Degree-sum Conditions for k-extendable Graphs

Rui Xu1 and Qinglin Yu23*

¹Department of Mathematics West Virginia University Morgantown, WV 26506-6310, USA

²Center for Combinatorics Nankai University, Tianjin, P. R. China

³Department of Mathematics & Statistics University College of The Cariboo Kamloops, BC, Canada, V2C 5N3

Abstract

A graph G is k-extendable if it contains a set of k independent edges and each set of k independent edges can be extended to a perfect matching of G. In this note, we present degree-sum conditions for graphs to be k-extendable.

1 Terminology and Notation

For a graph G, the connectivity and the degree of a vertex x of G is denoted by $\kappa(G)$ and $d_G(x)$, respectively. Define $\delta_2(G) = \min\{d_G(x_1) + d_G(x_2) \mid x_1, x_2 \in V(G), \ x_1x_2 \notin E(G)\}$. For any $S \subseteq V(G)$, o(G-S) is used for the number of odd components of G-S. A perfect matching of G is a set of independent edges which contains all the vertices of G. Let k be a positive integer with $k \leq \frac{|V(G)|-2}{2}$. A graph G is called k-extendable if it contains a set of k independent edges and each set of

CONGRESSUS NUMERANTIUM 163 (2003), pp. 189-195

^{*}Work supported by Natural Sciences and Engineering Research Council of Canada under grant OGP0122059

k independent edges can be extended to a perfect matching of G. Finally, a maximum matching of G is denoted by M(G). For graphs G_1 and G_2 , $G_1 + G_2$ denotes the graph with the vertex set $V(G_1) \cup V(G_2)$ and the edge set $E(G_1) \cup E(G_2) \cup \{x_1x_2 \mid x_1 \in V(G_1), x_2 \in V(G_2)\}$. We refer the reader to [1] for the terminology and notation not mentioned here.

2 Introduction and Main Results

The concept of k-extendable graphs was introduced by Plummer [3] in 1980. Since then the properties of k-extendable graphs (such as connectivity, minimum degree, genus, toughness, etc.) have been extensively researched. In the mean time, many sufficient conditions for a graph to be k-extendable are given. In particular, Plummer ([3], [4]) gave sufficient conditions of k-extendable graphs in terms of minimum degree and degree-sum as shown below.

Theorem A (Plummer [3] and [4]). Let G be a graph of even order n and k an integer with $1 \le k \le \frac{n-2}{2}$. Then

- (i) If $\delta(G) \geq \frac{n}{2} + k$, then G is k-extendable.
- (ii) If $\delta_2(G) \ge n + 2k 1$, then G is k-extendable.

In this note, we weaken the condition in Theorem A (i) to a Fan-type condition $\max\{d_G(x_1),\ d_G(x_2)\} \geq \frac{n}{2} + k$. Furthermore, we improve the degree-sum condition in Theorem A (ii) by excluding a special family of graphs.

For n=2r and $1 \le k \le r-1$, let G_1 be a graph with $|V(G_1)| = r+k-1$ and $|M(G_1)| \ge k$, $G_2 = (r-k+1)K_1$. Then we call the following graphs as **A-Type**: $G_A = G_1 + G_2$ or $(G_1 + G_2) - \{y_1y_2\}$ where y_1y_2 is an edge from $V(G_1)$ to $V(G_2)$.

Theorem 1. Let G be a graph of even order n and k an integer with $1 \le k \le \frac{n-2}{2}$. If $\kappa(G) \ge 2k+1$ and $\delta_2(G) \ge n+2k-3$, then either G is k-extendable or G is of A-Type.

Actually, if excluding more families of graphs, the degree condition in Theorem 1 can be further weakened. Let

$$G_{B_1} = \{G_1 + G_2 \mid |V(G_1)| = r - 1, G_2 = (r + 1)K_1\}$$

$$G_{B_2} = \{G_1 + G_2 \mid |V(G_1)| = 2k+1, \ |M(G_1)| = k, \ G_2 = 3K_3\}$$

$$G_{B_3} = \{G_1 + G_2 \mid |V(G_1)| = 2k + 1, |M(G_1)| = k, G_2 = K_1 \cup 2K_3\}$$

$$G_{B_4} = \{G_1 + G_2 \mid |V(G_1)| = r + k - 2, |M(G_1)| \ge k, G_2 = (r - k + 2)K_1\}$$

 $G_{B_8} = \{G_1 \cup G_2 \cup E(G_1, G_2) \mid |V(G_1)| = r + k - 2, |M(G_1)| \ge k, G_2 = (r - k)K_1 \cup K_2$, where $E(G_1, G_2)$ is an edge set joining vertices of $V(G_1)$ to $V(G_2)$

 $G_{B_6} = \{G_1 \cup G_2 \cup E(G_1, G_2) \mid |V(G_1)| = r + k - 2, |M(G_1)| \ge k, G_2 = (r - k - 1)K_1 \cup G_3.$ where $E(G_1, G_2)$ is an edge set joining vertices of $V(G_1)$ to $V(G_2)$ and G_3 is 3-cycle or a path of 3 vertices.}

 $G_{B_7} = \{G_1 \cup G_2 \cup E(G_1, G_2) \mid |V(G_1)| = r + k - 1, |M(G_1)| \ge k, G_2 = (r - k + 1)K_1$, where $E(G_1, G_2)$ is an edge set joining vertices of $V(G_1)$ to $V(G_2)$.

Define the following graphs as **B-Type**: $G_B = \bigcup_{i=1}^7 G_{B_i}$. Then we have the following result.

Theorem 2. Let G be a graph of even order n and k an integer with $1 \le k \le \frac{n-2}{2}$. If $\kappa(G) \ge 2k+1$ and $\delta_2(G) \ge n+2k-4$, then either G is k-extendable or G is of B-Type.

Next, we present another type of degree condition for k-extendable graphs.

Theorem 3. Let G be a graph of even order n and k an integer with $1 \le k \le \frac{n-2}{2}$. If $\kappa(G) \ge 2k+1$ and for any $x_1x_2 \notin E(G)$, $\max\{d_G(x_1), d_G(x_2)\} \ge \frac{n}{2} + k$, then G is k-extendable.

In fact, the degree condition in Theorem 3 can be weakened by excluding two special families of graphs. For n=2r and $1 \le k \le r-1$, define the following graphs as C-Type: $G_C = \{G_1 + (K_1 \cup 2G_2) \mid |V(G_1)| = 2k+1, |M(G_1)| = k, G_2 = K_{r-k-1}\}.$

Theorem 4. Let G be a graph of even order n and k an integer with $1 \le k \le \frac{n-2}{2}$. If $\kappa(G) \ge 2k+1$ and for any $x_1x_2 \notin E(G)$, $\max\{d_G(x_1), d_G(x_2)\} \ge \frac{n}{2} + k - 1$, then either G is k-extendable or G is of A-Type or C-Type.

To prove the above theorems, the following lemmas are needed.

Lemma 1 (Yu [6]). A graph G is k-extendable $(k \ge 1)$ if and only if for

any $S \subseteq V(G)$

- (i) $o(G-S) \leq |S|$ and
- (ii) o(G-S) = |S| 2t $(0 \le t \le k-1)$ implies that $|M(G[S])| \le t$

Lemma 2 (Fan [2]). Let G be a 2-connected graph with |V(G)| = n. If $\max\{d_G(x_1), d_G(x_2)\} \ge n/2$ for any $x_1x_2 \notin E(G)$ with $d(x_1, x_2) = 2$, then G is Hamiltonian.

For more background information on k-extendable graphs, the interested readers are directed to the excellent survey paper by Plummer [5].

3 Proofs of the Main Results.

For any $S \subseteq V(G)$, let $G - S = C_1 \cup \cdots \cup C_{\omega}$ and $m_i = |V(C_i)|$, where C_i $(i = 1, \cdots, \omega)$ are connected components of G - S. We may assume $m_1 \leq \cdots \leq m_{\omega}$ and let s = |S|.

Proof of Theorem 1.

Let's first prove that for any $S\subseteq V(G)$, $o(G-S)\leq s$. Otherwise, there exists $S\subseteq V(G)$ such that o(G-S)>s. By the parity, we have $o(G-S)\geq s+2$. For any $x_i\in V(C_i)$, $(i=1,\cdots,\omega)$, then $x_ix_j\notin E(G)$ and $d_G(x_1)+d_G(x_2)\geq n+2k-3$. Because of $d_G(x_i)\leq m_i-1+s$, we have $m_1+m_2+2s-2\geq n+2k-3$. Clearly, $m_1+(\omega-1)m_2\leq n-s$ and $m_2+(\omega-1)m_1\leq n-s$. Thus $m_1+m_2\leq \frac{2n-2s}{s}$ and $\frac{2n-2s}{\omega}+2s-2\geq n+2k-3$. Since $\omega\geq o(G-S)\geq s+2$, it yields $\frac{2n-2s}{s+2}+2s-2\geq n+2k-3$, which implies $2s^2+(3-2k)s-4k+2-sn\geq 0$. As $k\geq 1$, so $2s^2+s-sn-2\geq 0$ or $2s-n+1\geq 0$. By the parity, we can see $2s-n+1\geq 1$, which implies $s\geq \frac{n}{2}$. Therefore, $o(G-S)\geq s+2$, a contradiction. Thus for any $S\subseteq V(G)$, $o(G-S)\leq s$ or G has a perfect matching.

Because of $\delta_2(G) \geq n+2k-3 = n+2(k-1)-1$, by Theorem A (ii), G is (k-1)-extendable for $k \geq 1$. If G is not k-extendable, by Lemma 1, there exists $S \subseteq V(G)$ with $|M(G[S])| \geq k$ such that o(G-S)=s-2(k-1). Since $\kappa(G)\geq 2k+1$, we have $s\geq 2k+1$ and $\omega\geq o(G-S)=s-2(k-1)\geq 3$. For $x_1\in V(C_1)$ and $x_2\in V(C_2)$, then $m_1+m_2+2s-2\geq d_G(x_1)+d_G(x_2)\geq n+2k-3$. Clearly, $m_1+m_2\leq \frac{2n-2s}{\omega}\leq \frac{2n-2s}{s-2k+2}$. Thus $\frac{2n-2s}{s-2k+2}+2s-2\geq n+2k-3$, which implies $(s-2k)(2s-2k-n+3)+2\geq 0$. Because of $s-2k\geq 1$, then $2s-2k-n+3\geq -2$. From the parity, $2s-2k-n+3\geq -1$ or $s\geq \frac{n}{2}+k-2$. If $s\geq \frac{n}{2}+k$, then $\omega\geq o(G-S)=s-2(k-1)\geq \frac{n}{2}-k+2$ and $n\geq s+\omega\geq s+o(G-S)\geq n+2$, a contradiction. Hence $\frac{n}{2}+k-2\leq s\leq \frac{n}{2}+k-1$.

Let's consider the following two cases.

Case 1. $s = \frac{n}{2} + k - 2$.

Since $\kappa(G) \geq 2k+1$, we have $s = \frac{n}{2} + k - 2 \geq 2k+1$ or $|V(G)| = n \geq 2k+6$. Then $o(G-S) = s-2(k-1) = \frac{n}{2} - k$ and $|V(G)| - s = \frac{n}{2} - k+2$. If $m_2 = 2$ then $m_1 = 1$ (Otherwise if $m_1 = 2$, then $o(G-S) \leq |V(G)| - s - (m_1 + m_2) = \frac{n}{2} - k - 2$, a contradiction). Then any of other o(G-S) - 1 odd components must have the order at least 3. Therefore, $\frac{n}{2} - k + 2 = n - s = m_1 + \dots + m_{\omega} \geq m_1 + m_2 + 3(o(G-S) - 1) = 3 + 3(\frac{n}{2} - k - 1)$ or $n \leq 2k+2$, a contradiction to $|V(G)| \geq 2k+6$. If $m_2 \geq 3$, then $\frac{n}{2} - k + 2 = n - s = m_1 + \dots + m_{\omega} \geq m_1 + 3(o(G-S) - 1) \geq 1 + 3(\frac{n}{2} - k - 1)$ or $n \leq 2k+4$, a contradiction to $|V(G)| \geq 2k+6$. If $m_2 = 1$, then $m_1 = m_2 = 1$. So $n + 2k - 3 \leq d_G(x_1) + d_G(x_2) \leq 2s = n - 2k - 4$, a contradiction.

Case 2. $s = \frac{n}{2} + k - 1$.

Then $o(G-S) = s-2(k-1) = \frac{n}{2}-k+1$. So $n \ge s+\omega \ge s+o(G-S) \ge \frac{n}{2}+k-1+\frac{n}{2}-k+1 = n$, which implies $\omega = o(G-S) = n-s$. Thus $m_i = 1, \ i = 1, \cdots, \omega$. For any $i \ne j$, we have $n+2k-2 = 2s \ge d_G(x_i) + d_G(x_j) \ge n+2k-3$ and $d_G(x_i) \le s = \frac{n}{2}+k-1$. Therefore G is of A-Type.

Proof of Theorem 2.

Suppose that G is not of B-Type. Then for any $S \subseteq V(G)$, $o(G-S) \le s$. Otherwise there exists $S \subseteq V(G)$ such that $o(G-S) \ge s+2$. Clearly, $\omega \ge o(G-S) \ge s+2$. Because of $\kappa(G) \ge 2k+1$, so $s \ge 2k+1$. For $y_1 \in V(C_1)$, $y_2 \in V(C_2)$, then $y_1y_2 \notin E(G)$ and thus $n+2k-4 \le d_G(y_1)+d_G(y_2) \le m_1+m_2+2s-2 \le \frac{2n-2s}{s+2}+2s-2 \le \frac{2n-2s}{s+2}+2s-2$. This yields $s(2s-2k-n+4) \ge 4k-4 \ge 0$. Because of $s \ge 2k+1>0$, we have $2s-2k-n+4 \ge 0$ or $s \ge \frac{n}{2}+k-2$. Clearly, $o(G-S) \ge s+2 \ge \frac{n}{2}+k$ and thus $n \ge s+\omega \ge s+o(G-S) \ge n+2k-2$, which implies k=1. Hence $s=\frac{n}{2}-1$ and $\omega \ge o(G-S) \ge \frac{n}{2}+1$. Then $m_i=1,\ i=1,\cdots,\omega$. It's easy to verify $G \in G_{B_1}$, a contradiction.

Since $G \notin G_B$, in particular $G \notin G_{B_7}$, we have $G \notin G_A$. Because of $\delta_2(G) \geq n+2k-4=n+2(k-1)-2$, by Theorem 1, G is (k-1)-extendable for $k \geq 2$. From the above arguments, G is 0-extendable. Then G is (k-1)-extendable for $k \geq 1$. If G is not k-extendable, by Lemma 1, there exists $S \subseteq V(G)$ such that o(G-S)=s-2(k-1) with $|M(G[S])| \geq k$. Hence $n+2k-4 \leq d_G(y_1)+d_G(y_2) \leq m_1+m_2+2s-2 \leq \frac{2n-2s}{\omega}+2s-2 \leq \frac{2n-2s}{s-2k+2}+2s-2$ or $(s-2k)(2s-2k-n-4) \geq -4$. But $s-2k \geq 1$, so $2s-2k-n+4 \geq -4$ and $s \geq \frac{n}{2}+k-4$. Let's consider the following cases. Case 1. $s=\frac{n}{2}+k-4$.

Clearly, 2s-2k-n+4=-4 and s=2k+1. Then n=2k+10, o(G-S)=s-2k+2=3 and n-s=9. Clearly $m_2 \le 3$. If $m_1 \le 2$, then $n+2k-4=4k+6 \le d_G(y_1)+d_G(y_2) \le 2s+3 \le 4k+5$, a contradiction.

Then $m_1 \geq 3$ which implies $m_1 = m_2 = m_3 = 3$. It's easy to verify that $G \in G_{B_2}$, a contradiction.

Case 2. $s = \frac{n}{2} + k - 3$.

Clearly, 2s - 2k - n + 4 = -2 and $2k + 1 \le s \le 2k + 2$. If s = 2k + 1, then n = 2k + 8, o(G - S) = 3 and n - s = 7. It's easy to verify that $G \in G_{B_3}$. If s = 2k + 2, then n = 2k + 10, o(G - S) = 4 and n - s = 8. Clearly, $m_1 = 1$, $m_2 \le 2$. Then $4k + 6 = n + 2k - 4 \le d_G(y_1) + d_G(y_2) \le 2s + 1 \le 4k + 4 + 1 = 4k + 5$, a contradiction.

Case 3. $s = \frac{n}{2} + k - 2$.

Clearly, $o(G-S) = s - 2(k-1) = \frac{n}{2} - k$, $n - s = \frac{n}{2} - k + 2$. It's easy to verify that G is of G_{B_4} or G_{B_5} or G_{B_6} , a contradiction.

Case 4. $s = \frac{n}{2} + k - 1$.

Clearly, $o(G-S) = \frac{n}{2} - k + 1$. Then it's easy to verify that G is of G_{B_7} , a contradiction.

Case 5. $s \geq \frac{n}{2} + k$.

Clearly, $o(G-S) \ge \frac{n}{2} - k + 2$. Then $n \ge s + o(G-S) \ge n + 2$, a contradiction.

We complete the proof.

Proof of Theorem 3.

Use the induction on k. when k=1, $\kappa(G)\geq 3$ and $\max\{d_G(x_1),\ d_G(x_2)\}\geq \frac{n}{2}+1$. By Lemma 2, G is Hamiltonian. Then G has a perfect matching, i.e., for any $S\subseteq V(G)$, $o(G-S)\leq s$. If G is not 1-extendable, by Lemma 1, then there exists $S\subseteq V(G)$ with $|M(G[S])|\geq 1$ such that o(G-S)=s. Because of $\kappa(G)\geq 2k+1$, then $s\geq 2k+1\geq 3$. For $x_1\in V(C_1)$ and $x_2\in V(C_2)$, then $x_1x_2\notin E(G)$ and $\max\{d_G(x_1),\ d_G(x_2)\}\geq \frac{n}{2}+1$. Clearly, $\max\{d_G(x_1),\ d_G(x_2)\}\leq m_2-1+s\leq \frac{n-s-1}{\omega-1}-1+s\leq \frac{n-s-1}{s-1}-1+s$. Then $\frac{n-s-1}{s-1}-1+s\geq \frac{n}{2}+1$ which implies $(s-3)(2s-2-n)\geq 4$. Because $s\geq 3$, then $2s-2-n\geq 1$. By the parity, $2s-2-n\geq 2$ or $s\geq \frac{n}{2}+2$. Thus $n\geq s+o(G-S)=2s\geq n+4$, a contradiction. So G is 1-extendable.

Suppose that Theorem 3 holds for k-1, to show that it is true for $k \geq 2$. For any matching $M \subseteq E(G)$ with |M| = k and $y_1y_2 \in M$, let $M' = M - \{y_1y_2\}$ and $G' = G - \{y_1, y_2\}$. Then |M'| = k-1, |V(G')| = n-2 and $1 \leq k-1 \leq \frac{|V(G')|-2}{2}$. Clearly, $\kappa(G') \geq \kappa(G) - 2 \geq 2(k-1) + 1$ and $\max\{d_{G'}(x_1), d_{G'}(x_2)\} \geq \max\{d_G(x_1), d_G(x_2)\} - 2 \geq \frac{n}{2} + k - 2 = \frac{|V(G')|}{2} + (k-1)$. By induction hypothesis, G' is (k-1)-extendable. Then there exists a perfect matching $M_1 \subseteq E(G')$ such that $M' \subseteq M_1$. Let $M_0 = M_1 \cup \{y_1y_2\}$, then M_0 is a perfect matching of G with $M \subseteq M_0$. Thus G is k-extendable.

Proof of Theorem 4.

Since $\max\{d_G(x_1), d_G(x_2)\} \geq \frac{n}{2} + k - 1 \geq \frac{n}{2}$, by Lemma 2, G is Hamil-

tonian. Thus G has a perfect matching and for any $S \subseteq V(G)$, $o(G-S) \le s$.

Assume that G is not of A-Type or C-Type. Since $\max\{d_G(x_1), d_G(x_2)\} \ge \frac{n}{2} + k - 1$, by Theorem 3, G is (k-1)-extendable for $k \ge 1$. If G is not k-extendable, by Lemma 1, there exists $S \subseteq V(G)$ with $|M(G[S])| \ge k$ such that o(G-S) = s - 2(k-1). By the assumption $\kappa(G) \ge 2k + 1$, then $s \ge 2k + 1$ and $\omega \ge o(G-S) \ge 3$. It is easy to see

$$\frac{n}{2} + k - 1 \le d_G(x_2) \le m_2 + s - 1 \le \frac{n - s - m_1}{\omega - 1} + s - 1 \le \frac{n - s - 1}{s - 2k + 1} + s - 1 \quad (*)$$

Thus $(s-2k-1)(2s-2k-n+2) \ge 0$. If $s \ge 2k+2$, then $2s-2k-n+2 \ge 0$ which implies $s \ge \frac{n}{2}+k-1$. If $s \ge \frac{n}{2}+k$, then $n \ge s+o(G-S)=2s-2k+2 \ge n+2$, a contradiction. So $s=\frac{n}{2}+k-1$. Therefore either s=2k+1 or $s=\frac{n}{2}+k-1$. Let's consider the following cases.

Case 1. s = 2k + 1.

Because of $\frac{n-s-1}{s-2k+1}-1+s=\frac{n}{2}+k-1$, by (*), $m_1=1$, $d_G(x_2)=m_2-1+s$ and $m_2=\frac{n-s-1}{w-1}=\frac{n}{2}-k-1$. Then $m_3=n-s-m_1-m_2=\frac{n}{2}-k-1$. It's easy to verify that G is of C-Type , a contradiction.

Case 2. $s = \frac{n}{2} + k - 1$.

Clearly, $o(G-S)=s-2k+2=\frac{n}{2}-k+1$. Then $n\geq s+\omega\geq s+o(G-S)=2s-2k+2=n$ which implies $m_i=1,\ i=1,\cdots,\omega$. It's easy to verify that G is of A-Type, a contradiction. And this case ends the proof of Theorem 4.

References

- [1] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, Macmillan, London and Elsevier, New York, (1976).
- [2] G. H. Fan, New sufficient conditions for cycles in graphs, J. Combin. Theory, Series B, 37(1984) 221-227
- [3] M. D. Plummer, On n-extendable graphs, Discrete Math. 31(1980) 201-210
- [4] M. D. Plummer, Degree sums, neighborhood unions and matching extension in graphs, Contemporary Methods in Graph Theory, edited by R. Bodendiek, B.I. Wissenschafts-verlag, Mannheim/Wien/Zürich, 1990, 489-502.
- [5] M. D. Plummer, Extending matchings in graphs: An update, Congress. Numer. 116(1996), 3-32.
- [6] Q. L. Yu, Characterizations of various matching extensions in graphs, Australasian Journal of Combin. 7(1993), 55-64.