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Abstract

Let �(G) denote the minimum real root of the �-polynomial of the complement of a graph G
and �(G) the minimum degree of G. In this paper, we give a characterization of all connected
graphs G with �(G)¿−4. Using these results, we establish a su5cient and necessary condition
for a graph G with p vertices and �(G)¿p− 3, to be chromatically unique. Many previously
known results are generalized. As a byproduct, a problem of Du (Discrete Math. 162 (1996)
109–125) and a conjecture of Liu (Discrete Math. 172 (1997) 85–92) are con;rmed.
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1. Introduction

All graphs considered here are ;nite and simple. Unde;ned notation and terminology
will conform to those in [1].

Let G be a graph with p(G) vertices and q(G) edges. By CG and P(G; 	) we denote
the complement and the chromatic polynomial of G, respectively. Two graphs G and
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H are said to be chromatically equivalent, symbolically G ∼ H , if P(G; 	) = P(H; 	).
G is said to be chromatically unique (or simply �-unique) if G ∼= H whenever G ∼ H .

De�nition 1.1 (Brenti et al. [2,3]). Let G be a graph with p vertices and

P(G; 	) =
p∑
i=0

ai(	)i

the chromatic polynomial of G, where (	)i=	(	−1)(	−2) · · · (	− i+1) for all i¿ 1
and (	)0 = 1. The polynomial

�(G; x) =
p∑
i=0

aixi

is called the �-polynomial of G.

The concept of �-polynomials was ;rst explicitly introduced and studied by Korfhage
[9] in 1978. Actually, his de;nition of the �-polynomial is equivalent to what we denote
by �(G; x)=x�(G), where �(G) is the chromatic number of G. In this paper, we use
�1(G; x) instead of �(G; x)=x�(G). In [10], Liu introduced another form of polynomial,
which is closely related to P( CG; 	) and �( CG; x), as follows:

De�nition 1.2 (Liu [10]). Let G be a graph with p vertices and

P( CG; 	) =
p∑
i=0

bi(G)(	)p−i ;

the chromatic polynomial of CG. The polynomial

h(G; x) =
p∑
i=0

bi(G)xp−i

is called the adjoint polynomial of G. The graph G is called adjointly unique if for
any graph H with h(H; x) = h(G; x) we have G ∼= H .

De�nition 1.3 (Liu et al. [14]). Let G be a graph and h1(G; x) the polynomial with a
nonzero constant term, such that h(G; x) = x�(G)h1(G; x). If h1(G; x) is an irreducible
polynomial over the rational number ;eld, then G is called an irreducible graph.

From De;nitions 1.1–1.3, it is obvious that for any graph G, h(G; x) = �( CG; x) =
x�( CG)�1( CG; x), h1(G; x) = �1( CG; x) and G is adjointly unique if and only if CG is
�-unique.

For convenience, we simply denote h(G; x) by h(G) and h1(G; x) by h1(G). Mean-
while, we introduce some further notation. For a vertex v of a graph G, we denote
by NG(v) the set of vertices of G which are adjacent to v. For an edge e = v1v2 of
G, set NG(e) = NG(v1) ∪ NG(v2) − {v1; v2} and d(e) = dG(e) = |NG(e)|. By NA(G) we
denote the number of subgraphs isomorphic to C3, a cycle with three vertices. For two
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graphs G and H , G ∪ H denotes the disjoint union of G and H , and mH stands for
the disjoint union of m copies of H . By Kn−E(G) we denote the graph obtained from
Kn by deleting all the edges of a graph isomorphic to G. Let (g(x); f(x)) denote the
greatest common factor of g(x) and f(x), g(x)|f(x) (resp., g(x) ==f(x)) denote g(x)
divides f(x) (resp., g(x) does not divide f(x)), and @f(x) denote the degree of f(x).

In the following we de;ne some classes of graphs, which will be used throughout
the paper:

(i) Cn (resp., Pn) denotes the cycle (resp., the path) of order n, and write C =
{Cn|n¿ 3};P = {Pn|n¿ 2}.

(ii) Dn(n¿ 4) denotes the graph obtained from C3 and Pn−2 by identifying a vertex
of C3 with an end-vertex of Pn−2.

(iii) T (l1; l2; l3) denotes a tree with a vertex v of degree 3 such that T (l1; l2; l3) −
v= Pl1 ∪ Pl2 ∪ Pl3 , and write T1 = {T (1; 1; n)|n¿ 1}.

(iv) Fn(n¿ 6) denotes the graph obtained from C3 and Dn−2 by identifying a vertex
of C3 with the vertex of degree 1 of Dn−2.

(v) K−
4 = K4 − e, where e∈E(K4).

(vi) Let Pn−2 be a path with vertex sequence x1; x2; x3; : : : ; xn−2. Un denotes the
tree obtained from Pn−2 by adding pendant edges at vertices x2 and xn−3, and write
U = {Un|n¿ 6}.

(vii) Let Cn denote a cycle with n vertices v1; v2; v3; : : : ; vn. With Cn(Pm1 ; Pm2 ; : : : ; Pmt )
we denote the graph obtained from Cn and Pmi by identifying vi with a vertex of degree
1 of Pmi , where mi¿ 2; i = 1; 2; 3; : : : ; t; t6 n. It is clear that C3(Pm) = Dm+2. With
Cn(K1;2) we denote the graph obtained from Cn and K1;2 by identifying a vertex of Cn
with the vertex of degree 2 of K1;2.

Brenti et al. studied the roots of P(G; 	) and �(G; x), and obtained many interest-
ing results in [2,3]. In this paper, we are concerned with the minimum real roots of
�-polynomials. We prove that the minimum real roots of �(G; x) are greater than or
equal to −4 if and only if the components of CG are subgraphs of the following graphs:

T (1; 2; 5); T (2; 2; 2); T (1; 3; 3); K1;4; Un; C4(P2); C3(P2; P2); K−
4 ; D8:

Since the notion of chromatically unique graphs was ;rst introduced by Chao and
Whitehead [4] in 1978, many classes of chromatically unique graphs have been found
by studying the chromatic polynomials of graphs [7,8]. The adjoint polynomial of graph
G, i.e., the �-polynomial of the complement of G, has many algebra properties, such
as the recursive relation, divisibility, reducibility over the rational number ;eld, etc.
These properties are very useful in the study of chromatic uniqueness of graphs. Many
classes of chromatically unique graphs have been found by applying these properties,
see [12–14,16–18]. In particular, Liu and Li proved that if G=

⋃
i Pni , then Kn−E(G)

is �-unique when Pni is irreducible [13]; In [12], Liu conjectured that Pn is �-unique
if n 	= 4 and n is even; Du obtained that if G is a 2-regular graph without C4 as its
subgraph or G is

⋃k
i=1 Pni , where ni is even and ni 	≡ 4 (mod 10), then CG is �-unique

[6]. Du also proposed a problem, i.e., whether it is true that Kn − E(Pm) is �-unique
when m is even and m 	= 4, where n¿m.
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Our second goal in this paper is to study the chromaticity of CG with �(G)¿ − 4,
where �(G) denotes the minimum real roots of the �-polynomial of CG. We establish
the necessary and su5cient condition of chromatic uniqueness of a graph G with
�(G)¿ |V (G)| − 3 and the graphs

⋃
k Uk . Liu’s Conjecture and Du’s Problem are

solved and many of their results are generalized.

2. Basic de�nitions and lemmas

In this section, we introduce some basic results on the adjoint polynomial of graphs.

De�nition 2.1 (Liu [12]). Let G be a graph with q edges. The character of a graph G
is de;ned as

R(G) =




0 if q= 0;

b2(G) −
(
b1(G) − 1

2

)
+ 1 if q¿ 0;

where b1(G) and b2(G) are the second and the third coe5cients of h(G), respectively.

Lemma 2.1 (Liu [12]). Let G be a graph with k components G1; G2; : : : ; Gk . Then

h(G) =
k∏
i=1

h(Gi) and R(G) =
k∑
i=1

R(Gi):

We need to point out that the ;rst part of the above lemma ;rst appeared in [15],
see Theorem 3.13. It is not hard to see that R(G) is an invariant of graphs. So, for any
two graphs G and H , we have R(G)=R(H) if h(G; x)=h(H; x) or h1(G; x)=h1(H; x).

Lemma 2.2 (Liu [11]). Let G be a graph with p vertices and q edges. Denote by M
the set of vertices of the triangles in G and by M (i) the number of triangles which
cover the vertex i in G. If the degree sequence of G is (d1; d2; d3; : : : ; dp), then

(i) b0(G) = 1; b1(G) = q;

(ii) b2(G) =

(
q+ 1

2

)
− 1

2

p∑
i=1

d2
i + NA(G);

(iii) b3(G)=1
6 q(q

2+3q+4)− q+2
2

∑p
i=1 d

2
i+

1
3

∑p
i=1 d

3
i+
∑

ij∈E(G) didj−
∑

i∈M M (i)di+
(q+ 2)NA(G) + N (K4),
where b0(G); b1(G); b2(G); b3(G) are the =rst four coe>cients of h(G; x), N (K4)
is the number of the subgraph isomorphic K4 in G.

For an edge e= v1v2 of a graph G, the graph G ∗ e is de;ned as follows: the vertex
set of G ∗ e is (V (G) \ {v1; v2}) ∪ {v}, and the edge set of G ∗ e is {e′|e′ ∈E(G); e′
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is not incident with v1 or v2} ∪ {uv|u∈NG(v1) ∩ NG(v2)}. For example, let e1 be an
edge of C4 and e2 an edge of K4, then C4 ∗ e1 = P2 ∪ K1 and K4 ∗ e2 = K3.

Lemma 2.3 (Du [6]). Let G be a graph with e∈E(G). Then

h(G; x) = h(G − e; x) + h(G ∗ e; x);
where G − e denotes the graph obtained by deleting the edge e from G.

Lemma 2.4 (Liu [12]). (i) For n¿ 2, h(Pn) =
∑

k6n

(
k
n−k
)
xk .

(ii) For n¿ 4, h(Cn) =
∑

k6n (n=k)
(

k
n−k
)
xk .

(iii) For n¿ 4, h(Dn) =
∑

k6n

(
(n=k)

(
k
n−k
)

+
(

k−2
n−k−3

))
xk .

Lemma 2.5 (Liu et al. [12,16]). (i) For all n¿ 4, h(K1 ∪ Cn) = h(T (1; 1; n− 2)).
(ii) For all n¿ 4, h(K1 ∪ Dn) = h(T (1; 2; n− 3)).
(iii) For all n¿ 6, h(Cn) = x(h(Cn−1) + h(Cn−2)).
(iv) For all n¿ 3, h(Pn) = x(h(Pn−1) + h(Pn−2)).

Lemma 2.6 (Liu et al. [14]). Let G be a connected graph with p vertices. Then
(i) R(G)6 1, and the equality holds if and only if G ∼= Pp (p¿ 2) or G ∼= C3.
(ii) R(G) = 0 if and only if G is one of the graphs K1, Cp;Dp and T (l1; l2; l3),

where p¿ 4, li¿ 1, i = 1; 2; 3.

Lemma 2.7 (Zhao et al. [17]). Let f1(x); f2(x) and f3(x) be polynomials in x with
real positive coe>cients. If

(i) f3(x) = f2(x) + f1(x) and @f3(x) − @f1(x) ≡ 1 (mod 2),
(ii) both of f1(x) and f2(x) have real roots, and �2¡�1, then f3(x) has at

least one real root �3 such that �3¡�2, where �i denotes the minimum real root of
fi(x) (i = 1; 2; 3).

Lemma 2.8 (Wang et al. [16]). (i) For n¿ 2, �(Pn)¡�(Pn−1).
(ii) For n¿ 4, �(Cn)¡�(Cn−1) and �(Dn+1)¡�(Dn).
(iii) For n¿ 4, �(Dn)¡�(Cn)¡�(Pn).

Lemma 2.9 (Zhao et al. [17]). Let T be a tree. Then
(i) �(T ) = −4 if and only if T ∈{T (1; 2; 5); T (2; 2; 2); T (1; 3; 3); K1;4} ∪U.
(ii) �(T )¿− 4 if and only if T ∈{K1; T (1; 2; i)(26 i6 4)} ∪P ∪T1.

3. Graphs with �(G )¿− 4

In this section, we ;rst give a fundamental inequality on the minimum real roots of
the adjoint polynomials of a graph G and its a proper subgraph. By this inequality, we
can determine all connected graphs with �(G)¿− 4.
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Theorem 3.1. Let G be a connected graph and H a proper subgraph of G. Then,

�(G)¡�(H):

Proof. Let q be the number of edges of G. We will prove the theorem by induction
on q.

It is obvious that the result holds when q= 1.
Let G be a graph with q¿ 2 and suppose that the theorem holds when G has fewer

than q edges. Since H is a proper subgraph of G, we can choose an edge e in G such
that either H is a proper subgraph of G− e or H =G− e. So, select the edge e in G
such that H is a subgraph of G − e, then by Lemma 2.3 we have

h(G; x) = h(G − e; x) + h(G ∗ e; x)
The graph G− e has p vertices and q−1 edges, and G ∗ e has p−1 vertices and at

most q− 2 edges. Note that G ∗ e is a proper subgraph of G − e and each connected
component of G ∗ e is a proper subgraph of some connected component of G − e if e
is a cut-edge of G. By the induction hypothesis and Lemma 2.1, we have

�(G − e)¡�(G ∗ e):
Since @h(G) = @h(G ∗ e) + 1, from Lemma 2.7 we obtain that

�(G)¡�(G − e):
Note that H is a subgraph of G − e, then by the induction hypothesis, we have that
�(G − e)6 �(H). So,

�(G)¡�(G − e)6 �(H):

Lemma 3.1. If n¿ 6, then

h(Cn(P2)) = x(h(Cn−1(P2)) + h(Cn−2(P2))):

Proof. By Lemmas 2.3 and 2.5, it follows that

h(Cn(P2)) = xh(Cn) + xh(Pn−1)

= x2h(Cn−1) + x2h(Cn−2) + x2h(Pn−2) + x2h(Pn−3)

= x(xh(Cn−1) + xh(Pn−2)) + x(xh(Cn−2) + xh(Pn−3))

= x(h(Cn−1(P2)) + h(Cn−2(P2))):

Lemma 3.2. (i) �(Cn)¿− 4 for n¿ 3, �(Pn)¿− 4 for n¿ 2; �(K−
4 ) = −4.

(ii) �(Dn)¿− 4 for 46 n6 7, �(D8) = −4, �(Dn)¡− 4 for n¿ 9.
(iii) �(Cn(Pm))6 − 4 for n¿ 4 and m¿ 2 and the equality holds if and only if

n= 4; m= 2.
(iv) �(Cn(Pm1 ; Pm2 ))6− 4 for n¿ 3 and mi¿ 2 (i = 1; 2), and the equality holds

if and only if n= 3 and m1 = m2 = 2.
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Proof. (i) From Lemma 2.5, we know that h1(Cn)=h1(T (1; 1; n−2)). By Lemma 2.9,
we have

�(Cn)¿− 4 and �(Pn)¿− 4:

Since h1(K−
4 ) = x2 + 5x + 4, we have �(K−

4 ) = −4.
(ii) By Lemma 2.5, we know that h1(Dn) = h1(T (1; 2; n − 3)). The result follows

from Lemma 2.9.
(iii) Since h1(C4(P2))=x2 +5x+4, we have �(C4(P2))=−4. If m¿ 3, then C4(P2)

is a proper subgraph of C4(Pm). So we have �(C4(Pm))¡− 4 by Theorem 3.1. From
the fact h1(C5(P2)) = x3 + 6x2 + 8x + 1, one can easily get that �(C5(P2))¡ − 4 by
calculating. When n¿ 6, it follows from Lemma 3.1 that

h(Cn(P2)) = x(h(Cn−1(P2)) + h(Cn−2(P2))):

Since �(C5(P2))¡�(C4(P2)) = −4 and @h(Cn(P2)) = @(xh(Cn−2(P2))) − 1, we know
from Lemma 2.7 that

�(Cn(P2))¡�(Cn−1(P2))¡ · · ·¡�(C4(P2)) = −4:

When n¿ 5 and m¿ 3, Cn(P2) is a proper subgraph of Cn(Pm). By Theorem 3.1, we
have �(Cn(Pm))¡− 4.

(iv) If n = 3, then there must exist a subgraph C3(P2; P2) in C3(Pm1 ; Pm2 ). From
h1(C3(P2; P2)) = x2 + 5x + 4, we have �(C3(P2; P2)) = −4. By Theorem 3.1, we get
�(C3(Pm1 ; Pm2 ))¡− 4 if m1¿ 3 or m2¿ 3; if n¿ 4, then Cn(Pm1 ; Pm2 ) has a proper
subgraph Cn(Pm1 ). By Theorem 3.1 and (iii) of the lemma, the result holds.

Theorem 3.2. Let G be a connected graph without triangles. Then

(i) �(G) = −4 if and only if

G ∈{T (1; 2; 5); T (2; 2; 2); T (1; 3; 3); K1;4; C4(P2)} ∪U;

(ii) �(G)¿− 4 if and only if G ∈{K1; T (1; 2; i)(26 i6 4)} ∪P ∪ C ∪T1.

Proof. If G is a tree, then the theorem follows from Lemma 2.9 immediately.
Suppose that G is a connected graph without triangles and q(G)¿p(G). If p(G)6 5

or G ∼= Cn, then G must be Cn or C4(P2). By Lemma 3.2, the result of the theorem is
true. If p(G)¿ 6 and G 	∼= Cn, then G must contain either a subgraph Cn(P2)(n¿ 5)
or a proper subgraph C4(P2). By Theorem 3.1 and Lemma 3.2, we have �(G)¡− 4:

This completes the proof of the theorem.

Theorem 3.3. Let G be a connected graph. Then

(i) �(G) = −4 if and only if

G ∈{T (1; 2; 5); T (2; 2; 2); T (1; 3; 3); K1;4; C4(P2); C3(P2; P2); K−
4 ; D8} ∪U;

(ii) �(G)¿− 4 if and only if

G ∈{K1; T (1; 2; i)(26 i6 4); Di(46 i6 7)} ∪P ∪ C ∪T1:
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Proof. From Theorem 3.2, the theorem holds if G is triangle free.
If G contains only one triangle, then any graph except Di(46 i6 8), C3(P2; P2) and

C3 contains a proper subgraph G∗ such that G∗ ∈{D8; C3(P2; P2); K1;4; Un(n¿ 6)}. The
theorem follows by Lemma 3.2 and Theorem 3.1.

If G contains at least two triangles, then any graph except K−
4 must contain a

proper subgraph G∗ such that G∗ ∈{Un(n¿ 6); C3(P2; P2); K−
4 ; K1;4}. By Lemma 3.2

and Theorem 3.1, the theorem holds.

Theorem 3.3 means that the minimum real roots of �(G; x) are greater than or equal
to −4 if and only if the components of CG are subgraphs of the following graphs:

T (1; 2; 5); T (2; 2; 2); T (1; 3; 3); K1;4; Un; C4(P2); C3(P2; P2); K−
4 ; D8:

It is well known (see Corollary 3.1 in [2] or Proposition 4.1 in [3]) that if CG is a
graph without triangles, then all the roots of �(G; x) are real. By Lemmas 2.5 and 2.7,
we have the following corollaries.

Corollary 3.1. Let G be a connected graphs. Then �(G)¿− 3 if and only if

G ∈{P2; P3; P4; P5; C3; T (1; 1; 1); K1}:

Corollary 3.2. Let G be a connected graphs with �(G)¿− 4. Then all the roots of
�( CG; x) are real.

4. Chromatic uniqueness of graphs

By using some properties of the adjoint polynomials of graphs, the authors of [5,6]
and [12,14,16,17] gave many chromatically unique graphs. One can see that most of
the chromatically unique graphs are some graphs of form

⋃
i Hi such that �(Hi)¿−4

for any i. However, they did not give any su5cient and necessary conditions for all
graphs of form

⋃
i Hi with �(Hi)¿ − 4 to be �-unique. In this section, by using the

fact that �( CG) = �( CH) if G ∼ H , we shall obtain a su5cient and necessary condition
for all graphs of form

⋃
i Hi with �(Hi)¿ − 4 to be �-unique. We also obtain a

su5cient and necessary condition for all graphs of form
⋃
i Hi with �(Hi) =−4 to be

�-unique.

Lemma 4.1 (Zhao et al. [18]). (i) For n¿ 4, the set of the roots of h1(Cn) is{
−2
(

1 + cos
2i − 1
n

/
)
|16 i6

[n
2

]}
:

(ii) For n¿ 2, the set of the roots of h1(Pn) is{
−2
(

1 + cos
2i
n+ 1

/
)
|16 i6

[n
2

]}
:
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Lemma 4.2 (Zhao et al. [18]). (i) (x + 3)| ==h1(P2n):
(ii) For n¿ 1; m¿ 4, (h1(Cm); h1(P2n)) = 1.
(iii) For n1¿ 3; n2¿ 4, h1(Pn1 )h1(Cn2 ) = h1(Pn1+n2 ) if and only if n2 = n1 + 1.
(iv) All the roots of h1(Pn) and h1(Cm) are simple.

By Lemma 2.4, one can check the following results: h(C4)=h(D4), h(P4)=h(K1∪C3),
h(P2)h(C6)=h(P3)h(D5), h(P2)h(C9)=h(P5)h(D6) and h(P2)h(C15)=h(P5)h(D7)h(C5).
So, by Lemmas 2.8 and 4.1, it is easy to prove the following lemma.

Lemma 4.3. (i) �(Ck) = �(P2k−1) for k¿ 4 and �(C3) = �(P4),
(ii) �(D4) = �(C4) = �(P7),
(iii) �(D5) = �(C6) = �(P11),
(iv) �(D6) = �(C9) = �(P17),
(v) �(D7) = �(C15) = �(P29).

Lemma 4.4. Let G = t1P2 ∪ t2P3 ∪ t3P5 ∪ t4C3. Then G is adjointly unique.

Proof. Let H be a graph such that h(H)= h(G) and H =
⋃
i Hi. By Corollary 3.1, we

have

Hi ∈{K1; P2; P3; P4; P5; C3; T (1; 1; 1)}:
Denote the number of K1, P2, P3, P4, P5, C3 and T (1; 1; 1) in H by m0; m1; m2;

m3; m4; m5 and m6, respectively. By Lemmas 2.1 and 2.6, we have

R(H) = R(G) = m1 + m2 + m3 + m4 + m5 = t1 + t2 + t3 + t4:

Hence

m1 + m2 + m3 + m4 + m5 = t1 + t2 + t3 + t4:

Since h1(C3) is irreducible over the rational number ;eld and h1(P4)=h1(C3), we have
m3 +m5 = t4 and m1 +m2 +m4 = t1 + t2 + t3 by Lemma 2.6. As p(G)−q(G)= t1 + t2 + t3,
p(H) − q(H) =m0 +m1 +m2 +m3 +m4 +m6 and p(G) − q(G) = p(H) − q(H), we
have m0 + m3 + m6 = 0. This implies that m0 = m3 = m6 = 0 and m5 = t4. Therefore,

Hi ∈{P2; P3; P5; C3}:
By Lemmas 2.8 and 4.3, we have

�(P5)¡�(C3)¡�(P3)¡�(P2):

Comparing the minimum real roots of h(G) with those of h(H), we know that
H ∼= G.

Theorem 4.1. Let n; m∈N; n¿m; G = Kn − E(
⋃
i Pmi).

(i) If n¿m, then G is �-unique if and only if, for each i, either mi ≡ 0 (mod 2)
and mi 	= 4 or mi = 3,

(ii) If n = m, then G is �-unique if and only if, for each i, either mi ≡ 0 (mod 2)
and mi 	= 4 or mi = 3; 5, where m= m1 + m2 + · · · + mk; mi¿ 2; i = 1; 2; : : : ; k.
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Proof. Since Kn − E(
⋃
i Pmi) = lK1 ∪ (

⋃
i Pmi), we need only consider the necessary

and su5cient condition for F= lK1 ∪ (
⋃
i Pmi) to be adjointly unique, where l=n−m.

Let H be a graph such that h(H) = h(F) and H =
⋃
i Hi. By Lemma 2.1, we have

t∏
i=1

h(Hi) = xl
k∏
i=1

h(Pmi): (1)

By Theorem 3.3, we get

Hi ∈{K1; T (1; 2; i)(26 i6 4); Di(46 i6 7)} ∪P ∪ C ∪T1:

Without loss of generality, we assume m1=max{mi|i=1; 2; : : : ; k}. When mi¿ 6 and
mi is even, by Lemmas 2.5, 2.8, 4.2 and 4.3 we know that �(F) = �(Pm1 ) and there
exists a component, say H1, in H such that �(H1) = �(H) = �(Pm1 ). Hence H1

∼= Pm1 .
Eliminating a common factor h(Pm1 ) of h(H) and h(F), we have

t∏
i=2

h(Hi) = xl
k∏
i=2

h(Pmi):

Repeating the above process, we can obtain that for any mi¿ 6 and mi is even, there
exists a component Hi in H such that Hi ∼= Pmi . Eliminating all the factors h(Pmi)
(mi¿ 6) of the two sides of equality (1), we obtain

t2∏
i=t1

h(Hi) = xl
k2∏
i=k1

h(Pmi); (2)

and mi ∈{2; 3; 5}.
We distinguish two cases:
Case 1: n = m. It is clear that l = 0 and mi ∈{2; 3; 5}. By Lemma 4.4, we have

H ∼= F .
Case 2: n¿m. In this case, we have mi ∈{2; 3}. Hence, Hi ∈{P2; P3} by Lemmas

2.8 and 4.3. By comparing the minimum real roots of the left-hand side with those of
the right-hand side in equality (2), we have H ∼= F .

Conversely, note that h(P2n+1) = h(Pn ∪ Cn+1) for n¿ 3, h(P4) = h(C3 ∪ K1), and
h(P5 ∪ K1) = h(P2 ∪ T (1; 1; 1)). This shows the necessity of the theorem.

Corollary 4.1. Let n; m∈N; n¿m and G = Kn − E(Pm).
(i) If n¿m, then G is �-unique if and only if m ≡ 0 (mod 2) and m 	= 4, or m=3;
(ii) if n=m, then G is �-unique if and only if m ≡ 0 (mod 2) and m 	= 4, or m=3; 5.

This corollary gives a positive answer to Du’s Problem [6] and Liu’s Conjecture
[12], which was also done in [5].

Let A; Ai; B; Bi; M;Mi be some multisets with positive integer numbers as their ele-
ments for i = 1; 2, see Section 1.2 in [15].

Lemma 4.5. Let G = m1P2 ∪ (
⋃
i∈A1

Pi) ∪ (
⋃
j∈B1

Cj) and H = m2P2 ∪ (
⋃
i∈A2

Pi) ∪
(
⋃
j∈B2

Cj)∪(
⋃
k∈M1

Dk). If h1(G)=h1(H), thenm1=m2+|M1|,where i¿ 3; j¿ 4; k¿ 5.
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Proof. Since h1(G) = h1(H), by Lemmas 2.2 we know that R(G) =R(H) and q(G) =
q(H). By Lemma 2.6, we have m1 + |A1| = m2 + |A2| and p(G) = p(H). Let m1 +
|A1|=m;p(G) = n and |M1|= s. Note that G has n vertices, n−m edges, 2m vertices
of degree 1 and NA(G) = N (K4) = 0. By Lemma 2.2, we have

b3(G) =
1
6

(n− m)((n− m)2 + 3(n− m) + 4) − n− m+ 2
2

(
n−2m∑
i=1

22 + 2m

)

+
1
3

(
n−2m∑
i=1

23 + 2m

)
+
n−3m+m1∑

i=1

22 + 4(m− m1) + m1:

Note that H has n − m edges, n vertices, 2m + s vertices of degree 1, s vertices of
degree 3, s triangles and N (K4) = 0. By Lemma 2.2, we have

b3(H) =
1
6

(n− m)((n− m)2 + 3(n− m) + 4)

− n− m+ 2
2

(
n−2m−2s∑
i=1

22 + 2m+ 10s

)

+
1
3

(
n−2m−2s∑
i=1

23 + 2m+ 28s

)
+
n−3m−4s+m2∑

i=1

22

+ 4(m− m2) + m2 + 13s+ s(n− m+ 2):

Since b3(G) = b3(H), we have m1 = m2 + s= m2 + |M1|.

Lemma 4.6 (Du [6]). If mi¿ 3 and mi 	= 4, then
⋃
i Cmi is �-unique.

Theorem 4.2. Let G=(
⋃
i∈A Pi)∪ (

⋃
j∈B P2j)∪ (

⋃
k∈M Ck)∪ lC3. Then CG is �-unique

if and only if 1 	∈ B and D=2, or 1∈B; D=2 and k 	= 6; 9; 15, where D=({i|i∈A}∩
{k − 1|k ∈M})∪ ({2j | j∈B}∩{k − 1|k ∈M}), i=3 or 5 if i∈A, k¿ 5 if k ∈M and
2 	∈ B.

Proof. It is not di5cult to see that we need only prove that the necessary and su5cient
condition for G to be adjointly unique is 1 	∈ B and D = 2, or 1∈B;D = 2 and k 	=
6; 9; 15.

Let H be a graph such that h(H) = h(G). We proceed by induction on |A| + |B| +
|M | + l. By Lemma 4.6 and Theorem 4.1, H ∼= G when |A| + |B| + |M | + l= 1.

Suppose |A|+ |B|+ |M |+l=m¿ 2 and the theorem is true if |A|+ |B|+ |M |+l¡m.
Let H =

⋃
i Hi. By Theorem 3.3, we have

Hi ∈{K1; T (1; 2; i)(26 i6 3); Di(46 i6 7)} ∪P ∪ C ∪T1: (3)

Let n = max{a|a∈A ∪ B′ ∪M ′}, where B′ = {2j|j∈B}; M ′ = {2k − 1|k ∈M}. We
distinguish two cases:
Case 1: n= 2t; t 	= 2. By Lemmas 2.5, 2.8, 4.2 and 4.3, there must exist a number

t ∈B such that �(G)=�(P2t), and there exists a component Hi in H such that �(P2t)=
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�(Hi) and Hi ∼= P2t . Hence, H = P2t ∪ F . By the induction hypothesis, we have

F ∼=
[⋃

∈A
Pi

]
∪

 ⋃
j∈B\{t}

P2j


 ∪

[ ⋃
k∈M

Ck

]
∪ lC3:

Therefore, H ∼= G.
Case 2: n= 2t − 1. If n= 3; 5, then M = 2, A= {3; 5}, l¿ 0 and B= {1}. Hence,

all components of G are P2, P3, P5 or C3. By Lemma 4.4, we have H ∼= G. If
n = 2t − 1¿ 7, then by Lemmas 2.5, 2.8, 4.2 and 4.3, there exists a number t ∈M
such that �(G) = �(Ct) and a component Hi in H such that �(H) = �(Hi) = �(Ct),
where t¿ 4 and Hi is one of the following graphs

P2t−1; Ct ; T (1; 1; t − 2); D4; D5; D6; D7; T (1; 2; i − 3) (56 i6 7):

Case 2.1: Ct is a component in H such that �(Ct) = �(H).
Assume that H = Ct ∪ F . Then, by the induction hypothesis we have

F ∼=
[⋃
i∈A
Pi

]
∪

⋃
j∈B
P2j


 ∪


 ⋃
k∈M\{t}

Ck


 ∪ lC3:

Hence H ∼= G:
Case 2.2: H contains a component P2t−1 such that �(P2t−1) = �(H).
Without loss of generality, let H = P2t−1 ∪ F . By Lemma 4.2, we have

h(G; x) = h(H; x) = h(Ct; x)h(Pt−1; x)h(F; x):

Hence

h


[⋃

i∈A
Pi

]
∪

⋃
j∈B
P2j


 ∪


 ⋃
k∈M\{t}

Ck


 ∪ lC3


= h(Pt−1 ∪ F):

By the induction hypothesis, we have[⋃
i∈A
Pi

]
∪

⋃
j∈B
P2j


 ∪


 ⋃
k∈M\{t}

Ck


 ∪ lC3

∼= Pt−1 ∪ F:

Hence t − 1∈A ∪ B′ and t ∈M . This implies t − 1∈D, which is contrary to D = 2.
Case 2.3: There exists a component T (1; 1; t − 2) in H such that �(T (1; 1; t − 2)) =

�(H), where t¿ 4.
Assume that H = T (1; 1; t − 2) ∪ F . By Lemma 2.5, we have

h(G; x) = h(H; x) = h(T (1; 1; t − 2); x)h(F; x) = h(Ct; x)[xh(F; x)]:

So,

h


[⋃

i∈A
Pi

]
∪

⋃
j∈B
P2j


 ∪


 ⋃
k∈M\{t}

Ck


 ∪ lC3


= h(K1 ∪ H1):
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By the induction hypothesis,[⋃
i∈A
Pi

]
∪

⋃
j∈B
P2j


 ∪


 ⋃
k∈M\{t}

Ck


 ∪ lC3

∼= K1 ∪ F;

which is impossible.
Case 2.4: Di is a component of H and �(Di) = �(H) for some i (46 i6 7).
If D4 is a component of H such that �(D4) = �(Ct), then t = 4. This contradicts to

4 	∈ M . If Di is a component of H and �(Di) = �(H) = �(Ct) for some i (56 i6 7),
then t=6; 9; 15 by Lemmas 2.8 and 4.3. Hence, according the condition of the theorem,
P2 is not a component of G. Therefore we have the following claim by Lemmas 2.5
and 4.5.

Claim. H must contain a component T (1; 1; 1).

Proof. Suppose that H does not contain a component T (1; 1; 1). Then, according to
(3), we can assume that

H =m2P2 ∪
(⋃

a

Pa

)
∪
(⋃

b

Cb

)
∪
(⋃

c

T (1; 1; c)

)

∪

⋃

f

Df


 ∪

(⋃
s

T (1; 2; s)

)
∪ rK1;

where a¿ 3; b¿ 3; c¿ 2; f = 4; 5; 6; 7 and s= 2; 3; 4.
Since h(D4) = h(C4) and h(C3) = h(P4), by Lemma 2.5, we have

h1(H) = h1


m2P2 ∪

(⋃
i∈A2

Pi

)
∪

⋃
j∈B2

Cj


 ∪

( ⋃
k∈M1

Dk

)
and

h1(G) = h1


(⋃

i∈A
Pi

)
∪

 ⋃
j∈B\1

P2j


 ∪

(⋃
k∈M

Ck

)
∪ lC3


 ;

where i¿ 3 for i∈A2, j¿ 4 for j∈B2, and |M1|¿ 1 and k¿ 5 for any k ∈M1.
Since h1(G)=h1(G), by Lemma 4.5 we have m2+|M1|=0, contradicting to |M1|¿ 0.

This implies that T (1; 1; 1) is a component of H if Di is a component of H , where
i = 5; 6; 7. This completes the proof of the claim.

Case 2.4.1: D7 is a component in H and �(D7) = �(H) = �(G).
By Lemmas 2.8 and 4.3, C15 is a component of G and �(C15)=�(G), and the order

of a maximum path component (resp., a maximum cycle component) in H is less
than 29 (resp., 15). Remembering that h(P2)h(C15)=h(P5)h(D7)h(C5), by Lemma 4.1
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we have

h1(C15) = h1(D7)(x + 3)
(
x + 2 + 2 cos

/
5

)(
x + 2 + 2 cos

3/
5

)
;

and h(Pa) and h(Cb) does not include the factor (x+2+2 cos(/=5))(x+2+2 cos(3/=5))
when a6 28; b6 14, unless a = 19; 9 and b = 5. Hence, at least one of P19, P9 and
C5 is a component of H . Since h(P19) = h(P4)h(C5)h(C10), h(P9) = h(P4)h(C5) and
h(C15) = h(D7)h(T (1; 1; 1))h(C5)=x, by the Claim we have

h(H) = h(F)h(D7)h(T (1; 1; 1))h(C5) = h(F ∪ K1)h(C15):

Hence,

h


[⋃

i∈A
Pi

]
∪

⋃
j∈B
P2j


 ∪


 ⋃
k∈M\{15}

Ck


 ∪ lC3


= h(K1 ∪ F):

By the induction hypothesis, we have[⋃
i∈A
Pi

]
∪

⋃
j∈B
P2j


 ∪


 ⋃
k∈M\{15}

Ck


 ∪ lC3

∼= K1 ∪ F;

which is impossible.
Case 2.4.2: D6 is a component of H and �(D6) = �(H).
By Lemma 4.3, �(D6) = �(C9) and C9 is a component of G. Without loss of

generality, we can assume that H = F ∪ D6 ∪ T (1; 1; 1) by the Claim. As h(C9) =
h(D6)h(T (1; 1; 1))=x, we have

h(H) = h(F)h(D6)h(T (1; 1; 1)) = h(F ∪ K1)h(C9):

Hence, we obtain

h


[⋃

i∈A
Pi

]
∪

⋃
j∈B
P2j


 ∪


 ⋃
k∈M\{9}

Ck


 ∪ lC3


= h(K1 ∪ F):

By the induction hypothesis, we have[⋃
i∈A
Pi

]
∪

⋃
j∈B
P2j


 ∪


 ⋃
k∈M\{9}

Ck


 ∪ lC3

∼= K1 ∪ F;

which is impossible.
Case 2.4.3: D5 is a component of H and �(D5) = �(H).
By Lemmas 2.8 and 4.3, C6 is a component of G and �(C6) = �(G), and the order

of a maximum path component (resp., a maximum cycle component) in H is less than
11 (resp., 6). Noticing that h(P2)h(C6) = h(P3)h(D5), by Lemma 4.1, we have

h1(C6) = (x + 2)
(
x + 2 + 2 cos

/
6

)(
x + 2 + 2 cos

5/
6

)
;
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and h1(Pa) and h1(Cb) does not include the factor (x+2) when a¡ 11; b¡ 6, unless
a= 3; 7; and only h1(P5) include the factor (x+ 3). Hence, at least one of P3 or P7 is
a component of H and P5 must be a component of G. Since h(P7) = h(P3)h(C4), by
the Claim we have

h(H) = h(F)h(P3)h(T (1; 1; 1))h(D5) = h(F)h(P2)h(C6)h(T (1; 1; 1))

and

h(G) = h(G1)h(P5)h(C6):

Hence, we have

h


[⋃

i∈A
Pi

]
∪

⋃
j∈B
P2j


 ∪


 ⋃
k∈M\{6}

Ck


 ∪ lC3


= h(P2 ∪ T (1; 1; 1) ∪ F):

By the induction hypothesis, we get[⋃
i∈A
Pi

]
∪

⋃
j∈B
P2j


 ∪


 ⋃
k∈M\{6}

Ck


 ∪ lC3

∼= P2 ∪ T (1; 1; 1) ∪ F;

which is impossible.
Case 2.5: T (1; 2; i)(26 i6 4) is a component of H .
Let H = T (1; 2; i) ∪ F . We have

h(G; x) = h(H; x) = h(T (1; 2; i); x)h(F; x) = h(Di+3; x)[xh(F; x)];

which is impossible from Case 2.4.
Conversely, if j= i+ 1, then h(Pi)h(Ci+1) = h(P2i+1) by Lemma 4.2. Recalling that

h(P2)h(C6)=h(P3)h(D5); h(P2)h(C9)=h(P5)h(D6) and h(P2)h(C15)=h(P5)h(D7)h(C5).
This shows the necessity of the theorem.

The proof of the theorem is complete.

From Lemma 2.5, and Theorems 4.1 and 4.2, we have

Corollary 4.2. Let G be a graph with p vertices and �(G)¿p−3, then G is �-unique
if and only if CG is the following graphs:

(i) rK1 ∪ (
⋃
Pi) for r = 0, i ≡ 0 (mod 2) and i 	= 4; or r = 0 and i= 3; 5; or r 	= 0,

i ≡ 0 (mod 2) and i 	= 4; or r 	= 0 and i = 3;
(ii) t1P2 ∪ t2P3 ∪ t3P5 ∪ (

⋃
j Pj) ∪ (

⋃
k Ck) ∪ lC3 for t1 = 0; l¿ 0; k 	= j+ 1 and j

is even; or t1 	= 0; l¿ 0; k 	= j + 1, k 	= 6; 9; 15 and j is even, where j¿ 6; k¿ 5.

Remark. It is easy to see that all the chromatically unique graphs exhibited in [5,6,13,17]
and many of chromatically unique graphs exhibited in [12,14,16] are special cases of
this corollary.

Lemma 4.7. For any m¿ 6 and n¿ 5, we have h(Um) = x3(x + 4)h(Pm−4) and
h(U2n+1) = h(Un+2)h(Cn−1).
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Proof. By Lemmas 2.3 and 2.5, for m¿ 6, we have

h(Um) = xh(T (1; 1; m− 4)) + x2h(T (1; 1; m− 6))

= x2h(Pm−2) + 2x3h(Pm−4) + x4h(Pm−6)

= x3h(Pm−3) + 4x3h(Pm−4) − x4h(Pm−5)

= x3(x + 4)h(Pm−4):

By Lemma 4.2, if n¿ 5 and m= 2n+ 1, then

h(U2n+1) = x3(x + 4)h(Pn−2)h(Cn−1) = h(Un+2)h(Cn−1):

From Theorem 4.1(i), we have

Lemma 4.8. Let i = 3 or i¿ 6 and i is even. If
m1∏
i=1

h1(Pni) =
m2∏
j=1

h1(Hj);

then m1 = m2 and
⋃m1
i=1 Pni ∼=

⋃m2
j=1 Hj, where Hj is connected, j = 1; 2; 3; : : : ; m2.

Theorem 4.3. Let ni ∈N and ni¿ 6. Then
⋃m
i=1 Uni is �-unique if and only if ni = 7

or ni¿ 10 and ni is even, where i = 1; 2; : : : ; m.

Proof. Suppose that h(H) = h(G) and let H =
⋃m1
j=1 Hj. By Lemma 2.3, we have

m∏
i=1

h(Uni) =
m1∏
j=1

h(Hj); (4)

By Theorem 3.3, we have

Hj ∈{T (2; 2; 2); T (1; 3; 3); K1;4; C4(P2); C3(P2; P2); K−
4 ; D8;

T (1; 2; i)(26 i6 5); Di(46 i6 7); K1} ∪P ∪ C ∪T1 ∪U:

By calculating, we obtain the following:
h1(C3(P2; P2)) = h1(C4(P2)) = h1(K−

4 ) = h1(P2)h1(K1;4),
h1(D8) = h1(T (1; 2; 5)) = h1(P2)h1(P4)h1(K1;4),
h1(T (1; 3; 3)) = h1(P2)h1(P3)h1(K1;4),
h1(T (2; 2; 2)) = h2

1(P2)h1(K1;4).
Since h1(K1;4) = x + 4, eliminating all the factors x + 4 and x in the two sides of

(4), we obtain from Lemma 4.7 that
m∏
i=1

h1(Pni−4) =
m2∏
j=1

h1(H ′
j ); m26m1

and

H ′
j ∈{T (1; 2; i)(26 i6 4); Di(46 i6 7)} ∪P ∪ C ∪T1:
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Note that ni − 4 = 3 or ni − 4¿ 6 and ni − 4 is even. By Lemma 4.8, we have
m⋃
i=1

Pni−4
∼=

m2⋃
j=1

H ′
j : (5)

Hence Hj ∈{K1;4}∪P∪U and H must has exactly m components H1; H2; : : : ; Hm such
that �(Hi)=−4 and m6m1. For each component Hj, we have q(Hj)−p(Hj)=−1; j=
1; 2; : : : ; m1. Hence q(H)−p(H)=−m1. Since q(G)−p(G)=−m and q(H)−p(H)=
q(G) − p(G), we have m= m1 = m2 and Hj ∈U; j = 1; 2; : : : ; m. By (4) and (5), we
have G ∼= H .

Note that h(U6)=h(K−
4 )h(2K1), h(U9)=h(K1)h(K1;3)h(K−

4 ) and h(U8)=h(C3)h(K1;4).
So, the necessary condition of the theorem follows from Lemma 4.7 immediately.

Corollary 4.3. Let n∈N and n¿ 6. Then Un is �-unique if and only if n = 7 or
n¿ 10 and n is even.
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