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Abstract

Some new families of integral trees with diameters 4, 6 and 8 are given. Most of these classes
are in0nite.
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1. Introduction

The notion of integral graphs was 0rst introduced by F. Harary and A.J. Schwenk
in 1974. A graph G is called integral if all the zeros of the characteristic polynomial
P(G; x) are integers. Some results on integral trees with diameters 4, 6 and 8 can be
found in [1,3–6,8–12,14–16,18–21], [9–11,13,14,16–22] and [11,14], respectively. In
this paper, some new families of integral trees with diameters 4, 6 and 8 are given.
Most of these classes are in0nite. They are di>erent from those of [1,3–6,8–22]. This
is a new contribution to the search of integral trees. We believe that it is useful for
constructing other integral trees.
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All graphs considered here are simple. For a graph G, let V (G) denote the vertex set
of G and E(G) the edge set. All other notation and terminology can be found in [2].

We know that trees with diameter 4 can be formed by joining the centers of r stars
K1;m1 ; K1;m2 ; : : : ; K1;mr to a new vertex v. The tree is denoted by S(r;m1; m2; : : : ; mr)
or simply S(r; mi). For convenience, let m1; m2; : : : ; mr be nonnegative integers such
that m1¡m2¡ · · ·¡ms; 16 s6 r; mi ∈{m1; m2; : : : ; ms}; 16 i6 r; ai denote the
multiplicities of mi in the set {m1; m2; : : : ; mr}. The tree S(r; mi) is also denoted by
S(a1 +a2 + · · ·+as;m1; m2; : : : ; ms), where r=

∑s
i=1 ai and |V |=1+

∑s
i=1 ai(mi +1).

The following Lemma 1 can be found in [19].

Lemma 1.

P[S(r; mi); x] = x
∑r

i=1 mi−(r−1)

[
r∏
i=1

(x2 − mi)

][
1 −

r∑
i=1

1
x2 − mi

]
:

Clearly the following result in [6,12] or [15] is a corollary of Lemma 1.

Corollary 1. For the tree S(r; mi) = S(a1 + a2 + · · · + as;m1; m2; : : : ; ms) of diameter
4, then we have

P[S(r; mi); x] = x1+
∑s

i=1 ai(mi−1)
s∏
i=1

(x2 − mi)ai−1

×

 s∏
i=1

(x2 − mi) −
s∑
i=1

ai
s∏

j=1; j �=i
(x2 − mj)


 :

Corollary 2. The tree S(r; mi) = S(a1 + a2 + · · · + as;m1; m2; : : : ; ms) of diameter 4 is
integral if and only if

s∏
i=1

(x2 − mi)ai−1


 s∏
i=1

(x2 − mi) −
s∑
i=1

ai
s∏

j=1; j �=i
(x2 − mj)


 = 0

has no other roots but integral ones.

Let the tree S(m; t) of diameter 4 be formed by joining the centers of m copies of
K1; t to a new vertex u. Let L(r; m; t) denote a tree of diameter 6, which is obtained by
joining the centers of r copies of S(m; t) to a new vertex x.

The following Lemmas 2 and 3 can be found in [19] and [7], respectively.

Lemma 2.

(1) P(K1; t ; x) = xt−1(x2 − t).
(2) P(S(m; t); x) = xm(t−1)+1(x2 − t)m−1[x2 − (m+ t)].
(3) P(L(r; m; t); x)= xrm(t−1)+r−1(x2 − t)r(m−1)[x2 − (m+ t)]r−1[x4 − (m+ t+ r)x2 + rt].
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Lemma 3. If G • H is the graph obtained from G and H by identifying the vertices
v∈V (G) and w∈V (H), then

P(G • H; x) = P(G; x)P(Hw; x) + P(Gv; x)P(H; x) − xP(Gv; x)P(Hw; x);

where Gv and Hw are the subgraphs of G and H induced by V (G)\{v} and V (H)\{w},
respectively.

2. Integral trees with diameter 4

In this section, we shall construct in0nitely many new classes of integral trees with
diameter 4. They are di>erent from those of [1,3–6,8–12,14–16,18–21].

Theorem 1. Let the tree K1; a0 • S(r; mi) = K1; a0 • S(a1 + a2 + · · · + as;m1; m2; : : : ; ms)
of diameter 4 be obtained by identifying the center w of K1; a0 and the center v of
S(a1 + a2 + · · · + as;m1; m2; : : : ; ms). Then we have

P[K1; a0 • S(r; mi); x] = xa0−1+
∑s

i=1 ai(mi−1)
s∏
i=1

(x2 − mi)ai−1

×

(x2 − a0)

s∏
i=1

(x2 − mi) − x2
s∑
i=1

ai
s∏

j=1; j �=i
(x2 − mj)


 :

Proof. Because the vertex w is the center of K1; a0 and the vertex v is the center of
the tree S(a1 + a2 + · · · + as;m1; m2; : : : ; ms), if we let G = K1; a0 and H = S(a1 + a2 +
· · · + as;m1; m2; : : : ; ms), then by Lemma 3, we know that

P[K1; a0 • S(r; mi); x] = P[K1; a0 • S(a1 + a2 + · · · + as;m1; m2; : : : ; ms); x]

= P(K1; a0 ; x)
s∏
i=1

Pai(K1;mi ; x) + xa0P[S(r; mi); x]

−xa0+1
s∏
i=1

Pai(K1;mi ; x):

By Lemma 2 and Corollary 1, we have

P[K1; a0 • S(r; mi); x] = xa0−1+
∑s

i=1 ai(mi−1)
s∏
i=1

(x2 − mi)ai−1

×

(x2 − a0)

s∏
i=1

(x2 − mi) − x2
s∑
i=1

ai
s∏

j=1; j �=i
(x2 − mj)


 :

The theorem is thus proved.
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Remark 1. For the tree S(a1 + a2 + · · ·+ as;m1; m2; : : : ; ms) of diameter 4, let m1 = 0,
by Corollary 1 and Theorem 1, we have S(a1 +a2 + · · ·+as; 0; m2; m3; : : : ; ms)=K1; a1 •
S(a2 + a3 + · · · + as;m2; m3; : : : ; ms).

The following result in [9] is a corollary of our Theorem 1.

Corollary 3.

P[K1; s • S(m; t); x] = xm(t−1)+(s−1)(x2 − t)m−1[x4 − (m+ t + s)x2 + st]:

Proof. It is easy to check the correctness by Theorem 1 and Lemma 2.

Theorem 2. The tree K1; a0 • S(r; mi) = K1; a0 • S(a1 + a2 + · · · + as;m1; m2; : : : ; ms) of
diameter 4 is integral if and only if

xa0+1+
∑s

i=1 ai(mi−1)

[
s∏
i=1

(x2 − mi)ai
][

1 − a0

x2 −
s∑
i=1

ai
x2 − mi

]
= 0

has no other roots but integral ones.

Proof. It is easy to check the correctness by Theorem 1.

Theorem 3. For any positive integer n, we have the following results:

(1) If the tree S(a1 + a2 + · · · + as;m1; m2; : : : ; ms) of diameter 4 is integral, and
m1; m2; : : : ; ms are perfect squares, then the tree S(a1n2 + a2n2 + · · · + asn2;m1n2;
m2n2; · · · ; msn2) is integral, too.

(2) If the tree K1; a0 • S(a1 + a2 + · · · + as;m1; m2; : : : ; ms) of diameter 4 is integral,
and m1; m2; : : : ; ms are perfect squares, then the tree K1; a0n2 •S(a1n2 +a2n2 + · · ·+
asn2;m1n2; m2n2; : : : ; msn2) is integral, too.

Proof. By Corollary 2 and Theorem 2, we are easy to prove the theorem.

Theorem 4. For the tree K1; s • S(m + q; t; r) of diameter 4, we have the following
results.

(1) If m=q=1, then the tree K1; s •S(1+1; t; r) is integral if and only if x6− (s+ r+
t+2)x4 +[(r+ t)(s+1)+rt]x2−rts can be factorized as (x2−a2)(x2−b2)(x2−c2).

(2) If m = 1; q¿ 2, then the tree K1; s • S(1 + q; t; r) is integral if and only if r is a
perfect square, and x6 − (q + s + r + t + 1)x4 + [t(q + r + s) + r(s + 1)]x2 − rts
can be factorized as (x2 −a2)(x2 −b2)(x2 − c2). For q=1; m¿ 2, we have similar
result.

(3) If m; q¿ 2, then the tree K1; s • S(m+ q; t; r) is integral if and only if t and r are
perfect squares, and x6 − (m+ q+ s+ r + t)x4 + [t(s+ q+ r) + r(m+ s)]x2 − rts
can be factorized as (x2 − a2)(x2 − b2)(x2 − c2).
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Proof. By Theorem 1, we have

P[K1; s • S(m+ q; t; r); x] = xm(t−1)+q(r−1)+s−1(x2 − t)m−1(x2 − r)q−1

×{x6 − (m+ q+ t + r + s)x4 + [t(q+ r + s)

+ r(m+ s)]x2 − rts}:
The theorem is thus proved by Theorem 2.

Corollary 4. For the tree K1; s • S(m + q; t; r) of diameter 4, let t = r, we have that
the tree K1; s • S(m+ q; t; t) =K1; s • S(m+ q; t) is integral if and only if t is a perfect
square, and x4 − (q+ m+ t + s)x2 + st can be factorized as (x2 − a2)(x2 − b2).

Proof. It is easy to check the correctness by Theorems 1 and 4.

Remark 2. Note that Corollary 4 is the same as Theorem 1 of [9]. Theorem 1 of [9]
is that the tree K1; s • S(m; t) with diameter 4 is integral if and only if t is a perfect
square, and x4 − (m+ t + s)x2 + st can be factorized as (x2 − a2)(x2 − b2). In [9], we
obtained a lot of such integral trees K1; s • S(m; t). The following Corollaries 5–7 are
di>erent from those integral trees of [9].

Corollary 5. For any positive integer n, if the tree K1; s • S(m; t) of diameter 4 is
integral, then K1; sn2 • S(mn2; tn2) is integral, too.

Proof. It is easy to check the correctness by Theorem 3 and Corollary 3.

Corollary 6. The tree K1; s •S(m; t) of diameter 4 is integral if and only if t= k2; s=
a2b2=k2(¿ 1), and m = a2 + b2 − k2 − a2b2=k2(¿ 1), where a; b and k are positive
integers.

Proof. It is easy to check the correctness by Corollary 3.

The following result in [18] is a corollary of our Theorem 4.

Corollary 7. If t=c2d2; s=a2b2, and m=a2c2 +b2d2−c2d2−a2b2(¿ 1), where a; b; c
and d are positive integers, for any positive integer n, then the tree K1; sn2 •S(mn2; tn2)
of diameter 4 is integral.

Proof. It is easy to check the correctness by Corollary 3.

For the tree K1; s • S(m + q; t; r) of diameter 4, let t 
= r, we get the following
Corollaries 8, 10, and 11 by computer search. They are di>erent solutions from those
in existing literature. We believe that it is useful for constructing other integral trees.

Corollary 8. If s=25; m= q=1; t=18 and r=32, then the tree K1; s • S(m+ q; t; r)=
K1; s • S(q+ m; r; t) of diameter 4 is integral.
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s m q t r a b c
8 1 24 8 36 2 3 8
14 1 48 14 144 3 4 14
22 1 80 22 400 4 5 22
20 1 300 80 1296 4 9 40
48 1 84 27 225 5 6 18
32 1 120 32 900 5 6 32
44 1 168 44 1764 6 7 44
180 1 140 80 144 8 9 20
. . . . . . . . . . . . . . . . . . . . . . . .

Fig. 1.

Proof. By Theorem 4, we have

x6 − 77x4 + 1876x2 − 14400 = (x2 − 42)(x2 − 52)(x2 − 62):

The corollary is thus proved.

The following result in [6] is a corollary of our Theorem 4.

Corollary 9. For any positive integer n, we have the following results.

(1) If k = 2n2, let s= n2k(k + 2); m= 1; q= 1
2(k − 1)(k + 1)(k + 2)k2; t= k2 + 2k and

r = k2(k + 1)2, then the tree K1; s • S(m+ q; t; r) of diameter 4 is integral.
(2) If k=2n(3n+2), let s= k(3n+1)2; m=1; q= 3

4(k+1)(k+2)(3k+2); t= k2 +2k
and r = 4(k + 1)2, then the tree K1; s • S(m+ q; t; r) of diameter 4 is integral.

(3) If k=2(n+1)(3n+1), let s=1
4 k(k+2)(3n+2)2; m=1; q=3

8 k(k+2)(3k+2); t=k2+2k
and r = 4(k + 1)2, then the tree K1; s • S(m+ q; t; r) of diameter 4 is integral.

Proof. It is easy to check the correctness by Theorems 2 and 4.

Corollary 10. If m=1; t ¡ r, let s; m; q; t; r; a; b and c be positive integers in the above
Fig. 1, and a; b and c be those of Theorem 4, then the tree K1; s • S(m + q; t; r) of
diameter 4 is integral.

Proof. It is easy to check the correctness by Theorem 4.

Corollary 11. For any positive integer n, if m; q¿ 2; t ¡ r, let s; m; q; t; r; a; b and c
be positive integers in the following Fig. 2, and a; b and c be those of Theorem 4,
then the tree K1; sn2 • S(mn2 + qn2; tn2; rn2) of diameter 4 is integral.

Proof. It is easy to check the correctness by Theorems 3 and 4.
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s m q t r a b c
49 51 63 9 64 2 6 14
25 24 63 9 144 2 6 15
16 33 110 25 81 2 6 15
36 75 105 16 64 2 6 16
36 35 140 9 144 2 6 18
9 15 135 25 256 2 6 20
25 45 210 16 144 2 6 20
16 33 48 16 196 2 7 16
81 40 208 16 100 3 6 20
36 56 125 36 144 3 8 18
100 63 150 16 144 3 8 20
144 96 117 16 100 3 8 20
36 65 128 36 225 3 9 20
64 90 105 25 225 3 10 20
64 156 72 36 225 3 12 20

. . .. . . . . . . . . . . . . . . . . . . . .

Fig. 2.

3. Integral trees with diameters 6 and 8

In this section, we mainly consider families of integral trees with diameter 6. Some
families of integral trees with diameter 8 are constructed, and some families of integral
trees with diameter 4 are also obtained.

The following Lemma 4 and Corollaries 12–14 can be found in [9].

Lemma 4. Let the tree K1; s • L(r; m; t) of diameter 6 be obtained by identifying the
center w of K1; s and the center u of L(r; m; t). Then

P[K1; s • L(r; m; t); x]=xrm(t−1)+r+(s−1)(x2 − t)r(m−1)[x2 − (m+ t)]r−1

×[x4 − (m+ t + r + s)x2 + rt + s(m+ t)]:

Corollary 12. The tree K1; s • L(r; m; t) of diameter 6 is integral if and only if t and
m+ t are perfect squares, and x4 − (m+ t+ r+ s)x2 + rt+ s(m+ t) can be factorized
as (x2 − a2)(x2 − b2).

Theorem 5. For any positive integer n, if the tree K1; s • L(r; m; t) of diameter 6 is
integral, then K1; sn2 • L(rn2; mn2; tn2) is integral, too.

Proof. By Lemma 4, we are easy to proved the theorem.

Corollary 13. If s = t, then the tree K1; t • L(r; m; t) of diameter 6 is integral if and
only if t, m+ t and m+ t + r are perfect squares.
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Corollary 14. For the tree K1; s • L(r; m; t) of diameter 6, let m1; t1; r1; a; b; c and d be
positive integers satisfying the following conditions:

m1 + t1 + r1 = a2 + b2 = c2 + d2; (1)

where c¿a; b¿d, (a; b) = 1; (c; d) = 1 and a|cd or b|cd. Let s= t= t1n2; m=m1n2

and r = r1n2, for any positive integer n, we have the following results.

(1) If a|cd, let m1 = b2 − (cd=a)2; t1 = (cd=a)2 and r1 = a2, then K1; s • L(r; m; t) of
diameter 6 is integral.

(2) If b|cd, let m1 = a2 − (cd=b)2; t1 = (cd=b)2 and r1 = b2, then K1; s • L(r; m; t) of
diameter 6 is integral.

Remark 3. For the diophantine equation (1), we simply list the following examples of
[9,11]:

(1) (5 × 13)2 = 562 + 332 = 632 + 162,
(2) (5 × 29)2 = 1432 + 242 = 1442 + 172,
(3) (13 × 17)2 = 1712 + 1402 = 2202 + 212,
(4) (17 × 37)2 = 4602 + 4292 = 6212 + 1002,
(5) (41 × 61)2 = 23012 + 9802 = 24992 + 1002.

Theorem 6. For any positive integer n, let s = t = l2q2; m = (k2 − l2)q2(¿ 1) and
r = p2 − k2q2(¿ 1), where l; k; p and q are positive integers, then the tree K1; sn2 •
L(rn2; mn2; tn2) of diameter 6 is integral.

Proof. It is easy to check the correctness by Corollary 13.

The following result in [18] is a corollary of our Theorem 6.

Corollary 15. For any positive integer n, let s = t = q2; m = 3q2 and r = p2 − 4q2,
where p and q are positive integers, and p¿ 2q, then the tree K1; sn2 •L(rn2; mn2; tn2)
of diameter 6 is integral.

If q = 1; p = 3, then s = t = 1; m = 3; r = 5. We get the smallest integral tree
K1;1 • L(5; 3; 1) with diameter 6 in this class. Its characteristic polynomial is P(K1;1 •
L(5; 3; 1); x) = x5(x2 − 1)11(x2 − 4)4(x2 − 9), and its order is 37.

Theorem 7. The tree K1; s•L(r; m; t) of diameter 6 is integral if and only if t = k2; m=
n2 + 2nk; s= k2 + [(a2 − k2)(b2 − k2)]=(n2 + 2nk)(¿ 1) and r = a2 + b2 − (n+ k)2 −
k2 − [(a2 − k2)(b2 − k2)]=(n2 + 2nk)(¿ 1), where a; b; k and n are positive integers.

Proof. It is easy to check the correctness by Corollary 12.

Corollary 16. For any positive integer n, let t = k2; m = a2b2 − k2(¿ 1); r = a2b2,
and s= a2c2 + b2d2 − 2a2b2 = c2d2 − k2(¿ 1), where k; a; b; c and d are integers, then
the tree K1; sn2 • L(rn2; mn2; tn2) of diameter 6 is integral.
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a b m r s t a b m r s t
2 5 8 10 10 1 2 6 15 16 8 1
2 7 8 25 19 1 2 7 24 21 7 1
2 9 8 45 31 1 2 9 15 52 17 1
2 9 24 49 11 1 2 9 48 30 6 1
2 11 8 70 46 1 2 11 15 84 25 1
2 11 24 84 16 1 2 11 84 24 1 16
3 7 24 16 17 1 3 8 12 28 29 4
3 8 24 26 22 1 3 10 12 49 44 4
3 10 24 50 34 1 3 10 32 54 19 4
3 10 60 33 12 4 3 11 15 49 65 1
3 11 24 64 41 1 3 11 45 64 17 4
3 11 48 60 21 1 3 11 80 36 13 1
3 13 24 96 57 1 3 13 96 56 1 25
3 13 48 100 29 1 4 7 24 9 31 1
4 8 45 11 20 4 4 8 35 16 28 1
4 9 24 44 4 25 4 9 21 24 48 4
4 9 24 21 51 1 4 9 48 22 26 1
4 10 32 40 40 4 4 11 16 54 58 9
4 11 24 36 76 1 4 12 21 51 84 4
4 12 27 80 44 9 4 12 60 64 32 4
4 13 16 81 79 9 4 13 80 40 1 64
4 13 24 54 106 1 4 13 40 99 37 9
4 13 35 76 73 1 4 13 45 88 48 4
4 13 63 80 41 1 4 13 60 84 37 4
4 13 112 45 19 9 4 13 120 42 22 1
4 14 32 100 76 4 4 14 96 84 28 4

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fig. 3.

Proof. It is easy to check the correctness by Theorem 5 and Corollary 12.

Remark 4. The diophantine equation a2c2 + b2d2 − 2a2b2 = c2d2 − k2(¿ 1) can be
changed into

(ac + bd)2 − a2b2 = (ab+ cd)2 − k2: (2)

There exist solutions a = b = 2; c = k = 1 and d = 3 for the diophantine equation
(2). We conjecture that there are in0nitely many other solutions for the diophantine
equation (2).

By computer search, we can get the following corollary.

Corollary 17. For any positive integer n, if s 
= t, let s; r; m; t; a and b be positive
integers in the above Fig. 3, and a and b be those of Corollary 12, then the tree
K1; sn2 • L(rn2; mn2; tn2) of diameter 6 is integral.
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Proof. It is easy to check the correctness by Theorem 5 and Corollary 12.

Remark 5. For the tree K1; s •L(r; m; t) of diameter 6, (i) If s= t, we can construct in-
0nitely many classes of such integral trees from Corollaries 12–14, which are Theorems
4 and 5 and Corollary 5 of [9]. (ii) If s 
= t, we got some classes of such integral trees
K1; s•L(r; m; t) of diameter 6 and T (s; r; m; t) of diameter 8 in [11,14], where T (s; r; m; t)
is obtained by joining the centers of s copies of L(r; m; t) to a new vertex y.

Remark 6. Here, using a computer, we have found 2694 positive integral solutions
a; b; n; t1; t; m; r and s for the diophantine equations

t = t21 ;

m= n2 + 2nt1;

a2b2 = rt + s(m+ t);

a2 + b2 = m+ t + r + s;

where s 
= t; 16 a6 20 and a6 b6 a+ 20. In Fig. 3, let a= 2; 3; 4, a6 b6 a+ 10,
s 
= t; we give these parameters a; b; s; r; m and t. We shall construct in0nitely many
classes of such integral trees K1; s •L(r; m; t) from Corollaries 15 and 16 and Theorems
6 and 7. They are di>erent from those ones of [9–11,13,14,16–22]. We believe that it
is useful for constructing other integral trees.

A graph G in which one vertex u is distinguished from the rest is called a rooted
graph. The distinguished vertex u is called the root-vertex, or simply the root. Let
r ∗ G be the graph formed by joining the roots of r copies of G to a new vertex w.
Let K1; r • G be the graph obtained by identifying the center z of K1; r and the root u
of G. Let G∪H denote the union of two disjoint graphs G and H , and nG denote the
disjoint union of n copies of G.

The following Lemmas 5 and 6 and Corollaries 18–20 can be found in [10].

Lemma 5.

(1) P(r ∗ G; x) = Pr−1(G; x)[xP(G; x) − rP(G − u; x)].
(2) P(K1; r • G; x) = xr−1[xP(G; x) − rP(G − u; x)].

Corollary 18. Let G1 = (r − 1)K1 ∪ r ∗ G; G2 = (r − 1)G ∪ [K1; r • G]. Then G1 and
G2 are cospectral.

Lemma 6. T (s; r; m; t) is obtained by joining the centers of s copies of L(r; m; t) to a
new vertex y, we have

P(T (s; r; m; t); x) = xsrm(t−1)+s(r−1)+1(x2 − t)sr(m−1)[x2 − (m+ t)]s(r−1)

×[x4 − (m+ t + r)x2 + rt]s−1

×[x4 − (s+ m+ t + r)x2 + rt + s(m+ t)]:
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Corollary 19. Suppose that G and H are the following graphs, respectively. Then G
and H are cospectral forests, and all these classes are inAnite.

(1) G = (m− 1)K1 ∪ S(m; t) and H = K1;m+t ∪ (m− 1)K1; t .
(2) G=m(r−1)K1∪L(r; m; t) and H=K1; r •S(m; t)∪(r−1)K1;m+t∪(r−1)(m−1)K1; t .
(3) G = (s− 1)K1 ∪ T (s; r; m; t) and H = K1; s • L(r; m; t) ∪ (s− 1)L(r; m; t).
(3)′ G = (s− 1)[1 +m(r − 1)]K1 ∪ T (s; r; m; t) and H =K1; s • L(r; m; t)∪ (s− 1)K1; r •

S(m; t) ∪ (s− 1)(r − 1)K1;m+t ∪ (s− 1)(r − 1)(m− 1)K1; t .

Corollary 20.

(1) If G and K1; r • G are integral graphs, then r ∗ G is integral.
(2) If G and r ∗ G are integral graphs, then K1; r • G is integral, too.

Theorem 8. For any positive integer n, if T (s; r; m; t) of diameter 8 is integral, then
T (sn2; rn2; mn2; tn2) of diameter 8, K1; sn2•L(rn2; mn2; tn2) of diameter 6, L(rn2; mn2; tn2)
of diameter 6, S(mn2; tn2) of diameter 4 and K1; tn2 of diameter 2 are integral, too.

Proof. It is easy to check the correctness by Lemmas 2, 4 and 6.

The following examples can be found in [9,11,13,14].

Example 1. For any positive integer n, let the tree T (324; 3136; 765; 324) of diameter 8
be integral, then T (324n2; 3136n2; 765n2; 324n2) of diameter 8, K1;324n2•L(3136n2; 765n2;
324n2) of diameter 6, L(3136n2; 765n2; 324n2) of diameter 6, S(765n2; 324n2) of di-
ameter 4 and K1;324n2 of diameter 2 are integral, too.

Example 2. For any positive integer n, let the tree T (616; 225; 672; 4) of diameter 8 be
integral, then trees T (616n2; 225n2; 672n2; 4n2) of diameter 8, K1;616n2 • L(225n2; 672n2;
4n2) of diameter 6, L(225n2; 672n2; 4n2) of diameter 6, S(672n2; 4n2) of diameter 4
and K1;4n2 of diameter 2 are integral, too.

Theorem 9. For any positive integer n, if L(r; m; t) of diameter 6 is integral, then
L(rn2; mn2; tn2) of diameter 6, K1; rn2 • S(mn2; tn2) of diameter 4, K1; tn2 • S(mn2; rn2) of
diameter 4, S(mn2; tn2) of diameter 4, K1; rn2 of diameter 2 and K1; tn2 of diameter 2
are integral, too.

Proof. It is easy to check the correctness by Lemma 2 and Remark 2.

Example 3. For any positive integer n, let the tree L(16; 45; 4) of diameter 6 be integral,
then trees L(16n2; 45n2; 4n2) of diameter 6, K1;16n2 •S(45n2; 4n2) of diameter 4, K1;4n2 •
S(45n2; 16n2) of diameter 4, S(45n2; 4n2) of diameter 4, K1;16n2 of diameter 2 and
K1;4n2 of diameter 2 are integral, too.
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Theorem 10. For any positive integer n, we have the following results.

(1) If G=S(m; t) of diameter 4 and K1; r •G=K1; r •S(m; t) of diameter 4 are integral,
then r∗G=L(r; m; t) of diameter 6 and L(rn2; mn2; tn2) of diameter 6 are integral,
too.

(2) If G = L(r; m; t) of diameter 6 and K1; s • G = K1; s • L(r; m; t) of diameter 6 are
integral, then s∗G=T (s; r; m; t) of diameter 8 and T (sn2; rn2; mn2; tn2) of diameter
8 are integral, too.

Proof. It is easy to check the correctness by Corollary 20, Remark 2 and Lemmas 2
and 6.

Example 4. For any positive integer n, we have the following results.

(1) Let G = S(280; 9) of diameter 4 and K1; r • G = K1;36 • S(280; 9) of diameter 4 be
integral, then trees r ∗ G = L(36; 280; 9) of diameter 6 and L(36n2; 280n2; 9n2) of
diameter 6 are integral, too.

(2) Let G = L(144; 105; 16) of diameter 6 and K1; s • G = K1;676 • L(144; 105; 16) of
diameter 6 be integral, then trees r ∗ G = T (676; 144; 105; 16) of diameter 8 and
T (676n2; 144n2; 105n2; 16n2) of diameter 8 are integral, too.

4. Further discussion

In this paper, we have mainly investigated integral trees K1; s • S(m + q; t; r) of
diameter 4 and K1; s • L(r; m; t) of diameter 6. We tried to get some general results
from Corollaries 8, 10, 11, and 17 by computer search, but failed. Thus, we raise the
following question.

Question 1. Are there general results of integral trees K1; s • S(m+ q; t; r) of diameter
4 and K1; s • L(r; m; t) of diameter 6 from the listing data of Corollaries 8, 10, 11, and
17?

Results of integral trees of diameter 4 are given in [1,3–6,8–12,14–16,18–21]. Yuan
in [15] gave a suNcient condition for graphs to be the integral trees S(r; mi) of diameter
4 and constructed many new classes of such integral trees based on [19]. The authors
of [6,12] further give a useful suNcient and necessary condition for graphs to be such
integral trees of diameter 4, respectively. For the integral trees S(r; mi) = S(a1 + a2 +
· · ·+as;m1; m2; : : : ; ms), when s=2, we can 0nd such integral trees in [1,3–5,8,10,11,14–
16,18–21]. In particular, Ren got all parameter solutions of S(a1 +a2;m1; m2) being an
integral tree in [8]. When s= 3; 4; 5, we found such integral trees in [6,12,15]. Hence,
we have

Question 2. Are there any integral trees S(a1 +a2 + · · ·+as;m1; m2; : : : ; ms) of diameter
4 with arbitrarily large s?
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For integral trees K1; a0 • S(a1 + a2 + · · · + as;m1; m2; : : : ; ms) of diameter 4, some
results can be found in [3,4,6,9,11,15,18,19] and the present paper. When s¿ 3, we
have not found such integral trees. Hence, we have

Question 3. Are there any integral trees K1; a0 • S(a1 + a2 + · · ·+ as;m1; m2; : : : ; ms) of
diameter 4 with arbitrarily large s?

For the tree S(r; mi) = S(a1 + a2 + · · ·+ as;m1; m2; : : : ; ms) of diameter 4 and K1; a1 •
S(a2 +a3 + · · ·+as;m2; m3; : : : ; ms) of diameter 4, when r is odd, there are such integral
trees in [15]. When r(¿ 2) is even and s = 1; 2, such integral trees can be found in
[3–5,15]. Thus, we have

Question 4. Are there any integral trees S(r; mi) = S(a1 + a2 + · · ·+ as;m1; m2; : : : ; ms)
of diameter 4 or K1; a1 •S(a2 +a3 + · · ·+as;m2; m3; : : : ; ms) of diameter 4 while r(¿ 2)
is even and s¿ 3?

For the tree S(r; mi) = S(a1 + a2 + · · · + as;m1; m2; : : : ; ms) of diameter 4 or K1; a0 •
S(a1 +a2 + · · ·+as;m1; m2; : : : ; ms) of diameter 4, such integral trees can be constructed
in [3,4,6,15] and the present paper if the number of nonsquares among m1; m2; : : : ; ms
is at most 2. Thus, we have

Question 5. Let S(r; mi) = S(a1 + a2 + · · · + as;m1; m2; : : : ; ms) or K1; a0 • S(a1 + a2 +
· · ·+ as;m1; m2; : : : ; ms) be an integral tree of diameter 4. Is the number of nonsquares
among m1; m2; : : : ; ms limited?

In [9] and the present paper, we successfully constructed integral trees by identifying
the centers of two trees. Let G • H denote the tree obtained by identifying the center
z of the tree G and the center u of the tree H . Hence, we have

Question 6. Are there any integral trees S(p; q) • L(r; m; t); S(p; q) • T (s; r; m; t);
L(p;m; t) • S(r; mi); L(r; m; t) • T (s; p; q; l) and so on?

We know that integral trees of diameters 1, 2, 3, 4, 5, 6 and 8 can be constructed
in [1,3–6,8–22] and the present paper. Hence, we suggest the following question.

Question 7. Are there any integral trees of diameter 7?
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