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Abstract. The minimum all-ones problem was shown to be NP-complete for general graphs.
Therefore, it becomes an interesting problem to identify special classes of graphs for which one can
find polynomial time algorithms. In this paper we consider this problem for trees. First, for any
solution to the all-ones problem for a tree, we give a characterization of the elements in the solution
by introducing the concept of the quasi all-ones problem. Then we give the enumeration for the
number of solutions in a tree. By using the minimum odd (even) sum problem as subprocess, we
obtain a linear time algorithm for the minimum all-ones problem for trees. We also get a linear time
algorithm for finding solutions to the all-ones problem in a unicyclic graph.
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1. Introduction. The term all-ones problem was introduced by Sutner [9]. The
problem has applications in linear cellular automata (see [10] and the references
therein) and is cited as follows: Suppose each square of an n×n chessboard is equipped
with an indicator light and a button. If the button of a square is pressed, the light
of that square will change from off to on, and vice versa; the same happens to the
lights of all the edge-adjacent squares. Initially all lights are off. Now, consider the
following questions: is it possible to press a sequence of buttons in such a way that in
the end all lights are on? This is referred to as the all-ones problem. If there is such
a solution, how can we find it? And finally, how can we find a solution that presses
as few buttons as possible? This is referred to as the minimum all-ones problem. All
the above questions can be asked for arbitrary graphs. Here and in what follows, we
consider connected simple undirected graphs only. One can deal with disconnected
graphs component by component. For all terminology and notation on graphs, we re-
fer to [6]. An equivalent version of the all-ones problem was proposed by Peled in [7],
where it was called the lamp lighting problem. The rule of the all-ones problem is
called the σ+ rule on graphs, which means that a button lights not only its neighbors
but also its own light. If a button lights only its neighbors but not its own light, this
rule on graphs is called the σ rule.

The all-ones problem has been extensively studied recently; see Sutner [11, 12],
Barua and Ramakrishnan [1], and Dodis and Winkler [2]. Using linear algebra, Sut-
ner [10] proved that it is always possible to light every lamp in any graph by the
σ+ rule. Lossers [5] gave another beautiful proof also by using linear algebra. A
graph-theoretic proof was given by Erikisson, Eriksson, and Sjöstrand [3]. So, the
existence of solutions of the all-ones problem for general graphs was solved already.
Galvin [4] gave a graph-theoretic algorithm of linear time to find solutions for trees.
In [8], Sutner proved that the minimum all-ones problem is NP-complete in general.
Therefore, it becomes an interesting question to identify special classes of graphs for
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which one can find polynomial time algorithms. It is the main result of this paper
that there exists a linear time algorithm for the minimum all-ones problem for trees.

In graph-theoretic terminology, a solution to the all-ones problem with σ+-rule
can be stated as follows: Given a graph G = (V,E), where V and E denote the
node-set and the edge-set of G, respectively, a subset X of V is a solution if and only
if for every node v of G the number of nodes in X adjacent to or equal to v is odd.
Such a subset X is called an odd parity cover in [10]. So, the all-ones problem can
be formulated as follows: Given a graph G = (V,E), does a subset X of V exist such
that for all nodes v ∈ V −X, the number of nodes in X adjacent to v is odd, while
for all nodes v ∈ X, the number of nodes in X adjacent to v is even? If there exists
a solution, how can one find it with minimum cardinality?

This paper is organized as follows. In section 2, we give, for any solution to
the all-ones problem for a tree, a characterization of the elements in the solution by
introducing the concept of the quasi all-ones problem. This leads to an enumeration
for the number of solutions in a tree. In section 3, we give a linear time algorithm to
the minimum all-ones problem for trees. In the concluding section, section 4, we give a
linear time algorithm for constructing solutions to the all-ones problem in a unicyclic
graph. An open problem on the all-colors problem is also proposed, generalizing the
concept of the all-ones problem.

2. Characterization and enumeration of solutions for trees. It is easy to
see that if a given graph G can be partitioned into two disjoint subgraphs G1 and G2

such that G1 is Eulerian and every node of G2 is adjacent to an odd number of nodes
of G1, then by pressing all the buttons on the nodes of G1 all the lights will be on,
and vice versa. However, it is very difficult to find an Eulerian subgraph with such
a property in a large graph G. Sutner [9] posed the question of whether there is a
graph-theoretic method to find a solution for the all-ones problem for trees. Galvin [4]
solved this question in the following way: Consider a rooted tree, drawn like a family
tree, with the root at the top. The nodes will be divided into 3 classes: outcasts,
oddballs, and rebels. The classification is defined inductively, from the bottom up, as
follows:

• All of the childless nodes or leaves are rebels.
• A node, other than a leaf, is called a rebel if it has no oddball children and an

even number of its children are rebels.
• A node is called an oddball if it has no oddball children and an odd number of

its children are rebels.
• A node is called an outcast if at least one of its children is an oddball.
We sometimes simply call a node r-type, b-type, or o-type if it belongs to the rebel

class, the oddball class, or the outcast class, respectively. For examples, see Figure 1.

Fig. 1. The roots of the rooted trees are r-type, b-type, and o-type.

Galvin algorithm [4]. Membership in a solution C is defined inductively from
the top down. An outcast is excluded from the membership in C. A rebel will be
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a member of C if and only if its parent is not a member of C; in particular, if the
parentless node (the root) is a rebel, then it will be a member of C. The oddballs will
join C in whatever numbers are needed to make their parents’ closed neighborhood
contain an odd number of members. It is easy to check that C is a solution.

In this section, from the idea of the Galvin algorithm we determine whether or
not the root of a tree is in a solution of the all-ones problem and the quasi all-ones
problem, defined next. This will be used in enumerating the number of solutions for
the all-ones problem. This will also be used in solving the minimum all-ones problem
for trees and in constructing solutions to the all-ones problem for unicyclic graphs.

Definition 2.1. For a rooted tree, the quasi all-ones problem is to find a subset
C of nodes such that for every node v except for the root of the tree, the number of
nodes in C adjacent to v or equal to v is odd, while for the root, the number is even.
C is called a solution to the quasi all-ones problem.

Theorem 2.1. For a rooted tree,

(1) if the root is a rebel, then
(1.1) the all-ones problem has a solution if and only if the root belongs to the

solution;
(1.2) the quasi all-ones problem has a solution if and only if the root does not

belong to the solution;
(2) if the root is an oddball, then

(2.1) the all-ones problem has a solution no matter whether the root belongs
to the solution;

(2.2) the quasi all-ones problem does not have any solution no matter whether
the root belongs to the solution;

(3) if the root is an outcast, then
(3.1) the all-ones problem has a solution if and only if the root does not belong

to the solution;
(3.2) the quasi all-ones problem has a solution if and only if the root does not

belong to the solution.

Proof. We prove this theorem by induction on the depth s of the rooted tree,
which is defined as the maximal distance from root to leaves. In particular, a rooted
tree with only one node is of depth 0. It is easy to see that if the root of a tree is
a rebel, then the depth can be any nonnegative integer. For a tree with an oddball
root, the depth will be at least 1, while for a tree with an outcast root, the depth will
be at least 2.

If a rooted tree is of depth 0, then the root must be a rebel node. Any solution
to the all-ones problem must contain the root and any solution to the quasi all-ones
problem does not contain the root, which means that (1.1) and (1.2) hold when the
depth is 0. It is also easy to check that (2.1) and (2.2) hold when the (least possible)
depth is 1, and (3.1) and (3.2) hold when the (least possible) depth is 2.

Next, suppose that for any rooted tree whose depth is less than s, all the state-
ments of the theorem are true. Then, for a rooted tree whose depth is s, we distinguish
three cases.

Case 1. The root is a rebel. Assume that the children of the root are t
(r)
1 , . . . , t

(r)
2k ,

t
(o)
2k+1, . . . , t

(o)
m , where k ≥ 0, the subtree rooted at t

(r)
i (1 ≤ i ≤ 2k), denoted by T

(r)
i ,

is a subtree with a rebel root and with depth less than s, and the subtree rooted at

t
(o)
j (2k + 1 ≤ j ≤ m), denoted by T

(o)
j , is a subtree with an outcast root and with

depth less than s. Then, from the induction hypothesis, for an outcast-rooted tree
the all-ones problem or quasi all-ones problem has a solution if and only if the outcast
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root does not belong to the solution. So we can ignore the case for outcast-rooted
subtree.

Suppose that the all-ones problem for the rebel-rooted tree has a solution, denoted

by C. If the root r /∈ C, then C(T
(r)
i ) (1 ≤ i ≤ 2k) (which is the restriction of C on

the subtree T
(r)
i ) is the solution to the all-ones problem for the rebel-rooted subtree

T
(r)
i with depth less than s. From the induction hypothesis, t

(r)
i ∈ C(T

(r)
i ), and so

t
(r)
i ∈ C. However, we know that the number of rebel children of the rebel root is

even. So, the root cannot be covered odd times by C, and hence C is not an odd
parity cover, a contradiction. Thus, if the all-ones problem for a rebel-rooted tree
with depth s has a solution, then the root must belong to the solution.

Conversely, consider each rebel-rooted subtree T
(r)
i (1 ≤ i ≤ 2k) and each outcast-

rooted subtree T
(o)
j (2k + 1 ≤ j ≤ m), whose root t

(r)
i , t

(o)
j is a rebel child and an

outcast child of the root r, respectively. Then the quasi all-ones problem for each of

them has a solution, denoted by C(T
(r)
i ), C(T

(o)
j ), respectively. Note that

t
(r)
i /∈ C(T

(r)
i ) (1 ≤ i ≤ 2k), t

(o)
j /∈ C(T

(o)
j ) (2k + 1 ≤ j ≤ m).

It is easy to check that C = {r}
⋃

(
⋃2k

i=1 C(T
(r)
i ))

⋃
(
⋃m

j=2k+1 C(T
(o)
j )) is a solution

to the all-ones problem for the original rebel-rooted tree with depth s. So (1.1) holds
when the depth is s.

Similarly we can prove (1.2).
Case 2. The root is an oddball. Assume that the children of the root are

t
(r)
1 , . . . , t

(r)
2k−1, t

(o)
2k , . . . , t

(o)
m , where k ≥ 1, the subtree rooted at t

(r)
i (1 ≤ i ≤ 2k − 1),

denoted by T
(r)
i , is a rebel-rooted subtree with depth less than s, and the subtree

rooted at t
(o)
j (2k ≤ j ≤ m), denoted by T

(o)
j , is an outcast-rooted subtree with depth

less than s. Similar to the above discussion, we can ignore the case for outcast-rooted
subtree.

Suppose that the quasi all-ones problem for the oddball-rooted tree has a solution,

denoted by C. If the root r ∈ C (or r /∈ C), then C(T
(r)
i ) (1 ≤ i ≤ 2k − 1) is a

solution to the quasi all-ones problem (or the all-ones problem) for the rebel-rooted

subtree T
(r)
i with depth less than s. From the induction hypothesis, we have that

t
(r)
i /∈ C(T

(r)
i ) (or t

(r)
i ∈ C(T

(r)
i )), and so t

(r)
i /∈ C (or t

(r)
i ∈ C ). However, we know

that the number of rebel children of the oddball root is odd. So, the root is covered
odd times by C, which means that C is a solution to the all-ones problem for the
original oddball-rooted tree, a contradiction. Thus (2.2) holds when the depth is s.

Next, we prove (2.1). Consider each rebel-rooted subtree T
(r)
i (1 ≤ i ≤ 2k − 1)

and each outcast-rooted subtree T
(o)
j (2k ≤ j ≤ m), whose root t

(r)
i , t

(o)
j is a rebel

child and an outcast child of the root r, respectively. We discuss the following two
cases.

First, the quasi all-ones problem for each of them has a solution, denoted by

C(T
(r)
i ), C(T

(o)
j ), respectively. Note that

t
(r)
i /∈ C(T

(r)
i ) (1 ≤ i ≤ 2k − 1), t

(o)
j /∈ C(T

(o)
j ) (2k ≤ j ≤ m).

It is easy to check that C = {r}
⋃

(
⋃2k−1

i=1 C(T
(r)
i ))

⋃
(
⋃m

j=2k C(T
(o)
j )) is a solution to

the all-ones problem for the original oddball-rooted tree with depth s. Here the root
belongs to the solution.
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Second, the all-ones problem for each rebel-rooted subtree T
(r)
i (1 ≤ i ≤ 2k − 1)

has a solution, denoted by C(T
(r)
i ). Then the all-ones problem for each outcast-rooted

subtree T
(o)
j (2k ≤ j ≤ m) has a solution, denoted by C(T

(o)
j ). Note that

t
(r)
i ∈ C(T

(r)
i ) (1 ≤ i ≤ 2k − 1), t

(o)
j /∈ C(T

(o)
j ) (2k ≤ j ≤ m).

It is easy to check that C = (
⋃2k−1

i=1 C(T
(r)
i ))

⋃
(
⋃m

j=2k C(T
(o)
j )) is a solution to the

all-ones problem for the original oddball-rooted tree with depth s. Here the root does
not belong to the solution. Thus (2.1) holds when the depth is s.

Case 3. The root is an outcast. Assume that the children of the root are
t
(b)
1 , . . . , t

(b)
k , t

(r)
k+1, . . . , t

(r)
l , t

(o)
l+1, . . . , t

(o)
m , where k ≥ 1, the subtree rooted at t

(b)
i (1 ≤

i ≤ k), denoted by T
(b)
i , is an oddball-rooted subtree with depth less than s, the

subtree rooted at t
(r)
i (k + 1 ≤ i ≤ l), denoted by T

(r)
i , is a rebel-rooted subtree with

depth less than s, and the subtree rooted at t
(o)
i (l + 1 ≤ i ≤ m), denoted by T

(o)
i , is

an outcast-rooted subtree with depth less than s. A similar argument can cover the
proof of this case.

From the theorem, we have the following remarks.
Remark 2.1.

1. For any solution to the all-ones problem for a rooted tree,
(a) if the root is a rebel, it must belong to the solution;
(b) if the root is an outcast, it cannot belong to the solution;
(c) if the root is an oddball, both cases are possible; i.e., it may or may not

belong to the solution.
2. If there exists a solution to the quasi all-ones problem for a rooted tree, then

the root cannot be an oddball and
(a) if the root is a rebel, then it cannot belong to the solution;
(b) if the root is an outcast, then it cannot belong to the solution.

Remark 2.2. If there exists a solution to the all-ones problem or the quasi all-ones
problem for a rooted tree, then

1. if the root is a rebel or an oddball, both cases are possible; i.e., it may or may
not belong to the solution;

2. if the root is an outcast, it cannot belong to the solution.
From the above clear analysis, we can get the following enumeration result.
Theorem 2.2. If a rooted tree has p oddball nodes and q outcast nodes, then the

number of solutions to the all-ones problem for the tree is 2p−q.
Proof. From Theorem 2.1 and Remarks 2.1 and 2.2, we can deduce the following

facts: First, for a rebel node v, if its parent node is not contained in a solution C,
then v is contained in C, whereas if its parent node is contained in C, then v is not
contained in C. Second, the outcast nodes cannot be contained in any solution.

If the root of the tree is a rebel or an outcast node, then every outcast node
needs one of its oddball children to match its rebel children so that the outcast node
will be lighted without itself in the solution. So, at each outcast node, its oddball
children have degrees of freedom equal to the number of oddball children minus 1.
Therefore, the number of solutions to the all-ones problem for a tree is exactly 2p−q.
If the root of the tree is an oddball, since the root can have two choices, i.e., in a
solution, or not, we have that the number of solutions is 2(2p−1−q) = 2p−q. The proof
is complete.

From the results so far, we can say that the all-ones problem for trees has a
satisfactory solution. It is natural to ask about the minimum all-ones problem for
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trees. The minimum all-ones problem is NP-complete for general graphs [8]. However,
it can be solved easily for some special classes of graphs; for example, a path with
n nodes has an optimal solution with �n

3 � nodes, and a cycle with n nodes has an
optimal solution with n

3 nodes if n = 0 mod 3, and n nodes otherwise. For an
arbitrary tree, no such succinct formula has been known for the number of nodes
in an optimal solution. However, we can ask whether there is a polynomial time
algorithm for trees. At first look, we cannot see if there is such an algorithm, because
from our Theorem 2.2 we know that the number of solutions could be exponentially
large. However, we do obtain a polynomial time algorithm for trees by using the
characterization in Theorem 2.1 and Remarks 2.1 and 2.2. Actually, what we get is a
linear time algorithm.

3. The minimum all-ones problem for trees. In order to give our algorithm,
we need to introduce a new problem, called the minimum odd (even) sum problem,
which is described as the following linear program.

For the matrix M2×n = (mij)2×n, i ∈ {0, 1}, j ∈ {1, 2, · · · , n}, mij ∈ Z+, the
minimum odd sum problem is defined as

min
n∑

j=1

m0jx0j + m1jx1j ,

⎧⎨
⎩

∑n
j=1 x1j = 1 mod 2

x0j + x1j = 1, j = 1, 2, . . . , n
xij ∈ {0, 1}, i ∈ {0, 1}.

Note that m0jx0j +m1jx1j is equal to m1j if x1j = 1, or m0j if x1j = 0. So m0jx0j +
m1jx1j can be written as mx1jj . For convenience, we replace x1j by yj . Then it is
easy to see that the above linear program is equivalent to the following one:

min
n∑

j=1

myjj ,

{ ∑n
j=1 yj = 1 mod 2

yj ∈ {0, 1}

Algorithm for the minimum odd sum problem.

Input. A matrix M2×n.
Step 1. Choose a minimum element from every column of M2×n (if both elements

in a column are the same, choose one of the them). Then sum up the first
subscripts of all the chosen elements, denoted by S. If S = 1 mod 2, go to
Step 3; otherwise, go to Step 2;

Step 2. Calculate the absolute value of the difference of the two elements in every
column. Choose one of the columns with the minimum absolute values. In
this column, we choose the hitherto unselected element and forget about the
chosen element, then go to Step 3;

Step 3. Sum up all the chosen elements, which gives the optimal value min
∑n

j=1myjj .
Theorem 3.1. The above algorithm correctly solves the minimum odd sum prob-

lem, and the time complexity is linear.
Proof. The first statement of the theorem is proved as follows. Since the minimum

odd sum problem asks for a unique element from every column, our greedy algorithm
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picks up the minimum element from every column. If the sum of the first subscripts
of all the chosen elements satisfies that

∑n
j=1 yj = 1 mod 2, then the sum of all the

chosen elements is exactly the optimal value min
∑n

j=1 myjj . If
∑n

j=1 yj �= 1 mod 2,
we only need to adjust the elements slightly so that the sum of the first subscripts of
all the chosen elements satisfies that

∑n
j=1 yj = 1 mod 2. Because we adjust elements

in the column where the minimum absolute value of the difference of the two elements
is attained from Step 2, it is easy to see that the chosen elements after adjusting have
the minimum sum among the feasible solutions to the odd sum problem; i.e., the
chosen elements consist of an optimal solution.

For the second statement of the theorem, since every step uses linear time, the
total time is O(n). The proof is complete.

From the above discussion, we can enumerate the number of optimal solutions to
the minimum odd sum problem. Suppose that the absolute value of the difference of
the two elements in the ith column is |di|.

If min{|di| | i = 1, 2, . . . , n} = s > 0, then

1. if the sum of the first subscripts of all the chosen elements satisfies that∑n
j=1 yj = 1 mod 2 in Step 1, it is straightforward to see that the problem has a

unique optimal solution;

2. if
∑n

j=1 yj �= 1 mod 2, the only possible ways to adjust the chosen elements
have to be done in the set of the columns {i | |di| = s, i = 1, 2, . . . , n}, say, r such
columns in all. Since we can do the adjustment in any one of the r such columns, the
problem has r optimal solutions.

If min{|di| | i = 1, 2, . . . , n} = s = 0, and supposing |{i | |di| = 0, i = 1, 2, . . . , n}|
= r, then

1. if
∑n

j=1 yj = 1 mod 2, the only possible ways to adjust the chosen elements
have to be done in an even number of the columns {i | |di| = 0, i = 1, 2, . . . , n}. So,
the problem has T0 optimal solutions, where T0 =

(
r
0

)
+
(
r
2

)
+
(
r
4

)
+ · · · = 2r−1;

2. if
∑n

j=1 yj �= 1 mod 2, the only possible ways to adjust the chosen elements
have to be done in an odd number of the columns {i | |di| = 0, i = 1, 2, . . . , n}. So,
the problem has T1 optimal solutions, where T1 =

(
r
1

)
+
(
r
3

)
+
(
r
5

)
+ · · · = 2r−1.

Replacing
∑n

j=1 yj = 1 mod 2 in the minimum odd sum problem by
∑n

j=1 yj =
0 mod 2, we then get a new problem, called the even sum problem. It can be solved
in the same way as above. The details are omitted.

Now we give our linear time algorithm to the minimum all-ones problem for trees.
The algorithm uses induction on the number of layers of a tree and the minimum odd
or even sum algorithm as subprocess.

First of all, we give the definition of layers for a rooted tree as follows: The
ith layer of the tree is composed of the nodes with distance i from the root for
i = 0, 1, 2, . . . . Suppose the tree has s layers. Then for any i < s, every node except
the leaves in the ith layer can be considered the root of a small tree with depth 1,
which is simply called a small tree in what follows. We divide the small trees into the
following three types.

Type I. A type I small tree has an r-type root. For such a small tree, we can

assume that the children of its root are t
(r)
1 , . . . , t

(r)
2k , t

(o)
2k+1, . . . , t

(o)
m , where k ≥ 0, the

subtree rooted at t
(r)
i (1 ≤ i ≤ 2k) is denoted by T

(r)
i , and the subtree rooted at t

(o)
j

(2k + 1 ≤ j ≤ m) is denoted by T
(o)
j . An example of type I small trees is shown in

Figure 2(a).

Type II. A type II small tree has a b-type root. For such a small tree, we can
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Fig. 2. Examples of small trees of types I, II, and III.

assume that the children of its root are t
(r)
1 , . . . , t

(r)
2k−1, t

(o)
2k , . . . , t

(o)
m , where k ≥ 1, the

subtree rooted at t
(r)
i (1 ≤ i ≤ 2k − 1) is denoted by T

(r)
i , and the subtree rooted at

t
(o)
j (2k ≤ j ≤ m) is denoted by T

(o)
j . An example of type II small trees is shown in

Figure 2(b).
Type III. A type III small tree has an o-type root. For such a small tree, we can

assume that the children of its root are t
(b)
1 , . . . , t

(b)
k , t

(r)
k+1, . . . , t

(r)
l , t

(o)
l+1, . . . , t

(o)
m , where

k ≥ 1, the subtree rooted at t
(b)
i (1 ≤ i ≤ k) is denoted by T

(b)
i , the subtree rooted at

t
(r)
i (k + 1 ≤ i ≤ l) is denoted by T

(r)
i , and the subtree rooted at t

(o)
i (l + 1 ≤ i ≤ m)

is denoted by T
(o)
i . An example of type III small trees is shown in Figure 2(c).

By executing our algorithm layer by layer, from the bottom up, we are going to
tag each node v in the present layer with a pair of sets of nodes. Then we can get an
optimal solution in linear time. If v is a leaf, it is tagged by Step 0 of our algorithm;
if not, its tagged pair of sets can be obtained from the following three cases.

Case 1. For every r-type leaf tri of the small trees rooted at v, since the leaf is

in the previous layer, we have an optimal solution C1(T
(r)
i ) to the all-ones problem

for the subtree rooted at t
(r)
i and an optimal solution C2(T

(r)
i ) to the quasi all-ones

problem for the same subtree.
Case 2. For every b-type leaf tbi of the small trees rooted at v, we have an optimal

solution C1(T
(b)
i ) to the all-ones problem for the subtree rooted at tbi such that the

root of the subtree belongs to C1(T
(b)
i ) and an optimal solution C2(T

(b)
i ) to the all-

ones problem for this subtree such that the root of the subtree does not belong to

C2(T
(b)
i ).
Case 3. For every o-type leaf toi of the small trees rooted at v, we have an optimal

solution C1(T
(o)
i ) to the all-ones problem for the subtree rooted at toi and an optimal

solution C2(T
(o)
i ) to the quasi all-ones problem for the subtree.

Note that the above pair for every leaf of a tree is clearly determined at the
beginning of our algorithm.

Algorithm for the minimum all-ones problem for trees.

Input. A rooted tree T with s layers, and a pair {C1(v), C2(v)} of sets for each node
v of the tree.

Step 0. Initially, for every leaf t(r) of T , set {{t(r)}, ∅}, which means that {t(r)} is
the optimal solution to the all-ones problem for the subtree with the single
node t(r), and ∅ is the optimal solution to the quasi all-ones problem for the
single node subtree.

Step 1. Inductively generate the pair for every node of T layer by layer, from the
bottom up, till we arrive at the root of the tree. Suppose that the present
layer is the ith layer. If i ≥ 0, go to Step 2; otherwise, go to Step 4;
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Step 2. We distinguish the following three cases to generate the pairs. For every
small tree rooted in the ith layer, the algorithm works as follows:

1. The tree is type I. Denote its root by r∗. Suppose that the children of

r∗ are t
(r)
1 , . . . , t

(r)
2k , t

(o)
2k+1, . . . , t

(o)
m , where k ≥ 0. We already knew that

C1(t
(r)
i ) = C1(T

(r)
i ) and C2(t

(r)
i ) = C2(T

(r)
i ) for every r-type leaf as a

root for the subtree T
(r)
i , where 1 ≤ i ≤ 2k, and C1(t

(o)
i ) = C1(T

(o)
i ) and

C2(t
(o)
i ) = C2(T

(o)
i ) for every o-type leaf as a root for the subtree T

(o)
i ,

where 2k + 1 ≤ i ≤ m. Then set

C1(r
∗) = {r∗}

⋃(
2k⋃
i=1

C2(t
(r)
i )

)⋃(
m⋃

j=2k+1

C2(t
(o)
j )

)

as the optimal solution to the all-ones problem of the subtree rooted at
r∗, and set

C2(r
∗) =

(
2k⋃
i=1

C1(t
(r)
i )

)⋃(
m⋃

j=2k+1

C1(t
(o)
j )

)

as the optimal solution to the quasi all-ones problem of the subtree
rooted at r∗.

2. The tree is type II. Denote its root by b∗. Suppose that the children of

b∗ are t
(r)
1 , . . . , t

(r)
2k−1, t

(o)
2k , . . . , t

(o)
m , where k ≥ 1. We already knew that

C1(t
(r)
i ) = C1(T

(r)
i ) and C2(t

(r)
i ) = C2(T

(r)
i ) for every r-type leaf as a

root for the subtree T
(r)
i , where 1 ≤ i ≤ 2k− 1, and C1(t

(o)
i ) = C1(T

(o)
i )

and C2(t
(o)
i ) = C2(T

(o)
i ) for every o-type leaf as a root for the subtree

T
(o)
i , where 2k − 1 ≤ i ≤ m. Then set

C1(b
∗) = {b∗}

⋃(
2k−1⋃
i=1

C2(t
(r)
i )

)⋃(
m⋃

j=2k

C2(t
(o)
j )

)

as the optimal solution to the all-ones problem of the subtree rooted at
b∗ such that b∗ belongs to the optimal solution, and set

C2(b
∗) =

(
2k−1⋃
i=1

C1(t
(r)
i )

)⋃(
m⋃

j=2k

C1(t
(o)
j )

)

as the optimal solution to the all-ones problem of the subtree rooted at
b∗ such that b∗ does not belong to the optimal solution.

3. The tree is type III. Denote its root by o∗. Suppose that the children

of o∗ are t
(b)
1 , . . . , t

(b)
k , t

(r)
k+1, . . . , t

(r)
l , t

(o)
l+1, . . . , t

(o)
m , where k ≥ 1. Use the

pairs of sets on the nodes t
(b)
1 , . . . , t

(b)
k to make a two-dimensional matrix

C2×k = (cij)2×k such that |C2(t
(b)
i )| is the value of the element c0i in

(cij)2×k and |C1(t
(b)
i )| is the value of the element c1i.

Remark 3.1. From Theorem 2.1 and Remarks 2.1 and 2.2, any solution to the
all-ones problem (or the quasi all-ones problem) of the subtree rooted at o∗ cannot
contain the o-type root o∗. This means that all the r-type children of the o-type
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root must be contained in the solution. Because the solution must contain an odd (or
even) number of children of the o-type root, we have to employ our minimum odd sum
algorithm or the minimum even sum algorithm to choose some of the b-type children
into an optimal solution, according to the parity of l − k.
Step 2 (cont’d). If l − k is even (odd), we use the minimum odd (even) sum al-

gorithm to choose the elements in (cij)2×k. Suppose that the union of the
elements chosen from the 0th row in (cij)2×k is

⋃n1

p=1 c0jp , and the union of the

elements chosen from the first row in (cij)2×k is
⋃n2

q=1 c1jq , where n1+n2 = k.
Then we set

C1(o
∗)=

(
n1⋃
p=1

C2(t
(b)
jp

)

)⋃(
n2⋃
q=1

C1(t
(b)
jq

)

)⋃(
l⋃

i=k+1

C1(t
(r)
i )

)⋃(
m⋃

i=l+l

C1(t
(o)
i )

)

as the optimal solution to the all-ones problem of the subtrees rooted at o∗.
Next, we use the minimum even (odd) sum algorithm to choose the elements
in (cij)2×k. Suppose that the union of the elements chosen from the 0th row
in (cij)2×k is

⋃n1

p=1 c0jp , and the union of the elements chosen from the first

row in (cij)2×k is
⋃n2

q=1 c1jq , where n1 + n2 = k. Then we set

C2(o
∗)=

(
n1⋃
p=1

C2(t
(b)
jp

)

)⋃(
n2⋃
q=1

C1(t
(b)
jq

)

)⋃(
l⋃

i=k+1

C1(t
(r)
i )

)⋃(
m⋃

i=l+l

C1(t
(o)
i )

)

as the optimal solution to the quasi all-ones problem of the subtrees rooted
at o∗.

Step 3. i := i− 1, go to Step 1;
Step 4. We are now ready to give an optimal solution for the rooted tree T from the

pair on the root by distinguishing the following three cases: (i) If the root is of
r-type, denoted by r∗, then the C1(r

∗) of the pair is an optimal solution. (ii) If
the root is of b-type, denoted by b∗, then the C1(b

∗) of the pair is a candidate
for the optimal solution such that b∗ belongs to the candidate solution, and
the C2(b

∗) of the pair is another candidate for the optimal solution such
that b∗ does not belong to the candidate solution. Now, compare the values
of |C1(b

∗)| and |C2(b
∗)|. Suppose that |Ct(b

∗)| = min{|C1(b
∗)|, |C2(b

∗)|},
t ∈ {1, 2}. Then we choose Ct(b

∗) as an optimal solution. (iii) If the root is
of o-type, denoted by o∗, then the C1(o

∗) of the pair is an optimal solution.
Theorem 3.2. The above algorithm outputs an optimal solution to the all-ones

problem of a given tree T , and the time complexity is linear.
Proof. In Step 0, we regard every leaf in the bottom of the tree as a subtree

whose unique optimal solution to the all-ones problem and the quasi all-ones problem
contains exactly the node itself and nothing, respectively. Then the initial values of
all the leaves of the tree can be completely determined. The algorithm now proceeds
inductively on the number of layers of the tree. Then from the method for constructing
solutions in the proof of Theorem 2.1 and from Remarks 2.1, 2.2, and 3.1, it is easy
to conclude that the algorithm ensures that all the leaves v of the small trees of all
types I, II, and III in every layer have recorded the right information, i.e., the pairs
{C1(v), C2(v)}. From these pairs of sets, we can choose the optimal solution for the
given tree according to the type of the root of the tree. The first statement of the
theorem is thus proved.

For the second statement of the theorem, it is not hard to see that for every
layer, the algorithm uses time linear in the number of nodes in the layer, even though
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r1 r2 r3 r4 r5 r6 r7

r8 r9

r10

r11

b1 b2 b3

b4

o1

Fig. 3. Labeling the type for every node.

r1 r2 r3 r4 r5 r6 r7

r8 r9

r10

r11

b1 b2 b3

b4

o1

{r1, ∅} {r2, ∅} {r3, ∅} {r4, ∅} {r5, ∅}{r6, ∅} {r7, ∅}

{r8, ∅} {r9, ∅}

{r10, r6 ∪ r7}

{r11, r8 ∪ r9}

{b1, r1} {b2, r2} {b3, r3 ∪ r4 ∪ r5}

{b1 ∪ r2 ∪ b3 ∪ r10, b1 ∪ b2 ∪ b3 ∪ r10}

{b4 ∪ b1 ∪ b2 ∪ b3 ∪ r10 ∪ r8 ∪ r9, b1 ∪ r2 ∪ b3 ∪ r10 ∪ r11}

Fig. 4. An example of our algorithm for the minimum all-ones problem for trees.

sometimes the minimum odd or even sum algorithm has to be used. Therefore, the
total time used by the algorithm is linear for the minimum all-ones problem of the
given tree. The proof is complete.

An example to show our algorithm at work is given in Figures 3 and 4. For every
node in Figure 3, the label, by ignoring its subscript, is the type of that node. In
Figure 4 we simply use x to denote the set {x} with a single element x. Initially,
our algorithm sets a pair {v, ∅} for every leaf v. Then, from the bottom up, the pair
for each node in every layer can be generated. Note that the children of o1 are b1,
b2, b3, and r10, and the pairs on the b-type nodes can form a matrix as described
in our algorithm: P23 =

( r1 r2 r3∪r4∪r5
b1 b2 b3

)
. The corresponding numerical matrix is

C23 =
(

1 1 3
1 1 1

)
, which will be used in the minimum odd (even) sum algorithm. Note

that only r10 is an r-type node. Then use the minimum even sum algorithm to get
b1 ∪ r2 ∪ b3 (possibly, r1 ∪ b2 ∪ b3) union r10 and form C1(o1). Use the minimum odd
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sum algorithm to get b1 ∪ b2 ∪ b3 (possibly, r1 ∪ r2 ∪ b3) union r10 and form C2(o1).
In the end, by comparing |C1(b4)| = 7 with |C2(b4)| = 5, we get an optimal solution
C2(b4) = b1 ∪ r2 ∪ b3 ∪ r10 ∪ r11. The details about the pair {C1(v), C2(v)} for every
node v are recorded in Figure 4.

4. Concluding remarks. Although the existence of solutions to the all-ones
problem for general graphs was proved by linear algebraic methods (see [10, 5]),
in [10] Sutner asked whether there is a graph-theoretic proof for the existence. Eriks-
son, Eriksson, and Sjöstrand [3] gave such a proof. However, how to find a solution
efficiently by graph-theoretic algorithms remains unknown. Although, based on the
result in [3], one can get a graph-theoretic algorithm inductively, the time complex-
ity is not polynomial, which is upper bounded by O(n!). It is easy to see that for
the empty graph with n nodes, their algorithm runs in time O(n!). So, to find a
graph-theoretic algorithm of polynomial time for general graphs, some other ideas are
needed. For trees, Galvin [4] gave a graph-theoretic algorithm of linear time. In this
concluding section, based on the discussion in section 2 we would like to give such an
algorithm of linear time for unicyclic graphs.

For convenience, we say that the truth value of a node in G is 1 if it belongs
to the solution to the all-ones problem (or the quasi all-ones problem) for G, and 0
otherwise. Recall that a graph G is called unicyclic if it contains a unique cycle. In
other words, we can regard a unicyclic graph as a cycle attached with each node to
a rooted tree, called a suspended tree. Note that the depth of a suspended tree can
be 0. For simplicity, we say that a node t in the cycle has the same type as the type
of the root t of the suspended tree.

Algorithm for unicyclic graphs.

Input. A unicyclic graph G, each node in the unique cycle being labeled by types.
Step 1. If none of the nodes on the cycle is an outcast, then let the truth values of all

nodes on the cycle be 1; i.e., take the union of the solutions, each of which is
a solution to the all-ones problem for each suspended tree whose root belongs
to the solution. Then the union is a solution to the all-ones problem for the
whole unicyclic graph.

Step 2. If there are outcast nodes, we fix an order to the nodes on the cycle. Then
we cut the cycle by deleting the edge between an outcast node u and the
node v before it on the cycle. The unicyclic graph becomes a tree with root
v, denoted as T , and the type of every node on the original cycle will be
changed as in Figure 5, where the changing of the type of each node is from
on the original cycle to on the tree T , and the changing rule is just the same
as that in the Galvin method.

By Galvin’s algorithm, we can construct a solution X for the tree T . Then we
add an edge to connect the node u and the node v in T ; then the tree T returns to the
original unicyclic graph with a solution X. Because u is an outcast node, no matter
whether it is in the unicyclic graph or in the tree, it will not belong to the solution,
and hence will not affect the other nodes’ truth values, while u’s on or off status will
probably be affected by v if v belongs to X. If v does not belong to X, then X is
a solution to the all-ones problem for the unicyclic graph; otherwise, we only need
to change the solution to the all-ones problem into the solution to the quasi all-ones
problem, or the other way around for the suspended tree with root u according to
the construction method in the proof of Theorem 2.1; then the modified solution is
a solution to the all-ones problem for the unicyclic graph. An example is shown in
Figure 6.
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Fig. 5. Changing of types.

Fig. 6. An example of our algorithm for unicyclic graphs.

So, we get the following result.
Theorem 4.1. The above algorithm outputs solutions to the all-ones problem for

unicyclic graphs, and the time complexity is linear.
To end this paper, we propose the following problem.

All-colors problem. The so-called all-colors problem on graphs is described as
follows, which is a natural generalization for the all-ones problem:

For any node of a graph G, it has a color value between 0 and r− 1. If a node is
pressed one time, then the color values of the node and its neighbors are added by 1
under the meaning of modular r. If the initial status is that the color value of every
node is 0, then we ask how to press some nodes (maybe many times) to make the
color value of every node equal to r−1 (or any fixed k such that 1 ≤ k ≤ r−1) under
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the meaning of modular r. If we ask that the sum of color values of all nodes attains
the minimum, the problem is called the minimum all-colors problem.
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