Trees with Small Randi¢ Connectivity Indices
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Abstract
Let T be a tree and d(v) the degree of its vertex v. Then the connectivity index, or

Randi¢ index, of T is defined as x(T) = ), ﬁ’

all edges uv of T. In the existing literature, trees of order n with m pending vertices and

where the summation goes over

with the smallest connectivity index were determined by Hansen et al, whereas the unique
tree of order n with the smallest connectivity index was determined by Bollobds et al. In
this paper, we determine all trees of order n with m pending vertices and with the second
smallest connectivity index and all trees of order n with diameter r and with the smallest
and the second smallest connectivity indices. The unique tree of order n with, respectively,

the second, the third and the fourth smallest connectivity index is also determined.



1 Introduction

The connectivity index, or Randi¢ index, x is a topological index proposed by Randi¢ in 1975.
Randi¢ himself demonstrated that the Randi¢ index x was well correlated with a variety of
physico-chemical properties of alkanes, such as boiling point, surface area and solubility in water.
Eventually, ¥ became one of the most popular molecular graph-based structure-descriptors,
used in QSPR and QSAR studies. On its applications for predicting physico-chemical and
pharmacologic properties of organic compounds two books (Kier and Hall, 1976, 1986) and
scores of papers were published; details and further bibliography can be found in [1,2] and
[5-14].

Let G be a graph with the vertex set V(G) and the edge set E(G). Then the connectivity

index is defined as
1

x(G) = WEZE(G) NEOLEOk
where dg(z), or simply d(x), denotes the degree of a vertex z in G.

For a graph G and u € V(G), we denote by N¢g(u) the set of all neighbors of v in G and by
n(G) the number of vertices of G. We denote respectively by S,, and P, the star and the path
with n vertices. By P, ,, we denote the graph obtained from S, ; and P, by identifying the
center of S, with a vertex of degree 1 of P,,. By Sy, we denote the graph obtained from
Snto and Sy,41 by identifying a vertex of degree 1 of S, 2 with the center of S,,,1+1. We denote
by D(G) the diameter of G, which is defined as D(G) = max{d(u,v)|u,v € V(G)} where d(u,v)
denotes the distance between the vertices v and v in G. We denote by 7 (n,r) the set of all
trees with n vertices such that D(T") = r. Undefined notations and terminology will conform to
those in [3].

Bollobés and Erdds [4] in 1998 got the fundamental result that among all connected graphs
G with n vertices the star S, has the smallest connectivity index x, that is, x(G) > v/n — 1 for
any such a graph G. Caporossi et al [5] in 1999 proved that x(7) < 232 + /2 for all trees T of
order n and the equality holds if and only if G = P,. Very recently, Hansen et al [10] obtained

the following result.

Theorem 1.([10]) Let T be a tree of order n > 3 with m pending vertices. Then if m < n — 1,

x(T)z\/rM(L_l)l nem-3 1

Vi ) vm T2 T

and the equality holds if and only if T" is the comet T}, ,,,, where T}, ;, = P 1 n—m+1-



In this paper, we determine all trees of order n with m pending vertices and with the second
smallest connectivity index and the unique tree of order n with, respectively, the second, the
third and the fourth smallest connectivity index. Trees of order n with diameter r and with the

smallest and the second smallest connectivity indices are also determined.

2 Lower Bounds for the Connectivity Index of Trees

In this section, we determine all trees with the second smallest connectivity index among all
trees T of order n with m pending vertices. Let T be a tree with n(T) vertices and u a vertex of
T. Denote by T + uv the tree obtained from T' by adding a pendent edge uv. For convenience,
and g(k)

we write f(k) = m

— 1
 VERFD)(VEFIHVE)
Lemma 1. Let T a tree with a vertex u such that dr(u) = k. Suppose that Np(u) =
{1,2,3,---,k} and v € V(T'). Then
1
X(T +uv) = x(T) + f(k) + g(F) (k - > 7) :

1ENT (u) dT(IL)

Proof. Suppose that @ = {ui|i € Np(u)} and Q = S  ——L . Then we have
zyeE(T)—Q dr(z)dr(y)
™ = N S
X(T) :pyeZE:(T) dr(z)dr(y)
= Q4+ L
lE]\%(u) de(Z)
and
T = L
x(T + uv) myeE%,Hw) VT 100 (@) AT 300 (1)
= Q L L
+iel\%(u) V/(k+1)dr (0) Vi

So, we get that

_ 1 1 L
X(T+w) =x(T) = 75~ eV (Z-GNZT@ dT“’)

= f(k)+g(k)<k— > )

ieNT(u) Var(0)

Clearly, the lemma holds. O

Let v be a vertex of T'. One can see that there is a vertex w € Np(v) such that dp(w) > 2

except if v is the center of a star. So, we have

1
=>1-—
1ENT (v) dT(z) \/i

(1)



if T+ wv is not a star.

Denote by Qn, n, and P, p,n, the two graphs shown in Figure 1, where G is a connected

graph.

Figure 1. Graphs )y, », and P, p, n,

Theorem 2. Let ny > ny+2 > 2 and d(v9) > d(uz). Then

X(Qm,nz) < X(in—l,n2+1)-

Proof. By Lemma 1 it follows that

X(Qni ) = X(@y 1) + f (1) + g (m) (1 - )

and

X(Qni—1m0+1) = X(Qny—1,n5) + f(n2 +1) + g(ng +1) <1 - %) :
1)2)

Since n1 > ng + 2 and d(vy) > d(us9), the theorem holds. O

It is not hard to see that the proof of Theorem 2 is valid for the graph P, ,, »,, Where

ni > ng + 2 > 2 and ne > 2. So, we have the following lemma.

Lemma 2. Let ny > n3+ 2> 2 and ny > 2. Then

X(Pm,m,ﬂs) < X(mel,ng,n3+1)- U

Lemma 3. Let n; > ns > 2 and G be a tree. If @, », has n vertices and m pending vertices,

then X(in,nz) > X(me2,nfm,2)-

Proof. By induction on m. Clearly, m > 4. When m = 4, Qn, n, = P2 5—42. So, the lemma is
true for m =4 and all n > m + 2.
Suppose that m > 5 and the lemma holds for every Q, s, of order n with m — 1 pending

vertices, where s1 > s9 > 2 and s1 + s9 = n1 + no. We distinguish the following cases:

Case 1. n1 =2 or ny = 2.



Let ng =2 and T" = @y, 1. By Lemma 1, we have

X(Qu) = X(T) + 1) +92) (1- i)

dopr (v2)
and
X(P-om2) = X(Pm-om-mi1) + £(2) +9(2) (1- L).
Note that 7" has n — 1 vertices and m — 1 pending vertices. From Theorem 1 we have that
X(T") > x(Pm-2,n—m+1) and the equality holds if and only if 77 = Py, _5,_m11. So, we have
that x(Qnins) > X(Pm—2n-m,2) and the equality holds if and only if Qpn, ny = Pr—2.5-m.2-

Case 2. ny; > 3 and n9 > 3.

Let T = Qn,—1,n,- By Lemma 1, we have

X( @) = X(T') + (1) + g(m) (1 - %) e
()

and

X(Pm72,n7m,2) = X(me?),nfm,?) + f(m - 2) + g(m - 2) <1 - %) . (3)

Since T" = Qny—1,n, and T’ has m—1 pending vertices, by the induction hypothesis, X(Pm—3n-mz2) <
x(T"). Note that n; <m — 3 and Qp, n, is not a star. Thus from (1), (2) and (3) we have

X(in,nz) > X(Pm—2,n—m,2)-

This completes the proof. O

Let vivgv3 --- vy be a path Py and T}, ,n be a graph shown in Figure 2, where k£ > 5 and

m > 1.

Figure 2. Graph T} ,, ,,

Lemma 4. Let r > 4 and n > r + 3. Then

X(Pnfrfl,rfl,Q) > X(Tr+1,v3,nf1"71)-



Proof. By the definition of x, we have

n—r—1+ 1 +r—4
vn—r V2(n —1) 2

X(Pnfrfl,rfl,Q) -

+
S
+
5

and

n—r—1 V2 r—4
+ + + V2.
vn—r+1 +n—-r+1 2

Let £ = n — r. Obviously, x is an integer and x > 3. So, we get that

X(Tr+1,v3,nfr71) -

X(Prr-1,r-12) = X(Tr41,05m-r-1) = $(2), (4)
where ¢(z) = (vV2 — 1) (\/‘m/% — \/%) + 2‘/5"'\}6_‘/5 - \/ﬁh/:?' By calculation, one can check

that ¢(z) > 0 for each z € {3,4,5,6,7,8,9,10} and ¢(z) > mvgm_ L= > 0fora > 11.

Thus by formula (4) the lemma is true.

Lemma 5. If T € T(n,4) — {P,_4.4}, then x(T') > \’}% + \/;{% + /2 and the equality holds

if and only if T = T5 ), 5,—s5.
Proof. Clearly, T' € T(n,4) — {P, 55} if and only if T has n — 3 pending vertices. So, we have

the following cases:

Case 1. There is a path ujusugugus in T such that d(ug) > 3 and d(ug) > 3. By Lemmas 3
and 4,

X(T) > x(Pn—53,2) > X(T5,05,n—5)-
Case 2. For each path ujuougugus in T', we must have d(uy) = 2 or d(u,) = 2. Recalling that

D(T) = 4, one can see that T must be the graph Ui(ni,t) shown in Figure 2, where k > 0,
ny>1,t>2and ny +2t+k = n.

Figure 3. Graph Ug(nq,t)
By Lemma 1,
X(T5,v3,nf5) = X(T5,v3,n76) + fn—4)+g(n—4)(2 - \/i) (5)

Subcase 2.1. k£ > 1 in Ug(nq,1).



By Lemma 1, we have
X(Uk(n1, 1)) > x(Ug—1(n1, 1) + f(k+¢ = 1) + g(k +1 —1)(2 — V2) (6)

and the equality holds if and only if ny = 1 and ¢ = 2, that is, Ug(n1,t) = T5 4, n—5. Since
E+t—1<n-—4, by (5) and (6) we have

X(Uk (nla t)) > X(TS,vg,n—S)

and the equality holds if and only if Uy (n1,t) = Ts s n—5-

Subcase 2.2. £ =0 and t > 3 in Ug(n,1).

By Lemma 1, we have that

x(Uo(n1,t)) = x(Ur(n1,t — 1)) + f(1) + g(1)(1 —

Sl -

and

X(Us 1 + 1, = 1) = x(Uim £ = 1)) + f o + 1)+ gl +1)(1 = ).

Clearly, n; +1 > 1. So, x(Uo(n1,t)) > x(Ur(n1 +1,t — 1)). From Subcase 2.1, we have

X(U(](’nl,t)) > X(Ul(’nl + 1,t — 1)) > X(T5,1)3,n75)-

Subcase 2.3. £ =0 and t = 2 in Ug(ni,t).
So, Ug(n1,2) = P55, which contradicts to the condition of the lemma.

By calculation, we have

n—=>a V2
X(T5,1)3,n75) = \/n — 3 + \/n — 3 + \/§

This completes the proof. O

Let T be a tree of order n > 3 with m pending vertices. Obviously, m < n — 1 and the
equality holds if and only if ' = S;,. When m = n — 2, one can see that T' € {Sp, n,|n1 +no =

n—2,n1 > ng}. By Lemma 2, for all £ > 5 we have

X(Sn—3,1) > x(Sn-4,2) > X(Sn—t1-2)-

S0, Sp—_42 has the second smallest connectivity index among all trees of order n with n — 2

pending vertices. For m < n — 2, we have



Theorem 3. Let T be a tree of order n > 3 with m pending vertices. If m < n — 2 and

T % Pp—1n-m+1, then

1 n—m-—3
2
N AR +V2

and the equality holds if and only if T' € {T}, 2.0, m—2/3 <i <n—m}.

X(T) > Vm+ (V2 -2)

Proof. Let T be a tree of order n > 3 with m pending vertices. By the condition of the theorem,

m >3 and n > m + 3. By calculation, it is not difficult to obtain that for 3 < <r —1,

1 n—m-—3
X(Tn—m+2,v3,m—2) = X(Tn—m+2,vi,m—2) = \/'r_n + (\/E - 2) \/,r—n + 9 + \/E

So, we need only to prove that x(7') > x(Th—m+2,05,m—2). We prove it by induction on n.

For any m > 3, one can see that n = m + 3 if and only if D(T) = 4. By Lemma 5, the
theorem holds for n = m + 3 with m > 3.

Suppose that n > m + 4 and that the theorem is true for all trees T of order n — 1 with
m pending vertices. Then for a tree T of order n with m pending vertices, we consider the

following cases:

Case 1. T is a tree of form @y, ,, such that n; > ny > 2. Then, from Lemmas 3 and 4, it

follows that

X(T) Z X(Pm72,nfm,2) > X(Tnfm+2,v3,mf2)-

Case 2. There is a path ujusus in T such that d(u;) = 1, d(ue) = 2 and d(ug) > 2. Let
T' =T — uy. Then, by Lemma 1 we have that

X(T) 2 X(T) + F(1) + g(1)(1 - ———) 7
1 (u3)
and
X(Tn—m+2,v3,m—2) = X(Tn—m—l—l,vg,m—?) + f(l) + g(l)(l - %) (8)

Clearly, T" has n — 1 vertices and m pending vertices. Since T' % Py, 1 5n-m+1, we have T =
Tonmt20sm—2 £ T = Py y . For T' 2 Pp_ 15 m, by the induction hypothesis we have

X(T") > x(Tn—m+1,5,m—2)- So, from (7) and (8),
X(T) Z X(Tnfm+2,v3,m72)

and the equality holds if and only if " € {T},_+1,0;,m—2/3 < i < n—m—1} and dy (u3) = 2. Fur-

thermore, the equality holds if and only if dr(uz) =2 and T € {T),—m42,0;,m—2|3 <@ <n —m}.



This completes the proof. O

In the following, using Theorems 1 and 3 we find the smallest value of the connectivity index
of trees in T (n,r) and determine the corresponding trees. Let T' € T (n,r) and r > 3. Then,
there is a path ujus - - - up41 in T such that d(u1) = d(u,41) =1 and d(u;) > 2 for all 2 < i < r.
So, T' has at most n — r + 1 pending vertices. By Theorem 1, it is not difficult to see that

X(T) > x(Pm—1,n—m+1) if T has m pending vertices. By Lemma 2, for m > 3 we have

X(Pm72,n7m+1,1) > X(mel,nfm+1,0)a

that is,

X(me2,nfm4r2) > X(mel,nferl)- (9)

Thus, we have x(T') > x(P,—r,) and the equality holds if and only if T' = P,,_,,.

For r = 3, we have that S,,_4 > is the unique tree with the second smallest connectivity index
among all trees of order n with diameter 3. For » > 4, by (9) and Theorems 1 and 3 we have
that if T2 P,_,,, then x(T) > X(Tr4+1,03,n—r—1) when T has n — r + 1 pending vertices and

X(T) > x(Pp—r—1,+1) when T has no more than n —r pending vertices. By calculation, we have

—r—1 g —4
U UE R St SN

T, 1) = 10
X( r+103,n—r 1) \/n—r—i-l \/n—r—i-l 9 ( )
and
n—r—1 1 r—2 1

P, = + + + —. 11
X( n—r 1,7‘+1) \/m \/m 9 \/5 ( )

From (10) and (11), we have

X(Pnfrfl,vurl) - X(Tr+1,v3,nfrfl) = (),

where 1)(x) :m—ﬁ— %4—\/%— \);%4—1—% and x = n —r > 2. It is easy to check that

P(x) >0 for x = 2,3,4. For x > 5, we have

1 1 \/§>11

1
== ——=>0.

T2 AerD Varic V2 VE

So, from the above arguments and Theorems 1 and 3, we have

P(x) > 1

Theorem 4. (i) For T' € T (n,r) and r > 3, we have

(T) > n—r n 1 +r—3 1
M =1 Rm—rxD) 2 V2




and the equality holds if and only if "= P,_,.,..
(ii) For r >4 and T € T(n,r) — {Py—y,}, we have

n—r—1 V2 r—4
T) > + + +V2,
x( )_\/n—r—i-l Vn—r+1 2

and the equality holds if and only if T' € {T} 41,4, n—r—-1|3 <i <r—1}. O

3 Trees with Small Connectivity Indices

In this section, we determine the unique tree of order n with, respectively, the second, the third
and the fourth smallest connectivity index.

Let T be a tree of order n. Then, for smaller n we have the following: for n = 1,2, 3, we have
T = S,; for n > 4, we can easily check that

(a) for n =4, x(P3) > x(S3);

(b) for n =5, x(P5) > x(S2,1) > x(S4);

(c) for n = 6,7, x(T) > x(Pn-14) > X(Sn-12) > x(Sn-31) > x(Sn) f T & {Pn-a4,
Sn—4,2,50-3.1,5n}

Now we consider the case n > 8. By Lemma 2, we have
X(Snyng) > X(Snyt1ma—1) for ni>mng > 2. (12)
By (9) and Theorem 4, we have
X(T) > x(Pn—44) tf TE€T(n,r)—Pyy4a and r>4. (13)

By calculation, we obtain the following:
: _ n—3 1 1
(1) X(Snf?),l) — Vn2 + \/2(7172) + V2?

i) X(Sn-10) = 5+ b+ T
n—>5

(

(iil) x(Sn-53) = Vi T ﬁ + 3,
1 1+v2

( — + 5=,

iv) X(Pna4) = 2=+ Ve

From (i) to (iv), it is not difficult to obtain that x(Sp—53) > X(Sn-4,2) > x(Sp—3,1) and
X(Pn—4,4) > x(Sn-1,2) > x(Sn—3,1) for n > 8. On the other hand, we have

X(Sn—53) — X(Pn-14) = 2(2), (14)



1 _v2_ 1 _ 1 -z
where z(z) = 1 — e ey + 5% -7

and x = n —4 > 4. By calculation, one

obtains that z(z) < 0 for n = 8,9 and z(z) > 0 for 10 < n < 20. For n > 21, it follows that
2 1 1
z(z) >1— £ - —
2 2V17 /36

So, by (14) we have that x(Sp-53) < Xx(Pn—4.4) for n = 8,9 and x(Sp-53) > x(Pn-44) for
n > 10. Thus, by (c), (12) and (13), we have the following theorem.

Theorem 5. Let T be a tree of order n and let T' € {.S;,_4,2,Sn—3.1,Sn}. Then,

(i) x(T) > x(Sn=53) > x(Sn—1,2) > x(Sn—3,1) > x(Syp) for n = 8,9 and the equality holds if
and only if T"= 5,5 3.

(ii) x(T) > x(Pn-44) > x(Sn—42) > x(Sn-3,1) > x(Sp) for n = 6,7 or n > 10 and the
equality holds if and only if T'= P,_4 4. O
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