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on periodic sequences. In particular, for case i), note that the condi-
tion is violated because for any d � 1, the shift space S(d; 2d) con-
tains a sequence of period d + 1, namely, the sequence (0d1)

1

=
� � � 0d1 0d1 0d1 . . ., while S(d + 1; 3d + 1) does not contain any se-
quence of period d+1 or less. The periodic sequence condition is vio-
lated in case ii) as well, since S(d;1) contains the all-zeros sequence
01, which is periodic with period 1, while S(d � 1; 2d� 1), d > 1,
does not contain the all-zeros sequence or the all-ones sequence, which
are the only sequences of period 1. We would like to remark that when
d = 1, the shift space S(d�1; 2d�1) does in fact contain the all-ones
sequence.

The condition on periodic sequences is not strong enough to handle
case iii), since S(4;1) contains the period-1 sequence consisting of
all zeros. Instead, we show that there cannot exist a rate 1:1 sliding-
block decodable encoder from S(4;1) to either S(1; 2) or S(2; 4) by
appealing to the characteristic polynomial condition. From (3), we see
that

�4;1(z) = z
5 � z

4 � 1

and from (2) we find that

�1;2(z) = z
3 � z � 1

and

�2;4(z) = z
5 � z

2 � z � 1:

By inspection, it follows that �4;1(z) is not a divisor of either �1;2(z)
or �2;4(z) in the ring of integer polynomials. Therefore, there does
not exist a sliding-block mapping from either S(1; 2) or S(2; 4) onto
S(4;1). This completes the proof of Theorem I.1.

We would like to make one final observation regarding the
(d; k)-constrained shift spaces S(d; k). Our proof of Theorem I.1 in
fact shows that given distinct shift spaces S(d; k) and S(d̂; k̂) of equal
capacity, there exists a sliding-block map from S(d̂; k̂) onto S(d; k)
if and only if one of Conditions 1–4 in the statement of the theorem
holds. It follows that the only case where there exists a sliding-block
map from S(d̂; k̂) onto S(d; k), and from S(d; k) onto S(d̂; k̂) as
well, is when f(d; k); (d̂; k̂)g = f(0; 1); (1;1)g. Therefore, aside
from S(0; 1) and S(1;1), no pair of distinct (d; k)-constrained
shift spaces can be conjugate. It is a well-known and trivial fact that
S(0; 1) and S(1;1) are indeed conjugate as shift spaces, the required
conjugacy being obtained by mapping 0’s and 1’s to their respective
complements. Thus, the only pair of (d; k)-constrained shift spaces
that are conjugate are S(0; 1) and S(1;1).
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Binary Construction of Quantum Codes of Minimum
Distance Three and Four

Ruihu Li and Xueliang Li

Abstract—We give elementary recursive constructions of binary self-
orthogonal codes with dual distance four for all even lengths 12

and = 8. Consequently, good quantum codes of minimum distance
three and four for such length are obtained via Steane’s construction and
the CSS construction. Previously, such quantum codes were explicitly con-
structed only for a sparse set of lengths. Almost all of our quantum codes
of minimum distance three are optimal or near optimal, and some of our
minimum-distance four quantum codes are better than or comparable with
those known before.

Index Terms—Binary code, quantum error correcting code, self-orthog-
onal code.

I. INTRODUCTION

Since the initial discovery of quantum error-correcting codes [8],
researchers have made great progress in developing quantum codes.
Many code constructions are given in [2], [8], [9], [11]. Reference [2]
gives a thorough discussion of the principles of quantum coding theory,
many example codes, and a tabulation of codes and bounds on the min-
imum distance for codeword length n up to 30 quantum bits. For larger
n there has been less progress, and only a few general code construc-
tions are known, see [1], [2], [4], [5], [10], [11].

In [2, Theorems 10 and 11], Calderbank et al. proved that whenn is a
power of 2 or sums of odd power of 2, there exists a quantum code with
parameters [[n; n�m� 2; 3]] for certain m, see Theorem 1.2 below.
An [[n; k; d]] code is an additive minimum-distance d quantum code
of length n encoding k quantum bits [2]. In this correspondence, we
use elementary recursive constructions to generalize their result to all
even n � 12 and n = 8. Our quantum codes are additive and pure in
the nomenclature of [2], [11]. A pure additive code is nondegenerate in
the nomenclature of [2], [6]. Using the sphere-packing bound, we show
that almost all of our quantum codes of minimum distance three are
optimal or near optimal, and some of our quantum codes of minimum
distance four are better than or comparable to previously known codes
in [1], [2], [5], [11].
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First, we give some notations and recall some results of [2], [3], [8],
[9], [11]. In the following, we always assume that n is even and n � 12
orn = 8, k � 3, and that all the matrices and classical codes are binary.

Let H be a k by n matrix of rank k, and C = hHi be the linear code
generated by H . Then the dual code C? of C is defined as

C? = fx 2 Fn
2 j HxT = 0g:

A code C is self-orthogonal if C � C?, and self-dual if C = C?. Let
1n = (1; 1; . . . ; 1)1�n be the all-ones vector of length n and 0t =
(0; 0; . . . ; 0)1�t for t � 1, and let the code Cn0 = h1ni. Then Cn0 is
self-orthogonal and C?n0 is an [n; n� 1; 2] code with all words having
even weight.

Theorem 1.1: Let C and C0 be binary [n; k; d] and [n; k1; d1] codes,
respectively.

1) (CSS construction [3], [8], [9]) If C? � C0, then an

[[n; k + k1 � n;minfd; d1g]]

code can be constructed. Especially, if C? � C, then there exists
an [[n; 2k � n; d]] code.

2) (Steane’s construction [11]) If C? � C � C0, and k1 � k+ 2,
then an

n; k + k1 � n;min d;
3

2
d1

code can be constructed.

Theorem 1.2:

1) ([2, Theorem 10]) For m � 3, there exists a [[2m; 2m �m �
2; 3]] code.

2) ([2, Theorem 11 ]) For odd m � 3,there exists an [[n; n�m�
2; 3]] code, where

n =

1�i�

22i+1:

According to the sphere-packing bound given in [2], [6], we give a
reasonable definition and an obvious proposition in the following, so
that in Section III, we can evaluate the optimality of the quantum codes
we obtain.

Definition 1.1:

1) A nondegenerate [[n; n�s; 2t+1]] code is optimal if there do not
exist nondegenerate [[n; n�s+1; 2t+1]] and [[n; n�s; 2t+3]]
codes.

2) A nondegenerate [[n; n � s; 2t + 1]] code is near optimal if
there do not exist nondegenerate [[n; n � s + 2; 2t + 1]] and
[[n; n � s; 2t + 3]] codes.

Proposition 1.1:

1) If 2s�1 < 1+ 3n � 2s < 1+ 3n+ 9n(n�1)
2

, then a nondegen-
erate [[n; n � s; 3]] code is optimal.

2) If 2s�2 < 1+ 3n � 2s < 1+ 3n+ 9n(n�1)
2

, then a nondegen-
erate [[n; n � s; 3]] code is near optimal.

Our goal is to construct a code Cn=hHniwith Cn0�Cn�C?n �C?n0
and C?n an [n; n � t; 4] code for some t � dlog2(n + 18)e + 1. Ac-
cording to Theorems 1.1 and 1.2, one can obtain quantum codes with
parameters [[n; n � t � 1; 3]] and [[n; n � 2t; 4]]. Our constructions
are based on the following easily proved lemma.

Lemma 1.1: Let Hn be a k by n matrix of rank k such that

Hn =
1 1 � � � 1 1

�0 �1 � � � �n�2 �n�1

=
1n

�0 �1 � � � �n�2 �n�1
:

If HnH
T
n = 0, and the k � 1-dimensional column vectors

�0; �1; . . . ; �n�2; �n�1 are all different, then Cn = hHni is self-or-
thogonal and C?n is an [n; n�k; 4] code, and Cn0 � Cn � C?n � C?n0.

II. CODES CONSTRUCTION

Let k � 3 be integer, for each i satisfying 0 � i < 2k , i has a
representation in the base 2 as

i = a0 + a1 � 2 + � � �+ ak�1 � 2k�1

where aj 2 F2 for 0 � j � k � 1. We define

'k(i) = (a0; a1; . . . ; ak�1)
T 2 F k

2 :

It is obvious that 'k(i) 6= 'k(j) while 0 � i < j < 2k , and
'k+t(i) = ('k(i)

T ; 0t)
T for 0 � i < 2k and t � 1.

Case A: n = 8m;m � 1.
Subcase A.1): For m = 1, let ' = '3, and

H8 =

1 1 1 1 1 1 1 1

0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1

0 0 0 0 1 1 1 1

=
1 1 1 1 1 1 1 1

'(0) '(1) '(2) '(3) '(4) '(5) '(6) '(7)

=

18

x0
x1
x2

:

It is well known that C8 = hH8i is a self-dual [8; 4; 4] code.
Subcase A.2): For m � 2, let 2k�1 < 8m � 2k, then 2k�1 �

8(m�1) < 2k; so we can assume 8(m�1) = 2j +2j + � � �+2k�1,
with j1<j2< � � �<k�1. We denote I8(m�1)=fj1; j2; . . . ; k � 1g,
and let ' = 'k . For 1 � s � m, we define the expression at the
bottom of the page. Then

yj =

xj ; for 0 � j � 2

18; for j > 2 and j 2 I8(s-1)
0; for j > 2 and j =2 I8(s-1):

Thus, we have Hk(8s�8; 8s�1)HT
k (8s�8; 8s�1) = 0, so we can

construct a k+1 by n matrixHn = H8m as shown in the expression at
the bottom of the next page. It is obvious that the rank of Hn is k+ 1,
and HnH

T
n = 0. Thus, we have shown that Cn = hHni satisfies

Hk(8s� 8; 8s� 1) = ('(8s� 8) '(8s� 7) '(8s� 6) '(8s� 5) '(8s� 4) '(8s� 3) '(8s� 2) '(8s� 1))

=

y0
y1
y2
...

yk�1

:
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Lemma 1.1 and C?n is an [n; n � dlog2 ne � 1; 4] code. We have now
proved the following theorem.

Theorem 2.1: For n = 8m, m � 1, there exist codes with parame-
ters [[n; n� dlog2 ne � 2; 3]] and [[n; n � 2dlog2 ne � 2; 4]].

Case B: n = 8m + 2, m � 2:
Subcase B.1): For 2 � m � 6, let ' = '6 and construct H14,

G1,G2,G3,G4 as shown at the bottom of the following page. It is easy
to check thatH14H

T

14 = 0 andGiG
T

i = 0, 1 � i � 4: the columns of
H14 and Gi (1 � i � 4) are all different, and H14 , G1, G2, G3, and
G4 are submatrices of H64. According to CASE A, we can construct
H50,H42,H34,H26, andH18 satisfying Lemma 1.1 as follows. Delete
the columns of H14 from H64 and denote the resulting matrix as H50.
For 1 � i � 4, delete the columns of Gi from H50�8(i�1) and denote
the resulting matrix as H50�8i, thus, we can obtain H42, H34, H26,
and H18.

It is easy to check that for n = 18; 26; 34; 42; 50, the code Cn =
hHni is self-orthogonal and C?n is an [n; n � 7; 4] code, thus, we can
obtain codes with parameters [[n; n� 8; 3]] and [[n; n� 14; 4]].

Subcase B.2): For m>6, n=8m+2. Let 2k�1<8(m+2)�2k ,
and let'='k . ConstructH14(m) as shown at the bottom of the second
next page. According to CASE A and the preceding discussion, delete
the columns ofH14(m) fromH8(m+2) and denote the resulting matrix
as Hn. It is easy to check that Cn = hHni is self-orthogonal and C?n is
an [n; n�dlog2(n+14)e�1; 4] code, thus, we can obtain codes with
parameters [[n; n� dlog2(n+ 14)e � 2; 3]] and [[n; n� 2dlog2(n+
14)e � 2; 4]]. Thus, we have proved the following theorem.

Theorem 2.2: Let n = 8m+ 2, m � 2.

1) If 2 � m � 6, there exist codes with parameters [[n; n � 8; 3]]
and [[n; n � 14; 4]].

2) If m > 6, there exist codes with parameters [[n; n� dlog2(n+
14)e � 2; 3]] and [[n; n � 2dlog2(n+ 14)e � 2; 4]].

Case C: n = 8m + 4, m � 1.
Subcase C.1): For m � 2, let ' = '5 and construct the second

matrix on the bottom of the second next page. It is easy to check that the
rank of H12 is 6 and H12H

T

12 = 0. Since H12 is a submatrix of H32,
delete the columns ofH12 fromH32 and denote the resulting matrix as
H20. According to CASE A, we have shown that for n = 8m+4,m �
2, the code Cn = hHni satisfies Lemma 1.1 and C?n is an [n; n� 6; 4]
code. Thus we can obtain codes with parameters [[n; n � 7; 3]] and
[[n; n � 12; 4]].

Subcase C.2): For m > 2, let 2k�1 < 8(m+ 2) � 2k , and let
' = 'k . Construct H12(m) as shown in the third matrix at the bottom
of the second next page. According to CASE A and the preceding dis-
cussion, we delete the columns of H12(m) from H8(m+2) and denote
the resulting matrix asHn. It is easy to check that the code Cn = hHni

is self-orthogonal and C?n is an [n; n � dlog2(n + 12)e � 1; 4] code.
Thus, we can obtain codes with parameters [[n; n�dlog2(n+12)e�
2; 3]] and [[n; n� 2dlog2(n+ 12)e � 2; 4]]. Summarizing the above,
we have proved the following theorem.

Theorem 2.3: Let n = 8m + 4, m � 1.

1) If m � 2, there exist codes with parameters [[n; n � 7; 3]] and
[[n; n � 12; 4]].

2) If m> 2, there exist codes with parameters [[n; n�dlog2(n+
12)e�2; 3]] and [[n; n � 2dlog2(n+ 12)e � 2; 4]].

Case D: n = 8m + 6, m � 1.
Subcase D.1): For m � 5, using the matrices H14, G1, G2, G3,

G4 constructed in CASE B, we can constructH22,H30,H38, andH46

satisfying Lemma 1.1 as follows:

H14+8(i�1) = (H14+8(i�1) Gi ) :

Thus, for n = 8m + 6, 1 � m � 5, the code Cn = hHni is self-
orthogonal and C?n is an [n; n � 7; 4] code , and we can obtain codes
with parameters [[n; n � 8; 3]] and [[n; n � 14; 4]].

Subcase D.2): Form > 5,n = 8m+6. Let 2k�1 < 8(m+3) �
2k, and let ' = 'k . Construct H18(m) as follows:

H18(m) =
H18

0(k�6)�18
:

According to CASE A, CASE B, and the preceding discussion, delete
the columns ofH18(m) fromH8(m+3) and denote the resulting matrix
as Hn. It is easy to check that Cn = hHni is self-orthogonal and C?n is
an [n; n�dlog2(n+18)e�1; 4] code, thus, we can obtain codes with
parameters [[n; n� dlog2(n+ 18)e � 2; 3]] and [[n; n� 2dlog2(n+
18)e � 2; 4]]. Summarizing the preceding discussion, we have proved
the following theorem.

Theorem 2.4: Let n = 8m + 6, m � 1.

1) If m � 5, there exist codes with parameters [[n; n � 8; 3]] and
[[n; n � 14; 4]].

2) If m > 5, there exist codes with parameters [[n; n� dlog2(n+
18)e � 2; 3]] and [[n; n � 2dlog2(n+ 18)e � 2; 4]].

The four cases discussed above are summarized by our main theorem
as follows.

Theorem 2.5:

1) Forn > 32, let k � 6. If 2k�1 < n � 2k�12, or n = 2k�8, or
n = 2k, there are codes with parameters [[n; n�dlog2 ne�2; 3]]
and [[n; n � 2dlog2 ne � 2; 4]].

If n = 2k � a, where a 2 f2; 4; 6; 10g, there are codes with
parameters [[n; n� dlog2 ne � 3; 3]] and [[n; n� 2dlog2 ne �
4; 4]].

H8m =
1n

Hk(0;7) Hk(8;15) � � � Hk(8m� 16; 8s� 9) Hk(8m� 8; 8m� 1)

=

18 18 � � � 12 �2 1
n�2

x0 x0 � � � � � � � � �

x1 x1 � � � � � � � � �

x2 x2 � � � � � � � � �

18 � � � � � � � � �
. . . � � � � � �

12 �2 � � �

1
n�2

=
1n

'(0) '(1) � � � '(8m� 2) '(8m� 1)
:
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2) For n � 32. There are codes with parameters

[[8; 3; 3]]; [[8; 0; 4]]; [[12; 5; 3]]; [[12; 0; 4]];

[[14; 6; 3]]; [[14; 0; 4]]; [[16; 10; 3]]; [[16; 6; 4]];

[[18; 10; 3]]; [[18; 4; 4]]; [[20; 13; 3]]; [[20; 8; 4]];

[[22; 14; 3]]; [[22; 8; 4]]; [[24; 17; 3]]; [[24; 12; 4]];

[[26; 18; 3]]; [[26; 12; 4]]; [[28; 20; 3]]; [[28; 14; 4]];

[[30; 22; 3]]; [[30; 16; 4]]; [[32; 25; 3]]; [[32; 20; 4]]:

Remark: While revising this correspondence, we found that the
codes C12 and C14 were called B12 and D14 in [12], respectively.

III. CONCLUDING REMARKS

In the sense of Definition 1.1, almost all of our quantum codes of
minimal distance three except the [[14; 6; 3]] code are optimal or near
optimal. Using the results of [2] for n � 30, one can easily check the
following result by using of Proposition 1.1.

Theorem 3.1:

1) Forn > 32, let k � 6. If 2 �1

3
< n � 2k�12, or n = 2k�8,

or n = 2k , the pure [[n; n�dlog
2
ne� 2; 3]] code is optimal. If

2k�1 < n < 2 �1

3
, the pure [[n; n�dlog

2
ne�2; 3]] code is

near optimal. If n = 2k � a, where a 2 f2; 4; 6; 10g, the pure
[[n; n � dlog

2
ne � 3; 3]] code is near optimal.

H14 =

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 0 1 0 0 0 0 0 0 0 0 1 0 1

0 1 1 0 0 0 1 1 1 1 0 0 1 1

0 0 0 1 0 1 0 1 0 1 0 0 0 0

0 0 0 0 1 1 0 0 1 1 0 0 0 0

0 0 0 0 0 0 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1 1 1

=
1 1 1 1 1 1 1 1 1 1 1 1 1 1

'(1) '(2) '(3) '(4) '(8) '(12) '(18) '(22) '(26) '(30) '(32) '(33) '(34) '(35)
;

G1 =

1 1 1 1 1 1 1 1

0 1 0 1 0 1 0 1

1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

0 0 1 1 0 0 1 1

0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0

=
1 1 1 1 1 1 1 1

'(6) '(7) '(14) '(15) '(16) '(17) '(24) '(25)
;

G2 =

1 1 1 1 1 1 1 1

0 1 0 1 0 1 0 1

0 0 0 0 1 1 1 1

1 1 1 1 1 1 1 1

0 0 1 1 0 0 1 1

1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1

=
1 1 1 1 1 1 1 1

'(20) '(21) '(28) '(29) '(38) '(39) '(46) '(47)
;

G3 =

1 1 1 1 1 1 1 1

0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1

0 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1

1 1 1 1 1 1 1 1

=
1 1 1 1 1 1 1 1

'(40) '(41) '(42) '(43) '(48) '(49) '(50) '(51)
;

G4 =

1 1 1 1 1 1 1 1

0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1

1 1 1 1 1 1 1 1

0 0 0 0 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

=
1 1 1 1 1 1 1 1

'(52) '(53) '(54) '(55) '(60) '(61) '(62) '(63)
:
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TABLE I
COMPARING QUANTUM CODES OF MINIMUM DISTANCE

THREE. THE [[n; k; 3]]CODES IN COLUMN 1 ARE

OUR NEAR-OPTIMAL CODES, THE [[n0; k0; 3]]
CODES IN COLUMN 2 ARE CODES OBTAINED IN [1], [5], [11], AND

COLUMN 3 LISTS THE REFERENCE AND NOTATION

2) For 12 � n � 32, or n = 8, the pure codes with pa-
rameters [[8; 3; 3]], [[16; 10; 3]], [[20; 13; 3]], [[24; 17; 3]], and
[[32; 25; 3]] are optimal, whereas the pure codes with parameters
[[12; 5; 3]], [[18; 10; 3]], [[22; 14; 3]], [[26; 18; 3]], [[28; 20; 3]],
and [[30; 22; 3]] are near optimal.

Remark: Unlike previously known additive quantum codes (pure
or impure ) in [1]–[11], our pure optimal codes in the sense of Defi-
nition 1.1 are optimal. Though the [[20; 13; 3]] code is near optimal in
the sense of Proposition 1.1, from [2] we know that it is optimal. And
the [[18; 10; 3]] code does not achieve the near-optimal condition of
Proposition 1.1, but from [2] we know that it is near optimal, because
the optimal [[18; 11; 3]] code is near optimal in the sense of Proposi-
tion 1.1. Thus, one can see that Proposition 1.1 is sufficient, but not
necessary.

Theorem 10 of [2] is a special case of our Theorem 2.1. Our
near-optimal [[40; 32; 3]]; [[168; 158;3]] � � � � codes are not as good
as the optimal [[40; 33; 3]]; [[168; 159; 3]] � � � � codes obtained by

TABLE II
COMPARING QUANTUM CODES OF MINIMUM DISTANCE FOUR. THE

[[n; k; 4]]CODES IN COLUMN 1 ARE OUR CODES, THE [[n0; k0; 4]]
CODES IN COLUMN 2 ARE CODES OBTAINED IN [1], [2], [5], AND

COLUMN 3 LISTS THE REFERENCE AND NOTATION

[2, Theorem 11], and our near-optimal [[12; 5; 3]], [[22; 14; 3]],
[[26; 18; 3]], [[28; 20; 3]], [[30; 22; 3]], [[264; 253; 3]] codes are not
as good as the corresponding optimal codes obtained in [2], [5].
However, many of our near-optimal quantum codes are better than or
comparable with previously known codes in [1], [5], [11], see Table I.
Thus, [2, Theorem 11] is partly generalized.

From [1]–[11], one can see the following. For n not too large, many
of our quantum codes of minimal distance four are very good. However,
when n increases, our quantum codes of minimal distance four become
worse. Even so, some of our quantum codes of minimal distance four
are better than or comparable with previously known codes in [1], [2],
[5], [11]. For convenience, we use Table II to list them.
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H14(m) =
1 1 1 1 1 1 1 1 1 1 1 1 1 1

'(1) '(2) '(3) '(4) '(8) '(12) '(18) '(22) '(26) '(30) '(32) '(33) '(34) '(35)

=
H14

0(k�6)�14
:

H12 =

1 1 1 1 1 1 1 1 1 1 1 1

0 1 0 1 0 1 0 1 0 1 0 1

0 0 1 1 1 1 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0

0 0 0 0 0 0 1 1 0 0 1 1

0 0 0 0 0 0 0 0 1 1 1 1

=
1 1 1 1 1 1 1 1 1 1 1 1

'(0) '(1) '(2) '(3) '(6) '(7) '(12) '(13) '(16) '(17) '(24) '(25)
:

H12(m) =
1 1 1 1 1 1 1 1 1 1 1 1

'(0) '(1) '(2) '(3) '(6) '(7) '(12) '(13) '(16) '(17) '(24) '(25)

=
H12

0(k�5)�12
:
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Time Intervals and Counting in Point Processes

Bernard Picinbono, Life Fellow, IEEE

Abstract—Time point processes can be analyzed in two different ways:
by the number of points in arbitrary time intervals or by distance between
points. This corresponds to two distinct physical devices: counting or time-
interval measurements. We present an explicit calculation, valid for arbi-
trary regular processes, of the statistical properties of time intervals such
as residual or life time in terms of counting probabilities. For this calcula-
tion, we show that these intervals must be considered as random variables
defined by conditional distributions.

Index Terms—Counting, point processes, time measurements.

I. INTRODUCTION

Point processes play an important role in many areas of physics and
information sciences. They appear on a microscopic scale in the de-
scription of particle emission, and, for example, optical communication
at a very low level of intensity requires the use of statistical properties of
photons or photoelectrons [1], [2]. On the other hand, at a macroscopic
level many areas such as traffic problems or computer communications
require the use of point process statistics [3].

There are two approaches to describe point processes theoretically
or to study them experimentally. The first one makes use of counting
procedures in one or several nonoverlapping time intervals. The appro-
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priate physical devices for this approach are counters. A limit aspect
of counting appears in coincidence experiments in which the time in-
tervals of counting are so small that they can only contain one or zero
point [4].

On the other hand, it is possible to analyze point processes by using
time intervals between points measurements. This introduces the con-
cept of residual time, or survival time, or waiting time of order n, which
is the time distance between an arbitrary time instant and the nth point
of the processes following this instant. It is also possible to study the
life time which is the time distance between successive or nonsucces-
sive points of the processes.

In the stationary case, the calculation of the probability distributions
of residual or life times in terms of counting probabilities is known [5],
[6]. However, in many practical situations, the stationarity assumption
cannot be introduced and it appears that the direct transposition of the
results obtained in the stationary case is not possible. The main reason
is that time intervals must be considered as random variables (RV) de-
fined by conditonal distributions. We shall see that this remark is of no
importance in the stationary case but it must be taken into account for
nonstationary processes. The omission of this fact has resulted in many
incorrect expressions appearing in classical books on point processes.
This is one of the reasons for analyzing the problem again and more
carefully.

Before going further, let us introduce some general concepts and
notation that will be used throughout the correspondence. As indicated
in the title, we are interested in time point processes, which means that
the points are time instants.

We assume that the point processes studied are defined only in a time
interval (Ti; T ), where Ti and T are the beginning and the end of the
processes, respectively. For the sake of simplicity we take Ti as the
origin of time, or Ti = 0.

We denote by N [t1; t2) the number of points in the interval [t1; t2).
It is a discrete-valued RV and the point process is entirely defined if for
any set of nonoverlapping intervals [ti; ti +�ti) the joint probability
distribution of the RVs fN [ti; ti+�ti)g is known. These probabilities
are denoted counting probabilities, and we shall use the notations

pi(t; � ) PfN [t; � ) = ig: (1)

II. RESIDUAL TIME OF ORDER n

A. General Results

Let t be an arbitrary time instant satisfying 0 = Ti � t � T .
The residual time of order n is the RV Rn(t) equal to the distance
between the origin Ti and the nth point of the process posterior to
t. It is fundamental to note that this RV does not exist if there are
less than n points posterior to t, or if the event N [t; T ) < n is re-
alized. Consequently, the distribution function (DF) of Rn(t) defined
by Fn(t; � ) = P [Rn(t) � � ], t � � � T , is the conditional proba-
bility

Fn(t; � ) =P (fN [t; � ) � ngjfN [t; T ) � ng)

=
P (fN [t; � ) � ng � fN [t; T ) � ng)

P (N [t; T ) � n)
: (2)

As � < T , the numerator is equal to

P (N [t; � ) � n) = 1�

n�1

i=0

pi(t; � ): (3)

The denominator has the same structure but pi(t; � ) is replaced by�i =
pi(t; T ). This yields

Fn(t; � ) =
1

1� n�1

i=0
�i

1�

n�1

i=0

pi(t; � ) : (4)
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