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Abstract

Let T be a tree and dv the degree of its vertex v. In this paper, we in-
vestigate the following topological indices for a tree T :

∑
u∈V (T )

dm
v ,

∑
u∈V (T )

d−m
v ,

∑
u∈V (T )

d
1/m
v ,

∑
u∈V (T )

d
−1/m
v , where m ≥ 2 is an integer. All trees with the small-

est, the second and third smallest values of the four topological indices are
characterized. The same is done for all trees with the largest, the second and
third largest values of these indices.
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1 Introduction

It is well known that a topological index of molecules determines a large number
of molecular properties such as boiling points, molecular volumes, energy levels,
electronic populations, etc., see [8,10] for details. A topological index of molecules
is a numeric quantity that is mathematically derived in a direct and unambiguous
manner from the structural graph of a molecule. Since isomorphic graphs possess
identical values for any given topological index, these indices are referred to as
graph invariants. Many topological indices have been developed through the years
and correlated with many physicochemical properties [1,3-7,9,12].

Let G = (V (G), E(G)) denote a graph with V (G) as the set of vertices and E(G)
as the set of edges. The Randić index of G defined in [10] is

χ(G) =
∑

uv∈E(G)

1√
dudv

,
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where dv denotes the degree of the vertex v in G. Randić demonstrated that his
index is well correlated with a variety of physico-chemical properties of alcanes. The
index χ became one of the most popular molecular descriptors, see [1,4-5,10-12].
The zeroth-order Randić index χ0(G) of G defined by Kier and Hall [8] is

χ0(G) =
∑

v∈V (G)

1√
dv

.

Pavlović [12] gave the unique graph with the largest value of χ0(G). In [6], Li el al.
investigated the same problem for the topological index M1(G), a Zagreb index [13],
which is defined as

M1(G) =
∑

v∈V (G)

d2
v.

By observing the common appearance of the Randić index and the Zagreb index,
we can formulate four generalized topological indices for a (molecular) graph G as
follows:

(i) αm(G) =
∑

u∈V (G)
dm

v ,

(ii) α−m(G) =
∑

u∈V (G)
d−m

v ,

(iii) α1/m(G) =
∑

u∈V (G)
d

1/m
v ,

(iv) α−1/m(G) =
∑

u∈V (G)
d
−1/m
v ,

where m is a positive integer, usually, at least 2. One can see that if we take m = 2,
the above index (i) is the Zagreb index M1, and the above index (iv) is the zeroth-
order Randić index χ0(G). It is easy to see that there is a unified formulation for the
four indices, that is, αm(G) =

∑
u∈V (G)

dm
v , in which m can be any integers (including

negative integers) or any of the fractions 1
k for any nonzero integers k. However,

because sometimes they present different properties, we have to distinguish them
in discussions. So, we prefer to use different notations for the four indices. In this
paper, we shall investigate the above four topological indices for special graphs of
chemical interest–trees. We characterize all trees with the smallest, the second and
third smallest values of the four topological indices. The same is done for all trees
with the largest, the second and third largest values of these indices.

Throughout this paper, we consider finite and simple graphs only. We denote,
respectively, by Sn and Pn the star and path with n vertices. By Sn,m we denote
the graph obtained from Sn+2 and Sm+1 by identifying an end-vertex of Sn+2 with
the center of Sm+1. For a graph G, we denote by D(G) the degree sequence of G,
that is, if the degree sequence of G is d1, d2, · · · , dn, then D(G) = [d1, d2, · · · , dn].
Furthermore, D(G) = [xa1

1 , xa2
2 , · · · , xat

t ] means that G has ai vertices of degree xi,
where i = 1, 2, · · · , t. Denote by T 1 the set of trees T with n vertices and D(T ) =
[3, 2n−4, 13] and by T 2 the set of trees T with n vertices and D(T ) = [32, 2n−6, 14].
Undefined notations and terminology will conform to those in [2].

2 The Extremal Values for the Four Indices of Trees

For convenience, in the sequel we always assume that G is a graph with D(G) =
[d1, d2, · · · , dn] such that di ≥ dj +2, and G′ is a graph obtained from G by replacing

2



the pair (di, dj) by the pair (di − 1, dj + 1), that is, D(G′) = [d1, d2, · · · , di−1, di −
1, di+1, · · · , dj−1, dj + 1, dj+2, · · · , dn].

Lemma 1. For two graphs G and G′, we have
(i) αm(G) > αm(G′);
(ii) α−m(G) > α−m(G′);
(iii)α1/m(G) < α1/m(G′);
(iv) α−1/m(G) > α−1/m(G′).

Proof. (i) Note that

dm
i + dm

j − (di − 1)m − (dj + 1)m

= (di − 1 + 1)m + (dj + 1− 1)m − (di − 1)m − (dj + 1)m

=
∑m

k=1

(
m
k

) (
(di − 1)m−k + (−1)k(dj + 1)m−k

)
.

So, by di ≥ dj + 2, we have

αm(G)− αm(G′) =
m∑

k=1

(
m
k

) (
(di − 1)m−k + (−1)k(dj + 1)m−k

)
> 0.

(i) is thus proved.
(ii) By di ≥ dj + 2, we have

1
dm

i
+ 1

dm
j
− 1

(di−1)m − 1
(dj+1)m

= (di−1)m−dm
i

(di−1)mdm
i

+
(dj+1)m−dm

j

(dj+1)mdm
j

=
m∑

k=1

(
m
k

) (
1

dk
j (dj+1)m + (−1)k 1

dk
i (di−1)m

)
> 0.

This implies (ii).
(iii) By di ≥ dj + 2, it follows that

m
√

di + m
√

dj − m
√

di − 1− m
√

dj + 1
= 1∑m

k=1
m
√

dm−k
i (di−1)k−1

− 1∑m

k=1
m

√
dm−k

j (dj+1)k−1
< 0.

This implies (iii).
(iv) Similar to (iii), for di ≥ dj + 2 we have

1
m√di

+ 1
m
√

dj
− 1

m√di−1
− 1

m
√

dj+1

= −1
m√di

m√di−1
∑m

k=1
m
√

dm−k
i (di−1)k−1

+ 1

m
√

dj
m
√

dj+1
∑m

k=1
m

√
dm−k

j (dj+1)k−1
> 0.

So, (iv) is implied. 2

From Lemma 1, one can see that there are many topological indices f(G) such
that f(G) > f(G′) or f(G) < f(G′). In the following, we shall investigate the
extremal trees with respect to a topological index f(G) such that f(G) > f(G′) or
f(G) < f(G′).

Theorem 1. Let f(G) be a topological index such that f(G) > f(G′). Then for a
tree T with n vertices, we have
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(i) f(T ) attains the largest value if and only if T ∼= Sn, f(T ) attains the second
largest value if and only if T ∼= Sn−3,1 and f(T ) attains the third largest value if
and only if T ∼= Sn−4,2.

(ii) f(T ) attains the smallest value if and only if T ∼= Pn, f(T ) attains the second
smallest value if and only if T ∈ T 1 and f(T ) attains the third smallest value if and
only if T ∈ T 2.

Proof. (i) Let T be a tree with n vertices and D(T ) = [x1, x2, · · · , xn]. Note
that if T 6∼= Sn, then there must be a pair (xi, xj) such that n − 2 ≥ xi ≥ xj ≥ 2.
We construct a graph T1 by replacing the pair (xi, xj) by the pair (xi + 1, xj − 1).
According to the condition of the theorem, we take G = T1 and G′ = T . Thus, it
is not hard to see that f(T1) > f(T ). Repeating the above operation until there
is no pair (xi, xj) such that n − 2 ≥ xi ≥ xj ≥ 2, we can obtain a tree sequence
T, T1, T2, · · · , Ts−1, Ts such that Ts

∼= Sn, that is, D(Ts) = [n − 1, 1n−1]. Clearly,
f(T ) < f(T1) < f(T2) < · · · < f(Ts−1) < f(Sn). So, for any tree T 6∼= Sn,
f(T ) < f(Sn).

Since Sn is obtained from Ts−1 by replacing the pair (xi, xj) by the pair (xi +
1, xj − 1) and D(Sn) = [n − 1, 1n−1], where n − 2 ≥ xi ≥ xj ≥ 2, one can see that
D(Ts−1) = [n − 2, 2, 1n−2] and Ts−1 must be Sn−3,1. Similarly, D(Ts−2) has the
following two cases: D(T 1

s−2) = [n − 3, 2, 2, 1n−3] and D(T 2
s−2) = [n − 3, 3, 1, 1n−3].

Note that T 2
s−2

∼= Sn−4,2 and D(T 2
s−2) can be obtained by replacing the pair (2, 2)

of D(T 1
s−2) by the pair (3, 1). From the condition of the theorem, we have that

f(Sn−4,2) > f(Pn−4,4) and f(Sn) > f(Sn−3,1) > f(Sn−4,2) > f(Ts−i) > f(T ) for all
T 6∈ {Sn, Sn−3,1, Sn−4,2} and i ≥ 3. The proof of (i) is thus complete.

(ii) Let T ′ be a tree with n vertices and let its degree sequence be y1, y2, · · · , yn.
It is not difficult to see that if T ′ 6∼= Pn, then there must be a pair (yi, yj) such
that yi ≥ yj + 2. We construct a graph T ′1 by replacing the pair (yi, yj) by the pair
(yi − 1, yj + 1). From the condition of the theorem, we have G = T ′ and G′ = T ′1.
So, f(T ′) > f(T ′1). Repeating the above operation until there is no pair (yi, yj) such
that yi−yj ≥ 2 for all i, j, we can obtain a tree sequence T ′, T ′1, T ′2, · · · , T ′s−1, T

′
s such

that T ′s ∼= Pn. Clearly, f(T ′) > f(T ′1) > f(T ′2) > · · · > f(T ′s−1) > f(Pn). So, for any
tree T ′ 6∼= Pn, f(T ′) > f(Pn).

Note that D(Pn) = [2n−2, 12] and Pn is obtained from T ′s−1 by replacing the
pair (yi, yj) by the pair (yi − 1, yj + 1), where yi ≥ yj + 2. It is easy to see that
D(T ′s−1) = [3, 2n−4, 13]. So, T ′s−1 ∈ T 1. Similarly, D(T ′s−2) has the following cases:
D(T ′1s−2) = [3, 3, 2n−6, 14], or D(T ′2s−2) = [4, 2, 2n−6, 14]. By using the pair (3, 3) to
replace the pair (4, 2), we obtain [3, 3, 2n−6, 14] from [4, 2, 2n−6, 14]. So, from the
condition of the theorem we have f(T ′2s−2) > f(T ′1s−2). Since T ′1s−2 ∈ T 2, we have
f(Pn) < f(T 1) < f(T 2} < f(T ′s−i) < f(T ′) for all T ′ 6∈ {Pn} ∪ T 1 ∪ T 2 and i ≥ 3,
where T 1 ∈ T 1 and T 2 ∈ T 2. This completes the proof of (ii). 2

Similar to the proof of Theorem 1, we can show

Theorem 2. Let f(G) be a topological index such that f(G) < f(G′). Then for a
tree T with n vertices, we have

(i) f(T ) attains the smallest value if and only if T ∼= Sn, f(T ) attains the second
smallest value if and only if T ∼= Sn−3,1 and f(T ) attains the third smallest value if
and only if T ∼= Sn−4,2.

(ii) f(T ) attains the largest value if and only if T ∼= Pn, f(T ) attains the second
largest value if and only if T ∈ T 1 and f(T ) attains the third largest value if and
only if T ∈ T 2.
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From Lemma 1, one can see that the topological indices αm(G), α−m(G) and
α−1/m(G) have the property that f(G) > f(G′); whereas α1/m(G) has the property
that f(G) < f(G′). So, from Theorems 1 and 2 it is not hard to get the smallest,
the second and third smallest values of the above four topological indices, as well as
the largest, the second and third largest values of these indices. In the following, we
give the smallest and the largest values and omit other values.

Corollary 1. For a tree T with n vertices, we have
(i) (n− 2)2m + 2 ≤ αm(T ) ≤ (n− 1)m + n− 1,
(ii) (n− 2)2−m + 2 ≤ α−m(T ) ≤ (n− 1)−m + n− 1,
(iii)(n− 2)21/m + 2 ≥ α1/m(T ) ≥ (n− 1)1/m + n− 1,

(iv) (n− 2)2−1/m + 2 ≤ α−1/m(T ) ≤ (n− 1)−1/m + n− 1
and for each of the inequalities, the equality on the left-hand side holds if and only
if T ∼= Pn; whereas the equality on the right-hand side holds if and only if T ∼= Sn.

Theorem 3. Let f(G) be a topological index such that f(G) > f(G′). Then for a
chemical tree T with n vertices and n− 2 = 3a + i, i = 0, 1, 2, we have

(i) f(T ) attains the largest value if and only if D(T ) = [4a, i + 1, 1n−a−1],
(ii) f(T ) attains the second largest value if and only if D(T ) = [4a−1, 3, 2, 1n−a−1]

for i = 1, D(T ) = [4a−1, 32, 1n−a−1] for i = 2 and D(T ) = [4a, 22, 1n−a−2] for i = 3,
where a chemical tree is such a tree that has no vertex with degree greater than 4 .

Proof. (i) Let T be a chemical tree with n vertices and let its degree sequence
be z1, z2, · · · , zn. Assume that 4 > zi ≥ zj ≥ 2. We construct the graph T1 by
replacing the pair (zi, zj) by the pair (zi + 1, zj − 1). According to the condition
of the theorem, we have G = T1 and G′ = T . Thus, it is not hard to see that
f(T1) > f(T ). Repeating the above operation until there is no pair (zi, zj) such
that 3 ≥ zi ≥ zj ≥ 2, we can obtain a tree sequence T, T1, T2, · · · , Ts−1, Ts. So,
f(T ) < f(T1) < f(T2) < · · · < f(Ts−1) < f(Ts) and Ts has some vertices of degree
4 or some vertices of degree 1 except for at most one vertex of degree 2 or degree 3.
We denote, respectively, by a, b, c and d the number of the vertices of degrees 4,3,2
and 1. Then we have





4a + 3b + 2c + d = 2n− 2.
a + b + c + d = n.
b + c ≤ 1.

From the above equations, we have
(1) a = n−2

3 , b = c = 0 and d = n− a if n− 2 ≡ 0(mod3);
(2) a = n−3

3 , b = 0, c = 1 and d = n− a− 1 if n− 2 ≡ 1(mod3);
(3) a = n−4

3 , b = 1, c = 0 and d = n− a− 1 if n− 2 ≡ 2(mod3).
This completes the proof of (i).
(ii) For i = 3, from the proof of (i) we know that D(Ts) = [4a, 3, 1n−a−1]. Since

D(Ts) is obtained from Ts−1 by replacing the pair (xi, xj) by the pair (xi +1, xj−1),
where 3 ≥ xi ≥ xj ≥ 2, one can see that D(Ts−1) has the following two cases:
D(T 1

s−1) = [4a, 22, 1n−a−2] and D(T 2
s−1) = [4a−1, 32, 2, 1n−a−2]. Note that D(T 1

s−1)
can be obtained by replacing the pair (3, 3) of D(T 2

s−1) by the pair (4, 2). From the
condition of the theorem, we have that f(T 1

s−1) > f(T 2
s−1). For i = 1, 2, by a similar

argument to the case i = 3, the proof of (ii) can be complete. 2

Similarly, we have
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Theorem 4. Let f(G) be a topological index such that f(G) < f(G′). Then for a
chemical tree T with n vertices and n− 2 = 3a + i, i = 0, 1, 2, we have

(i) f(T ) attains the smallest value if and only if D(T ) = [4a, i + 1, 1n−a−1],
(ii) f(T ) attains the second smallest value if and only if D(T ) = [4a−1, 3, 2, 1n−a−1]

for i = 1, D(T ) = [4a−1, 32, 1n−a−1] for i = 2 and D(T ) = [4a, 22, 1n−a−2] for i = 3.

From Lemma 1 and Theorems 3 and 4, we have

Corollary 2. For a chemical tree T with n vertices and n− 2 = 3a + i, i = 0, 1, 2,
we have

(i) αm(T ) ≤ a× 4m + (i + 1)m + n− 1− a,
(ii) α−m(T ) ≤ a× 4−m + (i + 1)−m + n− 1− a,
(iii)α1/m(T ) ≥ a× 41/m + (i + 1)1/m + n− 1− a,

(iv) α−1/m(T ) ≤ a× 4−1/m + (i + 1)−1/m + n− 1− a,
and for each of the inequalities, the equality holds if and only if T has a vertices of
degree 4, one vertex of degree i + 1 and n− a− 1 vertices of degree 1.
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large Randić connectivity indices, Chemical Physics Letters 306(1999) 366-372

[8] L.B. Kier and L.H. Hall, Molecular connectivity in structure activity analysis,
Research Studies Press, Wiley, Chichester, Uk, 1986.

[9] X. Li, Z. Li and L. Wang, The inverse problems for some topological indices in
combinatorial chemistry, J. Comput. Biology 10(1)(2003) 47-55.
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