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ABSTRACT. In this paper, we use 2-cyclotomic cosets of modulo n and gen-
erator polynomials to describe binary cyclic codes of length N = 2%n with n
odd. We discuss the conditions under which two cyclic codes C = [N, k,d] and
¢ = [N,k1,d1] can be used to construct quantum codes by CSS construction
or Steane’s construction. Using the results of Chen, Promhouse and Tavares,
and Castagnoli et al, we study the quantum codes that can be constructed
from binary cyclic codes of length N = 2%n with n odd and n < 99, and
a < 2. We find that except the quantum codes constructed by Steane, there
are also some very interesting quantum codes constructed from repeated-root
cyclic codes, and some of the quantum codes constructed by Steane can be
improved.

Keywords: quantum error-correcting codes, binary cyclic codes, CSS con-
struction, Steane’s construction.

1. INTRODUCTION

Since the initial discovery of quantum error-correcting codes (QECCs) [12], re-
searchers have made great progress in developing quantum codes. Many code con-
structions are given. Reference [2] gives a thorough discussion of the principles of
quantum coding theory. It was shown that additive QECCs can be constructed
from classical binary codes or additive codes over Fj by various techniques, such
as CSS (Calderbank-Shor-Steane [2], [3], [12], [14]) construction or Steane’s con-
struction (Enlargement of Calderbank-Shor-Steane Quantum Codes [16]). Many
good QECCs were constructed from BCH codes, Reed-Muller codes, Reed-Solomon
codes and algebraic geometric codes [5], [6], [7], [8], [L5]. So it is natural to con-
struct quantum codes from binary cyclic codes.

This paper is organized as follows. First, we recall the basic results of CSS con-
struction and Steane’s construction in the following. In Section 2, we discuss binary
cyclic codes that can be used to construct QECCs. In Section 3, we use a table
to give the parameters of interesting quantum codes and the related cyclic codes,
which are used to construct these quantum codes. Throughout the paper, we use
the notation [[n, k, d]] to denote an additive minimum distance d quantum code of
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length n encoding k quantum bits [2].

Theorem 1.1 (CSS construction [3], [12], [14]) Let C and C be binary [[N, k, d]]
and [[N, k;,d,]] codes, respectively. If C+ C C', then an [N, k+ki — N, min{d, d, }]]
code can be constructed. Especially, if C* C C, then there exists an [N, 2k — N, d]]
code.

Theorem 1.2 (Steane’s construction [16]) Let C and C be binary [[N, k,d]] and
[[N, k1, d:]] codes, respectively. If C* ¢ C € €' and k; > k + 2, then an [N,k +
ki — N,min{d, [£d,1}]] code can be constructed.

2. BINARY CYCLIC CODES

Binary cyclic codes have been well discussed in existing literature, see [9]and [10].
Simple root binary cyclic codes of length n < 100 have been determined by Chen
in the Appendix D of [7] (pp493-534) and Promhouse et al in [11]. The relation of
simple root binary cyclic codes and repeated-root cyclic codes has been discussed
in [4] (Lemma 1 and Theorem 1). So, all binary cyclic codes of length N = 2%n
with n odd and n < 99, and a < 2 can be completely determined.

It is known that there is a close relation between cyclotomic cosets and cyclic
codes [9], [13], [16]. Suggested by this relation, we use the 2-cyclotomic cosets
modulo n and generator polynomials to describe cyclic codes satisfying CCS con-
struction or Steane’s construction.

Let (n,2) = 1, and let s be an integer such that 0 < s < n. The 2-cyclotomic
coset of s mod n is the set Cy = {s,2s,4s,---,2¥"1s} (mod n), where k is the
smallest positive integer such that 2¥s = s(modn). We call a 2-cyclotomic coset
C, symmetric if n — s € (s, and asymmetric if otherwise. The asymmetric cosets
appear in pairs Cs and C_s = Cj,—s. We denote £(n) the number of symmetric
cosets, and d(n) the number of asymmetric pairs.

If £ is a primitive n-th root of unity in some field containing F3, then the minimal
polynomial of £° over F5 is

ieCly
and
e(n) 5(n)
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where the C;, (1 < t < e(n)) are all symmetric, and Cj,,C_; (1 <1 < §(n)) are
asymmetric pairs. Let N = 2%n, then

e(n) d(n)
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If C is a cyclic code of length N, then C has a generator polynomial g(z) which
is a divisor of ¥ + 1. For any polynomial f(z), use f(z) = z%9f (@ f(1) to de-
note the reciprocal polynomial. Then the dual of C has the generator polynomial



f@ = (””Jf;;')l) If C;s is symmetric, then J\Z\(ar/) = M(z). If Cs and C_; are

asymmetric pair, then M,(z) = M_4(z). Thus we can easily prove the following
theorem and its corollaries.
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Theorem 2.1 Let C and € be two cyclic codes of length N = 2%p. If
e(n) d(n)
H M (z) TT (MG (@) M, (),
I=1

and -
=] M@ H M, (),
t=1

then C c C' if and only if a} < 2% — ay, b; < 2% — ¢ and ¢] < 2% — b;. Especially,
Ct c Cif and only if a; < 2! and by + ¢ < 2.

Proof. Let
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Then the generator polynomlal of Cti
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From [9] we know that C+ C €' if and only if g(z)|h(z), and C* C C if and only if
f(z)|h(z), the theorem is thus proved. O

Corollary 2.1 Let N = 2%n where o« > 1. If all the 2-cyclotomic cosets mod n are
symmetric, then a cyclic code C of length N such that C+ C C is an [[N, k, 2]] code.

Proof. Let f(z) be the generator polynomial of C. According to theorem 2.1,
flx) = HE(") M (x), where 0 < a; < 2°7! for 1 <t < &(n). From [4] we know
that such a code C is an [[N, k, 2]] code. O

Corollary 2.2 Let N = 2%n such that a > 1. Then, the number of cyclic codes C
of length N such that C*+ C C is

(2a—1 + l)a(n)[(Qoz—l + 1)(2a—1 + 1)]6(n)

Proof. Let f(z) be the generator polynomial of C. According to theorem 2.1,
e(n) 5(n)
H M (@) [ () () M (),
=1
where 0 < a; <2°7 ! for 1 <t < e(n) and by + ¢ < 2% for 1 <[ < §(n). Thus, for
each t there are 2°~' 4+ 1 ways to choose a;, and for each [ there are 2% 4+ 1 ways to
choose b; with 0 < b; < 2. Once b; has been chosen, there are 2% + 1 — b(l) ways
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to choose ¢.

Summarizing the above discussion, we have proved that the number of cyclic
codes C of length N satisfying C+ C C is

g
(Qa—l + l)a(n) [Z(Qa +1-— ])]6(n) — (Qa—l + l)a(n)[(Qa—l + 1)(2a—1 + 1)]6(n)_
1
g

Corollary 2.3 Let C = [[n, k,d]] be a cyclic code and C*+ C C, and let C be the

extended code of C. Then, ¢ C,and C = [[n + 1,k,d]], where d = d + 1 if d is
odd, and d = d if d is even.

Proof. It is well known that C = [[n + 1,k,d]], where d = d + 1 if d is odd, and
d=dif dis even.

Let f(z) be the generator polynomial of C. According to theorem 2.1, f(x)| “”;jll ,

so 1, = (1,1,---,1) € C. Let H be the check matrix of C, then H1T = 0. Since

the check matrix of C is
— 1, 1
H= ( H 0n><1 > ’

it is easy to verify that HH' = 0. Thus, EL cC. O

From the analysis of Steane [16], it is easy to check that whenn = 3,5,9,11,13,17,
19,25,27,29,33,37,41,43,53,57,59,61,65,67,83,97, 99, the 2-cyclotomic cosets mod
n are all symmetric, and therefore, a cyclic code C of length N = 2%n such that
Ct C C is an [[N,k,2]] code. So, one can not achieve good quantum codes
from cyclic codes of length N by Steane’s construction. Especially, when n =
11,13,29, 37,53, 59,61, 83, the only 2-cyclotomic cosets mod n are Cy and C7, and
s0, no good quantum codes can be obtained by Steane’s construction or even by
CSS construction.

Using the above results and considering the equivalence of cyclic codes, we study
all the quantum codes that can be constructed from binary cyclic codes of length
N = 2% with n odd and n < 99, and a < 2, and compare them with known
QECCs. We find the following facts.

(1) Quantum codes constructed from cyclic codes by CSS construction are not
better than the known quantum codes in [1], [2], [3], [5], [6], [7], [8], [14], [15], [16].

(2) Except the good quantum codes constructed by Steane in [16], there are also
some very interesting quantum codes constructed from repeated-root cyclic codes,
which will be further discussed in next section.

(3) In [16], Steane used BCH bound instead of real minimum distance of binary
BCH codes. So, the quantum codes [[89,56,5]], [[89,34,8]], [[90,33,9]] and [[93,43,8]]
in [16] can be improved by [[89,56,6]], [[89,34,11]], [[90,33,12]] and [[93,48,8]].
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In next section we use a table to list these interesting codes and improved codes,
but omit [[90,33,12]], since it can be deduced from the construction of [[89,34,11]]
and Corollary 2.3.

3. CONCLUDING REMARKS

Even though considering the equivalence of cyclic codes, there are also thou-
sands of quantum codes that can be constructed from binary cyclic codes of length
N = 2% with n odd and n < 99, and a < 2, by Steane’s construction. We compare
these quantum codes with known QECCs in [1], [2], [3], [5], [6], [7], [8], [14], [15],
[16], and find that many of them are not very good.

For each quantum code [N, K, D]] constructed by us, if there is a known [[N', K, D]]
code such that N > N and K > K, then this [N, K, D]] code is not listed in Table
1.

Comparing with the highest achievable minimum distance quantum codes [[14, 6, 3]],
[[30,20,4]] given in [2] and the [[42,33, 3]] code given in [6], our codes [[14,6,3]],
[[30,20,3]] and [[42,32,3]] are very good. Our quantum codes [[30,10,5]] and
[[30, 8, 6]] achieve the lower bound given in [2].

For N > 100, the quantum codes [[N, K, D]] listed in Table 1 are new, and are
comparable with known QECCs in [1], [2], [3], [5], [6], [7], [8], [14], [15], [16]. So
these codes turn out to be a source for good quantum codes, at least give a very
good lower bound on K for given N and D.

Acknowledgement. We are greatly indebted to the anonymous referee for his
comments and suggestions, which substantially improve the presentation of our
paper. Part of this work was done while the author Ruihu Li was visiting the
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Table 1. Quantum codes constructed from cyclic codes C+ Cc C c C' by
Steane’s construction.

The number in the first column is the value of the integer n; the number in the
second column is the order of cyclic codes pairs with length N = 2%n; in the third
column, [N, k,d] = i{* iy - - --i3* means a code C = [N, k,d] = (M}"* (x)...M3* (x)),
which satisfies C* C C, so do the codes C' = [N, k1,d] in the forth column. Two
codes C and C" in the same row satisfy that C* c ¢ c €, and the fifth column
of this row lists the quantum [[N, K, D]] = [N,k + ki — N,min{d, [$d;1}]] code
constructed from C and C’ by Steane’s construction.

n | NOi | [Nk,d] ([N, k1, di]] [[N,K,D]]
71 1] [14,7,4]=0-17 [14,13,2]=0 [14,6,3]]
15| 1][30,21,4]=0-12 | [30,29,2]=0 130,20,3]]
15|  2[30,18,5]=12-3 |[30,22,3]=1> || [[30,10,5]]
15| 3|[30,17,6]=0-12-3 | [30,21,4]=0- 12 || [[30,8,6]]
21| 1[42,33,4]=0-32-7 | [42,41,2]=0 [42,32,3]]
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Tablel (Continued)

n | NO.i | [N,k,d] [N, ki,d]] [[N,K,D]]

73| 1|[146,127,4]=0- 3° [146,145,2]=0 [[146,126,3]]
73| 2 [292,264,4]=0- 13 [202,291,2]=0 [[202,263,3]]
85 1 [170,153,4]=0- 12 [170,169,2]=0 [[170,152,3]]
85 2 | [170,146,5]=1%-3 [170,154,3]=12 [[170,130,5]]
85 3| [170,145,6]=0-12 -3 [170,153,4]=0- 12 [[170,128,6]]
85 4 | [340,315,4]=0-13 [340,339,2]=0 [[340,314,3]]
85 5 | [340,300,5]=1%-3 [340,316,3]=13 [[340,276,5]]
85 6 | [340,299,6]=0- 14 3 [340,315,4]=0-13 [[340,274,6]]
89 1|[89,67,7]=1-3 [89,78,4]=1 [[89,56,6]]

89 2 | [89,56,11]=1-3-5 [89,67,7]=1-3 [[89,34,11]]
89 3| [178,155,4]=0- 12 [178,177,2]=0 [[178,154,3]]
89 4| [178,145,7]=1%-3 [178,156,4]=12 [[178,123,6]]
89 5| [178,123,11]=12- 32 5 [178,145,7]=12-3 [[178,90,11]]
89 6 | [178,122,12]=0-1%-32 .5 [178,144,8]=0- 12 3 [[178,88,12]]
89 7 [178,90,20]=1%2-32-5-9 - 132 [178,112,14]=32-5-9 - 132 [[178,24,20]]
89 8 | [356,322,4]=0-13 [356,355,2]=0 [[356,321,3]]
89 9 | [356,268,11]=1*-3 - 5° [356,301,7]=1%-3 [[356,213,11]]
89 10 | [356,267,12]=0-1*-3 - 53 [356,300,8]=0 - 14 3 [[356,211,12]]
89 11 | [356,213,20]=1*-3%-5%-9-13 | [356,257,14]=3"-53-9-13 [[356,114,20]]
89 12 | [356,202,22]=1%3%.5%.9.13-19 [[356,257,14]]=3* - 5% -9 .13 [[356,103,21]]
89 | 13| [356,202,22]=1%3%5%9-13-19 [356,224,16]=1° - 3* - 5% -9 - 13 || [[356,70,22]]
89 | 14 [356,180,24]=1*3*5%9.13%-19 [356,224,16]=1° - 3* - 53 - 9 - 13 || [[356,48,24]]
o1 | 1[182,163,4]=0-1-132 [182,181,2]=0 [[182,162,3]]
91 2 | [364,342,4]=0-1-133 [364,363,2]=0 [[364,341,3]]
93 11[93,63,8]=1-3-7-9 [93,78,5]=1-3 [[93,48,8]]

93 2 | [186,165,4]=0- 12 [186,185,2]=0 [[182,164,3]]
93 3 | [186,161,5]=12-3 [186,166,3]=12 [[186,141,5]]
93 4| [186,160,6]=0 - 12 3 [186,165,4]=0- 12 [[186,139,6]]
93 5 | [186,146,7]=1%-3%-5 [186,161,5]=12- 3 [[186,121,7]]
93 6 | [186,145,8]=0-1%-32 .5 [186,161,5]=12- 3 [[186,120,8]]
93 7| [186,135,10]=0-12-3%-5-7 [186,160,6]=0 - 12 3 [[186,109,9]]
93 8 | [186,135,10]=0-12-32-5-7 [186,146,7]=12-3% -5 [[186,95,10]]
93 9 | [186,126,11]=12-32-5-7-92 [186,146,7]=12-3% -5 [[186,86,11]
93 10 | [186,125,12]=0-1%-32-5-7-9% | [186,145,8]=0-12 .32 .5 [[186,84,12]]
93 11 | [372,322,5]=13 - 3% [372,347,4]=1-33 [[372,297,5]]
93 12 | [372,321,6]=0-13 - 3* [372,347,4]=1-33 [[372,296,6]]
93 13 | [372,312,7]=1%.3*.5 [372,322,5]=1% - 34 [[372,262,7]]
93 14 | [372,311,8]=0-1%-3*-5 [372,322,5]=1% - 34 [[372,261,8]]
93 15 | [372,296,10]=0-1*-3%-5-7 [372,316,6]=0- 1% - 33 [[372,240,9]]
93 16 | [372,296,10]=0-1*-3% . 5.7 [372,307,7]=1*-3% -5 [[372,231,10]]
93 17 | [372,281,12]=0-1%-3% - 5-7-93 | [372,306,8]=0-1% .33 .5 [[372,215,12]]
93 18 | [372,210,22]=1*-3*.53.73.9%.15.31.33 [372,250,16]=1*-3%.5.73.93.15.31 [[372,88,22]]
93 19 | [372,200,24]=1*-3*.53.73.9%.11.15-31-33 | [372,250,16]=1*-3%.5.73.93.11.153.31 [[372,78,24]]
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