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Abstract. In this paper, we first establish a useful inequality on the minimum real roots of
the adjoint polynomials of the complete graphs. By using it, we investigate the chromatic
uniqueness of certain complete multipartite graphs. An unsolved problem (i.e., Problem
11), posed by Koh and Teo in Graph and Combin. 6(1990) 259-285, is completely solved
by giving it a positive answer. Moreover, many existing results on the chromatic uniqueness
of complete multipartite graphs are generalized.
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1. Introduction

All graphs considered here are finite and simple. For notations and terminology
not defined here, we refer to [I]. We denote by K, and K(nj,na,...,n;) the
complete graph with n vertices and the complete t-partite graph with ¢ partite
sets A;’s of the vertex set such that |4, =n;, i =1,2,...,t,,respectively. Denote
by 7,, the unique complete t-partite graph such that n=> n;and |n; —n;| <1
forall i,j=1,2,. =l

Let G be a graph w1th p(G) vertices and ¢(G) edges. The set of vertices of G
is denoted by V(G) and the set of edges of G is denoted by E(G). By G we
denote the complement of G. Let P(G, A) be the chromatic polynomial of G. A
partition {A4;,4,,...,4,} of V(G), where r is a positive integer, is called an
r-independent partition of a graph G if every 4; is a nonempty independent set of
G. By m,(G) we denote the number of r-independent partitions of G. Then the
chromatic polynomial of G can be written as P(G, Zm,( )(4),, where

A),=A2-1) (1—=2)...(A—r+1) for all » > 1 (see [14]). Two graphs G and
H are chromatically equivalent, denoted by G ~ H, if P(G, 1) = P(H, ). A graph
G is chromatically unique (or simply y-unique) if H = G whenever H ~ G.
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For a graph G with p vertices, the polynomial

P

£(G,x) = Z m;(G)x'

i=1

is called the &-polynomial of G (see [2]). This is related to the o-polynomial intro-
duced by Korfhage in 1978 [8], where his definition of a o-polynomial is equivalent
to what we denote by ¢(G,x)/x*9), where y(G) is the chromatic number of G. In
[10], Liu introduced the adjoint polynomial of a graph G as follows:

h(G,x) = mi(G)x'".

i=1

A graph G is said to be adjointly unique if for any graph H with
h(H,x) =h(G,x) we have H = G. It is obvious that for any graph G,
h(G,x) = &(G,x) and G is adjointly unique if and only if G is y-unique. More
details on 4(G,x) can be found in [12,13].

The adjoint polynomial of a graph G (or the é-polynomial of G) has many
interesting properties, which are useful for studying the chromatic uniqueness of
graphs. One can find various classes of y-unique graphs by using the properties of
the adjoint polynomials (see [11-14]). Let $(G) denote the minimum real root
of the adjoint polynomial of G (or the &-polynomial of G). In this paper, we first
show that S(K,,) < B(K,—1). With this result, we study the chromatic uniqueness of
the complete multipartite graphs.

Some results on the chromatic uniqueness of the complete ¢-partite graphs can
be found in [3-7]. In [3-6], Chao, Chia, Koh and Teo, and others obtained the
following y-unique graphs: K(pi,p2,...,p) for |p;—p;j <1 and p; >2,
i=1,2,...,t; Kn,n,n+k) forn>2and 0 <k <3; K(n—k,n,n) forn>k+2
and 0 <k <3;K(n—k,n,n+k)forn>5and 0 <k <2.

In [9], Li and Liu showed that K(1,p»,...,p,) is g-unique if and only if
max{p;|i =2,3,...,t} <2.

In [7], Giudici and Lopez proved that the complete ¢-partite graph
Klp—-1,p,...,p,p+1)is y-unique if t > 2 and p > 3.

In [5], Koh and Teo proposed the following problem, which is Problem 11
there.

Problem A. For each t > 2, is the graph K(ni,na, ... n,) y-unique if |n; — n;| <2
Sforalli,j=1,2,...,t and if min{ny,na,...,n} is sufficiently large?

The main purpose of this paper is to investigate the chromatic uniqueness of
K(ny,ny,...,n,). We solve Problem A by giving it a positive answer, and more-
over, we generalize the results in [3-7].

For convenience, sometimes we denote /#(G,x) by #(G) and G= H by G =H.
For a vertex v of a graph G, we denote by Ng(v) the set of vertices of G which are
adjacent to v. For two graphs G and H, G U H denotes the disjoint union of G and
H, and mH denotes the union of m disjoint copies of H. Let S be a set of some



The Chromaticity of Certain Complete Multipartite Graphs 425

edges of G. We denote by G — S the graph obtained by deleting all edges in S from
G. By a non-null (sub-)graph G, we mean that G has at least one vertex. Finally,
denote by 9f(x) the degree of a polynomial f(x).

2. Some Properties of the Adjoint Polynomials

Lemma 2.1 (Liu [12,13]). Let G be a graph with k connected components
G],Gz,...,Gk. Then

In particular,

t

E(K(ny,na,n3, ... ng),x) = h(K(ny,ma,n3,...,0,),x) = Hh(Km,x).

i=1

Lemma 2.2 (Brenti [2]). Let S(n, k) denote the Stirling numbers of the second kind.
Then

() A(Ky,x) = E(Nayx) = 32 S(n, i)x', where Ny = K,

(i) S(n,1) =1 and S(n,2) = 2" — 1.

From Lemmas 2.1 and 2.2, we have

Lemma 2.3. Let G=K(ny,na,...,n;) and E(G, ) = > m,(G)x". Then

(i) for 1 <r<t—1,m(G) =0,
(ii) m,(G) = 1 and m,,(G) = Zznﬁl 1

For an edge e = vjv; of a graph G, the graph G « e is defined as follows: the
vertex set of Gxe is (V(G)\{vi,v2})U{v}, and the edge set of Gxe is
{¢|¢' € E(G),¢ is not incident with v; or vy} U {uv|u € Ng(v1) N Ng(v2)}. For
example, let C4 be the 4-cycle with an edge uv and H = C4 + e be the graph
obtained from C4 by adding a chord e. Then Cy xuv = K; UP;, and H xe = P,
where P, is a path with n vertices.

Lemma 2.4 (Liu, [11]). Let G be a graph with an edge e. Then
h(G)=h(G—e)+h(Gxe),
where G — e is the graph obtained by deleting the edge e from G.

Lemma 2.5 (Zhao et al., [15]). Let fi(x), f2(x) and f3(x) be polynomials in x with
real positive coefficients such that f3(x) = fa(x) + fi(x). If 9f3(x) — 9fi(x) =
1(mod2) and both fi(x) and f>(x) have real roots, then
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(1) f3(x) has at least one real root;
(ii) let f; denote the minimum real root of fi(x) for i = 1,2,3, then B, < f, implies
tha[ ﬁ3 < ﬁ2.

Theorem 2.1. Let G be a connected graph with q(G) > 1. Then we have

(1) the adjoint polynomial of G has at least one nonzero real root;
(i) if H be a non-null proper subgraph of G, then

B(G) < B(H).
In particular,

B(Kn) < B(Kn-1)

forn >2.

Proof. Let G be a connected graph. We proceed by induction on ¢(G). Suppose
q(G) = 1. Then G = K;. Obviously, (i) holds. Now f(K>) = —1 and B(K;) and
B(2K,) = 0, (ii) also holds.

Let ¢(G) > 2 and suppose that both (i) and (ii) of the theorem hold for any
connected graph whose number of edges is less than ¢(G).

Since ¢(G) > 2, we see that G has at least 3 vertices. Since H is a proper
subgraph of G, we can choose an edge e such that either H is a proper subgraph of
G —e or H=G—e. In any case, we can select an edge e in G such that H is
subgraph of G — e. From Lemma 2.4, we have

h(G) = h(G—e) +h(Gxe).

Noticing that G — e has ¢(G) — 1 edges and p(G) vertices, and G * e has p(G) — 1
vertices and at most ¢(G)—2 edges, we have J(h(G)) = O(h(G—e)) =
O(h(G * e)) + 1. One can see that each component of G * e is a proper subgraph of
some component of G — e. So, by the induction hypothesis, the adjoint polyno-
mials of both G — e and G * e have nonzero real roots. So, from (i) of Lemma 2.5,
we see that the adjoint polynomial of G has at least one nonzero real root, and
thus (i) of the theorem is proved. Next, we proceed to prove (ii). It is easily seen
that G x e is a proper subgraph of G — e, and furthermore G * e is non-null since G
has at least 3 vertices. By the induction hypothesis, we have (G — e) < (G * e).
Since A(h(G)) = I(h(G —e)) = d(h(G*e)) + 1, by (ii) of Lemma 2.5 we have
B(G) < B(G — e). Remembering that H is a non-null subgraph of G — e, by the
induction hypothesis we have (G — e) < (H), and therefore, f(G) < B(H).

Since K,_; is a non-null proper subgraph of K, for n > 2, it follows immedi-
ately that

ﬂ(Kn) < ﬁ(anl)

for n > 2. The proof is complete. O
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3. Chromatic Uniqueness of Complete #-Partite Graphs

A class of graphs is said to be chromatically normal, if for any two graphs H and G
in the class we have that H ~ G implies H = G.

Theorem 3.1. For a given positive integer t, ', = {K(ny,na,...,n,)|n; is a positive
integer for i =1,2,...,t} is a class of chromatically normal graphs.

Proof. Let H,Ge X', and H~G, and let H=K(mj,my,...,m;) and
G =K(ny,na,...,n;). Then we have ¢(H,x) = £(G,x). From Lemma 2.1 we see
that

t t
[T #(Kno) = [] 1K), (1)

i=1 i=1
By (1) it is sufficient to show that U;_,K,, = U!_,K,,. We proceed by induction

on ¢t. When ¢ = 1, the theorem holds obviously.

Suppose ¢t =k > 2 and the theorem holds when ¢ < k£ — 1. Without loss of
generality, we assume that m; = max{m,my, ... ,m;} and ny = max{n,na, ..., n}.
By Theorem 2.1 we know that the minimum root of the left-hand side of equality

(1) is B(K,y, ), whereas the minimum root of the right-hand side of equality (1) is
p(Ky, ). Thus, we have

ﬁ(Kml) = ﬁ(K”])7

which implies that n; =m;, again by Theorem 2.1. Eliminating a factor
(K, ,x)(= h(K,,,x)) from both sides of equality (1), we have

ﬁh( Hh K, ,x)

i=2 =2

By the induction hypothesis, we have

UK = UK,
=2 =2
Hence,
t t
UKy, & UK,,
i=1 i=1
as required. O

Lemma 3.1 (Bondy et al. [1]). Let G = K(ny,na,...,n,) with n vertices. Then

(1) ¢(G) < q(T1), where equality holds if and only if G = T,
(1) ¢(Ty) — q(G) > max{m;|i = 1,...,t} —min{m;li=1,...,¢} — 1.
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t
Lemma 3.2. Let G=K(ny,na,...,n) with > nj=nandn; <ny <...<n,. Sup-

i=1
pose that H is a graph such that H ~G. Then there is a graph
F=K(m,my,...,m)withm <my...<m,and there is a set S of some s edges in
F such that H=F — S and s = q(F) — q(G) > 0, where F and G satisfy the fol-

! t n_\/(t_l)zl<i</'<f(n[_n/)z
lowing: (i) > my=>.m=n, (ii) m > — , and (iii)
i=1 i=1

1 JD )’
ni Z 7 .

Proof. Since H ~ G=K(ny,ny,...,n;), we have that ¢(H,x)=¢(G,x)=
&(K(nyyna,...,n),x). From (i) of Lemma 2.3 we may assume that
E(H,x) =Y m,(H)x", and from (ii) of Lemma 2.3 we have m;(H) = m;(G) = 1,
r>
which meaﬁg that VV(H) has a unique #-independent partition, say {41,4z,...,4;}.
Hence H is a t-partite graph. Let |4;| = m;, i = 1,2,...,¢ Then there is a set S of
some s edges in F=K(my,my,...,m) such that
H=K(my,my,...,m)—8S=F—S. Remembering that E(H,x) = &(G,x), we
t
have that p(H) = p(G) and ¢g(H) = q(G). Clearly, Zm, = Zn, =n and s=

q(F) — ¢(G) > 0, which implies that (i) is true. Now We prove (11) and (iii). Let z
denote the minimum value of my such that s>0. Then
q(K(z,my,ms,...,m;)) —q(G) >0 for some (mp,ms,...,m;). Denote by
K(z,y,...,») the complete t-partitet graphs with z<y, <y;...<y) and
i —y| <1lfori,j=2,3,...,t, where > ), = n —z. Note that

i=2

q(K(mla"'vmiflami + 17mi+17"'7mj717mj - lvmj+la-~~mt))

—q(K(my, ... mi_y,my,migy, .. mj_y,my,my,...mg)) =m; —m; — 1

for i<j and m;<m;. So, it is mnot difficult to see that
q(K(z,y2,...,3)) > q(K(z,ma,m3,...,m;)) for all  (my,ms,...,m;) and
qK(z,y2y o)) <z(n—2z)+ % (%)2 Therefore, one can see that if s > 0,
then z must satisfy the following inequality

n—2)+ (t— 1)2(z -2) (?__12)2"1((;) o

By solving the above inequality, we have

—/(t = 1)((t = 1)n2 —2¢(G)t) . <n+\/t—l ((t—1)n —2q(G)t)'
t - t
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t
Since ¢(G) = Y. mmn; and n =) n;, we have

1<i<j<t i=1

(t=Dn* =29(G)t =Y (n—n)”.

1<i<j<t
So, (ii) holds.
Taking z = n;, we have
(t—1)(t—=2) ;n—2z\2
- - > — > 0.
2(n —2) + 25— (=) —4(G) = 4(G) — 4(G) = 0
S
Hence, n; > — , which implies that (iii) holds. O

Lemma 3.3. Let G =K (ny,ny,...,n,) and let H = G — S for a set S of some s edges
of G. If min{n;li = 1,2,...,t} > s+ 1, then

s <m(H) —m(G) <2°— 1.

Proof. Obviously, a (¢ + 1)-independent partition of V(G) is a (¢ + 1)-indepen-
dent partition of V' (H); however, the other way round is not always true. So, for a
(¢ + 1)-independent partition 4 of V(H), we have the following two cases.

Case 1. % is a (t+ 1)-independent partition of V(G).
Case 2. % is not a (¢ + 1)-independent partition of V' (G).

Clearly, the number of (¢ + 1)-independent partitions % of V' (H) in Case 1 is
mq;1(G). Next we consider the (# + 1)-independent partitions % of V(H) in Case 2.
Let {4,,4,,...,4,} be the unique f-independent partition of V(G), and let
b(H) = {By|By is an independent set in A and there are at least two 4;’s such that
ByNA; # ¢}. Since min{n;[i = 1,2,...,n,} > s+ 1, we know that 4; — By # ¢ for
any i =1,2,...,t, where 4; — By denotes the subset of 4; obtained by deleting all
elements of By from A4; (otherwise, for some i we would have 4; C By, and so
|Bo| > |4i| > s + 1, which would imply that By is not an independent set in A since
By intersects at least two 4;’s and we only deleted s edges from G to get H). So, we
see that By € b(H) if and only if {By,4, — Bo,...,4, — By} is a (¢ + 1)-indepen-
dent partition of V' (H) of Case 2. Thus, we have m;(H) = m;11(G) + |b(H)|, i.e.,
mep1 (H) — me1(G) = |b(H)|. Note that each By of b(H) is composed of pairs of
end-vertices of some edges in S. We thus have

s < |B(H)| = myry (H) — mis1 (G) < 2° — 1.

The proof is complete. O

Remark. To reach the lower and upper bounds of the above inequality, the general
situations for the deleted s edges are complicated. Some of the situations are as
follows: the lower bound s can be reached by the situations that the deleted s edges
are independent, i.e., no two of them share a common end-vertex, whereas the upper
bound 2° — 1 can be reached by the situations that all the deleted s edges share a
common end-vertex and the other end-vertices belong to a same A4; for some i.
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After the above preparations, we turn to solving Problem A on the chromatic
uniqueness of complete multipartite graphs. The following results give positive
answers to Problem A.

t
Theorem 3.2. Let G = K(ny,na,...,n;) andn =" n;. If n > tq(T,,) — tq(G) +t+
\/(t = 1) i (i — n,), then G is y-unique.

Proof. Let H be a graph such that H ~ G, then m,|(H) = m,4+1(G). On the other
htand, frcgm Lemma 3.2 there is a graph F = K(mj,ma,...,m,) such that

> m; =Y n; = n with the property that there is a set S of some s edges in F such

i=1 i=1
that H=F —S and s =¢(F) — q(G) > 0. Let o = m;(H) — my1(F). Clearly,
«>0. From the condition of the theorem n > tq(T,,) — tq(G)+

t+ \/(t -1 Zl§i<j§t(ni — nj)z, we have

n— \/(f —1) Engjgt(”i - ”1)2

t

> q(Th) —q(G) + 1.

So, from Lemmas 3.1 and 3.2 it follows that min{m;i=1,2,...,¢} > q(T,,)
—q(G)+1>s+1 and min{n;|i=1,2,...,t} > q(T,,) —q(G)+ 1 >s+ 1. From
Lemma 3.3, we have s <a<2°—1. Since mu1(G) —my1(H) = m1(G)—
me1(F) — o, from Lemma 2.3 we have

‘ t
i (0) = (1) = 32 =30
=1 i=1

Without loss of generality, we assume that min{n;|i = 1,2,...,¢t} = n;. Then we
have

t t
mi1(G) — my (H) = 2" <Z 2 - szinl> —o=2""'M —q,
i=1 i=1

where M = Xt: m=m — Xt: 2mi=n
We conslijller the folllj)lwing cases.

Case 1. M < 0.
So, my1(G) —my1(H) < 0, which contradicts that m, | (G) = m,(H).

Case 2. M > 0.

Subcase 2.1. min{m;|i =1,2,...,t} > ny.

Then, from the definition of M we see that M > 1. Remembering that
n >q(T,) —q(G)+1>s+1and s <a<2°—1, we have
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m1(G) —m (H) =2"" M — 0 >25— (25— 1) > 1,

which also contradicts that my|(G) = my (H).
Subcase 2.2. min{m;|li =1,2,...,t} < ny.

Let O0=n —min{m;li=1,2,...,t}. So, 0=max{n —mli=12,,.. 1t}
Then from the definition of M it is not difficult to see that 2°M > 1. Smce Z m, =
Zn, and min{n;i = 1,2,...,¢t} =n; as well as min{mi =1,2,...,t} < . it

follows that max{m,|l =1,2,...,t} >n + 1. Hence, max{m;li = 1,2,...,t}—
min{m;|i =1,2,...,t} > 0+ 1. We have

n 2q<Tn,t)_q( G) +1=(q(T) = q(F)) + (¢(F) —¢(G)) + 1.

t
Since Y m; = n, from Lemma 3.1 we know
i=1

q(Tos) — q(F) > max{m|i = 1,2,... ¢t} —min{m;li = 1,2,...,t} =1 > 0.

Remembering that ¢(F) — ¢(G) =s, we have ny > 0+s+1,ie.,s<n —60—1.
Recalling that 2°M > 1, we obtain

mt+](G) — mt+](H) = 2”1707129M — o
> 2n1—6—1 _ (23 o 1)
> 2;117071 _ (2n17971 _ 1)
> 1,

which again contradicts that m;(G) = my 1 (H).

The above contradictions show that we must have M =0. Then,
m1(G) —my ) (H) = —o. Recalling that m,1 (G) = m,(H), we have o = 0. Since
0<s<a=0, we get s =0, which implies that H = K(m;,ma,...,m,). Since
H ~ G, from Theorem 3.1 we have H = G.

The proof of the theorem is now complete. O

From Theorem 3.2, we can get the following corollary, which gives an explicit
lower bound for the value min{n;|i = 1,2,...,¢}.

Corollary 3.1. Let G =K(ny,na,...,n). Ifmin{ni=12,....6} > S & "f

1<i<j<t
\/(t_l) Zl<i<j'<z<n[_n/)2
— + 1, then G is y-unique.

! t
Proof. Let n =3 n; = > x;. Then, we can show that

i=1 i=1
t—l
> <

1<i<j<t

where equality holds if and only if # divides n and x| = x, = ... =x, = 1. By the
definition of 7, and the above inequality, we know that
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Since

from the conditi

n > tmin{nii =1,2,....t} > tq(T,,) —tq(G) + t + \/

E nin;

1<i<j<t

(t=1)> i nf — 2Z1gi<jgz nin;

2t

B (n: — ny)’
n Z 2%

1<i<j<t

on of the corollary, we get

H. Zhao et al.

(=1 Y (i —n)

1<i<j<t

From Theorem 3.2, we know that G is y-unique. The proof is complete. O

If one wants to have restrictions on the value |n; — n;|, one can get the fol-
lowing result, which also answers more than Problem A asked.

Theorem 3.3. If |n; —n;| <k and min{n\,ny,... ,n:} 2%4——&(2[71)1{—1—1, then

K(ny,na, ... n) is y-unique.
Proof. Assume that min{n,n;,...,n;} = n’. Without loss of generality, we may
write
to t
/ / / / / /
{ni,my,...om}={n,... W+ 1,... 00 +1,....... 00 +k,...;0n" +k}.
So, we have
2

k

Z tt;(i — j)’
2t '

0<i<j<k

(ni —n;)”
Z 2%

1<i<j<t

Since >t =t, we get

i=0

0<i<j<k

. N2
tilj<l —]) < k2 k21‘2

2t -

Lit;
odicier 2 2t(k+1)

>
4"
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ie.,
12k?
Z (}’li - I’lj)2 < T
1<i<j<t
From the condition of the theorem and Corollary 3.1, the result holds. O

By G=K(axm,bx (m+1),cx (m+2)) we denote the complete multipar-
b

a c

tite  graph  K(m,m,....mm+1m+1,....m+1,m—+2,....m+2). Let
n=ma+ (m+ 1)b+ (m+2)c and t = a+ b+ c. It is verified directly that

q(T,.) — q(G) = min{a,c} <¢/2

and

\/(t —1) Zl§i<j§t(ni — n_,-)2 _ \/(t— 1)(ab + 4ac + bc) <ViTi

t t o

Since #/2 > v/t — 1 for ¢t > 2, from Theorem 3.2 we have

Corollary 3.2. If m>a+b+c+1 and t=a+b+c>2, then K(a xm,bx
(m+1),¢ x (m+2)) is y-unique.

4. Concluding Remark

We first obtain a useful inequality (Theorem 2.1) on the minimum real roots of the
adjoint polynomials of complete graphs. By using it, we obtain Theorem 3.1.
After some preparations (Lemmas 3.1 through 3.3), we use Theorem 3.1 to deduce
our main result (Theorem 3.2). Theorems 3.2 and 3.3 together with Corollaries 3.1
and 3.2 solve Problem A and answer more than Problem A asked. Moreover,
many existing results on y-unique graphs in [3-7] are extended as special cases of
our results.

Acknowledgments. The authors are greatly indebted to the referees for their valuable
comments and suggestions, which are very helpful for improving the presentation of the
paper. The work is supported by National Science Foundation of China and the Science
Foundation of the State Education Ministry of China.

References

1. Bondy, J. A., Murty U. S. R.: Graph Theory with Applications, Amsterdam: North—
Holland 1976

2. Brenti, F.: Expansions of chromatic polynomial and log-concavity. Trans. Am. Math.
Soc. 332, 729-756 (1992)



434

10.

1.
12.

13.

14.

15.

H. Zhao et al.

. Chao, C. Y., Novacky, J. G. A.: On maximally saturated graph, Discrete Math. 41,

139-143 (1984)

. Chia, G. L., Goh, B. H., Koh, K. M.: The chromaticity of some families of complete

tripartite graphs. SCIENTIA, Series A: Math. Sci. 2, 27-37 (1988)

. Koh, K. M., Teo, K. L.: The search for chromatically unique graphs. Graphs Comb. 6,

259-285 (1990)

. Koh, K. M., Teo, K. L.: The search for chromatically unique graphs (II). Discrete

Math. 172, 59-78 (1997)

. Giudici, R. E., Lopez, M. A.: Chromatic uniqueness of sK,,, Report N0.85-03, de mat.y

ciencia de la Comp. Simon Bolivar, 1985

. Korfhage, R.: o-polynomials and graph coloring. J. Comb. Theory, er. B 24, 137-153

(1978)

. Li, N. Z., Liu, R.: The chromaticity of the complete ¢-partite graph K(1,pa,...,p;).

J. Xinjiang Univ., Nat. Sci. 7, 95-96 (1990)

Liu, R.: A new method to finding chromatic polynomials of graphs and its application.
Chin. Sci. Bull. 32, 1508-1509 (1987)

Liu, R.: Adjoint polynomials of graphs, J. Qinghai Normal University, pp. 1-9 (1990)
Liu, R., Zhao, L.: A new method for proving chromatic uniqueness of graphs. Discrete
Math. 171, 169-177 (1997)

Liu, R.: Adjoint polynomials and chromatically unique graphs. Discrete Math. 172,
85-92 (1997)

Read, R. C., Tutte, W. T.: Chromatic polynomials. In: Selected Topics in Graph
Theory III, pp.15-42 L. W. Beineke and R. J. Wilson New York: Academic Press 1988
Zhao, H., Huo, B., Liu, R.: Chromaticity of the complements of paths. J. Math. Study
33, 345-353 (2000)

Received: June 4, 2002
Final version received: January 9, 2004



