
STUDY ON DISCRETIZATION IN ROUGH SET BASED ON GENETIC
ALGORITHM

CAI-YUN CHEN, ZHI-GUO LI, SHENG-YONG QIAO, SHUO-PIN WEN
Center for Combinatorics, LPMC, Nankai University, Tianjin, 300071, P. R. China

E-MAIL: sbickle@eyou.com

Abstract
Discretization of attributes with real values in rough set is

an important problem in data mining. It is different from the
traditional discretization which has particular characteristic.
Nguyen S. H has given a detailed description about
discretization in rough set. This paper gives a genetic
algorithm aimed at discretization proposed in reference [1].
And at the same time we make an experiment on several
datasets from UCI Machine Learning Repository by this
method. During the experiment, we constantly optimized
genetic algorithm by adopting some optimization strategies.
The experiment has proved that using genetic algorithm to
solve discretization of rough set is efficient whatever in time
complexity or in accuracy.

Keywords
Discretization; Rough Set; Genetic Algorithm

1、 Introduction

The discretization of real value attributes is one of the
important problems to be solved in data mining, especially
in rough set. We know, when the value set of any attribute
in a decision table is continuous value or real number, and
then it is likely that there will be few objects that will have
the same value of the corresponding attributes. In such a
situation the number of equivalence classes based on that
attribute will be large and there will be very few elements in
each of such equivalence class, which will lead to the
generation of a large number of rules in the classification of
rough set, thereby making rough set theoretic classifiers
inefficient. Discretization is a process of grouping the
values of the attributes in intervals in such a way that the
knowledge content or the discernibility is not lost. Many
discretization approaches have been developed so far.
Nguyen S. H had given some detailed description about
discretization in rough set in reference [1]. He gave the
complexity of discretization problem and proved that it is an
NP-hard problem. And at the same time he also proposed a
basic heuristic algorithm based on rough set and Boolean
reasoning(for convenience of citization, we call this

algorithm basic heuristic algorithm), which brought great
improvement in dealing with discretization problem in
rough set. Aimed at the particularity of discretization
problem, this paper gives a genetic algorithm(for short GA)
for discretization in rough set. Its main idea is to find
possibly minimum number of discrete intervals by
constantly adopting some optimization strategies during the
experiment. The experiment shows that the GA is more
efficient no matter in accuracy or in time complexity than
basic heuristic algorithm.
This paper is organized by 5 sections. Description of

discretization in rough set is introduced in section 2. In
section 3 we construct a genetic algorithm for discretization
problem. In section 4, an experiment for discretization is
done by two methods including genetic algorithm and basic
heuristic algorithm using several datasets from UCI
Machine Learning Repository and the decision table in
reference [1], we give an analysis about genetic algorithm
for discretization. Section 5 gives a summary of this paper

2、 Description of discretization in rough set

A decision table is composed of a 4-tuple as follows:
 fVdQUS ,},{,  , where

U ：a finite set of N objects },,{ 21 Nxxx  ;
Q：a finite set of n condition attributes },,,{ 21 nqqq  (a

nonempty set), and d is decision attribute；
qQq VV   , where

qV is a domain of the attribute q .
VdQU: f is the total decision function called

information function such that qVq)(x, f for every

dQq , Ux . The decision table can be represented
as a finite data table, in which the columns are labeled by
attributes, the rows by objects and the entry in column jq
and row ix has the value),(ji qxf . Each row in the table

describes the information about some objects in S.
We assume Rrl qqq ),[V , where R is the set of

real numbers, and we also assume that S is consistent
decision table[1]. The following notion and description about

discretization is referred to reference [2]. First let us give
the definition of cut.
Definition 1 Any pair),(cq , where Qq and
Rc ,defines a partition of qV into left-hand-side and

right hand-side interval. The pair),(cq is called a cut on

qV .

For an attribute Qq ,

)},(),...,,(),,{(21
q
k

qq
q q

cqcqcqD  is composed by all

the cuts, where Nkq  , and

q
q
k

q
k

qqq
q rcccccl

qq
 )... 1210 , defines a

partition on qV into subintervals

i.e.),[...),[),[V 12110
q
k

q
k

qqqq
q qq

cccccc   . So any

set of cuts on condition attributes aDD  transforms
the original decision table S into discrete decision
table  DDD fVdQUS ,},{,  , where

),[),(),(1
q
i

q
i

D ccqxfiqxf  , and

},...,1,0{, qkiUx  , Qq .

After discretization, the original decision table is replaced
with the new one. And different sets of cuts will construct
different new decision table. It is obvious that discretization
process is associated with loss of information. Usually the
task of discretization is to determine a minimal set of cuts
from a given decision table and keeping the discernibility.
The selected cuts can be evaluated by the following
criteria[1,3]:

1. Consistency of D. For any objects Uvu , ,they
are satisfying if u ,v are discerned by Q, then u, v
are discerned by D;

2. Irreducibility. There is no DD ' ,satisfying the
consistency;

3. Optimality. For any 'D satisfying consistency, it
follows card(D)  card('D), then D is optimal
cuts.

Nguyen S. H had proved that the optimal discretization
problem is an NP-hard problem. As we know, genetic
algorithm is a better method for solving this kind of
optimization problem. In the next section, we will give a
design of genetic algorithm for discretization problem.

3、 Genetic algorithm for discretization problem.

Genetic algorithm(for short GA) is basically search
algorithm designed to mimic the process of natural selection
and evolution in nature[5]. To begin with, we need to define
a few terms. A population consists of a fixed number of
members, or chromosomes. Each chromosome is a fixed-
length string of genes. The fitness of a chromosome is some
measure of how desirable it is to have that chromosome in
the population. A generation is a time step in which several
events occur. Some of the most “unfit” chromosomes die
and are removed from the population. To replace these,
some number of crossover operations are applied to the
population. A crossover is an operation analogous to mating
or gene splicing. It combines part of one chromosome with
part of another chromosome to create a new chromosome.
Finally, some amount of mutation occurs in the population,
in which genes are changed randomly with some (typically
low) probability. It is also possible to have elitism in the
population in which some of the fittest genes are immune
from mutation between generations.
The definition of GA is as follows:

GA can be defined as an 8-tuple:
),,,,,,,(0 MPEC where:

C - code of chromosome;
E -the fitness function of every chromosome;

0P -the original population;

M -the scale of population;
 -the selection operator;
 -the crossover operator;
 -the mutation operator;
 -the stopping criteria of GA.
By this definition, we define a GA to find the minimal set

of cuts for the rough set.
First we construct a new decision table

 ***** ,},{, fVdQUS  from a given decision
table  fVdQUS ,},{,  as following before
constructing the algorithm:

})()(),{(*
jiji xdxdUUxxU  ;

}},,...,1,0{{* QqkicQ q
q
i  , where q

ic is the

cut of attribute q;
for ** ,),(QcUxxu ji  we have:



 


otherwise

xqxqcxqxq
cuf jiji

0
))(),(max())(),(min(1

),(*

The following genetic algorithm is designed by the new
decision table  ***** ,},{, fVdQUS  . For

convenience, we denote *QL  being the length of the

chromosome.
For convenience, if 1),(* cuf we say that the cut c

can discern u or u can be discerned by cut c , otherwise we
say that cut c can’t discern u or u can not be discerned by c.
1. Encoding the points in the solution space
For the GA to be described in this paper, we use the

following representation for a point in the solution space.
For this problem, the solution space is the set of all possible
combinations of 1, 2,..., L prime implicants (hence the size
of the solution space is 12 L , excluding the possibility
where no prime implicant is chosen). We use an L-bit string
to represent a particular choice of cuts. A value of 1 in the i-
th string position (where },...,1{ Li) implies that the i-th
cut is chosen to be in the discretization of rough set.
2. Determinating the scale M of the population
Here we let M=50. By experience, we know, M is larger,

the result is better, but it will cost more time, and vice verse.
The original population denoted by 0P is made up of M
chromosomes which are generated by random. And we
denote all the chromosomes by

L
MM HXXXX 



))0(),0(),0(()0(21 
where L

MH is syngen space.
3. Designing the crossover operation and the mutation

operation
The crossover operation leads to an increased diversity of

the population of strings as a new individuals emerge out of
this process. The intensity of crossover is characterized in
terms of the probability at which the elements of the strings
are affected. The higher the probability, the more
individuals are affected by the crossover. The best range of
this probability cP is between 0.4 and 0.7, and in this paper

we choose cP =0.7.
The mutation operator is an example of an operator

adding an extra diversity of a stochastic nature. In binary
strings this mechanism is implemented by flipping the
values of some randomly selected bits. Again, the mutation
rate mP is related to the probability at which the individual

bits become affected. And in our experiments, we set mP =
0.02.
Generally, the operation of crossover can be viewed as a

special type of recombination operation which involves two
parents (strings) and leads to two offspring.
4. Constructing the fitness function of GA
In this paper, our aim is to find the minimal set of cuts

which can discern all the pairs in *U . Since the fitness
function must be positive, we choose the fitness function as:

L
l

eXF


)(where 



L

i
ixl

1
, and ix = 0 or 1, is the

value of every gene of one chromosome.
5. Setting the stopping criteria
The simplest stopping criterion is to stop after a

predetermined number of generations (or objective function
evaluations). So we stop GA after 1000 generations. And
the optimal set of cuts is the one whose value of its fitness
function is minimized.

4、 Optimization Strategies

To help GA finding the best solution faster, some
optimization strategies have been adopted.
(1) Elitist selection and father-offspring combined

selection strategy
To make GA get the best solution faster, we apply the

Elitist selection and father-offspring combined selection
strategy into our algorithm. The elitist selection and father-
offspring combined selection can both help GA to find the
best solution [4].The algorithm is shown as follows:
Elitist Selection and Father-Offspring Combined

Selection GA
Step 1 (starting) set 0t , selecting M chromosomes

randomly, and evaluating them, we obtain the original
generation.

L
MM HXXXX 



))0(,),0(),0(()0(21 
Step 2 (Evolution)
2.1 Select M pairs of “parents” chromosomes from

current generation)(tX


;
2.2 M “offspring” chromosomes will be generated from

these M pairs of chromosomes using the “crossover”
operation.
2.3 Next, these M “offspring” chromosomes are

subjected to mutation. And M new chromosomes have been
generated:

)1(',),1(),1()1(' '
2

'
1 



tXtXtXtX M
2.4 Select M-1 chromosomes)1(1 tX ,)1(2 tX ,…,

)1(1  tX M from)1(')(


tXtX  , and at the same

time we choose the optimal chromosome)(* tX , and let

)(*)1(tXtX M  . So we get the (t+1) generation:

)1(),1(,),1(),1()1(121  



tXtXtXtXtX MM
Step 3 (Stopping criteria)

If the algorithm has reached the stopping criteria, we
output)1(* tX as the optimal set of cuts for this
problem, otherwise we set 1 tt and go to step 2.

(2) Restart strategy
In our algorithm, we put the best solution which has been

generated before being into the original population and
hope to further optimize the solution. This strategy is
different from the strategy which just increases the times of
generation. The former can further optimize the second best
solution according to the diversity of the original population.
But all the chromosomes are almost similar in the later
period of GA, and it is difficult to further optimize the best
solution, so the former strategy is more effective than the
later one.
This strategy can also avoid the “precocious” phenomena

to some extend.
(3) Penalty strategy
Because the problem of discretization in rough set is a

constrained optimization problem, i.e. not every L-bit string
(a chromosome) which is created randomly is a set of cuts
of the rough set. We call such a chromosome an incomplete
solution for our problem. And in our experiments, we use
penalty function to eliminate the incomplete solutions.
When the chosen chromosome can’t discern all the objects
of U*, we resort to a sequential search starting at the first cut
and including all the cuts that can discern all the objects
which haven’t been discerned by any cuts. This process
continues until all objects are discerned. And for each of the
newly added cut, a cost of  is multiplied to its fitness
function.  is set to lower than one in order to penalize the
particular candidate solution for leaving out necessary. And
in our work, we set  = 0.8.

5、 Experiments study

In our experiments, firstly, we compare the result
obtained by GA and the basic heuristic algorithm on the
decision table in reference [1]. The result of GA is
{ baa ppp 242 ,, } while the result of the basic heuristic

algorithm is { baaa pppp 2432 ,,, } that the different result
depends on the different choice, because there exist more
than one columns whose number of occurrences of 1’s is
maximal. So generally speaking the result obtained by GA
is better than that of the basic heuristic algorithm. Next we
proved that using GA is feasible dealing with the large
datasets on several datasets of UCI Machine Learning
Repository such as glass, iris, pima and wine
(http://www.ics.uci.edu/~mlearn/ MLRepository.html). In
the following table(table 1), we give the time complexity in

this table.

Table 1 the results of our experiments
dataset
name

number
of cuts

runtime of
GA

|U*| |A*|

Glass 14 5 minutes 16976 930
Iris 7 2 minutes 7500 119
Pima 22 73 minutes 134121 1246
Wine 14 4 minutes 15667 992

The most complex part of GA is the part of checking and
revising the incomplete solutions. In fact, the complexity of
the procedure of checking is O(|U*|), while to revise the
incomplete solution may reach O(|U*|2).When |U*| become
larger and larger, the runtime of GA will become longer and
longer. In our experiments we notice that when |U*| is large,
GA is slow in the first several generations, but it become
faster and faster in the following generation, so the total
time is not so long. We have found the reason of this
phenomenon that the first generation is created by random,
i.e. the “father” chromosomes are not very similar, thus
their “offspring” chromosome have a higher probability to
because incomplete. But in the late period of GA, all the
chromosomes are similar, so the “children” chromosomes
are very “like” their “parents”, so the probability of being
an incomplete solution is lower, and the speed of GA
becomes faster in the later period.
From above on, we can draw the conclusion that GA is

effective to solve the problem of the discretization in rough
set.

6、 Acknowledgments

This work was done under the auspices of the National
“973” Project on Mathematical Mechanization and the
National Science Foundation of China.

7、 Conclusion

Discretization in rough set is different from the
traditional discretizaton. Generally speaking, we should find
possibly minimum number of cut, and at the same time it
should not weaken the indiscernibility. Aimed at its
particularity, we give a genetic algorithm for the
discretization. We do the experiments by several datasets
from the UCI Machine Learning Repository using GA. The
experiment has proved that the GA is efficient no matter in
accuracy or in time complexity.

References
[1] Nguyen H S,Skowron A. Quantization of real value

attributes. Proceedins of Second Joint Annual Conf. on
Information Science, Wrightsville Beach,North
Carolina,pp34-37,1995

[2] Jian-Hua Dai,Yuan-Xiang Li. Study on discretization
based on rough set theory.Proceedings of the First
International Conference on Machine Learning and
Cybernetics,Beijng,4-5 November 2002

[3] Holland John H. Adaptation in Natural and Artifitial
System.Ann Arbor:The University of Michigan
Press,1975

[4] Zong-Ben Xu, Zan-Kan Nie, Wen-Xiu Zhang, Almost
Sure Strong Convergence of A Class of Genetic
Algorithms With Parent-Offsprings Competition,
ACTA MATHEMATICAE APPLICATAE, SINICA
(2002),25(1),(pp167-175)

[5] Krzysztof J.Cios, Witold Pedrycz, Roman W.
Swiniarski, Data Mining Methods for Knowledge
Discovery, Kluwer Academic Publishers, 1998

	1、Introduction
	2、Description of discretization in rough set
	3、Genetic algorithm for discretization problem.
	4、Optimization Strategies
	5、Experiments study
	6、Acknowledgments
	7、Conclusion

