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Abstract

A graph G is k-extendable if it contains a set of k independent
edges and each set of k independent edges can be extended to a per-
fect matching of G. In this note, we present degree-sum conditions
for graphs to be k-extendable.

1 Terminology and Notation

For a graph G, the connectivity and the degree of a vertex z of G is de-
noted by x(G) and dg(z), respectively. Define 62(G) = min{dg(z,) +
de(z2) | 21,22 € V(G), 7122 ¢ E(G)}. For any S C V(G), o(G — S)
is used for the number of odd components of G — S. A perfect match-
ing of G is a set of independent edges which contains all the vertices of
G. Let k be a positive integer with k < M%)-‘ﬁ A graph G is called
k-extendable if it contains a set of k independent edges and each set of
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k independent edges can be extended to a perfect matching of G. Finally,
a maximum matching of G is denoted by M(G). For graphs G, and G,
G) + G2 denotes the graph with the vertex set V(G)) U V(G2) and the
edge set E(G1)U E(G2) U{z1z2 | 1 € V(G1), z2 € V(G3)}. We refer the
reader to [1] for the terminology and notation not mentioned here.

2 Introduction and Main Results

The concept of k-extendable graphs was introduced by Plummer (3] in 1980.
Since then the properties of k-extendable graphs (such as connectivity, min-
imum degree, genus, toughness, etc.) have been extensively researched. In
the mean time, many sufficient conditions for a graph to be k-extendable
are given. In particular, Plummer ([3], [4]) gave sufficient conditions of
k-extendable graphs in terms of minimum degree and degree-sum as shown
below.

Theorem A (Plummer [3] and [4]). Let G be a graph of even order n and
k an integer with 1 < k < "—;2 Then

(i) If 6(G) > % + k, then G is k-extendable.

(i) If §2(G) 2 n+ 2k — 1, then G is k-extendable.

In this note, we weaken the condition in Theorem A (i) to a Fan-type
condition max{dg(z1), dg(x2)} > % + k. Furthermore, we improve the
degree-sum condition in Theorem A (ii) by excluding a special family of
graphs.

Forn =2rand 1 <k < r—1,let G; be a graph with |V(G,)| =r+k—1
and |M(G,)| 2 k, G2 = (r — k+ 1)K;. Then we call the following graphs
as A-Type: G4 = G1+ G2 or (G1+ G2) — {12} where y132 is an edge
from V(G;) to V(Gs).

Theorem 1. Let G be a graph of even order n and k an integer with
1< k<232 If 5(G) > 2k +1 and 6,(G) > n + 2k — 3, then either G is
k-extendable or G is of A-Type.

Actually, if excluding more families of graphs, the degree condition in
Theorem 1 can be further weakened. Let

Gp, ={G1+ G | [V(Gi)|=r -1, Ga=(r+ 1)K, }

Gp, ={G1+G; | [V(G1)| =2k + 1, |[M(G1)| = k, G2 = 3K3}
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Gy = {G1+G: | |[V(G1)| =2k + 1, |M(G1)| =k, G2 = K1 U2K3}
G, = {G1+G: | [V(G1)| = r+k-2, [M(G1)| 2 k, Gy = (r—k+2) K;}

Gy = {G1UG2UE(G1,Gy) | [V(G1)| =r+k~2, [M(G1)| 2k, G2 =
(r — k)K; U K3, where E(G;,G2) is an edge set joining vertices of V(G;)
to V(G2)}

Gp, = {G1UG2UE(G1,G2) | [V(G1)| =r+k—2, |IM(G1)| 2 k, G2 =
(r—k—1)K,UG3. where E(G1, G3) is an edge set joining vertices of V(G1)
to V(G3) and Gj3 is 3-cycle or a path of 3 vertices.}

Gp, = {G1UG2UE(G1,G2) | [V(G1)| =r+k~1, |IM(G1)| 2k, G2 =
(r — k+ 1)K,, where E(G;,G?) is an edge set joining vertices of V(G1) to
V(G2). }

7
Define the following graphs as B-Type: Gp = |J Gp,. Then we have
i=1
the following result.

Theorem 2. Let G be a graph of even order n and k an integer with
1< k<252 If (G) 2 2k + 1 and 65(G) > n + 2k — 4, then either G is
k-extendable or G is of B-Type.

Next, we present another type of degree condition for k-extendable
graphs.

Theorem 3. Let G be a graph of even order n and k an integer with 1 <
k < 232, If k(G) > 2k+1 and for any 2122 ¢ E(G), max{dg(z1), dg(z2)} >
2 +k, then G is k-extendable.

In fact, the degree condition in Theorem 3 can be weakened by exclud-

ing two special families of graphs. For n = 2r and 1 < k < r — 1, define
the following graphs as C-Type: Go = {G1 + (K1 U2G,) | |V(Gy)| =
2k +1, [M(Gy)| =k, G2 = Kr—g-1}-
Theorem 4. Let G be a graph of even order n and k an integer with 1 <
k < 252, If K(G) > 2k+1 and for any 12 ¢ E(G), max{dc(z1), dg(z2)} >
2 4+ k — 1, then either G is k-extendable or G is of A-Type or C-Type.

To prove the above theorems, the following lemmas are needed.

Lemma 1 (Yu [6]). A graph G is k-extendable (k > 1) if and only if for
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any S C V(G)
(i) o(G — 8) £ |S| and
(ii) o(G — 8) = |S| — 2t (0 <t < k — 1) implies that |[M(G[S])| < t

Lemma 2 (Fan [2]). Let G be a 2-connected graph with |V(G)| = n. If
max{dg(z1), dg(z2)} 2 n/2 for any z,z9 ¢ E(G) with d(z;,22) = 2, then
G is Hamiltonian,

For more background information on k-extendable graphs, the inter-
ested readers are directed to the excellent survey paper by Plummer [5].

3 Proofs of the Main Results.

For any S C V(G),lete G— S =CyU---UC, and m; = |V(C;)|, where
C; (i = 1,--- ,w) are connected components of G — S. We may assume
my <---<mg, and let s =15|.

Proof of Theorem 1.

Let’s first prove that for any S C V(G), o(G — S) < s. Otherwise,
there exists S C V(G) such that o(G — S) > s. By the parity, we have
o(G - S) 2 8+ 2. For any z; € V(C;), (i =1, ,w), then z;z; ¢ E(G)
and dg(z,) + dg(z2) > n+ 2k — 3. Because of dg(z;) < m; — 1+ 8, we
have mj +mg +2s—2 > n+ 2k — 3. Clearly, m; + (w—1)mp < n— s and
ma + (w — 1)my < n—s. Thus my + my < 28=22 and L—L+2s—2 >
n+2k—3. Sincew > o(G—8§) = s+2, it yields f"—'z’-+2s 22n+2k-3,
which implies 252+ (3—2k)s—4k+2—-sn > 0. Ask 2 1,5028%+s—sn—-22>0
or 2s —n+ 1 > 0. By the parity, wecansee2s—n+1 > 1, which im-
plies s > 2. Therefore, o(G — §) > s+ 2 > 3 + 2. But this implies
n 2 s8+w > s+0(G—S) > n+2, a contradiction. Thus for any S C V(G),
o(G — S) € s or G has a perfect matching.

Because of 62(G) > n+ 2k -3 = n+ 2(k— 1) — 1, by Theorem
A (ii), G is (k — 1)-extendable for £ > 1. If G is not k-extendable,
by Lemma 1, there exists § C V(G) with |[M(G[S])|] > k such that
o(G - S) =s8—2(k—1). Since x(G) > 2k + 1, we have s > 2k + 1 and
w>0G-8)=8-2(k-1) > 3. Forz; € V(C1) and z2 € V(C3),
then m; + mo + 25 — 2 > dg(x1) + dg(z2) 2 n + 2k — 3. Clearly,
my + mg < =22 < -l!';h Thus %—“ﬁ’—+2s 2 > n+ 2k — 3, which
implies (s — 2k)(2.9 - 2k n+ 3+22> 0 Because of s — 2k > 1, then
28—2k—n+3 > —2. From the parity, 2s—2k—n+3 > -lors > 3 +k-2.
Ifs>%+k,thenw>0(G-S)=8-2(k—1)>3~k+2andn > stw2>
8+ 0o(G — S) 2 n+ 2, a contradiction. Hence —+k 2<s8<L%+k-1.
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Let’s consider the following two cases.

Case 1. s=32 +k—2.

Since K(G) > 2k + 1, we have s = £ + k-2 > 2k + 1 or |V(G)|
n>2k+6 Then o(G—-S)=s8-2(k—1)=%—kand |V(G)| -5
2 — k+ 2. If my = 2 then m; = 1 (Otherwise if m; = 2, then o(G — §) <
[V(G)| — s — (m1 + m3) = § — k — 2, a contradiction). Then any of other
o(G — S) — 1 0dd components must have the order at least 3. Therefore,
2—k+2 = n—s =my+---+m, 2 m+my+3(o(G-S§)-1) = 3+3(§-k-1)
or n < 2k + 2, a contradiction to |V(G)| = 2k + 6. If mg > 3, then
2-k+2=n—s=my+--+my, 2 m1+3(o(G-5)-1) 2 1+3(3-k-1)
or n < 2k + 4, a contradiction to |V(G)| > 2k + 6. If ma = 1, then
m=meg=1 Son+2k—-3<dg(z1)+dg(z2) <2s=n-2k—4,a
contradiction.

Case 2. s=5 +k—1.

Then o(G—S) =s-2(k-1) =% —k+1. Son > s+w > s+o(G-S5) >
24+k-1+%-k+1=n, which implies w = o(G — §) = n—s. Thus
m; =1, ¢ =1,---,w. For any ¢ # j, we have n + 2k — 2 = 23 >
dg(z;) + dg(z5) > n+ 2k — 3 and dg(z;) < s = § + k — 1. Therefore
G is of A-Type. O

Proof of Theorem 2.

Suppose that G is not of B-Type. Then for any S C V(G), o(G—-S) < s.
Otherwise there exists S C V(G) such that o(G — S) > s + 2. Clearly,
w > o(G—S) > s+ 2. Becauseof K(G) > 2k+ 1,80 8> 2k+ 1. For
n € V(C1), ¥y € V(C2), then 12 ¢ E(G) and thus n + 2k — 4 <
do(y1) +da(y) Smy+my+28—-2< 3038 4 952 < 2020 4 95 ),
This yields 8(2s — 2k —n+4) >4k —4 > 0. Because of s > 2k +1 > 0, we
have 2s—2k—n+42>0o0rs> 2 +k—2. Clearly, o(G-S) > s+2> 2 +k
and thus n > s+ w > 8+ o(G — S) 2 n + 2k — 2, which implies k = 1.
Hences=%—-landw 20(G—-8)>%2+1. Thenm;=1,i=1,.--,w.
It’s easy to verify G € Gp,, a contradiction.

Since G ¢ Gp, in particular G ¢ Gp,, we have G ¢ G4. Because of
82(G) 2 n+2k—4 = n+2(k—1)—2, by Theorem 1, G is (k— 1)-extendable
for k > 2. From the above arguments, G is 0-extendable. Then G is (k—1)-
extendable for k > 1. If G is not k-extendable, by Lemma 1, there exists
S C V(G) such that o(G —- §) = s — 2(k — 1) with |M(G[S])| > k. Hence
n+2k—4<de(y) +do(yz) Smi+my+28—2< 2828 4252 <
2o +23-2o0r (8—2k)(2s—2k—n—4) > —4. Buts—2k > 1,80
28-2k—n+42>-4and s > % +k—4. Let’s consider the following cases.

Case 1. s=2+k—-4.

Clearly, 2s — 2k —n+4 = —4 and 8 = 2k + 1. Then n = 2k + 10,
o(G-S)=8-2k+2=3and n—38=29. Clearly my; < 3. If m; <2, then
n+2k—4=4k+6 <dg(y1) +dae(ye) < 2s+3 < 4k + 5, a contradiction.
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Then m; > 3 which implies m; = mg = mg3 = 3. It’s easy to verify that
G € Gp,, a contradiction.

Case 2. s=2 +k-3.

Clearly, 2s -2k—n+4=-2and 2k+1<38<2k+2 lfs=2k+1,
thenn =2k +8,0(G—-8) =3and n— s = 7. It’s easy to verify that
GeGp, Ifsa=2k+2,thenn=2k+10,0(G—-S)=4andn—s=38.
Clearly, m; =1, mg < 2. Then4k+6 =n+ 2k — 4 < dg(y1) + dg(y) <
28+ 1< 4k + 4+ 1= 4k + 5, a contradiction.

Case 3. s=3% +k—2.

Clearly, o(G - S)=s~2(k-1)=% —k,n~s =% —k+2. It’s easy
to verify that G is of Gp, or G, or Gp,, a contradiction.

Case {. s=%2 +k—1.

Clearly, o(G — S) = % —k+ 1. Then it’s easy to verify that G is of Gp,,
a contradiction.

Case 5. s 2 % + k.

Clearly, oG- S) > 2 —k+2. Thenn2>s+0G-S)>2n+2a
contradiction.

We complete the proof. O

Proof of Theorem 3.

Use the induction on k. when k = 1, k(G) 2> 3 and max{dg(z1), de(z2)} >
2 +1. By Lemma 2, G is Hamiltonian. Then G has a perfect matching,
i.e., for any § C V(G), o(G — S) < s. If G is not 1-extendable, by Lemma
1, then there exists S C V(G) with |M(G][S])| > 1 such that o(G - S) = s.
Because of x(G) > 2k + 1, then s > 2k +1 > 3. For z; € V(C;) and
z3 € V(C3), then z12; ¢ E(G) and max {dg(z:), dg(z2)} > §+ 1.
Clearly, max{dg(z1), dg(z2)} < ma—1+s8 < 1‘-;:—;1—1+s < ":j;l —1+s.
Then 221 — 145 > 2 + 1 which implies (s - 3)(2s —2—n) > 4. Because
8 > 3, then 2s—2—n > 1. By the parity, 2s—2~n>2o0r s > §+2. Thus
n 2 8+ 0(G — S) =28 2 n+ 4, a contradiction. So G is 1-extendable.

Suppose that Theorem 3 holds for k — 1, to show that it is true for
k > 2. For any matching M C E(G) with |M| = k and 412 € M, let
M' = M—{y1y2} and G’ = G—{y1, y2}. Then |[M'| = k-1, |V(G')| =n-2
and 1 < k—1< G2 (Clearly, x(G') 2 k(G) -2 > 2(k—1) + 1
and max{dg/(z1), dg/(z2)} 2 max{dg(z1), dg(z2)} 2253 +k—-2=
J—V-%G—’M + (k — 1). By induction hypothesis, G’ is (k — 1)-extendable. Then
there exists a perfect matching M; C E(G’) such that M’ C M;. Let
My = M U {y152}, then M, is a perfect matching of G with M C M,.
Thus G is k-extendable. . w

Proof of Theorem 4.
Since max{dg(z1), dg(x2)} 2 §+k—12> 2, by Lemma 2, G is Hamil-
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tonian. Thus G has a perfect matching and for any S C V(G), o(G—S) < s.

Assume that G is not of A-Type or C-Type. Since max{dg(z;), dg(z2)} 2
2 4+ k — 1, by Theorem 3, G is (k ~ 1)-extendable for k > 1. If G is not
k-extendable, by Lemma 1, there exists S C V(G) with |M(G[S])| = &
such that o(G — S) = s — 2(k — 1). By the assumption x(G) > 2k + 1, then
8§22k+1and w>0o(G—S) > 3. It is easy to see
%+k—1 <dg(z2) < ma+s-1< E——&E:Tm+s—1 < %ﬁs—l (%)
Thus (s—2k—1)(28—-2k—n+2) 2 0. If s > 2k+2, then 2s—2k—n+2 >0
which implies s > 2 +k—1. If s > 2+ k, thenn > s+ 0o(G - S) =
28 — 2k + 2 2 n + 2, a contradiction. So s = % + k — 1. Therefore either
8 =2k+1ors=%+k—1. Let’s consider the following cases.

Case 1. s =2k + 1.

Because ofﬁ%—l+s = 2+k—1, by (*), 1 =1, dg(z2) = ma—1+s
andmy =22 =2 ~k—-1. Thenmg=n—-s-m-me=%-k-1
It’s easy to verify that G is of C-Type , a contradiction.

Case 2. s=5 +k—1.

Clearly, oG~ S) = 8—2k+2 =% —-k+1. Thenn 2> s+w >
s+ 0(G—S)=28—2k+2=n whichimpliesm; =1, i=1,--- ,w. It’s
easy to verify that G is of A-Type, a contradiction. And this case ends the
proof of Theorem 4. O
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