5k − 1), (4, 7k), (5, 3k + 2), (5, 4k + 4), (5, 5k +
2), (6, 3k + 3), (6, 7k − 1)|k ≥ 1}. Then ∪iGi is χ–unique.2

Theorem 4.2. Let 3 ≤ l1 ≤ 10, l1 ≤ l2. If h(Pm) 6 |h(T1,l1,l2) for any m ≥ 2, then
Kn−E(∪l1,l2T1,l1,l2) is χ–unique if and only if l2 6= 2l1+5, where n ≥ ∑

l1,l2

|V (T1,l1,l2)|.

Proof. Obviously, Kn −E(∪l1,l2T1,l1,l2) = rK1 ∪ (∪l1,l2T1,l1,l2), where r = n −∑
l1,l2

|V (T1,l1,l2)|. Let G = rK1 ∪ (∪l1,l2T1,l1,l2). From Theorem 1.1, we only consider

the necessary and sufficient conditions for G to be adjointly unique.
Let H be a graph such that h(H) = h(G). Suppose that H = ∪iHi, where each

Hi is connected. By Lemmas 2.2 and 2.4, we have
∏

i

h(Hi) = xr
∏

l1,l2

h(T1,l1,l2) (15)

and ∑

i

R(Hi) =
∑

l1,l2

R(T1,l1,l2) = 0. (16)
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Similar to the proof of Theorem 4.1, by assumptions and Lemmas 3.7 and 4.1, we
have

Hi ∈ {Cn, Dm, T1,b,c,K1|n ≥ 4,m ≥ 4, 1 ≤ b ≤ c, b 6= c, c 6= b + 3}. (17)

We construct a graph H ′ from H by replacing each component T1,a,2a+5 by two
components Ca+2 and T1,a+1,a+2 until none of the components is isomorphic to
T1,a,2a+5, where a ≥ 2. Without loss of generality, let H ′ = ∪iH

′
i. By (15) and (17),

we obtain that ∏
h(H ′

i) = xr
∏

l1,l2

h(T1,l1,l2) (18)

and

H ′
i ∈ {Cn, Dm, T1,b,c,K1|n ≥ 4, m ≥ 4, 1 ≤ b ≤ c, b 6= c, c 6= b + 3, c 6= 2b + 5}. (19)

Similar to the proof of Theorem 4.1, by comparing the minimum roots of the two
sides of (18) we have

Fact 4. For each component T1,l1,l2 of G, there must be a component H ′
i of H ′ such

that H ′
i
∼= T1,l1,l2 .

Eliminating the factor
∏

l1,l2 h(T1,l1,l2) of h(G) from the two sides of (18), it
follows immediately that ∏

h(H ′′
i ) = xr. (20)

From (19) and (20) and Fact 4, we have

Fact 5. H ′ only has r isolated vertices and H ′
i ∈ {T1,b,c,K1|1 ≤ b ≤ c, b 6= c, c 6=

b + 3, c 6= 2b + 5}.

By Facts 4 and 5, H ′ ∼= G. Assume that H has at least one component T1,a,2a+5.
Then H ′ must contain a component Ca+2. This contradicts Fact 5. So, H ∼= H ′ ∼= G.
The proof of sufficient conditions of the theorem is complete.

From (iii) of Lemma 3.8, the necessity of the theorem is obvious.
This completes the proof of the theorem. 2

Corollary 4.2. Let Gi ∈ {T1,l1,l2 |3 ≤ l1 ≤ 6, l1 ≤ l2, l1 6= l2, l1 6= l2 +1, l2 6= 2l1 +5}
and (l1, l2) 6∈ {(3, 3k), (3, 4k − 1), (4, 4k + 1), (4, 5k − 1), (4, 7k), (5, 3k + 2), (5, 4k +
4), (5, 5k +2), (6, 3k +3), (6, 7k− 1)|k ≥ 1}. Then Kn−E(∪iGi) is χ–unique, where
n ≥ ∑

l1,l2

|V (T1,l1,l2)|.2

It is not difficult to see that many results in [6,9,10,12,14] are special case of our
Corollaries 4.1 and 4.2.
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