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Abstract

We obtain a tableau definition of the skew Schubert polynomials named by Lascoux, which
are defined as flagged double skew Schur functions. These polynomials are in fact Schubert
polynomials in two sets of variables indexed by 321-avoiding permutations. From the divided
difference definition of the skew Schubert polynomials, we construct a lattice path interpretation
based on the Chen–Li–Louck pairing lemma. The lattice path explanation immediately leads to
the determinantal definition and the tableau definition of the skew Schubert polynomials. For
the case of a single variable set, the skew Schubert polynomials reduce to flagged skew Schur
functions as studied by Wachs and by Billey, Jockusch, and Stanley. We also present a lattice
path interpretation for the isobaric divided difference operators, and derive an expression of the
flagged Schur function in terms of isobaric operators acting on a monomial. Moreover, we find
lattice path interpretations for the Giambelli identity and the Lascoux–Pragacz identity for super-
Schur functions. For the super-Lascoux–Pragacz identity, the lattice path construction is related to
the code of the partition which determines the directions of the lines parallel to they-axis in the
lattice.
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1. Introduction

The flagged double skew Schur functions (on variable setsX and Y) are called
skew Schubert polynomials by Lascoux [15]; these are Schubert polynomials indexed by
321-avoiding permutations. WhenY is the empty set, the skew Schubert polynomials
reduce to the flagged skew Schur functions, which have been studied by Wachs [28]
and Billey et al. [3]. Note that the skew Schubert polynomials referred to in this paper
are different from the objects studied by Lenart and Sottile [22] under the same name.
There are many interesting specializations of skew Schubert polynomials, for example,
the binomial determinants [9], the q-binomial determinants [4], and the double Schur
functions [5].

This paper contains the following results.

1. A lattice path interpretation of skew Schubert polynomials based on the divided
difference definition due to Lascoux and Sch¨utzenberger [14, 18, 19]. The
determinantal formula of Lascoux [15] directly follows from the lattice path structure
by the Gessel–Viennot [9, 10] argument.

2. A tableau interpretation of skew Schubert polynomials based on the lattice path
construction.

3. We introduce the notion of flagged skew Schubert polynomials from which we can
get the flagged double Schur functions.

4. A lattice path interpretation of isobaric divided differences leading to an expression
for the flagged Schur functions in terms of isobaric divided differences. This implies
that any flagged Schur function is a key polynomial, which is also a consequence
of a result of Reiner and Shimozono on the necessary and sufficient condition for a
flagged skew Schur function to be a key polynomial [25].

5. Lattice path interpretations of the Giambelli identity and the Lascoux–Pragacz
identity for super-Schur functions. The code of a partition is used to determine the
directions of the lines parallel to they-axis in the lattice.

The lattice path method of Gessel and Viennot [9, 10] has been extensively used in the
study of Schur functions and their generalizations; see Brenti [4], Goulden and Greene
[11], Hamel and Goulden [12, 13], and Stembridge [27]. A lattice path approach to the
flagged double Schur functions is presented in [5]. We note that the weight of a path given
in this paper for the skew Schubert polynomials is not the same as that in [5] for the flagged
double Schur functions.

The Giambelli identity and the Lascoux–Pragacz identity for the super-Schur functions
have been studied by various methods; see Eˇgecioǧlu and Remmel [6], Lascoux and
Pragacz [17], and Macdonald [24]. The super-Schur functions are related to the skew
Schubert polynomial in the sense that they have similar tableau representations when the
variable setsX andY of the super-Schur function are indexed by integers from−∞ to
∞. Besides the existing lattice path treatments of the super-Schur functions, it seems
desirable to give lattice path proofs of the Giambelli identity and the Lascoux–Pragacz
identity based on the new tableau representation of super-Schur functions [11, 24] rather
than the supersymmetric tableau representation given by Berele and Regev [1].
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Fig. 2.1. Merging two ribbons.

2. Notation and definitions

By a partition λ we mean a weakly decreasing sequenceλ1 ≥ λ2 ≥ · · · ≥ λm > 0,
wherem is thelengthof λ, denoted by�(λ). TheFerrers diagramof λ is an array of cells
with �(λ) left justified rows andλi cells in rowi . We denote theconjugateof λ by λ′. Its
Ferrers diagram is the transpose of the Ferrers diagram ofλ. Given two partitionsλ andµ,
we sayµ ⊆ λ if µi ≤ λi for all i . If µ ⊆ λ, we can define askew partitionλ/µ whose
Ferrers diagram can be obtained from the Ferrers diagram ofλ by peeling off the Ferrers
diagram ofµ from the upper left corner.

Recall that the number of diagonal cells in the Ferrers diagram is called therank
of λ. Suppose that the rank ofλ is r . Then we writeα = (α1, α2, . . . , αr ) and β =
(β1, β2, . . . , βr ) whereαi = λi − i , β j = λ′

j − j . Clearly,α andβ provide a unique
encoding of the partitionλ, which is called theFrobenius notation, denoted by(α | β).
A partition of rank 1 is called ahook. One sees that the Frobenius notation provides the
hook decomposition along the main diagonal of the Ferrers diagram.

Lascoux and Pragacz [17] introduced theribbon decompositionof a partition λ.
A ribbon is a skew partition whose Ferrers diagram is connected and does not contain
any 2× 2 squares; therim of a diagram is the maximal outer ribbon of the diagram.
Given a partitionλ with rank r , we can decompose its Ferrers diagram into successive
rimsΘ1,Θ2, . . . ,Θr starting from the outside, whereΘ1 is the rim ofλ, Θ2 is the rim of
the partition obtained fromλ by removing the rim, etc. It is clear thatΘ1,Θ2, . . . ,Θr also
provide a unique encoding ofλ, which is called the ribbon decomposition ofλ. Note that
each of the ribbonsΘ1,Θ2, . . . ,Θr contains a diagonal cell.

The diagonal cells of the diagram break each ribbonΘi into three parts: the diagonal
cell (i , i ), the partΘ+

i above(i , i ), and the partΘ−
i below(i , i ). We denote byΘ+

i & Θ−
j

the ribbon which is obtained by adding the diagonal cell toΘ+
i andΘ−

j , and then merging
the two ribbons by overlapping the diagonal cell, as shown inFig. 2.1.

Letλ/µ be a skew partition. Asemistandard Young tableauon X of shapeλ/µ is meant
to be strictly increasing in each column and weakly increasing in each row. For each cell
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(i , j ) of a tableauT in row i and columnj , we denote the element in the cell byTi, j . Let
Ci, j = j − i denote thecontentof the cell(i , j ).

We now come to the definition of flagged Schur functions. Letλ be a partition of length
m, andb a flag sequence of the same length such that 0< b1 ≤ b2 ≤ · · · ≤ bm = n.
Theflagged Schur functionwith shapeλ and flagb is defined as

sλ(b) = det(hλi −i+ j (bi ))m×m, (2.1)

wherehλi −i+ j (bi ) = hλi −i+ j (x1, x2, . . . , xbi ). Whenbi = n for all i , sλ(b) is the usual
Schur functionsλ(x1, x2, . . . , xn) with n variables.

The double form of the flagged Schur function can be used to define the skew Schubert
polynomials. LetJ, I be two weakly increasing codes of lengthn with I ≤ J (that is,Ik ≤
Jk for all k); thenλ = (Jn− I1, Jn− I2, . . . , Jn− In) andµ = (Jn−J1, Jn−J2, . . . , Jn−Jn)

are two partitions andλ ≥ µ. Let 〈J/I 〉 = (0I1, J1 − I1, 0I2−I1, J2 − I2, 0I3−I2, J3 −
I3, . . . , Jn − In). Then by Theorem 2.1 in [3], 〈J/I 〉 is the code of some 321-avoiding
permutation by adding sufficient zeros at the end and conversely the code of every
321-avoiding permutation must have the form〈J/I 〉. It is clear that all Grassmannian
permutations are 321-avoiding, so the skew Schubert polynomials are generalizations of
double Schur functions. Suppose that the permutation with code〈J/I 〉 can be taken as
a permutation in a symmetric group of orderm throughout this paper, then we denote
the skew Schubert polynomial with respect to code〈J/I 〉 by G〈J/I 〉(Xm, Ym), where
Xm = {x1, . . . , xm}, Ym = {y1, . . . , ym}. With the technique of divided differences,
Lascoux gave a determinantal definition of the skew Schubert polynomial:

Proposition 2.1. Let J, I be two weakly increasing codes of length n corresponding to
some Grassmannian permutations with I≤ J , andλ = (Jn − I1, Jn − I2, . . . , Jn − In),
µ = (Jn − J1, Jn − J2, . . . , Jn − Jn) be two partitions withλ ≥ µ; then

G〈J/I 〉(Xm, Ym) = det(hλi −µ j −i+ j (Xφ̂i
− Ŷφi +λi −µ j −i+ j −1))n×n, (2.2)

whereφ̂i = Ii +i = Jn−λi +i (i = 1, 2, . . . , n) is the flag of the321-avoiding permutation
with code〈J/I 〉.

Next we introduce the determinantal formulas for the super-Schur functions. For
convenience, we suppose the supersymmetric functions are over two countably infinite sets
of variablesX andY, whereX = {. . . , x−1, x0, x1, . . .} andY = {. . . , y−1, y0, y1, . . .}.
Macdonald [24] and Goulden and Greene [11] give a tableau description of super-Schur
functionsSλ(X, Y), which can be generalized to super-Schur functions of skew shape.
Given a skew partitionλ/µ, we have

Sλ/µ(X, Y) =
∑

T

∏
(i, j )∈T

(xTi, j − yTi, j +Ci, j ) (2.3)

summed over all semistandard tableauxT filled with {. . . ,−1, 0, 1, . . .} of shapeλ/µ.
There are four important determinantal formulas for super-Schur functions. Besides the
Jacobi–Trudi formula and its dual form for the super-Schur functions, known as the
Nägelsbach–Kostka formula, there are two others:
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• The Giambelli formula

Sλ(X, Y) = det(S(αi |β j )(X, Y))r×r . (2.4)

• The Lascoux–Pragacz formula

Sλ(X, Y) = det(SΘ+
i &Θ−

j
(X, Y))r×r , (2.5)

where λ is a partition of lengthm and rankr , and S(αi |β j ) and SΘ+
i &Θ−

j
are given

by Eq. (2.3) and are called the hook Schur function and the ribbon Schur function
respectively [17].

3. Skew Schubert polynomials

In this section we obtain a tableau representation of the skew Schubert polynomials.
This is achieved via a lattice path interpretation of the skew Schubert polynomials based
on the divided difference definition. Once the lattice path construction is accomplished, the
tableau definition and the determinantal formula both become immediate consequences.
Moreover one also obtains a new tableau interpretation of the double Schur functions
different from that given in [5]. All the lattice paths of this paper are in the two dimensional
integer latticeZ × Z, namely, the set of lattice points{(i , j ) | i , j ∈ Z}.

A lattice path is defined in the usual sense, which is a directed path in the integer
lattice. In practice, we will assign a direction to each line in the integer lattice so that
at each point the choices of next move are specified. In other words we will work with
the directed integer lattice (or a region of the integer lattice in which each line has a
direction). By a weight function we mean an assignment of weights to each (directed)
edge in the lattice. Then the weight of a lattice path is taken as the product of the weights
of the steps. For anm-tuple of paths(P1, P2, . . . , Pm), the weight is defined to be the
product of all the weights. Given two tuples of lattice pointsA = (A1, A2, . . . , Am) and
B = (B1, B2, . . . , Bm), let GF(A, B) represent the generating function (sum of weights)
of all tuples(P1, P2, . . . , Pm) of non-intersecting lattice paths, where eachPi is from Ai

to Bi . Such anm-tuple of non-intersecting lattice paths is called a lattice path configuration
from A to B.

To give a divided difference definition of the skew Schubert polynomials, we recall the
definition of Schubert polynomials. Letw be a permutation on{1, 2, . . . , n}, and let the
lengthof w be the inversion number ofw, denoted by�(w). Let σi be the permutation
which interchangesi andi + 1, and letw0 be the longest permutation[n, n − 1, . . . , 1].
Given a functiong(x1, x2, . . . , xn), the simple transposition operatorσi is defined by

σi g(x1, x2, . . . , xn) = g(x1, . . . , xi+1, xi , . . . , xn),

and thedivided differenceoperator∂i is defined by

∂i g = g − σi g

xi − xi+1
.
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Let

∆(Xn, Yn) =
∏

i+ j ≤n

(xi − yj ),

whereXn = {x1, x2, . . . , xn} andYn = {y1, y2, . . . , yn}. Then the Schubert polynomials
in two sets of variablesXn andYn can be recursively defined as follows [14, 18, 19, 23]:

Sw(Xn, Yn) =
{
∆(Xn, Yn), if w = w0,

∂i Swσi (Xn, Yn), if �(wσi ) = �(w) + 1.

It can be shown that the Schubert polynomials are well defined, because∂i satisfies the
braid relations:

∂i ∂i+1∂i = ∂i+1∂i ∂i+1, ∂i ∂ j = ∂ j ∂i ,

where|i − j | > 1. For any permutationw = σi1σi2 · · · σik , wherek = �(w), we can define
the operator∂w as follows:

∂w(g) = ∂ik∂ik−1 · · · ∂i1(g), (3.6)

where the operators are applied from right to left.
We now define the weight functionWd which will be used throughout this section. For

a vertical step from(i , j ) to (i , j + 1) satisfyingi + j ≥ 0, the weight isxi − yi+ j ; for a
vertical step from(i , j ) to (i , j + 1) satisfyingi + j < 0, the weight isxi − y−(i+ j ); for a
horizontal step from(i , j ) to (i + 1, j ), the weight is 1.

We need the pairing lemma of Chen, Li, and Louck [5]:

Lemma 3.1 ([5, Lemma 4.4]).Given the above weight function Wd, and two sequences of
lattice points A= (A1, A2, . . . , An) and B= (B1, B2, . . . , Bn) with Ai = (q, ki ) for each
i and B1 = (q, p) and Bi = (q + 1, ti ) for i ≥ 2, suppose that p> k1 > k2 > · · · > kn,
p − 1 > t2 > · · · > tn, and ki ≤ ti for i ≥ 2. If all the lattice paths lie below the line
y = −x or above the line y= −x, then we have

∂q(GF(A, B)) = GF(A, B′), (3.7)

where B′ is obtained from B by replacing B1 with (q + 1, p − 1).

The pairing lemma can be utilized to give a lattice path construction for the skew
Schubert polynomials based on the divided difference definition. Suppose thatwJ is the
Grassmannian permutation with codeJ andwI is the Grassmannian permutation with code
I . Let

∂ I = (∂I1 · · · ∂1)(∂I2+1 · · · ∂2) · · · (∂In+n−1 · · · ∂n),

then ∂ I (SwI ) = 1, andG〈J/I 〉 = ∂ I SwJ if 〈J/I 〉 is the skew code of some 321-
avoiding permutation. Chen, Li, and Louck [5] showed thatSwJ equalsGF(A, B) for
Ak = (k,−k + 1) andBk = (n, Jn−k+1 − k + 1) with respect to the weight functionWd.
Now we construct an involutionϕ on lattice points such thatϕ((i , j )) = (n+1−i ,−n− j );
correspondingly, a step from(i , j ) to (i , j + 1) is mapped to a step fromϕ(i , j + 1) to
ϕ(i , j ), and a step from(i , j ) to (i + 1, j ) is mapped to a step fromϕ(i + 1, j ) to ϕ(i , j ).
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If i + j ≥ 0, then we have

Wd((i , j ) → (i , j + 1)) = xi − yi+ j , (3.8)

Wd(ϕ((i , j + 1)) → ϕ((i , j ))) = xn+1−i − yi+ j . (3.9)

If i + j < 0, then we have

Wd((i , j ) → (i , j + 1)) = xi − y−(i+ j ), (3.10)

Wd(ϕ((i , j + 1)) → ϕ((i , j ))) = xn+1−i − y−(i+ j ). (3.11)

Let A′
k = ϕ(Bn+1−k) = (1,−(k + Jk)) and B′

k = ϕ(An+1−k) = (k,−k). Note that
the weights of horizontal steps are always 1. Ifw is a Grassmannian permutation in the
symmetric group of orderm satisfying

w1 < · · · < wr > wr+1 < · · · < wm,

then Sw is symmetric in {x1, . . . , xr } (see [23]). Therefore, for a Grassmannian
permutationwJ , the Schubert polynomialSwJ (Xm, Ym) is symmetric in{x1, . . . , xn}.
In this case,SwJ (Xm, Ym) becomes the double Schur function. By the lattice path
construction in [5], one has

SwJ (Xm, Ym) = GF(A, B). (3.12)

Since the involutionϕ only changes the indices of thex’s in the evaluation of weights, from
(3.12) it follows thatSwJ (Xm, Ym) = GF(A′, B′). By successively applyingLemma 3.1,
we obtain

Theorem 3.2. Let A′
k = (1,−(k+ Jk)) and B′′

k = (k+ Ik,−k− Ik). Let Wd be the weight
function defined above. Then we have

G〈J/I 〉(Xm, Ym) = GF(A′, B′′). (3.13)

Applying the Gessel–Viennot argument, we can recover the determinantal formula (2.2).
Next we describe a bijection between then-tuples of non-intersecting paths fromA′

to B′′ and the flagged skew tableauxT of shapeλ/µ with flag φ̂. The i th row Ti of T
corresponds to thei th pathPi , and the entries ofTi are just the indices of thex’s of the
weights of vertical steps from left to right. It is clear that the entries ofTi are smaller
than or equal tôφi , whenT is taken as a skew tableau withn − �(λ) empty rows. Also, the
column strictness ofT follows from the non-intersecting property of the paths. Conversely,
given a flagged tableauT such that the entries ofTi are smaller than or equal tôφi , we can
construct ann-tuple (P1, P2, . . . , Pn) of non-intersecting paths by reversing the above
procedure.Fig. 3.1is an illustration for the skew Schubert polynomialG〈[2,3,4] [1,1,2]〉.

Thus we are led to a tableau representation of skew Schubert polynomials:

Theorem 3.3. Let σ be a321-avoiding permutation and〈J/I 〉 its code. Letλk = Jn −
Ik, µk = Jn − Jk. Then we have

G〈J/I 〉(Xm, Ym) =
∑

T

∏
(i, j )∈T

(xTi, j − yJn+1−(Ti, j +Ci, j )), (3.14)



1188 W.Y.C. Chen et al. / European Journal of Combinatorics 25 (2003) 1181–1196

Fig. 3.1. Lattice paths and skew tableaux.

where T ranges over all semistandard tableaux of shapeλ/µ on{1, 2, . . . , m} in which all
the entries in row i are bounded bŷφi , and(i , j ) ∈ T means that(i , j ) is a cell of T .

Proof. We have constructed a bijection betweenn-tuples(P1, . . . , Pn) of non-intersecting
paths fromA′ to B′′ and flagged skew tableauxT of shapeλ/µ with flag φ̂. Notice that the
kth vertical step ofPi corresponds to the(k + µi )th cell of thei th row of T . Recall that
the element of the(i , j ) cell of T is Ti, j . The corresponding vertical step is from the point
(Ti, j ,−(i + Ii ) − (λi − j + 1)) to the point(Ti, j ,−(i + Ii ) − (λi − j + 1) + 1) since
B′′

i = (i + Ii ,−i − Ii ). From the flag conditions

φ̂i = Ii + i , Ti, j ≤ φ̂i , and j ≤ λi ,

it follows that

Ti, j − (i + Ii ) − (λi − j + 1) < 0,

which implies that all the lattice paths in consideration lie below the diagonal liney = −x.
Therefore, the weight of this vertical step is

xTi, j − y−(Ti, j −(i+Ii )−(λi − j +1)) = xTi, j − y(Ii +i )+(λi − j +1)−Ti, j . (3.15)

SinceIi + i = Jn − λi + i and Ci, j = j − i , we may rewrite (3.15) as

xTi, j − yJn+1−(Ti, j +Ci, j ).

Applying the above bijection, we may translate the lattice path interpretation into the
desired tableau definition.�

The flagged double Schur function has been defined in [5]:

sλ,b(X, Y) = det(hλi −i+ j (Xbi − Ybi +λi −i ))t×t , (3.16)

where the flagb = (b1, b2, . . . , bt ) is a sequence of weakly increasing positive integers.
Chen, Li, and Louck obtained a lattice path interpretation and a tableau representation
of the flagged double Schur functions. As a consequence, one may get a lattice path
interpretation and a tableau definition of the double Schubert polynomials indexed
by vexillary permutations. Similarly, the skew Schubert polynomials also have a flag
condition, where the flag is related to the code of the indexing permutation. From
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Eq. (3.13), we can naturally define theflagged skew Schubert polynomials

G
φ
〈J/I 〉(Xm, Ym) = det(hλi −µ j −i+ j ({xφ j , . . . , xφ̂i

}
− Ŷφi −φ j +λi −µ j −i+ j ))n×n, (3.17)

whereφ is a weakly increasing flag sequence such thatφi ≤ φ̂i . Now using the lattice
pointsA′′

i = (φi ,−(Ji + i )) instead ofA′
i = (1,−(Ji + i )), we obtain

G
φ
〈J/I 〉(Xm, Ym) = GF(A′′, B′′). (3.18)

Here is a more general result:

Theorem 3.4. Let σ be a321-avoiding permutation and〈J/I 〉 its code. Letλk = Jn −
Ik, µk = Jn − Jk. Then

G
φ
〈J/I 〉(Xm, Ym) =

∑
T

∏
(i, j )∈T

(xTi, j − yJn+1−(Ti, j +Ci, j )), (3.19)

where T ranges over all semistandard tableaux of shapeλ/µ such thatφi ≤ Ti, j ≤ φ̂i ,
andφ̂i = Ii + i .

In the above setting, the flagged double Schur functionssλ,b(X, Y) can be viewed as
specialized flagged skew Schubert polynomials. SettingI = 0 and lettingφ be a flag such
thatφi = n + 1 − bn+1−i (for k > t , settingbk = n), we obtain

η(G
φ
〈J/I 〉(Xm, Ym)) = sλ,b(X, Y), (3.20)

whereη(xi ) = xn+1−i for eachi .

Remark. The flagged skew Schubert polynomials have a tableau representation similar
to the flagged skew supersymmetric Schur functions studied by Hamel and Goulden [13].
They coincide with each other for the special case of double Schur functions.

4. Isobaric divided differences and flagged Schur functions

Like the divided difference, we can define the isobaric divided differenceπi . Let
g(x1, . . . , xn) be a function overn variables, and we define

πi g = xi g − σi (xi g)

xi − xi+1
.

Lascoux has studied the action of isobaric divided differences on crystal graphs [16]. In
this section, we present a lattice interpretation of the isobaric divided difference. From the
definition ofπm, we have

πm(xn
m) =

n∑
k=0

xk
mxn−k

m+1. (4.21)

As usual, a lattice path in the plane consists of steps from(i , j ) to (i , j +1) or from(i , j )
to (i + 1, j ). The weight functionWs assigned to the lattice paths is defined as follows: for
a vertical step from(i , j ) to (i , j + 1), the weight isxi ; for a horizontal step from(i , j )
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to (i + 1, j ), the weight is 1. The relation (4.21) can be easily rewritten in terms of lattice
paths:

Lemma 4.1. Let P be the vertical segment from(m, k) to (m, p) and p > k. Then the
action ofπm on the weight of P yields the sum of weights of all lattice paths from(m, k)

to (m + 1, p).

An immediate consequence of the above lemma is the following result similar to
Lemma 3.1:

Lemma 4.2. Given the above weight function Ws, let A = (A1, A2, . . . , An) be a
sequence of lattice points with Ai = (m, ki ), and let B = (B1, B2, . . . , Bn) be a
sequence of lattice points with B1 = (m, p) and Bi = (m + 1, ti ) for i ≥ 2. Suppose
p > k1 > · · · > kn, p > t2 > · · · > tn, and ki ≤ ti for i ≥ 2. Then we have

πmGF(A, B) = GF(A, B′),

where B′ is obtained from B by replacing B1 with (m + 1, p).

Proof. From the definition of the isobaric divided difference we see that

πm(g1g2) = g1πm(g2), if g1(xm, xm+1) = g1(xm+1, xm). (4.22)

We proceed to show that what really matters forπm is the segment of the path fromA1 to
B1 that is above the horizontal liney = t2+1. The polynomialGF(A, B) can be computed
by the following procedure. Supposet2+1 > k1. Then every path fromA2 to B2 must have
the segment from(m + 1, k1 − 1) to (m + 1, t2), andGF(A, B) must contain the factor
(xmxm+1)

t2−k1+1. If k2 > t3, then no path fromA3 to B3 intersects any path fromA2 to B2.
By Lemma 4.1, the weights of non-intersecting paths from(A3, . . . , An) to (B3, . . . , Bn)

contribute a symmetric factor inxm and xm+1 to GF(A, B). If k2 < t3 + 1, we may
repeat the above procedure to get a factor(xmxm+1)

t3−k2+1. Throughout this process, we
get factors symmetric inxm andxm+1. For the caset2 + 1 ≤ k1, we first take out the factor
GF(A1, B1); then the remaining factors ofGF(A, B) are symmetric inxm andxm+1. In
either case, we may applyLemma 4.1to reach the desired conclusion.�

Notice that the isobaric divided differencesπi also satisfy the braid relations,

πi πi+1πi = πi+1πi πi+1, πi π j = π j πi ,

where|i − j | > 1. Thus it is reasonable to define the operatorπw for w = σi1 · · · σik , and
k = �(w)

πw(g) = πikπik−1 · · · πi1(g), (4.23)

where the operators are applied from right to left.

Theorem 4.3. Every flagged Schur function sλ(b) is equal toπw(xλ1
1 xλ2

2 · · · xλm
m ), where

w = (σmσm+1 · · · σbm−1)(σm−1σm · · ·σbm−1−1) · · · (σ1σ2 · · · σb1−1).

Proof. Notice thatbi ≥ i for all i ; otherwisesλ(b) = 0. We begin with them vertical
lines P1, P2, . . . , Pm, where Pi is from Ai = (1,−i + 1) to Bi = (i , λi − i + 1).
Given the weight functionWs as above; then byLemma 4.2πm(GF(A, B)) equals the



W.Y.C. Chen et al. / European Journal of Combinatorics 25 (2003) 1181–1196 1191

generating functionGF(A, B′), where B′ is obtained fromB by replacingBm with
(m+1, λm−m+1). We continue with the action ofπm+1 onGF(A, B′). For any sequence
of paths(P1, P2, . . . , Pm) from A to B′, what really matters forπm+1 is the area between
the linesx = m + 1 andx = m + 2. It is clear that the points of(P1, P2, . . . , Pm) on
the linesx = m + 1 andx = m + 2 satisfy the conditions inLemma 4.2. By iteration,
it follows that(πbm−1 · · · πm+1πm)GF(A, B) = GF(A, B′′), whereB′′ is obtained from
B by replacingBm with (bm, λm − m + 1). Iterating the same argument, we obtain that
πw(GF(A, B)) is equal toGF(A, B(m)), whereB(m) is obtained fromB by replacingBi

with (bi , λi − i + 1) for eachi . Now applying the Gessel–Viennot argument, we reach the
desired conclusion. �

The key polynomials are investigated in [21]; they are called standard bases by Lascoux
and Sch¨utzenberger. Unlike the Schubert polynomials that are indexed by permutations,
the key polynomials are indexed by compositions, which are integer sequencesγ with
non-negative components. There is also a recursive definition for the key polynomials:

κγ =
{

xγ1
1 xγ2

2 . . . , if γ is weakly decreasing,
πi κσi γ , if γi < γi+1.

Now we easily have the following result from the definition of key polynomials, which
is a consequence of the characterization theorem in [25]. For this special case, our argument
does not involve the flagged Littlewood–Richardson rule.

Corollary 4.4. Every flagged Schur function sλ(b) is some key polynomialκγ ; moreover
λ is a weakly decreasing reordering ofγ .

Theorem 4.3is analogous to the following theorem of Wachs.

Theorem 4.5 ([28, Theorem 2.4]).Every flagged Schur function sλ(b) is equal to
∂w(xa1

1 xa2
2 · · · xam

m ), where ai = λi + bi − i and w = (σmσm+1 · · · σbm−1)(σm−1σm · · ·
σbm−1−1) · · · (σ1σ2 · · · σb1−1).

Comparing the above two theorems, we see that they have similar forms. But it is
not generally true thatπw = ∂w(xb1−1

1 xb2−2
2 · · · xbm−m

m ). It is worth mentioning the
special case ofπw0 = ∂w0(x

n−1
1 xn−2

2 · · · x1
n−1), wherew0 is the maximal permutation

[n, n − 1, . . . , 1]; see [20].

5. The super-Giambelli identity

The Giambelli identity for classical Schur functionssλ(X) first appeared in [8]. The
first bijective proof was due to Eˇgecioǧlu and Remmel [6], and the lattice path approach
was first given by Stembridge [27] and later by Fulmek and Krattenthaler in a different
form [7]. In this section, we present a lattice path construction for the super-Giambelli
identity (2.4).

Again, we consider paths in the integer lattice consisting of unit horizontal and vertical
steps. By a horizontal step we still mean a directed edge from(i , j ) to (i + 1, j ), but
for a vertical step we mean a directed edge from(i , j ) to (i , j − 1) if i ≤ 0; or
from (i , j ) to (i , j + 1) if i > 0. With the Frobenius notation(α | β) of partition λ
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Fig. 5.1. Non-intersecting lattice paths and tableau.

defined above, we choose the origin verticesAi = (−αi ,∞) and the destination vertices
Bi = (βi + 1,∞), i = 1, 2, . . . , r , wherer is the rank ofλ. The weight functionWg is
defined as follows: the weight of a vertical step is always 1; for a horizontal step from(i , j )
to (i + 1, j ) strictly to the left of they-axis, it is given weightx j − yj −i ; for a horizontal
step strictly to the right of they-axis, it is given weightxi+ j − yj . Since every path from
Ai to Bj is determined by a hook with shape(αi | β j ), we have

Lemma 5.1. Given the above weight function Wg, we have

GF(Ai , Bj ) = S(αi |β j )(X, Y). (5.24)

The bijection between tableaux and tuples of non-intersecting paths fromA to B is
illustrated inFig. 5.1. Applying the Gessel–Viennot method, we obtain

Sλ(X, Y) = GF(A, B) = det(S(αi |β j )(X, Y))r×r . (5.25)

This completes the proof of the super-Giambelli identity (2.4). �

6. The super-Lascoux–Pragacz identity

The ribbon identity for the classical Schur functions is due to Lascoux and Pragacz [17].
Ueno [29] gave a lattice path interpretation of this identity based on the work of Stembridge
[27]. The goal of this section is to extend Ueno’s technique to super-Schur functions.
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Fig. 6.1. The code of the partition (5, 4, 3, 2).

Suppose that the rank of a partitionλ is r , and (Θ1,Θ2, . . . ,Θr ) is the ribbon
decomposition of the Ferrers diagram ofλ. Let ui be the number of cells inΘ+

i , and
vi the number of cells inΘ−

i . For our lattice path construction, we choose the origin points
Ai = (−ui ,−∞), and the destination pointsBi = (vi + 1,−∞). The use of points
at infinity can be reformulated in finite terms. However, we find it convenient to use the
points at infinity. For the shape (5, 4, 3, 2) inFig. 6.2, we haveA1 = (−4,−∞), A2 =
(−2,−∞), A3 = (0,−∞), B1 = (4,−∞), B2 = (3,−∞), B3 = (1,−∞).

We continue with our lattice path construction. There are three types of moves in the
lattice: right move, up move, and down move. However, for each line parallel to they-axis,
there is a given direction, either up or down, which specifies the direction of possible moves
along this line. So, at any point one may either make a right move, or a vertical move along
the specified direction. Given the pointsAi and Bi , we only need to consider the region
between the linex = −u1 and the linex = v1 + 1. From the example inFig. 6.2, we see
that there arev1 + u1 + 2 lines parallel to they-axis, which is the number of cells in the
rim of λ plus one. Equivalently, each cell in the outer rim ofλ corresponds to a subdivision
of the region formed by two adjacent lines parallel to they-axis.

To determine the directions of the lines parallel to they-axis, we need the notion of
thecodeof a partitionλ (see Stanley [26]), which is also called thepartition sequenceby
Bessenrodt [2]. Along the borderline of a partitionλ, i.e. the edges of the rim ofλ, we put a
1 to the right of each vertical edge and a 0 underneath each horizontal edge. Then we read
off the 0–1 labels from top to bottom, and the resulting binary sequence is the code ofλ.
For example, the code of (5, 4, 3, 2) inFig. 6.1 is (1, 0, 1, 0, 1, 0, 1, 0, 0).

For each line parallel to they-axis, if it is the j th line between the linex = −u1 and
the linex = v1 + 1, then it is given the up or down direction depending on whether thej th
component of the code is 1 or 0. An example is given inFig. 6.2.

We proceed to define the weight functionWr of a lattice path. First, all the vertical steps
(either up move or down move) are given weight 1. For a horizontal step from(i , j ) to
(i + 1, j ), we will give a labelling as shown inFig. 6.2. Note that a bar over a number
means the minus sign. The following is the procedure for giving the labelling of the lattice
according to the shape.

Suppose that the step from(i , j ) to (i + 1, j ) is labelledk; then the step from(i , j + 1)

to (i +1, j +1) is labelledk+1 and the step from(i , j −1) to (i +1, j −1) is labelledk−1.
Therefore, we only need to label the horizontal steps on thex-axis. The first step is to label
the leftmost horizontal step as−r + 1, then label the next step (on the right) according to
the following rule: if the right vertical line next to the current step has the down direction,
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Fig. 6.2. Labelling and ribbon decomposition of the shape (5, 4, 3, 2);ī = −i .

Fig. 6.3. Non-intersecting lattice paths and the tableau for the ribbon identity.

then use the same label for the next step; otherwise, we increase the labelling by 1. This
labelling rule ensures that the step from (0, 0) to (1, 0) is labelled 0, as shown inFig. 6.2.
We assign the weightxk − yk−i to the step from(i , j ) to (i , j + 1), wherek is the labelling
of this step.

Theorem 6.1. Let Ai = (−ui ,−∞) and Bi = (vi + 1,−∞), and let the weight function
Wr be defined as above. Then

GF(Ai , Bj ) = SΘ+
i &Θ−

j
(X, Y). (6.26)
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The following lemma describes theD-compatible conditions introduced by Stembridge
[27]. Once we have chosen the directions of the edges as given before, then we have

Lemma 6.2. The vertical steps are given up directions on the line x= −ui and down
directions on the line x= vi + 1 for all i = 1, 2, . . . , r . Thus every tuple of lattice paths
from (A1, . . . , Ar ) to (Bπ1, . . . , Bπr ) must intersect unlessπ is the identity permutation.

Given anr -tuple of non-intersecting paths from(A1, . . . , Ar ) to (B1, . . . , Br ), we may
construct a tableau of shapeλ. Given a lattice path fromAi to Bi , we may fill thei th
rim from top to bottom with the labellings of the steps on the lattice path. Thus the non-
intersecting property ensures that we get a tableau of shapeλ. Conversely, we can construct
the lattice path from the tableau. This bijection turns out to be weight preserving. From
Lemma 6.2, Theorem 6.1, and the Gessel–Viennot argument, it follows that

GF(A, B) = det(SΘ+
i &Θ−

j
(X, Y))r×r . (6.27)

Hence we get the super-Lascoux–Pragacz identity (2.5). �
Fig. 6.3shows such a bijection between a tableau and the sequence of non-intersecting

paths.
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[6] Ö.N. Eǧecioǧlu, J.B. Remmel, A combinatorial proof of the Giambelli identity for Schur functions, Adv.

Math. 70 (1988) 59–86.
[7] M. Fulmek, C. Krattenthaler, Lattice path proofs for determinantal formulas for symplectic and orthogonal

characters, J. Combin. Theory Ser. A 77 (1997) 3–50.
[8] G.Z. Giambelli, Alcune propriet´a dele funzioni simmetriche caratteristiche, Atti Torino. 38 (1903) 823–844.
[9] I. Gessel, G. Viennot, Binomial determinants, paths, and hook length formulae, Adv. Math. 58 (1985)

300–321.
[10] I. Gessel, G. Viennot, Determinants, paths, and plane partitions (preprint).
[11] I. Goulden, C. Greene, A new tableau representation for supersymmetric Schur function, J. Algebra 170

(1994) 687–703.
[12] A.M. Hamel, I.P. Goulden, Planar decompositions of tableaux and Schur function determinants, European

J. Combin. 16 (1995) 461–477.



1196 W.Y.C. Chen et al. / European Journal of Combinatorics 25 (2003) 1181–1196

[13] A.M. Hamel, I.P. Goulden, Lattice paths and a Sergeev–Pragacz formula for skew supersymmetric functions,
Canad. J. Math. 47 (2) (1995) 364–382.

[14] A. Lascoux, Classes de Chern des vari´etés de drapeaux, Comptes Rendus 295 (1982) 393–398.
[15] A. Lascoux, Lecture Notes on Schubert Polynomials, Tianjin, 2002.
[16] A. Lascoux, Double crystal graphs, in: A. Joseph, A. Melnikov, R. Rentschler (Eds.), Studies in Memory of

Issai Schur, Progress in Mathematics, vol. 210, Birkhauser, 2003, pp. 95–114.
[17] A. Lascoux, P. Pragacz, Ribbon Schur functions, European J. Combin. 9 (1988) 561–574.
[18] A. Lascoux, M.P. Sch¨utzenberger, Polynˆomes de Schubert, C. R. Acad. Sci. Paris 294 (1982) 447–450.
[19] A. Lascoux, M.P. Sch¨utzenberger, Symmetry and flag manifolds, in: F. Gherardelli (Ed.), Invariant Theory,

Lecture Notes in Mathematics, vol. 996, Springer-Verlag, Berlin, Heidelberg, New York, 1983, pp. 118–144.
[20] A. Lascoux, M.P. Sch¨utzenberger, Structure de Hopf de l’anneau de cohomologie et de l’anneau de

Grothendieck d’une varit de drapeaux, C.R. Acad. Sci. Paris 295 (1982) 629–633.
[21] A. Lascoux, M.P. Sch¨utzenberger, Keys and standard bases, in: D. Stanton (Ed.), Tableaux and Invariant

Theory, IMA Volumes in Mathematics and its Applications, vol. 19, 1990, pp. 125–144.
[22] C. Lenart, F. Sottile, Skew Schubert polynomials, Proc. Amer. Math. Soc. 131 (2003) 3319–3328.
[23] I.G. Macdonald, Notes on Schubert Polynomials, Publications du LACIM 6, Universit´e du Québec, à
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