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Abstract

We obtain a tableau definition of the skew Schubert polynomials named by Lascoux, which
are defined as flagged double skew Schur functions. These polynomials are in fact Schubert
polynomials in two sets of variables indexed by 321-avoiding permutations. From the divided
difference definition of the skew Schubert polynomials, we construct a lattice path interpretation
based on the Chen—Li-Louck pairing lemma. The lattice path explanation immediately leads to
the determinantal definition and the tableau definition of the skew Schubert polynomials. For
the case of a single variable set, the skew Schubert polynomials reduce to flagged skew Schur
functions as studied by Wachs and by Billey, Jockusch, and Stanley. We also present a lattice
path interpretation for the isobaric divided difference operators, and derive an expression of the
flagged Schur function in terms of isobaric operators acting on a monomial. Moreover, we find
lattice path interpretations for the Giambelli identity and the Lascoux—Pragacz identity for super-
Schur functions. For the super-Lascoux—Pragacz identity, the lattice path construction is related to
the code of the partition which determines the directions of the lines parallel tg-&éxés in the
lattice.
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1. Introduction

The flagged double skew Schur functions (on variable sétand Y) are called
skew Schubert polynomials by Lascouwd]; these are Schubert polynomials indexed by
321-avoiding permutations. When is the empty set, the skew Schubert polynomials
reduce to the flagged skew Schur functions, which have been studied by VWgths [
and Billey et al. B]. Note that the skew Schubert polynomials referred to in this paper
are different from the objects studied by Lenart and Sotfid inder the same name.
There are many interesting specializations of skew Schubert polynomials, for example,
the binomial determinants], the g-binomial determinants4], and the double Schur
functions p].

This paper contains the following results.

1. A lattice path interpretation of skew Schubert polynomials based on the divided
difference definition due to Lascoux and Sttenberger 14, 18, 19]. The
determinantal formula of Lascoug§ directly follows from the lattice path structure
by the Gessel-Vienno®[ 10] argument.

2. A tableau interpretation of skew Schubert polynomials based on the lattice path
construction.

3. We introduce the notion of flagged skew Schubert polynomials from which we can
get the flagged double Schur functions.

4. A lattice path interpretation of isobaric divided differences leading to an expression
for the flagged Schur functions in terms of isobaric divided differences. This implies
that any flagged Schur function is a key polynomial, which is also a consequence
of a result of Reiner and Shimozono on the necessary and sufficient condition for a
flagged skew Schur function to be a key polynomaa]|[

5. Lattice path interpretations of the Giambelli identity and the Lascoux—Pragacz
identity for super-Schur functions. The code of a partition is used to determine the
directions of the lines parallel to theaxis in the lattice.

The lattice path method of Gessel and Viengtl[0] has been extensively used in the
study of Schur functions and their generalizations; see BrdhtiJoulden and Greene
[11], Hamel and Goulden1?, 13], and StembridgeZ7]. A lattice path approach to the
flagged double Schur functions is presentedbin\\Ve note that the weight of a path given
in this paper for the skew Schubert polynomials is not the same as ttthfam fhe flagged
double Schur functions.

The Giambelli identity and the Lascoux—Pragacz identity for the super-Schur functions
have been studied by various methods; sgedikflu and Remmel§], Lascoux and
Pragacz 17], and MacdonaldZ4]. The super-Schur functions are related to the skew
Schubert polynomial in the sense that they have similar tableau representations when the
variable setsX andY of the super-Schur function are indexed by integers frem to
0o. Besides the existing lattice path treatments of the super-Schur functions, it seems
desirable to give lattice path proofs of the Giambelli identity and the Lascoux—Pragacz
identity based on the new tableau representation of super-Schur fundir2<] rather
than the supersymmetric tableau representation given by Berele and Rggev [
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Fig. 2.1. Merging two ribbons.

2. Notation and definitions

By a partition A we mean a weakly decreasing sequehge> A2 > --- > Am > O,
wherem is thelengthof A, denoted by (1). TheFerrers diagramof A is an array of cells
with £()) left justified rows and.; cells in rowi. We denote theonjugateof A by /. Its
Ferrers diagram is the transpose of the Ferrers diagram@iven two partitions. andgu,
we sayu C Aif uj < Aj foralli. If u € A, we can define akew partition, /. whose
Ferrers diagram can be obtained from the Ferrers diagranbgfpeeling off the Ferrers
diagram ofu from the upper left corner.

Recall that the number of diagonal cells in the Ferrers diagram is calledathe
of A. Suppose that the rank afis r. Then we writee = (a1,02,...,0) @andg =
(B1, B2, ..., Br) whereaj = Aj —i,Bj = A — j. Clearly,a and g provide a unique
encoding of the partition, which is called tI%eFrobenius notationdenoted by« | B).

A partition of rank 1 is called &ook One sees that the Frobenius notation provides the
hook decomposition along the main diagonal of the Ferrers diagram.

Lascoux and Pragaczl{] introduced theribbon decompositiorof a partition .

A ribbon is a skew partition whose Ferrers diagram is connected and does not contain
any 2 x 2 squares; theim of a diagram is the maximal outer ribbon of the diagram.
Given a partitionr. with rankr, we can decompose its Ferrers diagram into successive
rms 01, 62, ..., 6 starting from the outside, whei® is the rim of, &, is the rim of

the partition obtained fror by removing the rim, etc. Itis clear th&l, O», ..., 6 also
provide a unique encoding af which is called the ribbon decompositionafNote that

each of the ribbon®;, @2, ..., 6; contains a diagonal cell.

The diagonal cells of the diagram break each riblsprinto three parts: the diagonal
cell (i, 1), the part@ﬁr above(i, i), and the par;” below(i, i). We denote b)@fr & @j‘
the ribbon which is obtained by adding the diagonal ceﬂ)ﬁb and Qj‘, and then merging
the two ribbons by overlapping the diagonal cell, as showFign 2.1

LetA/u be a skew partition. Aemistandard Young tablean X of shape./u is meant
to be strictly increasing in each column and weakly increasing in each row. For each cell
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(i, j) of a tableadl in rowi and columnj, we denote the element in the cell By;. Let
Ci,j = j — i denote theontentof the cell(, j).

We now come to the definition of flagged Schur functions.JLbe a partition of length
m, andb a flag sequence of the same length suchthatB; < by, < --- < by = n.
Theflagged Schur functiowith shapex and flagb is defined as

su(b) = detthy; —i+j (01)mxm, (2.1)
wherehy, _j+j () = hy, it (X1, X2, ..., Xp,). Whenby = nfor all i, s;(b) is the usual
Schur functiors; (X1, X2, . . ., Xn) with n variables.

The double form of the flagged Schur function can be used to define the skew Schubert
polynomials. LetJ, | be two weakly increasing codes of lengtlith | < J (thatis,lx <
J¢ forallk); thend = (In—11, In—l2,..., Ih—Ip)andu = (Ih—J1, Ih—J2, ..., Ih—Jn)
are two partitions and > . Let (J/1) = (0'1, J; — 11,0271 Jp — 15,0312 J3 —
I3,...,Jdn — In). Then by Theorem 2.1 in3], (J/I) is the code of some 321-avoiding
permutation by adding sufficient zeros at the end and conversely the code of every
321-avoiding permutation must have the fofdyl). It is clear that all Grassmannian
permutations are 321-avoiding, so the skew Schubert polynomials are generalizations of
double Schur functions. Suppose that the permutation with ¢dde) can be taken as
a permutation in a symmetric group of ordarthroughout this paper, then we denote
the skew Schubert polynomial with respect to cad¢l) by Gi/1)(Xm, Ym), where
Xm = {X1,....Xm}, Ym = {V1...., ym}. With the technique of divided differences,
Lascoux gave a determinantal definition of the skew Schubert polynomial:

Proposition 2.1. Let J, | be two weakly increasing codes of length n corresponding to

some Grassmannian permutations withklJ, andA = (Jy — 1, Jh — l2, ..., In — In),
w= -5, — ..., — Jn) be two partitions withh. > u; then
G(J/I )(Xm, Ym) = de'f(hki —pj—i+j (Xa - Y{;ﬁi A =i _1))n><n, (2-2)

whered; = l;+i = Jo—ri+i (i = 1,2, ..., n)is the flag of th&21-avoiding permutation
with code(J/I).

Next we introduce the determinantal formulas for the super-Schur functions. For
convenience, we suppose the supersymmetric functions are over two countably infinite sets
of variablesX andY, whereX = {...,x_1, X0, X1,...} andY = {...,y_1, Yo, Y1, .. .}.
Macdonald 4] and Goulden and Green&]] give a tableau description of super-Schur
functions S, (X, Y), which can be generalized to super-Schur functions of skew shape.
Given a skew partition /i, we have

S)\//L(Xv Y) = Z 1_[ (XTi,j - YTi,j+Ci,j) (2.3)
T (i,))eT
summed over all semistandard tablealuxilled with {..., —1,0,1,...} of shaper/u.

There are four important determinantal formulas for super-Schur functions. Besides the
Jacobi-Trudi formula and its dual form for the super-Schur functions, known as the
Nagelsbach—Kostka formula, there are two others:
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e The Giambelli formula

SUX,Y) = det(Sy ;) (X, Y)rxr- (2.4)
e The Lascoux—Pragacz formula

S(X,Y) = del(S@i+&9;(X,Y))rxr, (2.5)

where A is a partition of lengthm and rankr, and Sy 5;,) and Sg+g o- are given
i i

by Eq. .9 and are called the hook Schur function and the ribbon Schur function
respectively 17].

3. Skew Schubert polynomials

In this section we obtain a tableau representation of the skew Schubert polynomials.
This is achieved via a lattice path interpretation of the skew Schubert polynomials based
on the divided difference definition. Once the lattice path construction is accomplished, the
tableau definition and the determinantal formula both become immediate consequences.
Moreover one also obtains a new tableau interpretation of the double Schur functions
different from that given inj]. All the lattice paths of this paper are in the two dimensional
integer latticeZ x Z, namely, the set of lattice pointé, j) | i, j € Z}.

A lattice path is defined in the usual sense, which is a directed path in the integer
lattice. In practice, we will assign a direction to each line in the integer lattice so that
at each point the choices of next move are specified. In other words we will work with
the directed integer lattice (or a region of the integer lattice in which each line has a
direction). By a weight function we mean an assignment of weights to each (directed)
edge in the lattice. Then the weight of a lattice path is taken as the product of the weights
of the steps. For am-tuple of paths(Py, P2, ..., Pn), the weight is defined to be the
product of all the weights. Given two tuples of lattice poidts= (A1, A2, ..., An) and
B = (B1, By, ..., Bm), let GF(A, B) represent the generating function (sum of weights)
of all tuples(Py, P», ..., Pyn) of non-intersecting lattice paths, where edghis from A;
to Bi. Such arm-tuple of non-intersecting lattice paths is called a lattice path configuration
from A to B.

To give a divided difference definition of the skew Schubert polynomials, we recall the
definition of Schubert polynomials. Let be a permutation ofil, 2, ..., n}, and let the
lengthof w be the inversion number ab, denoted by¢(w). Let o; be the permutation
which interchanges andi + 1, and letwg be the longest permutatign,n — 1, ..., 1].

Given a functiorg(xs, Xo, .. ., Xn), the simple transposition operatgris defined by

Ulg(xla X27"'7Xn) = g(X]J "'aXi-'rlaXia""Xn)a

and thedivided differenceperator; is defined by
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Let
AXn. Yoy = [T o6 —yp.
i+j<n
whereXp = {X1, X2, ..., Xn} @and¥Yy = {y1, Y2, ..., ¥n}. Then the Schubert polynomials
in two sets of variableX andY, can be recursively defined as followss4] 18, 19, 23]:

_ A(Xna Yn)a If w = wo,
Su(Xn, Yn) = {ai Suwo (Xn o),  if E(woi) = £(w) + 1.

It can be shown that the Schubert polynomials are well defined, begasatsfies the
braid relations:

0i0i+10; = 0j+10;di+1, 0i0j = 0jd;,

where|i — j| > 1. For any permutatiow = oj, 0i, - - - 0j,, Wherek = £(w), we can define
the operato#,, as follows:

3w(9) = aikaik,l te ail(g)a (36)

where the operators are applied from right to left.

We now define the weight functioig which will be used throughout this section. For
a vertical step fronii, j) to (i, j + 1) satisfyingi + j > 0O, the weightisx; — yij; fora
vertical step froni, j) to (i, j + 1) satisfyingi + j < 0, the weightisx — y_(j); fora
horizontal step fronti, j) to (i + 1, j), the weightis 1.

We need the pairing lemma of Chen, Li, and LouBk [

Lemma 3.1 ([5 Lemma 4.4]).Given the above weight functiondyand two sequences of
lattice points A= (A1, Az, ..., Ap)and B= (B, By, ..., By) with A = (q, ki) for each
iand B =(q,p)and B = (q+ 1, t) fori > 2, suppose that p- k1 > ko > --- > ky,
p—1>t>.-->ty),andk <t fori > 2. If all the lattice paths lie below the line
y = —x or above the line y= —x, then we have

d(GF(A, B)) = GF(A, B), (3.7)
where B is obtained from B by replacing/Bvith (q + 1, p — 1).

The pairing lemma can be utilized to give a lattice path construction for the skew
Schubert polynomials based on the divided difference definition. Suppos® jhatthe
Grassmannian permutation with codlandw, is the Grassmannian permutation with code
I. Let

3" = @1, 81)@1p41-92) - B1yrn_1-- - In),

thend'(G,,) = 1, andGyy = 3'G,, if (J/1) is the skew code of some 321-
avoiding permutation. Chen, Li, and Louc¥] [showed that5,,;, equalsG F(A, B) for
Ax = (k, =k + 1) andBx = (n, Jh—k+1 — k + 1) with respect to the weight functiony.
Now we construct an involutiog on lattice points such that((i, j)) = (n+1—i, —n—j);
correspondingly, a step froffi, j) to (i, j + 1) is mapped to a step from(, j + 1) to
o(, j),and a step froni, j) to (i + 1, j) is mapped to a step frog(i + 1, j) to ¢, j).
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Ifi +j > 0, then we have

Wa (G, ) — (4, ] +1) =X — Vi+j, (3.8)

Wa (@i, | +1) = (@i, 1)) = Xnt1-i — Yi+j- (3.9)
Ifi +j < 0, then we have

Wa((, ) = (] +D) =X — Y+ (3.10)

Wa(p((, ] +1) = @((, ]))) = Xnt1-i — Y=(i+j)- (3.11)

Let Ay = ¢(Bny1-k) = (1, —(k+ X)) andB; = ¢(Any1-k) = (k, —K). Note that
the weights of horizontal steps are always lwlis a Grassmannian permutation in the
symmetric group of ordem satisfying

w < - < W >wr+1< e < WM,
then &, is symmetric in{xs,...,%} (see R3]). Therefore, for a Grassmannian
permutationw, the Schubert polynomiab,,; (Xm, Ym) is symmetric in{xy, ..., Xn}.

In this case,&,;(Xm. Ym) becomes the double Schur function. By the lattice path
construction in §], one has

Guw, (Xm, Ym) = GF(A, B). (3.12)

Since the involutio only changes the indices of thés in the evaluation of weights, from
(3.19 it follows that&,,, (Xm, Ym) = GF(A’, B'). By successively applyingemma 3.1
we obtain

Theorem 3.2. Let A = (1, —(k+ J)) and B/ = (K+ Ik, —k — Ix). Let Wy be the weight
function defined above. Then we have

G3/1y(Xm, Ym) = GF(A', B"). (3.13)

Applying the Gessel-Viennot argument, we can recover the determinantal fo2r@)la (
Next we describe a bijection between th¢uples of non-intersecting paths frof
to B” and the flagged skew tablealixof shapei/u with flag ¢. Theith row T; of T
corresponds to thgh path P, and the entries of; are just the indices of the'’s of the
weights of vertical steps from left to right. It is clear that the entrieSjoare smaller
than or equal t@y, whenT is taken as a skew tableau with- £(%.) empty rows. Also, the
column strictness of follows from the non-intersecting property of the paths. Conversely,
given a flagged tableal such that the entries df are smaller than or equal #, we can
construct ann-tuple (P, P2, ..., Py) of non-intersecting paths by reversing the above
procedureFig. 3.1is an illustration for the skew Schubert polynom@j2 3 41 [1,1,2-
Thus we are led to a tableau representation of skew Schubert polynomials:

Theorem 3.3. Leto be a32l-avoiding permutation andJ/1) its code. Lethy = J —
Ik, uk = Jn — Jk. Then we have

Gy Xm, Ym) = Z l_[ (XTi; = Yan+1—(Ti j+Ci j))s (3.14)
T (,)eT
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(17’1)
(L,-2). 4(2-2)
2 _
(1,-3) —d (3,-3) 2
3 2
(11 _4) . . (4'4) — I 113 3
(1, -5) 1’ (5,5)
(1, -6) T L L (6:6)
(11 '7) 1 . . . . . . (7"7)
Fig. 3.1. Lattice paths and skew tableaux.
where T ranges over all semistandard tableaux of shiapeon {1, 2, ..., m} in which all

the entries in row i are bounded l@ and(, j) € T meansthati, j)isacellof T.

Proof. We have constructed a bijection betweetuples(Py, ..., Py) ofAnon—intersecting
paths fromA’ to B” and flagged skew tableadxof shape./u with flag ¢. Notice that the
kth vertical step o, corresponds to thé& + wj)th cell of theith row of T. Recall that
the element of thé, j) cell of T is T j. The corresponding vertical step is from the point
(Tij, =@ + 1i) = (A — j + 1)) to the point(Ti j, —@(i + li) — (i — ] +1) + 1) since
B = (i + i, —i — Ij). From the flag conditions

d=li+i, Tij<¢., and <A,
it follows that

Tj—>0+li)—Qi—-j+1D <0,
which implies that all the lattice paths in consideration lie below the diagonayliae-x.
Therefore, the weight of this vertical step is

XTij = Y=(Tij—G+1)=Gi—j+1) = XTij = Y(li+)+0i—j+D-Ti j - (3.15)
Sincelj +i =Jy—Aj +i andCjj = j — i, we may rewrite$.15 as

XTj = Yah+1-(T j4Ci j)-

Applying the above bijection, we may translate the lattice path interpretation into the
desired tableau definition.C]

The flagged double Schur function has been definef]in [
S.b(X, Y) = det(h;; —i+j(Xp, — Ybi4 =i )txts (3.16)

where the flagh = (b1, by, ..., bt) is a sequence of weakly increasing positive integers.
Chen, Li, and Louck obtained a lattice path interpretation and a tableau representation
of the flagged double Schur functions. As a consequence, one may get a lattice path
interpretation and a tableau definition of the double Schubert polynomials indexed
by vexillary permutations. Similarly, the skew Schubert polynomials also have a flag
condition, where the flag is related to the code of the indexing permutation. From



W.Y.C. Chen et al. / European Journal of Combinatorics 25 (2003) 1181-1196 1189

Eq. 3.13, we can naturally define tHftagged skew $wibert polynomials
Gf\]ﬂ )(Xms Ym) = del(hAi —uj—i+]j ({tij st Xfﬁ,}
_Y&—¢j+li—ﬂj—i+j))nxn’ (317)

whereg is a weakly increasing flag sequence such thak ;. Now using the lattice
points A" = (¢i, —(Ji + 1)) instead ofA{ = (1, —(J; +1i)), we obtain

G?J/”(Xm, Ym) = GF(A”, B”). (3.18)
Here is a more general result:

Theorem 3.4. Leto be a32l-avoiding permutation andJ/|) its code. Letix = Jn —
Ik, uk = Jn — Jk. Then

Gy K Ym) = Y [ 50) = Yansr-cri4cip)- (3.19)
T (,))eT

wheLe T ranges over all semistandard tableaux of shigfpe such thatp; < T j < b,
andg; = i +1i.

In the above setting, the flagged double Schur funct&ngX, Y) can be viewed as
specialized flagged skew Schubert polynomials. Settieg0 and lettingp be a flag such
that¢; = n+1— bny1-j (fork > t, settingbx = n), we obtain

n(GYy 1y (X, Yim)) = Sep(X, Y), (3.20)
wheren(xj) = Xn+1—i for eachi.

Remark. The flagged skew Schubert polynomials have a tableau representation similar
to the flagged skew supersymmetric Schur functions studied by Hamel and GoL#len [
They coincide with each other for the special case of double Schur functions.

4. |sobaric divided differencesand flagged Schur functions

Like the divided difference, we can define the isobaric divided differencelet

(X1, ..., Xp) be a function oven variables, and we define
Xig —o0i(XiQ)
mng=———""
Xi — Xit+1

Lascoux has studied the action of isobaric divided differences on crystal gtEghks|
this section, we present a lattice interpretation of the isobaric divided difference. From the
definition of rry, we have

n
Tm(X1) = Z x,';xr':]jrkl. (4.21)
k=0
As usual, a lattice path in the plane consists of steps fiof to (i, j +1) or fromdi, j)

to (i +1, j). The weight functioiWs assigned to the lattice paths is defined as follows: for
a vertical step frondi, j) to (i, j + 1), the weight isx;; for a horizontal step frondi, j)
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to (i +1, j), the weight is 1. The relatior(21) can be easily rewritten in terms of lattice
paths:

Lemma4.1. Let P be the vertical segment frogm, k) to (m, p) and p > k. Then the
action ofry on the weight of P yields the sum of weights of all lattice paths fiiork)
to(m+1, p).

An immediate consequence of the above lemma is the following result similar to
Lemma 3.1

Lemma4.2. Given the above weight functions\Met A = (A1, Az, ..., Ay) be a
sequence of lattice points withj A= (m, k;), and let B = (B3, B>,...,Bpy) be a
sequence of lattice points with1B= (m, p) and B = (m+ 1,t;) fori > 2. Suppose
p>ki>--->kypp>ta>--->ty,andk <t fori > 2. Then we have

mmGF(A, B) = GF(A, B),
where B is obtained from B by replacing;Bvith (m + 1, p).

Proof. From the definition of the isobaric divided difference we see that

Tm(9102) = 917mm(92), if 91(Xm, Xm+1) = 91(Xm+1, Xm)- (4.22)

We proceed to show that what really matterssgris the segment of the path frofy to
B; that is above the horizontal line= to+1. The polynomiaG F (A, B) can be computed
by the following procedure. Supposet 1 > ki. Then every path frond; to B, must have
the segment fronim + 1, k; — 1) to (m + 1, t2), andG F(A, B) must contain the factor
(XmXm4-1)2 K11 If ko > t3, then no path fronAs to Bz intersects any path from to By.
By Lemma 4.1 the weights of non-intersecting paths fraw, ..., Ay) to (Bs, ..., Bp)
contribute a symmetric factor iRy, and xmy1 to GF(A, B). If ko < t3 + 1, we may
repeat the above procedure to get a factgxm,1)®*2+1. Throughout this process, we
get factors symmetric iRy andxm+1. For the cas& + 1 < kj, we first take out the factor
GF (A1, B1); then the remaining factors @ F(A, B) are symmetric inky andXm41. In
either case, we may applemma 4.1to reach the desired conclusion]

Notice that the isobaric divided differencesalso satisfy the braid relations,

T +17) = T 4170 i1, T =TT,
where|i — j| > 1. Thus it is reasonable to define the operatgifor w = oj, - - - 03, , and
k=¢(w)

7w (9) = i Ti_y - -~ 7iy (9), (4.23)

where the operators are applied from right to left.

Theorem 4.3. Every flagged Schur function @) is equal to;rw(xflxé\2 e xrAn"‘), where
W = (OmOm+1- - * Obp—1) (Om—-10m - * - Oby_4—1) - - - (0102 - - - Oy —1).

Proof. Notice thatb; > i for all i; otherwises, (b) = 0. We begin with tham vertical
lines Py, Py, ..., Pn, wherePR, is from A = (1,—-i + 1D to B = (i,A —i + 1.

Given the weight functiotWs as above; then bizemma 4.27,(GF(A, B)) equals the
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generating functionrGF(A, B"), where B’ is obtained fromB by replacing By, with
(m+1, Am—m-+1). We continue with the action af,. 1 onG F(A, B). For any sequence

of paths(P1, Py, ..., Py) from Ato B’, what really matters form 1 is the area between
the linesx = m+ 1 andx = m + 2. It is clear that the points afPy, P, ..., Py) on

the linesx = m+ 1 andx = m + 2 satisfy the conditions ihemma 4.2 By iteration,

it follows that (mp,—1 - - - Tm17m)G F(A, B) = GF(A, B”), whereB” is obtained from

B by replacingBm, with (bm, Am — m + 1). Iterating the same argument, we obtain that
1w (GF(A, B)) is equal toG F(A, B™), whereB(™ is obtained fromB by replacingB;

with (b, Aj — i + 1) for eachi. Now applying the Gessel-Viennot argument, we reach the
desired conclusion. [

The key polynomials are investigated R1J; they are called standard bases by Lascoux
and Sclutzenberger. Unlike the Schubert polynomials that are indexed by permutations,
the key polynomials are indexed by compositions, which are integer sequgneik
non-negative components. There is also a recursive definition for the key polynomials:

. xi*xy?..., if y is weakly decreasing
ko if 1 < %i+1.
Now we easily have the following result from the definition of key polynomials, which

is a consequence of the characterization theore@fnIFor this special case, our argument
does not involve the flagged Littlewood—Richardson rule.

Corollary 4.4. Every flagged Schur function &) is some key polynomial,; moreover
A is a weakly decreasing reordering pf

Theorem 4.3s analogous to the following theorem of Wachs.

Theorem 4.5 ([28, Theorem 2.4]).Every flagged Schur function,®) is equal to
Bw(xflxgz CoXgM), where @ = Aj + b —i andw = (Omomi1- - Oby—1)(Om_10m - - -
Obpy_1—-1) =+ (0102 - - - Oy —1).

Comparing the above two theorems, we see that they have similar forms. But it is
not generally true thatr, = aw(xkl’l_lxgz_z---xr?qm_m). It is worth mentioning the
special case Ofry, = duo(XI Ix572---x} ), wherewy is the maximal permutation
[n,n—1,...,1]; see PQ].

5. The super-Giambelli identity

The Giambelli identity for classical Schur functioggX) first appeared ing]. The
first bijective proof was due todeciajlu and Remmelq], and the lattice path approach
was first given by Stembridge7] and later by Fulmek and Krattenthaler in a different
form [7]. In this section, we present a lattice path construction for the super-Giambelli
identity (2.4).

Again, we consider paths in the integer lattice consisting of unit horizontal and vertical
steps. By a horizontal step we still mean a directed edge fiiorp) to (i + 1, j), but
for a vertical step we mean a directed edge framj) to (i,j — 1) if i < 0; or
from (i, j) to (i, ] + 1) if i > 0. With the Frobenius notatiotw | B) of partition A
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Fig. 5.1. Non-intersecting lattice paths and tableau.

defined above, we choose the origin vertidgs= (—«;, co) and the destination vertices
Bi = (Bi+100),i =12...,r,wherer is the rank ofa. The weight function\j is
defined as follows: the weight of a vertical step is always 1; for a horizontal stepfrgm
to (i + 1, j) strictly to the left of they-axis, it is given weighkj — y;j_i; for a horizontal
step strictly to the right of thg-axis, it is given weighk;j — yj. Since every path from
A; to Bj is determined by a hook with shap® | 8j), we have

Lemma5.1. Given the above weight functiong\ive have
GF(Ai, Bj) = Su ) (X, Y). (5.24)

The bijection between tableaux and tuples of non-intersecting paths AromB is
illustrated inFig. 5.1 Applying the Gessel-Viennot method, we obtain

S.(X,Y) = GF(A, B) = det(Sq ) (X, Y)rxr- (5.25)
This completes the proof of the super-Giambelli identiyl). O

6. The super-L ascoux—Pragacz identity

The ribbon identity for the classical Schur functions is due to Lascoux and Prdgécz [
Ueno R9] gave a lattice path interpretation of this identity based on the work of Stembridge
[27]. The goal of this section is to extend Uenao’s technique to super-Schur functions.
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1
1[]

19

0 0

Fig. 6.1. The code of the partition (5, 4, 3, 2).

Suppose that the rank of a partitionis r, and (01, Oa,..., 6;) is the ribbon
decomposition of the Ferrers diagramafLet u; be the number of cells ir@i+, and
vi the number of cells if®,”. For our lattice path construction, we choose the origin points
A = (—uj, —00), and the destination point8; = (vi + 1, —o0). The use of points
at infinity can be reformulated in finite terms. However, we find it convenient to use the
points at infinity. For the shape (5, 4, 3, 2)kig. 6.2 we haveA; = (-4, —o00), Ap =
(=2, —0), A3 = (0, —0), B1 = (4, —00), B = (3, —0), B3 = (1, —00).

We continue with our lattice path construction. There are three types of moves in the
lattice: right move, up move, and down move. However, for each line parallel i &éxés,
there is a given direction, either up or down, which specifies the direction of possible moves
along this line. So, at any point one may either make a right move, or a vertical move along
the specified direction. Given the poindgé and B;, we only need to consider the region
between the lin&k = —uj and the linex = v; + 1. From the example iRig. 6.2 we see
that there are@1 + u1 + 2 lines parallel to the/-axis, which is the number of cells in the
rim of A plus one. Equivalently, each cell in the outer rimhaforresponds to a subdivision
of the region formed by two adjacent lines parallel to yhaxis.

To determine the directions of the lines parallel to thaxis, we need the notion of
thecodeof a partitioni (see Stanleyd6]), which is also called theartition sequencéy
Bessenrodtd]. Along the borderline of a partition, i.e. the edges of the rim af we put a
1 to the right of each vertical edge and a 0 underneath each horizontal edge. Then we read
off the 0-1 labels from top to bottom, and the resulting binary sequence is the cade of
For example, the code of (5, 4, 3, 2)kg. 6.1is(1,0,1,0,1,0, 1, 0, 0).

For each line parallel to theg-axis, if it is the jth line between the ling = —u; and
the linex = v1 + 1, then it is given the up or down direction depending on whethejtihe
component of the code is 1 or 0. An example is giveRim 6.2

We proceed to define the weight functidh of a lattice path. First, all the vertical steps
(either up move or down move) are given weight 1. For a horizontal step roj to
(i + 1, j), we will give a labelling as shown ifig. 6.2 Note that a bar over a number
means the minus sign. The following is the procedure for giving the labelling of the lattice
according to the shape.

Suppose that the step frogin j) to (i + 1, j) is labelledk; then the step froni, j + 1)
to(i+1, j+1)islabelleck+1 andthe step frorti, j —1)to (i +1, j —1) is labelledk — 1.
Therefore, we only need to label the horizontal steps oxthgis. The first step is to label
the leftmost horizontal step ag + 1, then label the next step (on the right) according to
the following rule: if the right vertical line next to the current step has the down direction,
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Fig. 6.3. Non-intersecting lattice paths and the tableau for the ribbon identity.

then use the same label for the next step; otherwise, we increase the labelling by 1. This
labelling rule ensures that the step from (0, 0) to (1, 0) is labelled 0, as shdwg.if.2

We assign the weight — yk_i to the step frondi, j) to (i, j + 1), wherek is the labelling

of this step.

Theorem 6.1. Let A = (—u;, —oo) and B = (v; + 1, —o0), and let the weight function
W; be defined as above. Then

GF(A. B)) = Sgrgo-(X. Y). (6.26)
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The following lemma describes tH2-compatible conditions introduced by Stembridge
[27]. Once we have chosen the directions of the edges as given before, then we have

Lemma 6.2. The vertical steps are given up directions on the line=x—u; and down
directions on the line x= vy + 1foralli = 1,2, ...,r. Thus every tuple of lattice paths
from (Ag, ..., Ar) t0 (B, ..., By ) mustintersect unless is the identity permutation.

Given arr -tuple of non-intersecting paths fro(éy, ..., Ar) to (Bg, ..., By), we may
construct a tableau of shape Given a lattice path fromA; to Bj, we may fill theith
rim from top to bottom with the labellings of the steps on the lattice path. Thus the non-
intersecting property ensures that we get a tableau of sh&penversely, we can construct
the lattice path from the tableau. This bijection turns out to be weight preserving. From
Lemma 6.2 Theorem 6.1and the Gessel-Viennot argument, it follows that

Hence we get the super-Lascoux—Pragacz ideriy.( O
Fig. 6.3shows such a bijection between a tableau and the sequence of non-intersecting
paths.
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